1
|
Ohkusa T, Kato K, Sekizuka T, Sugiyama T, Sato N, Kuroda M. Comparison of the Gut Microbiota of Patients Who Improve with Antibiotic Combination Therapy for Ulcerative Colitis and Those Who Do Not: Investigation by Fecal Metagenomic Analyses. Nutrients 2024; 16:3500. [PMID: 39458495 PMCID: PMC11510665 DOI: 10.3390/nu16203500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The cause of ulcerative colitis (UC) may be related to commensal bacteria in genetically susceptible patients. We previously demonstrated that triple antibiotic combination therapy induces remission in patients with active UC in randomized controlled trials (RCTs). Now, we investigate changes in the gut microbiota of patients who responded to the antibiotic combination therapy. Methods: Thirty-one patients with UC given ATM/AFM (amoxicillin, metronidazole, and tetracycline or fosfomycin) therapy for two weeks were enrolled in this study. The clinical conditions of these UC patients were evaluated by the partial Mayo score. The gut microbiota was compared via the metagenomic shot gun analysis of fecal samples. Results: Of the 31 patients, 16 and 8 experienced complete and partial remission, respectively, over three months in response to ATM/AFM therapy, whereas ATM/AFM showed no efficacy in 7 patients. The dysbiosis before treatment in the active stage could be associated with increased populations of Bacteroides, Parabacteroides, Rickenella, Clostridium, Flavonifractor, Pelagibacter, Bordetella, Massilia, and Piscrickettsia species. Metagenomic analysis revealed dramatic changes in the gut microbiota at an early stage, that is, just two weeks after starting ATM/AFM therapy. After treatment in the responder group, the populations of bifidobacterium and lactobacilli species were significantly increased, while the population of bacteroides decreased. Conclusions: These results suggest that metagenomic analysis demonstrated a marked change in the gut microbiota after antibiotic combination treatment. In the triple antibiotic combination therapy, remission was associated with an increase in bifidobacterium and lactobacilli species.
Collapse
Affiliation(s)
- Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Kashiwa, Chiba 277-8567, Japan
| | - Kimitoshi Kato
- Division of Research Planning and Development, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| | - Toshiro Sugiyama
- Advanced Gastrointestinal Cancer Molecular Targeted Therapy and Prevention Research Division, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| |
Collapse
|
2
|
Zhang P, Ma S, Guo R, Li L, Guo X, Chang D, Li S, Zhang H, Fu C, Yang L, Zhang Y, Jiang J, Wang T, Wang J, Shi H. Metagenomic analysis of the gut virome in patients with irritable bowel syndrome. J Med Virol 2024; 96:e29802. [PMID: 39023095 DOI: 10.1002/jmv.29802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Shiyang Ma
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | | | - Lu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Xiaoyan Guo
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Danyan Chang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | | | - Huan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Cui Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Longbao Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Jiong Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Ting Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Jinhai Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| | - Haitao Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Gastrointestinal Diseases, Shaanxi, China
- Digestive Disease Quality Control Center of Shaanxi Province, Xi'an, PR China
| |
Collapse
|
3
|
Rahman S, Patel RK, Boden E, Tsikitis VL. Medical Management of Inflammatory Bowel Disease. Surg Clin North Am 2024; 104:657-671. [PMID: 38677828 DOI: 10.1016/j.suc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The past few decades have seen significant advancements in the medical management of both ulcerative colitis (UC) and Crohn's disease (CD). The previous dependence on steroids is no longer an acceptable strategy following the Food and Drug Administration approval for several new classes of medication. These medications include aminosalicylates, immunomodulators, biologics, and oral targeted small-molecule inhibitors. This article highlights several key trials and discusses modern treatment paradigms for both UC and CD based on disease severity.
Collapse
Affiliation(s)
- Shahrose Rahman
- Department of Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Mail Code: L223, Portland, OR 97239, USA.
