1
|
Sharip A, Kunz J. Mechanosignaling via Integrins: Pivotal Players in Liver Fibrosis Progression and Therapy. Cells 2025; 14:266. [PMID: 39996739 PMCID: PMC11854242 DOI: 10.3390/cells14040266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury, represents a major global health burden and is the leading cause of liver failure, morbidity, and mortality. The pathological hallmark of this condition is excessive extracellular matrix deposition, driven primarily by integrin-mediated mechanotransduction. Integrins, transmembrane heterodimeric proteins that serve as primary ECM receptors, orchestrate complex mechanosignaling networks that regulate the activation, differentiation, and proliferation of hepatic stellate cells and other ECM-secreting myofibroblasts. These mechanical signals create self-reinforcing feedback loops that perpetuate the fibrotic response. Recent advances have provided insight into the roles of specific integrin subtypes in liver fibrosis and revealed their regulation of key downstream effectors-including transforming growth factor beta, focal adhesion kinase, RhoA/Rho-associated, coiled-coil containing protein kinase, and the mechanosensitive Hippo pathway. Understanding these mechanotransduction networks has opened new therapeutic possibilities through pharmacological manipulation of integrin-dependent signaling.
Collapse
Affiliation(s)
- Aigul Sharip
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Astana 020000, Kazakhstan
| | - Jeannette Kunz
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana 020000, Kazakhstan;
| |
Collapse
|
2
|
Zhang M, Liu Q, Meng H, Duan H, Liu X, Wu J, Gao F, Wang S, Tan R, Yuan J. Ischemia-reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:12. [PMID: 38185705 PMCID: PMC10772178 DOI: 10.1038/s41392-023-01688-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemia-reperfusion (I/R) injury paradoxically occurs during reperfusion following ischemia, exacerbating the initial tissue damage. The limited understanding of the intricate mechanisms underlying I/R injury hinders the development of effective therapeutic interventions. The Wnt signaling pathway exhibits extensive crosstalk with various other pathways, forming a network system of signaling pathways involved in I/R injury. This review article elucidates the underlying mechanisms involved in Wnt signaling, as well as the complex interplay between Wnt and other pathways, including Notch, phosphatidylinositol 3-kinase/protein kinase B, transforming growth factor-β, nuclear factor kappa, bone morphogenetic protein, N-methyl-D-aspartic acid receptor-Ca2+-Activin A, Hippo-Yes-associated protein, toll-like receptor 4/toll-interleukine-1 receptor domain-containing adapter-inducing interferon-β, and hepatocyte growth factor/mesenchymal-epithelial transition factor. In particular, we delve into their respective contributions to key pathological processes, including apoptosis, the inflammatory response, oxidative stress, extracellular matrix remodeling, angiogenesis, cell hypertrophy, fibrosis, ferroptosis, neurogenesis, and blood-brain barrier damage during I/R injury. Our comprehensive analysis of the mechanisms involved in Wnt signaling during I/R reveals that activation of the canonical Wnt pathway promotes organ recovery, while activation of the non-canonical Wnt pathways exacerbates injury. Moreover, we explore novel therapeutic approaches based on these mechanistic findings, incorporating evidence from animal experiments, current standards, and clinical trials. The objective of this review is to provide deeper insights into the roles of Wnt and its crosstalk signaling pathways in I/R-mediated processes and organ dysfunction, to facilitate the development of innovative therapeutic agents for I/R injury.
Collapse
Affiliation(s)
- Meng Zhang
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
| | - Qian Liu
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hui Meng
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Hongxia Duan
- Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Xin Liu
- Second Clinical Medical College, Jining Medical University, Jining, Shandong, 272067, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Rubin Tan
- Department of Physiology, Basic medical school, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, China.
| |
Collapse
|
3
|
Zheng H, Huang N, Lin JQ, Yan LY, Jiang QG, Yang WZ. Effect and mechanism of pirfenidone combined with 2-methoxy-estradiol perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. Adv Med Sci 2023; 68:46-53. [PMID: 36610261 DOI: 10.1016/j.advms.2022.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The aim of this study was to explore the effect and mechanism of pirfenidone (PFD) combined with 2-methoxyestradiol (2-ME2) perfusion through portal vein on hepatic artery hypoxia-induced hepatic fibrosis. MATERIALS AND METHODS Sprague-Dawley rats were divided into 5 groups (n = 3/group): control group, hepatic artery ligation (HAL) group, HAL + PFD (portal vein perfusion of PFD) group, HAL+2-ME2 (portal vein perfusion of 2-ME2) group and HAL + PFD+2-ME2 group depending on whether they received HAL and/or portal vein perfusion (PFD and/or 2-ME2). Livers were harvested for pathology, western blotting (WB), and quantitative real-time PCR (qRT-PCR). RESULTS Sirius red staining showed that portal vein perfusion of drugs resulted in degradation of liver fibrosis. Immunohistochemistry showed decreased hypoxia-inducible factor-1 α (HIF-1α) and α-smooth muscle actin (α-SMA) after portal intravenous drugs infusion compared with HAL group (P < 0.05). WB analysis showed increased Smad7 in HAL + PFD group compared with HAL group (P < 0.05). qRT-PCR analysis showed decreased matrix metallo-proteinase 2 (MMP2), transforming growth factor β1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), and Collagen I mRNA in HAL + PFD group except for tissue inhibitor of metalloproteinase-1 (TIMP-1) compared with HAL group (P < 0.05). Compared with HAL + PFD group, the addition of 2-ME2 did not lead to better results in qRT-PCR analysis. CONCLUSIONS The portal vein perfusion of PFD significantly reduced the hepatic artery hypoxia-induced fibrosis degree in treated rats by down-regulating the expression of HIF-1α, α-SMA, MMP2, TGF-β1, MCP-1, and Collagen I, as well as up-regulating the TIMP-1 expression and Smad7 protein level. Combined 2-ME2 infusion was not better than PFD alone.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Ning Huang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Jun-Qing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Le-Ye Yan
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Qing-Gui Jiang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China; Department of Interventional Therapy, Xiamen Humanity Hospital, Xiamen, Fujian, People's Republic of China
| | - Wei-Zhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
4
|
Xie L, Zhang Z, Wang Q, Chen Y, Lu D, Wu W. COVID-19 and Diabetes: A Comprehensive Review of Angiotensin Converting Enzyme 2, Mutual Effects and Pharmacotherapy. Front Endocrinol (Lausanne) 2021; 12:772865. [PMID: 34867819 PMCID: PMC8639866 DOI: 10.3389/fendo.2021.772865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
The potential relationship between diabetes and COVID-19 has been evaluated. However, new knowledge is rapidly emerging. In this study, we systematically reviewed the relationship between viral cell surface receptors (ACE2, AXL, CD147, DC-SIGN, L-SIGN and DPP4) and SARS-CoV-2 infection risk, and emphasized the implications of ACE2 on SARS-CoV-2 infection and COVID-19 pathogenesis. Besides, we updated on the two-way interactions between diabetes and COVID-19, as well as the treatment options for COVID-19 comorbid patients from the perspective of ACE2. The efficacies of various clinical chemotherapeutic options, including anti-diabetic drugs, renin-angiotensin-aldosterone system inhibitors, lipid-lowering drugs, anticoagulants, and glucocorticoids for COVID-19 positive diabetic patients were discussed. Moreover, we reviewed the significance of two different forms of ACE2 (mACE2 and sACE2) and gender on COVID-19 susceptibility and severity. This review summarizes COVID-19 pathophysiology and the best strategies for clinical management of diabetes patients with COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Wu
- Department of Endocrinology, The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond) 2020; 134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.
Collapse
|
6
|
Acquah S. Implications of COVID-19 Pandemic on Evolution of Diabetes in Malaria-Endemic African Region. J Diabetes Res 2020; 2020:8205261. [PMID: 33134395 PMCID: PMC7568783 DOI: 10.1155/2020/8205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to cause havoc to many countries of the globe, with no end in sight, due to nonavailability of a given vaccine or treatment regimen. The pandemic has so far had a relatively limited impact on the African continent, which contributes more than 93% of global malaria burden. However, the limited burden of COVID-19 pandemic on the African region could have long-term implications on the health and wellbeing of affected inhabitants due to its malaria-endemic status. Malaria causes recurrent insulin resistance with episodes of infection at relatively low parasitaemia. Angiotensin-converting enzyme 2 (ACE2) which is widely distributed in the human body is implicated in the pathogenesis of malaria, type 2 diabetes mellitus (T2DM), and COVID-19. Use of ACE2 by the COVID-19 virus induces inflammation and oxidative stress, which can lead to insulin resistance. Although COVID-19 patients in malaria-endemic African region may not exhibit severe signs and symptoms of the disease, their risk of exhibiting heightened insulin resistance and possible future development of T2DM is high due to their prior exposure to malaria. African governments must double efforts at containing the continued spread of the virus without neglecting existing malarial control measures if the region is to avert the plausible long-term impact of the pandemic in terms of future development of T2DM.
Collapse
Affiliation(s)
- Samuel Acquah
- Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
7
|
Borém LMA, Neto JFR, Brandi IV, Lelis DF, Santos SHS. The role of the angiotensin II type I receptor blocker telmisartan in the treatment of non-alcoholic fatty liver disease: a brief review. Hypertens Res 2018; 41:394-405. [PMID: 29636553 PMCID: PMC7091617 DOI: 10.1038/s41440-018-0040-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 01/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently considered an important component of metabolic syndrome (MetS). The spectrum of NAFLD includes conditions that range from simple hepatic steatosis to non-alcoholic steatohepatitis. NAFLD is correlated with liver-related death and is predicted to be the most frequent indication for liver transplantation by 2030. Insulin resistance is directly correlated to the central mechanisms of hepatic steatosis in NAFLD patients, which is strongly correlated to the imbalance of the renin–angiotensin system, that is involved in lipid and glucose metabolism. Among the emerging treatment approaches for NAFLD is the anti-hypertensive agent telmisartan, which has positive effects on liver, lipid, and glucose metabolism, especially through its action on the renin–angiotensin system, by blocking the ACE/AngII/AT1 axis and increasing ACE2/Ang(1–7)/Mas axis activation. However, treatment with this drug is only recommended for patients with an established indication for anti-hypertensive therapy. Thus, there is an increased need for large randomized controlled trials with the aim of elucidating the effects of telmisartan on liver disease, especially NAFLD. From this perspective, the present review aims to provide a brief examination of the pathogenesis of NAFLD/NASH and the role of telmisartan on preventing liver disorders and thus to improve the discussion on potential therapies.
Collapse
Affiliation(s)
- Luciana M A Borém
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Medicine Department, Faculdades Integradas Pitágoras, Montes Claros, Minas Gerais, Brazil
| | - João F R Neto
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Igor V Brandi
- Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Deborah F Lelis
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sergio H S Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil. .,Institute of Agricultural Sciences, Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Atawia RT, Esmat A, Elsherbiny DA, El-Demerdash E. Telmisartan ameliorates carbon tetrachloride-induced acute hepatotoxicity in rats. ENVIRONMENTAL TOXICOLOGY 2017; 32:359-370. [PMID: 26929000 DOI: 10.1002/tox.22240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 01/18/2023]
Abstract
This study assessed the potential hepatoprotective effect of telmisartan (TLM), a selective angiotensin II type 1 (AT1 ) receptor blocker, on carbon tetrachloride (CCl4 )-induced acute hepatotoxity in rats. Intraperitoneal injection of male Wistar rats with CCl4 1 mL kg-1 , 1:1 mixture with corn oil for 3 days increased serum alanine transaminase, aspartate transaminase, and alkaline phosphatase activities as well as total bilirubin, triglycerides and total cholesterol levels. This is in addition to the disrupted histological architecture in the CCl4 group. Rats receiving CCl4 and co-treated with TLM (3 and 10 mg kg-1 , orally) showed ameliorated serum biochemical and histological changes almost to the control level. Nevertheless, rats treated with TLM (1 mg kg-1 ) didn't show any significant changes compared to CCl4 intoxicated group. In addition, TLM rectified oxidative status disrupted by CCl4 intoxication. Interestingly, TLM protected against CCl4 -induced expressions of nuclear factor-κB, inducible nitric oxide synthase and cyclooxygenase-II, in a dose related manner. Moreover, TLM (3 and 10 mg kg-1 ) significantly modified CCl4 -induced elevation in tumor necrosis factor-α and nitric oxide levels. Furthermore, TLM showed a marked decline in CD68+ cells stained areas and reduced activity of myeloperoxidase enzyme compared to CCl4 -intoxicated group. In conclusion, both doses of TLM (3 and 10 mg kg-1 ) showed significant hepato-protective effects. However, TLM at a dose of 10 mg kg-1 didn't show significant efficacy above 3 mg kg-1 which is nearly equivalent to the human anti-hypertensive dose of 40 mg. Thus, may be effective in guarding against several hepatic complications due to its antioxidant and anti-inflammatory activities. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 359-370, 2017.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Zhao J, Liu J, Pang X, Zhang X, Wang S, Wu D. Rosiglitazone attenuates angiotensin II-induced C-reactive protein expression in hepatocytes via inhibiting AT1/ROS/MAPK signal pathway. Int Immunopharmacol 2016; 31:178-85. [DOI: 10.1016/j.intimp.2015.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/18/2015] [Accepted: 12/18/2015] [Indexed: 12/26/2022]
|
10
|
Yang B, Brahmbhatt A, Nieves Torres E, Thielen B, McCall DL, Engel S, Bansal A, Pandey MK, Dietz AB, Leof EB, DeGrado TR, Mukhopadhyay D, Misra S. Tracking and Therapeutic Value of Human Adipose Tissue-derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. Radiology 2015; 279:513-22. [PMID: 26583911 DOI: 10.1148/radiol.2015150947] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine if adventitial transplantation of human adipose tissue-derived mesenchymal stem cells (MSCs) to the outflow vein of B6.Cg-Foxn1(nu)/J mice with arteriovenous fistula (AVF) at the time of creation would reduce monocyte chemoattractant protein-1 (Mcp-1) gene expression and venous neointimal hyperplasia. The second aim was to track transplanted zirconium 89 ((89)Zr)-labeled MSCs serially with positron emission tomography (PET) for 21 days. MATERIALS AND METHODS All animal experiments were performed according to protocols approved by the institutional animal care and use committee. Fifty B6.Cg-Foxn1(nu)/J mice were used to accomplish the study aims. Green fluorescent protein was used to stably label 2.5 × 10(5) MSCs, which were injected into the adventitia of the outflow vein at the time of AVF creation in the MSC group. Eleven mice died after AVF placement. Animals were sacrificed on day 7 after AVF placement for real-time polymerase chain reaction (n = 6 for MSC and control groups) and histomorphometric (n = 6 for MSC and control groups) analyses and on day 21 for histomorphometric analysis only (n = 6 for MSC and control groups). In a separate group of experiments (n = 3), animals with transplanted (89)Zr-labeled MSCs were serially imaged with PET for 3 weeks. Multiple comparisons were performed with two-way analysis of variance, followed by the Student t test with post hoc Bonferroni correction. RESULTS In vessels with transplanted MSCs compared with control vessels, there was a significant decrease in Mcp-1 gene expression (day 7: mean reduction, 62%; P = .029), with a significant increase in the mean lumen vessel area (day 7: mean increase, 176% [P = .013]; day 21: mean increase, 415% [P = .011]). Moreover, this was accompanied by a significant decrease in Ki-67 index (proliferation on day 7: mean reduction, 81% [P = .0003]; proliferation on day 21: mean reduction, 60%, [P = .016]). Prolonged retention of MSCs at the adventitia was evidenced by serial PET images of (89)Zr-labeled cells. CONCLUSION Adventitial transplantation of MSCs decreases Mcp-1 gene expression, accompanied by a reduction in venous neointimal hyperplasia.
Collapse
Affiliation(s)
- Binxia Yang
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Akshaar Brahmbhatt
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Evelyn Nieves Torres
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Brian Thielen
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Deborah L McCall
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sean Engel
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Aditya Bansal
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Mukesh K Pandey
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Allan B Dietz
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Edward B Leof
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Timothy R DeGrado
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Debabrata Mukhopadhyay
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Sanjay Misra
- From the Vascular and Interventional Radiology Translational Laboratory, Department of Radiology (B.Y., A. Brahmbhatt, E.N.T., B.T., D.L.M., S.E., A. Bansal, M.K.P., T.R.D., S.M.), and Department of Biochemistry and Molecular Biology (A.B.D., E.B.L., D.M., S.M.), Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
11
|
Ino K, Masuya M, Tawara I, Miyata E, Oda K, Nakamori Y, Suzuki K, Ohishi K, Katayama N. Monocytes infiltrate the pancreas via the MCP-1/CCR2 pathway and differentiate into stellate cells. PLoS One 2014; 9:e84889. [PMID: 24416305 PMCID: PMC3885670 DOI: 10.1371/journal.pone.0084889] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 11/24/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP)+CD45– cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4). Because the vast majority of EGFP+CD45– cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs). EGFP+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1) and angiotensin II (Ang II) increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2) and Ang II type 1 receptor (AT1R), were expressed on Ly6Chigh monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP+F4/80+CCR2+ monocytic cells and EGFP+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP+ PaSCs in injured mice. We propose that CCR2+ monocytes migrate into the pancreas possibly via the MCP-1/CCR2 pathway and give rise to PaSCs.