| | - Ranish K Patel
- Department of Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Mail Code: L223, Portland, OR 97239, USA
| | - Elisa Boden
- Division of Gastroenterology and Hepatology, Department of Medicine, Oregon Health & Science University, 3161 Southwest Pavilion Loop, L461, Portland, OR 97239-3098, USA
| | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Mail Code: L223, Portland, OR 97239, USA
| |
Collapse
|
4
|
Guo J, Li L, Cai Y, Kang Y. The development of probiotics and prebiotics therapy to ulcerative colitis: a therapy that has gained considerable momentum. Cell Commun Signal 2024; 22:268. [PMID: 38745207 PMCID: PMC11094941 DOI: 10.1186/s12964-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Ulcerative colitis (UC) is increasingly common, and it is gradually become a kind of global epidemic. UC is a type of inflammatory bowel disease (IBD), and it is a lifetime recurrent disease. UC as a common disease has become a financial burden for many people and has the potential to develop into cancer if not prevented or treated. There are multiple factors such as genetic factors, host immune system disorders, and environmental factors to cause UC. A growing body of research have suggested that intestinal microbiota as an environmental factor play an important role in the occurrence and development of UC. Meanwhile, evidence to date suggests that manipulating the gut microbiome may represent effective treatment for the prevention or management of UC. In addition, the main clinical drugs to treat UC are amino salicylate and corticosteroid. These clinical drugs always have some side effects and low success rate when treating patients with UC. Therefore, there is an urgent need for safe and efficient methods to treat UC. Based on this, probiotics and prebiotics may be a valuable treatment for UC. In order to promote the wide clinical application of probiotics and prebiotics in the treatment of UC. This review aims to summarize the recent literature as an aid to better understanding how the probiotics and prebiotics contributes to UC while evaluating and prospecting the therapeutic effect of the probiotics and prebiotics in the treatment of UC based on previous publications.
Collapse
Affiliation(s)
- Jing Guo
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
6
|
Schuetz A, Corley MJ, Sacdalan C, Phuang-Ngern Y, Nakpor T, Wansom T, Ehrenberg PK, Sriplienchan S, Thomas R, Ratnaratorn N, Sukhumvittaya S, Tragonlugsana N, Slike BM, Akapirat S, Pinyakorn S, Rerknimitr R, Pang AP, Kroon E, Teeratakulpisan N, Krebs SJ, Phanuphak N, Ndhlovu LC, Vasan S, on behalf of the RV304/SEARCH013 Study Team. Distinct mucosal and systemic immunological characteristics in transgender women potentially relating to HIV acquisition. JCI Insight 2023; 8:e169272. [PMID: 37432754 PMCID: PMC10543719 DOI: 10.1172/jci.insight.169272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
Transgender women (TGW) are disproportionally affected by HIV infection, with a global estimated prevalence of 19.9%, often attributed to behavioral risk factors, with less known about biological factors. We evaluated potential biological risk factors for HIV acquisition in TGW at the sites of viral entry by assessing immune parameters of the neovaginal surface and gut mucosa. The neovagina in TGW, compared with the vagina in cisgender women (CW), shows distinct cell composition and may pose a more inflammatory environment, evidenced by increased CD4+ T cell activation and higher levels of soluble markers of inflammation (C-reactive protein, soluble CD30). Increased inflammation may be driven by microbiome composition, as shown by a greater abundance of Prevotella and a higher Shannon Diversity Index. In addition, we have observed higher frequency of CD4+CCR5+ target cells and decreased DNA methylation of the CCR5 gene in the gut mucosa of TGW compared with CW and men who have sex with men, which was inversely correlated with testosterone levels. The rectal microbiome composition in TGW appears to favor a proinflammatory milieu as well as mucosal barrier disruption. Thus, it is possible that increased inflammation and higher frequencies of CCR5-expressing target cells at sites of mucosal viral entry may contribute to increased risk of HIV acquisition in TGW, with further validation in larger studies warranted.
Collapse
Affiliation(s)
- Alexandra Schuetz
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Michael J. Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | - Tanyaporn Wansom
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Philip K. Ehrenberg
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | - Bonnie M. Slike
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Siriwat Akapirat
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suteeraporn Pinyakorn
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Rungsun Rerknimitr
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alina P.S. Pang
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Eugène Kroon
- Institute of HIV Research and Innovation, Bangkok, Thailand
| | | | - Shelly J. Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | | | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Dregelies T, Haumaier F, Sterlacci W, Backert S, Vieth M. Detection of Fusobacterium nucleatum in Patients with Colitis-Associated Colorectal Cancer. Curr Microbiol 2023; 80:293. [PMID: 37468740 PMCID: PMC10356651 DOI: 10.1007/s00284-023-03398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Fusobacterium nucleatum is supposed to play a critical role in the development of colorectal cancer. The species has also been associated with ulcerative colitis (UC) that can progress into colorectal cancer, however, the involvement of bacteria in this process remains unclear. We analysed 177 colon biopsies obtained from patients during screening, including 20 healthy controls, 56 UC cases and 69 cases at different stages of progression to colitis-associated cancer (CAC); 32 samples of sporadic colorectal carcinoma (sCRC) were also included. The presence of F. nucleatum was detected by quantitative real-time PCR (qPCR). Our data show an association between the presence of the bacteria and the progression of carcinogenesis in UC patients. In 39.5% of CAC samples F. nucleatum was detected, compared to only 1.8% in UC cases. The bacteria were detected in 6.3% of samples with initial neoplastic transformation, so-called low-grade dysplasia (LGD), whereas high-grade dysplasia (HGD) resulted in 33.3% of samples positive for F. nucleatum. The fraction of F. nucleatum-positive samples from sCRC cases was 56.3%, which was not significantly different to the CAC group. We conclude that F. nucleatum is associated with the occurrence and progression of colon carcinogenesis, rather than with UC itself.