Collapse
Affiliation(s)
- Kazuko Ino
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail: (MM); (NK)
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Eri Miyata
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Keiko Oda
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshiki Nakamori
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kei Suzuki
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kohshi Ohishi
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail: (MM); (NK)
| |
Collapse
|
12
|
Involvement of the HIF-1α and Wnt/β-catenin pathways in the protective effects of losartan on fatty liver graft with ischaemia/reperfusion injury. Clin Sci (Lond) 2013; 126:163-74. [PMID: 23875703 DOI: 10.1042/cs20130025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides cardioprotective effects, the AT1R (angiotensin-II type 1 receptor) antagonist losartan protects the liver from IRI [IR (ischaemia/reperfusion) injury], but the mechanism has not been fully determined. The HIF (hypoxia inducible factor)-1α and Wnt/β-catenin signalling pathways have been reported to be involved in the mechanism of liver IRI. Therefore the aim of the present study was to determine whether the Wnt/HIF axis is part of the mechanism of the positive effect of AngII inhibition by losartan in liver IRI in rats. Various measurements were made in MCD/HF-NASH (methionine- and choline-deficient-diet/high-fat-diet-induced non-alcoholic steatohepatitis) rats with liver IRI. Acute losartan pre-administration markedly reversed the IR-suppressed levels of the hepatic-protective factors IL (interleukin)-6, IFN (interferon)-γ, Wnt3a, β-catenin and HIF-1α, and decreased hepatic blood flow and IR-elevated serum ALT (alanine aminotransferase), hepatic TNF (tumour necrosis factor)-α, IL-1α, hepatic congestion, vacuolization and necrosis, hepatic Suzuki IRI scores, necrotic index and levels of TBARS (thiobarbituric acid-reacting substances) in MCD/HF-NASH rats. Furthermore, acute Wnt3a pre-treatment significantly inhibited IR-elevated serum ALT, hepatic Suzuki IRI scores and TBARS, and restored the IR-depleted β-catenin/HIF-1α activity in MCD/HF-NASH rats. Simultaneous acute sFRP2 (secreted frizzled-related protein 2; a Wnt3a inhibitor) pre-treatment eliminated the losartan-related beneficial effects in MCD/HF-NASH rats with liver IRI, which was accompanied by a decrease in hepatic HIF-1α/β-catenin activity. Losartan-induced up-regulation of HIF-1α and Wnt/β-catenin signalling was associated with the recovery of IR-inhibited hepatic Bcl-2, Mn-SOD (manganese superoxide), Cu/Zn-SOD (copper/zinc superoxide) and GSH levels, and the suppression of IR-increased hepatic catalase and caspase 3/caspase 8 levels in MCD/HF-NASH rats. In conclusion, up-regulation of the HIF-1α and Wnt/β-catenin signalling pathways are part of the mechanism of the positive effects of losartan-related AngII inhibition in MCD/HF-NASH rats with liver IRI. Our study highlights the potential of the dual-organ protective agent losartan in NASH patients with steatotic livers and cardiovascular risk.
Collapse
|
13
|
Matthew Morris E, Fletcher JA, Thyfault JP, Rector RS. The role of angiotensin II in nonalcoholic steatohepatitis. Mol Cell Endocrinol 2013; 378:29-40. [PMID: 22579612 PMCID: PMC12063499 DOI: 10.1016/j.mce.2012.04.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/30/2012] [Indexed: 01/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now considered the most prevalent chronic liver disease, affecting over 30% of the US adult population. NAFLD is strongly linked to insulin resistance and is considered the hepatic manifestation of the metabolic syndrome. Activation of the renin-angiotensin-aldosterone system (RAAS) is known to play a role in the hypertension observed in the metabolic syndrome and also is thought to play a central role in insulin resistance and NAFLD. Angiotensin II (AngII) is considered the primary effector of the physiological outcomes of RAAS signaling, both at the systemic and local tissue level. Herein, we review data describing the potential involvement of AngII-mediated signaling at multiple levels in the development and progression of NAFLD, including increased steatosis, inflammation, insulin resistance, and fibrosis. Additionally, we present recent work on the potential therapeutic benefits of RAAS and angiotensin II signaling inhibition in rodent models and patients with NAFLD.
Collapse
Affiliation(s)
- E Matthew Morris
- Department of Internal Medicine - Division of Gastroenterology and Hepatology, University of Missouri, MO, United States; Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States.
| | | | | | | |
Collapse
|
14
|
Li S. Role of the renin-angiotensin system in liver fibrosis. Shijie Huaren Xiaohua Zazhi 2013; 21:2151-2157. [DOI: 10.11569/wcjd.v21.i22.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is characterized by progressive inflammation and deposition of extracellular matrix components. Several recent studies have demonstrated that the rennin-angiotensin system (RAS) plays a key role in hepatic fibrosis. In this review, we provide a comprehensive update of the role of the RAS in the pathogenesis of hepatic fibrosis. We will discuss the profibrotic mechanisms activated by the RAS. Studies that have utilized angiotensin receptor blockers and angiotensin-converting enzyme inhibitors to modulate the RAS to ameliorate hepatic fibrosis will also be discussed.
Collapse
|
15
|
Santos SHS, Andrade JMO, Fernandes LR, Sinisterra RDM, Sousa FB, Feltenberger JD, Alvarez-Leite JI, Santos RAS. Oral Angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet. Peptides 2013; 46:47-52. [PMID: 23714175 DOI: 10.1016/j.peptides.2013.05.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/16/2022]
Abstract
Obesity is characterized by a pro-inflammatory state commonly associated with type 2 diabetes and fat-liver disease. In the last few years, different studies pointed out the role of Angiotensin (Ang)-(1-7) in the metabolic regulation. The aim of the present study was to evaluate the effect of oral-administration of Ang-(1-7) in metabolism and inflammatory state of high-fat feed rats. Twenty-four male Sprague Dawley rats were randomized into three groups: High Fat Diet (HFD); Standard Diet (ST); High Fat Diet+Angiotensin-(1-7) [HFD+Ang-(1-7)]. Glycemic profile was evaluated by glucose tolerance and insulin sensitivity tests, plasmatic glucose and insulin. Cholesterol, HDL and triglycerides analyses presented lipidic profile. RT-PCR evaluated mRNA expression to ACE, ACE2, resistin, TLR4, IL-6, TNF-α and NF-κB genes. The main results showed that oral Ang-(1-7) decreased body weight and abdominal fat-mass. In addition, HFD+Ang-(1-7) treated rats presented enhanced glucose tolerance, insulin-sensitivity and decreased plasma-insulin levels, as well as a significant decrease in circulating lipid levels. These alterations were accompanied by a marked decreased expression of resistin, TLR4, ACE and increased ACE2 expression in liver. Furthermore, Ang-(1-7) decreases phosphorylation of MAPK and increases NF-κB expression. These alterations diminished expression of interleukin-6 and TNF-α, ameliorate inflammatory state in liver. In summary, the present study showed that oral-treatment with Ang-(1-7) in high-fat feed rats improved metabolism down-regulating resistin/TLR4/NF-κB-pathway.