Collapse
Affiliation(s)
- Theresa Dregelies
- Institut für Mikrobiologie, Friedrich-Alexander-Universität, Staudtstr. 5, 91058, Erlangen, Germany
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Franziska Haumaier
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - William Sterlacci
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany
| | - Steffen Backert
- Institut für Mikrobiologie, Friedrich-Alexander-Universität, Staudtstr. 5, 91058, Erlangen, Germany
| | - Michael Vieth
- Institut für Pathologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany.
| |
Collapse
|
8
|
Jamieson PE, Carbonero F, Stevens JF. Dietary (poly)phenols mitigate inflammatory bowel disease: Therapeutic targets, mechanisms of action, and clinical observations. Curr Res Food Sci 2023; 6:100521. [PMID: 37266414 PMCID: PMC10230173 DOI: 10.1016/j.crfs.2023.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, are a rapidly growing public health concern worldwide. These diseases are heterogeneous at the clinical, immunological, molecular, genetic, and microbial level, but characteristically involve a disrupted immune-microbiome axis. Shortcomings in conventional treatment options warrant the need for novel therapeutic strategies to mitigate these life-long and relapsing disorders of the gastrointestinal tract. Polyphenols, a diverse group of phytochemicals, have gained attention as candidate treatments due to their array of biological effects. Polyphenols exert broad anti-inflammatory and antioxidant effects through the modulation of cellular signaling pathways and transcription factors important in IBD progression. Polyphenols also bidirectionally modulate the gut microbiome, supporting commensals and inhibiting pathogens. One of the primary means by which gut microbiota interface with the host is through the production of metabolites, which are small molecules produced as intermediate or end products of metabolism. There is growing evidence to support that modulation of the gut microbiome by polyphenols restores microbially derived metabolites critical to the maintenance of intestinal homeostasis that are adversely disrupted in IBD. This review aims to define the therapeutic targets of polyphenols that may be important for mitigation of IBD symptoms, as well as to collate evidence for their clinical use from randomized clinical trials.
Collapse
Affiliation(s)
- Paige E. Jamieson
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Washington State University, Spokane, WA, 99202, USA
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
9
|
Duan C, Hou L, Deng X, Wu J, Qian W, Han C, Hou X. Fucose ameliorates the proinflammatory property of Fusobacterium nucleatum in colitis via altering its metabolism. Front Cell Infect Microbiol 2023; 13:1190602. [PMID: 37197204 PMCID: PMC10183584 DOI: 10.3389/fcimb.2023.1190602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
INTRODUCTION Previous studies reported that fucose plays a protective role in inhibiting pathogens. Fusobacterium nucleatum (Fn) was recently found to promote the progression of colitis. However, the effects of fucose on Fn are poorly understood. This study aimed to explore whether fucose could ameliorate the proinflammatory property of Fn in colitis and the underlying mechanisms. METHODS To validate our hypothesis, mice were administrated with Fn and fucose-treated Fn (Fnf) before dextran sulfate sodium (DSS) treatment to establish Fn related colitis model. The metabolism variation of Fn was detected by metabolomic analysis. To verify the effects of bacterial metabolites on intestinal epithelial cells (IECs), Caco-2 cells were treated with bacterial supernatant. RESULTS More severe inflammation, intestinal barrier damage, autophagy block, and apoptosis in the colon were noted in DSS mice that were administrated with Fn or Fnf. However, the severity degree in Fnf+DSS group was less compared to Fn+DSS group. Metabolic pathways of Fn were altered after fucose treatment and proinflammatory metabolites were decreased. The supernatant of Fnf induced a lower level of inflammation than Fn in Caco-2 cells. One of the decreased metabolites, homocysteine thiolactone (HT), was proven to induce inflammatory effects in Caco-2 cells. DISCUSSION In conclusion, fucose ameliorates the proinflammatory property of Fn via altering its metabolism and these findings provide evidence for the application of fucose as functional food or prebiotic in the treatment of Fn related colitis.