Collapse
Affiliation(s)
- Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros-UNIMONTES, Montes Claros, MG, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ronis MJJ, Baumgardner JN, Marecki JC, Hennings L, Wu X, Shankar K, Cleves MA, Gomez-Acevedo H, Badger TM. Dietary fat source alters hepatic gene expression profile and determines the type of liver pathology in rats overfed via total enteral nutrition. Physiol Genomics 2012; 44:1073-89. [PMID: 22991207 DOI: 10.1152/physiolgenomics.00069.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To determine if dietary fat composition affects the progression of nonalcoholic fatty liver disease (NAFLD), we overfed male Sprague-Dawley rats low (5%) or high (70%) fat diets with different fat sources: olive oil (OO), corn oil (CO), or echium oil (EO), with total enteral nutrition (TEN) for 21 days. Overfeeding of the 5% CO or 5% EO diets resulted in less steatosis than 5% OO (P < 0.05). Affymetrix array analysis revealed significant differences in hepatic gene expression signatures associated with greater fatty acid synthesis, ChREBP, and SREBP-1c signaling and increased fatty acid transport (P < 0.05) in the 5% OO compared with 5% CO group. The OO groups had macrosteatosis, but no evidence of oxidative stress or necrosis. The 70% CO and 70% EO groups had a mixture of micro- and macrosteatosis or only microsteatosis, respectively; increased oxidative stress; and increased necrotic injury relative to their respective 5% groups (P < 0.05). Oxidative stress and necrosis correlated with increasing peroxidizability of the accumulated triglycerides. Affymetrix array analysis comparing the 70% OO and 70% CO groups revealed increased antioxidant pathways and lower expression of genes linked to inflammation and fibrosis in the 70% OO group. A second study in which 70% OO diet was overfed for 50 days produced no evidence of progression of injury beyond simple steatosis. These data suggest that dietary fat type strongly influences the progression of NAFLD and that a Mediterranean diet high in olive oil may reduce the risk of NAFLD progressing to nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- M J J Ronis
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sipal S, Halici Z, Kiki I, Polat B, Albayrak A, Albayrak F, Karakus E, Aksak S, Ozturk B, Gundogdu C. Comparative study of three angiotensin II type 1 receptor antagonists in preventing liver fibrosis in diabetic rats: stereology, histopathology, and electron microscopy. J Mol Histol 2012; 43:723-35. [PMID: 22922994 DOI: 10.1007/s10735-012-9441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/11/2012] [Indexed: 01/12/2023]
Abstract
The presence of liver disease in patients with progressively worsening insulin resistance may not be recognized until patients develop manifestations of the metabolic syndrome such as diabetes, hypertension, hyperlipidemia, and vascular disease. It was aimed to investigate whether three angiotensin II type 1 receptor antagonists (ARBs) (olmesartan, losartan, and valsartan) had preventive effect against hepatic fibrosis and this was a common characteristic among ARBs. In current study, 25 adult male rats were used and divided into five groups: the non-diabetic healthy group, alloxan induced diabetic (AID) control group, AID losartan group, AID valsartan group and AID olmesartan group. According to numerical density of hepatocytes, significant difference was found between the non-diabetic healthy group and diabetic control group. All treatments groups were significant when compared to diabetic control group. In diabetic control group it was examined swelling, irregular cristae arrangement in some of mitochondria. It was also determined mitochondria membrane degeneration in some areas of section profiles. In diabetic rats treated with losartan group, there were necrotic hepatocytes. In diabetic rats treated with valsartan group, predominantly, findings were similar to losartan group. In diabetic rats treated with olmesertan group, plates of hepatocytes were quite regular. There were hardly necrotic cells. Not only other organelles such as RER, SER and lysosom but also mitochondrial structures had normal appearance. In the diabetic control group electron microscopy revealed edema in both the cytoplasm and perinuclear area and the nuclear membranes appeared damaged. In conclusion, it was established that the most protective ARB the liver in diabetic rats was olmesartan, followed by losartan.
Collapse
Affiliation(s)
- Sare Sipal
- Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fujii H, Kawada N. Inflammation and fibrogenesis in steatohepatitis. J Gastroenterol 2012; 47:215-25. [PMID: 22310735 DOI: 10.1007/s00535-012-0527-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 02/04/2023]
Abstract
Nonalcoholic fatty liver disease consists of a range of disorders characterized by excess accumulation of triglyceride within the liver. Whereas simple steatosis is clinically benign, nonalcoholic steatohepatitis (NASH) often progresses to cirrhosis. Inflammation and fibrogenesis are closely inter-related and are major targets of NASH research. Experimental data have shown that inflammation in NASH is caused by insulin resistance, systemic lipotoxicity due to overnutrition, lipid metabolites, the production of proinflammatory cytokines and adipokines by visceral adipose tissue, gut-derived bacteria, and oxidative stress. In NASH-associated fibrosis, the principal cell type responsible for extracellular matrix production is recognized as the hepatic stellate cell. Although the fibrotic mechanisms underlying NASH are largely similar to those observed in other chronic liver diseases, the altered patterns of circulating adipokines, the generation of oxidative stress, and the hormonal profile associated with the metabolic syndrome might play unique roles in the fibrogenesis associated with the disease. Information on the basic pathogenesis of NASH with a focus on the generation of inflammation and fibrosis will be discussed.
Collapse
Affiliation(s)
- Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | |
Collapse
|
19
|
Arsenescu V, Arsenescu R, Parulkar M, Karounos M, Zhang X, Baker N, Cassis LA. Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice. Toxicol Appl Pharmacol 2011; 257:148-54. [PMID: 21925196 DOI: 10.1016/j.taap.2011.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/22/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
Infusion of angiotensin II (AngII) to hyperlipidemic mice augments atherosclerosis and causes formation of abdominal aortic aneurysms (AAAs). Each of these AngII-induced vascular pathologies exhibit pronounced inflammation. Previous studies demonstrated that coplanar polychlorinated biphenyls (PCBs) promote inflammation in endothelial cells and adipocytes, two cell types implicated in AngII-induced vascular pathologies. The purpose of this study was to test the hypothesis that administration of PCB77 to male apolipoprotein E (ApoE) -/- mice promotes AngII-induced atherosclerosis and AAA formation. Male ApoE-/- mice were administered vehicle or PCB77 (49 mg/kg, i.p.) during week 1 and 4 (2 divided doses/week) of AngII infusion. Body weights and total serum cholesterol concentrations were not influenced by administration of PCB77. Systolic blood pressure was increased in AngII-infused mice administered PCB77 compared to vehicle (156±6 vs 137±5 mmHg, respectively). The percentage of aortic arch covered by atherosclerotic lesions was increased in AngII-infused mice administered PCB77 compared to vehicle (2.0±0.4 vs 0.9±0.1%, respectively). Lumen diameters of abdominal aortas determined by in vivo ultrasound and external diameters of excised suprarenal aortas were increased in AngII-infused mice administered PCB77 compared to vehicle. In addition, AAA incidence increased from 47 to 85% in AngII-infused mice administered PCB77. Adipose tissue in close proximity to AAAs from mice administered PCB77 exhibited increased mRNA abundance of proinflammatory cytokines and elevated expression of components of the renin-angiotensin system (angiotensinogen, angiotensin type 1a receptor (AT1aR)). These results demonstrate that PCB77 augments AngII-induced atherosclerosis and AAA formation.
Collapse
Affiliation(s)
- Violeta Arsenescu
- Graduate Center for Nutritional Sciences, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Munshi MK, Uddin MN, Glaser SS. The role of the renin-angiotensin system in liver fibrosis. Exp Biol Med (Maywood) 2011; 236:557-66. [PMID: 21508249 DOI: 10.1258/ebm.2011.010375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis, which is characterized by progressive inflammation and deposition of extracellular matrix components, is a common response to chronic liver disease. Hepatic fibrogenesis is a dynamic process that involves several liver cell types including hepatic stellate cells and Kupffer cells. In addition, recent evidence indicates that bile duct epithelial cells (i.e. cholangiocytes) also participate in the progression of biliary fibrosis that is observed during chronic cholestatic liver diseases, such as primary sclerosing cholangitis. To date, there are no effective treatments for hepatic fibrosis. Several recent studies have demonstrated that the renin-angiotensin system (RAS) plays a key role in hepatic fibrosis. Therapies targeting the RAS may represent a promising paradigm for the prevention and treatment of hepatic fibrosis in the setting of chronic liver disease. In this review, we provide a comprehensive update on the role of RAS in the pathogenesis of hepatic fibrosis in both animal models and human studies. We will discuss the profibrotic mechanisms activated by the RAS and the cell types involved. Studies that have utilized angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors to modulate the RAS in order to ameliorate hepatic fibrosis will also be discussed. Although the cumulative evidence supports the potential for the use of ARBs and ACE inhibitors as treatment for hepatic fibrosis, extensive studies of the effectiveness of RAS therapeutics are necessary in patients with chronic liver disease.
Collapse
Affiliation(s)
- M Kamruzzman Munshi
- Department of Medicine, Division of Gastroenterology, Scott & White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, 76504, USA
| | | | | |
Collapse
|
21
|
Ho TC, Chen SL, Shih SC, Wu JY, Han WH, Cheng HC, Yang SL, Tsao YP. Pigment epithelium-derived factor is an intrinsic antifibrosis factor targeting hepatic stellate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1798-811. [PMID: 20709803 DOI: 10.2353/ajpath.2010.091085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The liver is the major site of pigment epithelium-derived factor (PEDF) synthesis. Recent evidence suggests a protective role of PEDF in liver cirrhosis. In the present study, immunohistochemical analyses revealed lower PEDF levels in liver tissues of patients with cirrhosis and in animals with chemically induced liver fibrosis. Delivery of the PEDF gene into liver cells produced local PEDF synthesis and ameliorated liver fibrosis in animals treated with either carbon tetrachloride or thioacetamide. In addition, suppression of peroxisome proliferator-activated receptor gamma expression, as well as nuclear translocation of nuclear factor-kappa B was found in hepatic stellate cells (HSCs) from fibrotic livers, and both changes were reversed by PEDF gene delivery. In culture-activated HSCs, PEDF, through the induction of peroxisome proliferator-activated receptor gamma, reduced the activity of nuclear factor-kappa B and prevented the nuclear localization of JunD. In conclusion, our observations that PEDF levels are reduced during liver cirrhosis and that PEDF gene delivery ameliorates cirrhosis suggest that PEDF is an intrinsic protector against liver cirrhosis. Direct inactivation of HSCs and the induction of apoptosis of activated HSCs may be two of the mechanisms by which PEDF suppresses liver cirrhosis.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, School of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, Oudar O, Sutton A, Charnaux N. Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer 2010; 126:1095-108. [PMID: 19642141 DOI: 10.1002/ijc.24800] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of our study was to investigate whether myofibroblasts and the chemokine monocyte chemoattractant protein-1 (MCP-1)/CCL2 may play a role in hepatocellular carcinoma progression. We observed that hepatic myofibroblast LI90 cells express MCP-1/CCL2 mRNA and secrete this chemokine. Moreover, myofibroblast LI90 cell-conditioned medium (LI90-CM) induces human hepatoma Huh7 cell migration and invasion. These effects are strongly reduced when a MCP-1/CCL2-depleted LI90-CM was used. We showed that MCP-1/CCL2 induces Huh7 cell migration and invasion through its G-protein-coupled receptor CCR2 and, to a lesser extent, through CCR1 only at high MCP-1/CCL2 concentrations. MCP-1/CCL2's chemotactic activities rely on tyrosine phosphorylation of focal adhesion components and depend on matrix metalloproteinase (MMP)-2 and MMP-9. Furthermore, we observed that Huh7 cell migration and invasion induced by the chemokine are strongly inhibited by heparin, by beta-D-xyloside treatment of cells and by anti-syndecan-1 and -4 antibodies. Finally, we developed a 3-dimensional coculture model of myofibroblast LI90 and Huh7 cells and demonstrated that MCP-1/CCL2 and its membrane partners, CCR1 and CCR2, may be involved in the formation of mixed hepatoma-myofibroblast spheroids. In conclusion, our data show that human liver myofibroblasts act on hepatoma cells in a paracrine manner to increase their invasiveness and suggest that myofibroblast-derived MCP-1/CCL2 could be involved in the pathogenesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Maylis Dagouassat
- INSERM U698, Bioingénierie cardiovasculaire, Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chronic intake of a high-cholesterol diet resulted in hepatic steatosis, focal nodular hyperplasia and fibrosis in non-obese mice. Br J Nutr 2009; 103:378-85. [DOI: 10.1017/s0007114509991772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the effects of a high-cholesterol (HC) diet administered long term (25 or 55 weeks) on metabolic disorders including hepatic damage in mice. The mice were fed the HC diet (15 % milk fat, 1·5 % cholesterol and 0·1 % cholic acid, w/w) for 25 or 55 weeks. Body and adipose tissue weights were similar to those of mice fed a control diet. Consumption of the HC diet long term resulted in hypercholesterolaemia, hepatic steatosis and gallstones. In addition, focal nodular hyperplasia (FNH) and mild fibrosis of the liver developed in all mice fed the HC diet for 55 weeks. Plasma levels of monocyte chemoattractant protein (MCP)-1 were elevated, and the level of hepatic platelet-derived growth factor (PDGF)-B protein was increased in mice fed the HC diet compared with those fed the control diet. Thus, it seems likely that the liver fibrosis and FNH caused by the long-term consumption of a HC diet may be partly due to an elevation of plasma MCP-1 and hepatic PDGF expression.
Collapse
|
24
|
Colmenero J, Bataller R, Sancho-Bru P, Domínguez M, Moreno M, Forns X, Bruguera M, Arroyo V, Brenner DA, Ginès P. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am J Physiol Gastrointest Liver Physiol 2009; 297:G726-34. [PMID: 19628656 PMCID: PMC2763804 DOI: 10.1152/ajpgi.00162.2009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Angiotensin II promotes liver fibrogenesis by stimulating nonphagocytic NADPH oxidase (NOX)-induced oxidative stress. Angiotensin II type 1 (AT1) receptor blockers attenuate experimental liver fibrosis, yet their effects in human liver fibrosis are unknown. We investigated the effects of losartan on hepatic expression of fibrogenic, inflammatory, and NOX genes in patients with chronic hepatitis C (CHC). Fourteen patients with CHC and liver fibrosis received oral losartan (50 mg/day) for 18 mo. Liver biopsies were performed at baseline and after treatment. The degree of inflammation and fibrosis was evaluated by histological analysis (METAVIR). Collagen content was measured by morphometric quantification of Sirius red staining. Overall collagen content and fibrosis stage remained stable in the whole series, yet the fibrosis stage decreased in seven patients. Inflammatory activity improved in seven patients. The effect of losartan on hepatic expression of 31 profibrogenic and inflammatory genes and components of the NOX complex was assessed by quantitative PCR. Losartan treatment was associated with a significant decrease in the expression of several profibrogenic and NOX genes including procollagen alpha1(I) and alpha1(IV), urokinase-type plasminogen activator, metalloproteinase type 2, NOX activator 1 (NOXA-1) and organizer 1 (NOXO-1), and Rac-1. Losartan was well tolerated in all patients and was effective in attenuating the activity of the systemic renin-angiotensin system. No effects on serum liver tests or viral load were observed. We conclude that prolonged administration of losartan, an oral AT1 receptor blocker, is associated with downregulation of NOX components and fibrogenic genes in patients with CHC. Controlled studies are warranted to assess the effect of AT1 receptor blockers in chronic liver injury.
Collapse
Affiliation(s)
- Jordi Colmenero
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Ramón Bataller
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Pau Sancho-Bru
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Marlene Domínguez
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Montserrat Moreno
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Xavier Forns
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Miquel Bruguera
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - Vicente Arroyo
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| | - David A. Brenner
- 2University of California San Diego School of Medicine, La Jolla, California
| | - Pere Ginès
- 1Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Catalonia, Spain; and
| |
Collapse
|
25
|
Zhang X, Li ZZ, Liu DF, Xu X, Mei ZC, Shen W. ANGIOTENSIN-CONVERTING ENZYME INHIBITORS IMPROVE HEPATIC STEATOSIS BY MODULATING EXPRESSION OF TUMOUR NECROSIS FACTOR-α, INTERLEUKIN-6 AND ADIPONECTIN RECEPTOR-2 IN RATS WITH TYPE 2 DIABETES. Clin Exp Pharmacol Physiol 2009; 36:631-6. [DOI: 10.1111/j.1440-1681.2008.05129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Nabeshima Y, Tazuma S, Kanno K, Hyogo H, Chayama K. Deletion of angiotensin II type I receptor reduces hepatic steatosis. J Hepatol 2009; 50:1226-35. [PMID: 19395110 DOI: 10.1016/j.jhep.2009.01.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/16/2008] [Accepted: 01/09/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS A distinct subgroup of angiotensin II type 1 receptor (AT1R) blockers (ARBs) have been reported to suppress the development of hepatic steatosis. These effects were generally explained by selective peroxisome proliferator-activated receptor (PPAR) gamma modulating properties of ARBs, independent of their AT1R blocking actions. Here, we provide genetic evidence of the direct role for AT1R in hepatic steatosis. METHODS The effect of AT1R deletion on steatohepatitis was investigated in AT1a(-/-) mice. Furthermore, the influence of AT1R inhibition by telmisartan as well as gene silencing of AT1R by siRNA was assessed in an in vitro experiment using HepG2 cells. RESULTS Compared to wild-type (WT), AT1a(-/-) mice fed methionine-choline deficient (MCD) diet resulted in negligible lipid accumulation in the liver with marked induction of PPARalpha mRNA. In vitro experiments also demonstrated reduced cellular lipid accumulation by telmisartan and AT1R knockdown following exposure of long chain fatty acids. This is presumably explained by the observation that the expression of PPARalpha and its target genes were significantly up-regulated in specific siRNA treated HepG2 cells. CONCLUSIONS Our data indicate, in addition to pharmacological effect of ARBs on PPARgamma activation, a key biological role for AT1R in the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Yoshitaka Nabeshima
- Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
27
|
Wu XL, Zeng WZ, Jiang MD, Qin JP, Xu H, Wang Z. Effects of salidroside on expression of ROCK in rats with liver fibrosis. Shijie Huaren Xiaohua Zazhi 2009; 17:765-769. [DOI: 10.11569/wcjd.v17.i8.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effects of salidroside on the expression of ROCK in liver tissue of CCl4-induced liver fibrosis in rats, and to explore its probable mechanism.
METHODS: Ninety healthy SD rats were randomly divided into 3 groups: control group (n = 10), salidroside group (n = 40) and liver fibrosis group (n = 40). Experimental liver fibrosis was induced by (with the concentration of 300 mL/L soluted in liquid paraffin) subcutaneous injection of CCl4 (at the dosage of 3 mL/kg, twice per wk, 8 wks). The salidroside was injected into the peritoneal cavity at the dosage of 5 mg/kg, twice per week for 8 weeks. Liver tissues from each group were stained with Masson and HE staining to observe the collagen deposition. Expressions of ROCKⅠand ROCKⅡ in the liver tissue were detected with in situ hybridization (ISH) and immunohistochemistry (IH) respectively. All the figures were scanned with electronic computer, and the data were analyzed with Image-Plus software.
RESULTS: A significant collagen deposition and rearrangement of the parenchyma were noted in liver tissue of CCl4-treated rats. There were lots of pseudolobule in liver tissue. The semiquantitative histological scores and average area of collagen were significantly increased when compared with control rats (2.1 ± 0.3 vs 3.6 ± 0.8, 74.82 ± 21.51 μm2vs 290.86 ± 89.37 μm2, both P < 0.05). Compared with control group, the expressions of ROCKⅠ, ROCKⅡ and ROCKⅠmRNA, ROCKⅡmRNA were decreased significantly in salidroside group (0.203 ± 0.068 vs 0.357 ± 0.182, 0.237 ± 0.056 vs 0.394 ± 0.238; 0.197 ± 0.019 vs 0.394 ± 0.238, 0.185 ± 0.031 vs 0.279 ± 0.112, P < 0.05 or 0.01).
CONCLUSION: The expressions of ROCKⅠand ROCKⅡ in liver tissues are inhibited significantly with salidroside treatment. Salidroside could interfere with the signal transduction of Rho-ROCK pathway and then inhibit liver fibrosis in rats.
Collapse
|
28
|
Estep JM, Baranova A, Hossain N, Elariny H, Ankrah K, Afendy A, Chandhoke V, Younossi ZM. Expression of cytokine signaling genes in morbidly obese patients with non-alcoholic steatohepatitis and hepatic fibrosis. Obes Surg 2009; 19:617-24. [PMID: 19280268 DOI: 10.1007/s11695-009-9814-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 02/19/2009] [Indexed: 01/14/2023]
Abstract
BACKGROUND White adipose tissue (WAT) from visceral adiposity plays an important role in the pathogenesis of non-alcoholic steatohepatitis (NASH). Development of NASH and its progression to fibrosis is partially due to cytokines and adipokines produced by WAT. The aim of this study was to assess the association of hepatic fibrosis and NASH by evaluating the intrinsic differences in the inflammatory cytokine signaling in the visceral adipose tissue obtained from morbidly obese patients. METHODS We used targeted microarrays representing human genes involved in the inflammatory and fibrogenic reactions to profile visceral adipose samples of 15 well-matched NASH patients with and without fibrosis. Additionally, visceral adipose samples were subjected to real-time polymerase chain reaction profiling of 84 inflammations related genes. RESULTS Eight genes (CCL2, CCL4, CCL18, CCR1, IL10RB, IL15RA, and LTB) were differentially expressed in NASH with fibrosis. Additionally, an overlapping but distinct list of the differentially expressed genes were found in NASH with type II diabetes (DM; IL8, BLR1, IL2RA, CD40LG, IL1RN, IL15RA, and CCL4) as compared to NASH without DM. CONCLUSIONS Inflammatory cytokines are differentially expressed in the adipose tissue of NASH with fibrosis, as well in NASH with DM. These findings point at the interaction of adipose inflammatory cytokines, DM, hepatic fibrosis in NASH, and its progression to cirrhosis and end-stage liver disease.
Collapse
Affiliation(s)
- J Michael Estep
- Center for Liver Diseases, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Hepatic steatosis (fatty liver) is increasingly recognized as a major component of the metabolic (insulin resistance) syndrome. It can progress to cirrhosis and hepatocellular carcinoma, leading to liver-related mortality. Increasing evidence shows a significant association between hepatic steatosis and hypertension; both are linked to the metabolic syndrome. This review discusses the evidence to support this association, and reviews the diagnosis and management of hepatic steatosis.
Collapse
Affiliation(s)
- Matthew J Brookes
- Gastroenterology Unit, City Hospital, Dudley Road, Birmingham B18 7QH, UK
| | | | | |
Collapse
|
30
|
Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis. Clin Liver Dis 2008; 12:825-52, ix. [PMID: 18984469 DOI: 10.1016/j.cld.2008.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is the result of a complex interplay between resident hepatic cells, infiltrating inflammatory cells, and a number of locally acting peptides called cytokines. Key mediators include transforming growth factor b1, vasoactive substances, adipokines, inflammatory cytokines and chemokines. Angiotensin II, the main effector of the renin-angiotensin system, is a true cytokine that plays a major role in liver fibrosis. Angiotensin II is locally synthesized in the injured liver and induces profibrogenic actions in hepatic stellate cells. Drugs blocking the renin-angiotensin system are promising antifibrotic agents. There are multiple signal transduction pathways involved in cytokine signaling. Drugs interfering intracellular pathways involved in increased collagen production are potential therapies for liver fibrosis.
Collapse
Affiliation(s)
- Montserrat Moreno
- Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | | |
Collapse
|
31
|
Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells. Mol Cell Biochem 2008; 319:91-8. [DOI: 10.1007/s11010-008-9881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/03/2008] [Indexed: 01/16/2023]
|
32
|
Tumgor G, Berdeli A, Arikan C, Levent E, Aydogdu S. Mcp-1, eNOS, tPA and PAI-1 gene polymorphism and correlation of genotypes and phenotypes in hepatopulmonary syndrome. Dig Dis Sci 2008; 53:1345-1351. [PMID: 17934860 DOI: 10.1007/s10620-007-0002-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 08/21/2007] [Indexed: 12/12/2022]
Abstract
AIM The aim of this case-control study was to investigate both the distribution of MCP-1, eNOS, tPA and PAI-1 gene polymorphism and correlation of genotypes and phenotypes. METHOD Between September 1997-January 2005, 20 patients with HPS (group 1) were compared with a group of cirrhotic patients (group 2, n = 19) as well as unrelated healthy controls (group 3, n = 59) in respect to MCP1, eNOS, tPA and PAI-1 gene polymorphism frequency distribution. RESULTS MCP1-2518G allele carriage in patients with HPS was higher than in controls (P = 0.01). In non-HPS cirrhotic patients, eNOS Glu298Asp, Asp gene carriers and frequency of Asp alleles were detected to be considerably higher than in patients with HPS and healthy controls (P < 0.05). CONCLUSION HPS is more common in patients with MCP-1 2518G gene carriage; conversely it is less frequent in patients with high frequency of eNOS 298Asp allele and eNOS 298Asp carriage.
Collapse
Affiliation(s)
- Gokhan Tumgor
- Department of Pediatric Gastroenterology, Hepatology and Nutrition and Organ Transplantation and Research Center, Ege University School of Medicine, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
33
|
Toblli JE, Muñoz MC, Cao G, Mella J, Pereyra L, Mastai R. ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese Zucker rats. Obesity (Silver Spring) 2008; 16:770-6. [PMID: 18239590 DOI: 10.1038/oby.2007.114] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Non-alcoholic steatohepatitis (NASH), which is a common liver disease in industrialized countries, is associated with obesity, hypertension, and type-2 diabetes (metabolic syndrome). Since angiotensin II (ANG II) has been suggested to play an important role in liver inflammation and fibrosis, the purpose of this study was to investigate whether therapy against renin-angiotensin system (RAS) may provide some beneficial effect in liver of an animal model of metabolic syndrome. METHODS AND PROCEDURES For 6 months, obese Zucker rats (OZRs) were treated as follows: OZR-group, OZR + Perindopril (P) group, OZR + Irbesartan (IRB) group, OZR + Amlodipine (AML) group, and lean Zucker rats (LZRs) group as a control. Livers were evaluated by immunohistochemistry techniques using corresponding antibodies. RESULTS All treated groups showed a similar reduction in blood pressure compared to untreated OZR. Therapy either with IRB or P improves insulin sensitivity and reduces hepatic enzyme level with respect to untreated OZR. Conversely, AML failed to modify both parameters. Untreated OZR displayed higher hepatic ANG II levels and steatosis together with a marked increase in tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and transforming growth factor-beta1 (TGF-beta1) level compared to LZR. Following RAS inhibition either by P or IRB, a significant reduction (P < 0.01) in the immunostaining of TNF-alpha, IL-6 and TGF-beta1 compared to untreated OZR was observed. DISCUSSION These results indicate that ANG II expression is increased in the liver of these animals with steatohepatitis. Furthermore, RAS control by either angiotensin-converting enzyme inhibition or AT1 receptor blockade seems to provide a beneficial modulation concerning the inflammatory response to liver injury in this model. Consequently, blockade of RAS could be a new approach to prevent or to treat patients with NASH.
Collapse
Affiliation(s)
- Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
34
|
Yang HT, Chou HJ, Han BC, Huang SY. Lifelong inorganic arsenic compounds consumption affected blood pressure in rats. Food Chem Toxicol 2007; 45:2479-87. [PMID: 17688991 DOI: 10.1016/j.fct.2007.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 04/16/2007] [Accepted: 05/23/2007] [Indexed: 11/24/2022]
Abstract
Chronic arsenic exposure is a known risk factor for cardiovascular disease and has a strong correlation with hypertension. Oxidative stress may be one of the major contributors to arsenic-induced hypertension. To investigate the antioxidative and CYP systems through which inorganic arsenic compounds may contribute to blood pressure elevation in rats, we administered 50ppm arsenic (as arsenite and arsenate) in drinking water to Wistar rats for 200 successive days. Systolic blood pressure was determined every 20 days, and blood samples and tissues were collected at each time point for biological analysis. Compared to the control group, weight gain in the arsenic-exposed animals was slightly but significantly lower, whereas the relative weights of the various tissues was higher. Blood pressure was elevated until day 80 in both arsenic groups followed by a time-dependent change in the antioxidative enzyme system. The hypertensive effect remained until day 200 for arsenite when the change by arsenate was minimized. Patterns of antioxidative enzyme change differed between arsenite and arsenate. However, the most common marker of hypertension, the angiotensin-converting enzyme, showed no significant change in either arsenic group. CYP4A was highly expressed in both arsenic groups, particularly in the arsenite group. These results indicate that low but chronic arsenic exposure might cause elevated blood pressure and antioxidative interference. Furthermore, CYP4A might be more important than ACE in contributing to arsenic-induced hypertension.
Collapse
Affiliation(s)
- Hui-Ting Yang
- School of Pharmaceutical Science, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | |
Collapse
|
35
|
Woo CWH, Siow YL, O K. Homocysteine induces monocyte chemoattractant protein-1 expression in hepatocytes mediated via activator protein-1 activation. J Biol Chem 2007; 283:1282-1292. [PMID: 18024959 DOI: 10.1074/jbc.m707886200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperhomocysteinemia is characterized by abnormally high concentrations of homocysteine (Hcy) in the plasma. It is a metabolic disorder associated with dysfunction of several organs such as atherosclerosis, altered lipid metabolism, and liver injury. In this study we investigated the effect of Hcy on transcriptional regulation of monocyte chemoattractant protein-1 (MCP-1), a potent chemokine, expression in hepatocytes. Hyperhomocysteinemia was induced in rats by a high-methionine diet for 4 weeks. MCP-1 mRNA and protein levels were significantly elevated in the liver tissue homogenate and in hepatocytes of hyperhomocysteinemic rats. The role of transcription factors in MCP-1 expression was examined by electrophoretic mobility shift assay. Activation of activator protein (AP)-1 but not nuclear factor kappaB was detected in the liver tissue of those rats. Incubation of rat hepatocytes with Hcy (50-200 microm) caused a significant increase in AP-1 activation followed by an increase in intracellular MCP-1 mRNA expression and an elevation of MCP-1 protein secreted into the culture medium. Hcy markedly increased the DNA binding activity of human recombinant AP-1 (c-Fos and c-Jun proteins). The presence of a sulfhydryl group in Hcy was essential for Hcy-induced AP-1 activation. When hepatocytes were transfected with decoy AP-1 oligodeoxynucleotide to inhibit AP-1 activation, Hcy-induced MCP-1 mRNA expression was abolished. Further analysis revealed that increased hepatic MCP-1 expression was positively correlated with the serum MCP-1 level. These results suggest that Hcy-induced MCP-1 expression in the liver is mediated via AP-1 activation, which may contribute to chronic inflammation associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Connie W H Woo
- Departments of Animal Science and Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg R2H 2A6, Canada
| | - Yaw L Siow
- Departments of Animal Science and Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg R2H 2A6, Canada
| | - Karmin O
- Departments of Animal Science and Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg R2H 2A6, Canada.
| |
Collapse
|
36
|
Herrmann J, Gressner AM, Weiskirchen R. Immortal hepatic stellate cell lines: useful tools to study hepatic stellate cell biology and function? J Cell Mol Med 2007; 11:704-22. [PMID: 17760834 PMCID: PMC3823251 DOI: 10.1111/j.1582-4934.2007.00060.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
At the cellular level, the activation and transdifferentiation of quiescent hepatic stellate cells (HSC) into myofibroblasts is the key process involved in hepatic fibrogenesis that is associated with an increased and altered deposition of extracellular matrix components in the liver. The temporal sequence of molecular events associated with stellate cell activation turned out to be appropriately mimicked when HSC isolated from normal livers are cultured on uncoated plastic surface. Therefore, cultured primary cells isolated from rodents and human beings are common in vitro models in investigations addressing these issues of hepatic stellate biology and function. However, the limited supply, cost-effective isolation procedure and the ever growing need have resulted in efforts to establish immortalized stellate cell lines having the advantage of virtually unlimited access. They allow rapid screening for disease-associated factors and restrict the necessary number of animal experiments. From the first description of an immortal HSC line in 1986, a huge number of studies were conducted with these established cell lines. However, differences in morphology, growth characteristics and anomalies of chromosome number and structure make the applications of these models questionable. Here, we summarize the history and cellular characteristics of respective cell lines and discuss the differences of continuous HSC lines and their primary counterparts.
Collapse
Affiliation(s)
- Jens Herrmann
- *Correspondence to: Prof. Dr R. WEISKIRCHEN Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital, D-52074 Aachen, Germany. Tel.: +49 24 1 80 88 68 3 Fax: +49 24 1 80 82 5 12 E-mail:
| | | | - Ralf Weiskirchen
- *Correspondence to: Prof. Dr R. WEISKIRCHEN Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital, D-52074 Aachen, Germany. Tel.: +49 24 1 80 88 68 3 Fax: +49 24 1 80 82 5 12 E-mail:
| |
Collapse
|
37
|
Chan H, Leung PS, Tam MSC. Effect of angiotensin AT1 receptor antagonist on D-galactosamine-induced acute liver injury. Clin Exp Pharmacol Physiol 2007; 34:985-91. [PMID: 17714083 DOI: 10.1111/j.1440-1681.2007.04669.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Acute liver injury is a severe disease in which metabolic homeostasis is affected. The presence of liver cell death triggers a cascade of inflammatory responses leading to various degrees of liver damage. The pathophysiology of liver injury is complex, involving an interplay between parenchymal and non-parenchymal cells. 2. There is increasing evidence for a role of the local renin-angiotensin system (RAS) in liver cell death, inflammatory response and liver regeneration. It has been shown that the local RAS plays an important regulatory role in a variety of tissues. In experimental hepatic fibrogenesis, the angiotensin AT(1) receptor (AT(1)R) blocker losartan has been shown to be able to attenuate transforming growth factor-b1 activity and collagen gene expression. 3. In the present study, using a D-galactosamine (GalN)-induced liver failure rat, AT(1)R were localized around the centrilobular region, which was not evident in normal liver. Blood tests showed an elevation of total bilirubin and alanine aminotransferase. Furthermore, there was an increase in tissue-specific inhibitor of metalloproteinase (TIMP)-1 protein in the liver. Losartan treatment was able to reduce all these parameters. Levels of TIMP-1 protein were reduced by 1.5- and 1.56-fold on Days 1 and 3, respectively (both P < 0.05), in the losartan-treated group relative to the GalN-treated group. The survival rate of the losartan-treated group was significantly higher than that of the GalN-treated group (5 day survival 85 vs 42.5%, respectively; P < 0.05). 4. In conclusion, the AT(1)R blocker losartan suppresses GalN-induced liver injury. This may indicate that AT(1)R blockers may have therapeutic potential in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Herman Chan
- Department of Physiology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
38
|
Duvnjak M, Lerotić I, Barsić N, Tomasić V, Virović Jukić L, Velagić V. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol 2007; 13:4539-4550. [PMID: 17729403 PMCID: PMC4611824 DOI: 10.3748/wjg.v13.i34.4539] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 06/13/2007] [Accepted: 06/23/2007] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has, although it is a very common disorder, only relatively recently gained broader interest among physicians and scientists. Fatty liver has been documented in up to 10 to 15 percent of normal individuals and 70 to 80 percent of obese individuals. Although the pathophysiology of NAFLD is still subject to intensive research, several players and mechanisms have been suggested based on the substantial evidence. Excessive hepatocyte triglyceride accumulation resulting from insulin resistance is the first step in the proposed 'two hit' model of the pathogenesis of NAFLD. Oxidative stress resulting from mitochondrial fatty acids oxidation, NF-kappaB-dependent inflammatory cytokine expression and adipocytokines are all considered to be the potential factors causing second hits which lead to hepatocyte injury, inflammation and fibrosis. Although it was initially believed that NAFLD is a completely benign disorder, histologic follow-up studies have showed that fibrosis progression occurs in about a third of patients. A small number of patients with NAFLD eventually ends up with end-stage liver disease and even hepatocellular carcinoma. Although liver biopsy is currently the only way to confirm the NAFLD diagnosis and distinguish between fatty liver alone and NASH, no guidelines or firm recommendations can still be made as for when and in whom it is necessary. Increased physical activity, gradual weight reduction and in selected cases bariatric surgery remain the mainstay of NAFLD therapy. Studies with pharmacologic agents are showing promising results, but available data are still insufficient to make specific recommendations; their use therefore remains highly individual.
Collapse
Affiliation(s)
- Marko Duvnjak
- Division of Gastroenterology and Hepatology, Department of Medicine, Sestre Milosrdnice University Hospital, Vinogradska 29, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
There is an increasing body of evidence to suggest that the RAS (renin–angiotensin system) contributes to tissue injury and fibrosis in chronic liver disease. A number of studies have shown that components of a local hepatic RAS are up-regulated in fibrotic livers of humans and in experimental animal models. Angiotensin II, the main physiological effector molecule of this system, mediates liver fibrosis by stimulating fibroblast proliferation (myofibroblast and hepatic stellate cells), infiltration of inflammatory cells, and the release of inflammatory cytokines and growth factors such as TGF (transforming growth factor)-β1, IL (interleukin)-1β, MCP (monocyte chemoattractant protein)-1 and connective tissue growth factor. Furthermore, blockade of the RAS by ACE (angiotensin-converting enzyme) inhibitors and angiotensin type 1 receptor antagonists significantly attenuate liver fibrosis in experimental models of chronic liver injury. In 2000 ACE2 (angiotensin-converting enzyme 2), a human homologue of ACE, was identified. ACE2 efficiently degrades angiotensin II to angiotensin-(1–7), a peptide which has recently been shown to have both vasodilatory and tissue protective effects. This suggests that ACE2 and its products may be part of an alternate enzymatic pathway in the RAS, which counterbalances the generation and actions of angiotensin II, the ACE2–angiotensin-(1–7)–Mas axis. This review focuses on the potential roles of the RAS, angiotensin II and ACE2 in chronic liver injury and fibrogenesis.
Collapse
Affiliation(s)
- Fiona J Warner
- A. W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| | | | | | | |
Collapse
|
40
|
The Role of the Renin-Angiotensin System in Hepatic Fibrosis. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7121340 DOI: 10.1007/978-1-4020-6372-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Xiao Z, Su Y, Yang S, Yin L, Wang W, Yi Y, Fenton BM, Zhang L, Okunieff P. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis. Int J Radiat Oncol Biol Phys 2006; 65:882-9. [PMID: 16751070 DOI: 10.1016/j.ijrobp.2006.01.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. METHODS AND MATERIALS Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA. Early skin toxicity was evaluated 3 to 4 weeks after irradiation by skin scoring, and both tissue contraction and expression of TGF-beta1 were determined for soft-tissue fibrosis 3 months after irradiation. In vitro, the effect of EsA on radiation-induced nitric oxide (NO) and cytokine production in different cell types was measured by application of 2, 4, and 8 Gy. RESULTS In vivo, EsA reduced levels of IL-1alpha, MCP-1, VEGF, and TGF-beta1 in cutaneous tissue and reduced soft-tissue toxicity. In vitro, EsA inhibited the IL-1alpha ordinarily produced after 4 Gy in A431 cells. In Raw264.7 cells, EsA reduced levels of IL-1alpha, IL-1beta, and NO production costimulated by radiation and lipopolysaccharide (LPS). In L-929 cells, EsA inhibited VEGF, TNF, and MCP-1 production at 2, 4, and 8 Gy. CONCLUSIONS Esculentoside A protects soft tissues against radiation toxicity through inhibiting the production of several proinflammatory cytokines and inflammatory mediators in epithelial cells, macrophages, fibroblasts, and skin tissue.
Collapse
Affiliation(s)
- Zhenyu Xiao
- Department of Radiation Oncology, James P. Wilmot Cancer Center at the University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nabeshima Y, Tazuma S, Kanno K, Hyogo H, Iwai M, Horiuchi M, Chayama K. Anti-fibrogenic function of angiotensin II type 2 receptor in CCl4-induced liver fibrosis. Biochem Biophys Res Commun 2006; 346:658-64. [PMID: 16774739 DOI: 10.1016/j.bbrc.2006.05.183] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 12/12/2022]
Abstract
The renin-angiotensin system (RAS) contributes to fibrogenesis in a variety of organs. We recently showed that a lack of angiotensin (Ang) II type 1 (AT1) receptor activity reduces liver fibrosis. In this study, we investigated whether the Ang II type 2 (AT2) receptor is implicated in the development of liver fibrosis. A comparison was made between AT2-receptor knockout (AT2KO) and wild type (WT) mice after 4 weeks of treatment with carbon tetrachloride (CCl4). Fibrosis was assessed by Azan-Mallory staining and hepatic hydroxyproline (HP) content. The expression of fibrogenic mRNA was measured by real-time quantitative reverse-transcription polymerase chain reaction (PCR). Liver fibrosis evaluated by regular histological analyses and immunohistochemical alpha-SMA staining was observed in both groups of mice. The extent of fibrosis was greatest in the AT2KO mice. Fibrosis was associated with increases in hepatic HP content and mRNA expression for TGF-beta1 and alpha-SMA, as well as an increase in hepatic TBARS. These findings suggest that CCl4 induces oxidative stress which leads to activation of hepatic stellate cells (HSCs). These changes were considerably more pronounced in the AT2KO mice than the WT mice. Taken together, we conclude that AT2 signal has anti-fibrogenic and/or cytoprotective effects on oxidative stress-induced liver fibrosis. We therefore suggest that RAS-associated liver fibrogenesis may be determined by the balance between AT1 and AT2 signals.
Collapse
MESH Headings
- Animals
- Carbon Tetrachloride/administration & dosage
- Carbon Tetrachloride/pharmacology
- Gene Expression Regulation
- Hydroxyproline/metabolism
- Inflammation/chemically induced
- Inflammation/metabolism
- Inflammation/pathology
- Liver Cirrhosis/chemically induced
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Thiobarbituric Acid Reactive Substances/metabolism
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Yoshitaka Nabeshima
- Department of Medicine and Molecular Science, Graduate School of Biomedical Sciences, Hiroshima University 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim JS, Kim JG, Moon MY, Jeon CY, Won HY, Kim HJ, Jeon YJ, Seo JY, Kim JI, Kim J, Lee JY, Kim PH, Park JB. Transforming growth factor-beta1 regulates macrophage migration via RhoA. Blood 2006; 108:1821-9. [PMID: 16705092 DOI: 10.1182/blood-2005-10-009191] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brief treatment with transforming growth factor (TGF)-beta1 stimulated the migration of macrophages, whereas long-term exposure decreased their migration. Cell migration stimulated by TGF-beta1 was markedly inhibited by 10 mug/mL Tat-C3 exoenzyme. TGF-beta1 increased mRNA and protein levels of macrophage inflammatory protein (MIP)-1alpha in the initial period, and these effects also were inhibited by 10 mug/mL Tat-C3 and a dominant-negative (DN)-RhoA (N19RhoA). Cycloheximide, actinomycin D, and antibodies against MIP-1alpha and monocyte chemoattractant protein-1 (MCP-1) abolished the stimulation of cell migration by TGF-beta1. These findings suggest that migration of these cells is regulated directly and indirectly via the expression of chemokines such as MIP-1alpha and MCP-1 mediated by RhoA in response to TGF-beta1. TGF-beta1 activated RhoA in the initial period, and thereafter inactivated them, suggesting that the inactivation of RhoA may be the cause of the reduced cell migration in response to TGF-beta1 at later times. We therefore attempted to elucidate the molecular mechanism of the inactivation of RhoA by TGF-beta1. First, TGF-beta1 phosphorylated RhoA via protein kinase A, leading to inactivation of RhoA. Second, wild-type p190 Rho GTPase activating protein (p190RhoGAP) reduced and DN-p190RhoGAP reversed the reduction of cell migration induced by TGF-beta, suggesting that it inactivated RhoA via p190 Rho GAP.
Collapse
Affiliation(s)
- Jun-Sub Kim
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|