Collapse
Affiliation(s)
- Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingzhi Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Deng
- Hubei Center of Industrial Culture Collection and Research, Wuhan, China
| | - Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Harrandah AM. The role of Fusobacteria in oral cancer and immune evasion. Curr Opin Oncol 2023; 35:125-131. [PMID: 36633319 DOI: 10.1097/cco.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW There is growing evidence that suggests a possible role for bacteria in the progression of cancer. Fusobacteria have been detected in different types of cancers, including colorectal and oral cancers. Fusobacteria are common opportunistic oral bacteria known to cause various infections. In this review, we focus on the association between Fusobacteria and cancer, specifically oral cancer, and provide insight into the role of Fusobacteria in carcinogenesis and immune evasion. RECENT FINDINGS Recently, it has been suggested that Fusobacteria are among the bacteria that contribute to the progression of cancer and might affect disease prognosis and treatment outcome. Moreover, Fusobacteria might alter tumor microenvironment and have an impact on tumor immune response. Thus, understanding the effect of Fusobacteria on cancer cells and tumor microenvironment is crucial to improve treatment outcome. SUMMERY Recent evidences suggest that Fusobacteria not only have an impact on tumor progression, but might also affect tumor immune response. Moreover, Fusobacteria presence in the tumor microenvironment might have an impact on treatment outcome and might be used as a prognostic factor.
Collapse
Affiliation(s)
- Amani M Harrandah
- Department of Basic & Clinical Oral Sciences, Umm Al-Qura University College of Dentistry, Mecca, Saudi Arabia
| |
Collapse
|
11
|
Schwarz C, Mathieu J, Gomez JL, Miller MR, Tikhonova M, Nagaraja T, Alvarez PJJ. Unexpected finding of Fusobacterium varium as the dominant Fusobacterium species in cattle rumen: potential implications for liver abscess etiology and interventions. J Anim Sci 2023; 101:skad130. [PMID: 37104065 PMCID: PMC10195197 DOI: 10.1093/jas/skad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Fusobacterium varium has been generally overlooked in cattle rumen microbiome studies relative to the presumably more abundant liver abscess-causing Fusobacterium necrophorum. However, F. varium was found to be more abundant in the rumen fluid of cattle and under culture conditions tailored to enrich F. necrophorum. Using near-full length 16S ribosomal ribonucleic acid sequencing, we demonstrate that F. varium grows under restrictive conditions commonly used to enumerate F. necrophorum, suggesting that previous F. necrophorum abundance assessment may have been inaccurate and that F. varium may be an underestimated member of the ruminal bacterial community. Fusobacterium varium were not as susceptible as F. necrophorum to in-feed antibiotics conventionally used in feedlots. Exposure to tylosin, the current gold standard for liver abscess reduction strategies in cattle, consistently hindered growth of the F. necrophorum strains tested by over 67% (P < 0.05) relative to the unexposed control. In contrast, F. varium strains were totally or highly resistant (0%-13% reduction in maximum yield, P < 0.05). Monensin, an ionophore antibiotic, had greater inhibitory activity against F. necrophorum than F. varium. Finally, preliminary genomic analysis of two F. varium isolates from the rumen revealed the presence of virulence genes related to those of pathogenic human F. varium isolates associated with active invasion of mammalian cells. The data presented here encourage further investigation into the ecological role of F. varium within the bovine rumen and potential role in liver abscess development, and proactive interventions.
Collapse
Affiliation(s)
- Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- Sentinel Environmental Group, LLC, Houston, TX 77082, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- Sentinel Environmental Group, LLC, Houston, TX 77082, USA
| | | | - Megan R Miller
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | | | - Tiruvoor.G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
- Sentinel Environmental Group, LLC, Houston, TX 77082, USA
| |
Collapse
|
12
|
Fan Z, Tang P, Li C, Yang Q, Xu Y, Su C, Li L. Fusobacterium nucleatum and its associated systemic diseases: epidemiologic studies and possible mechanisms. J Oral Microbiol 2023; 15:2145729. [PMID: 36407281 PMCID: PMC9673791 DOI: 10.1080/20002297.2022.2145729] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Fusobacterium nucleatum (F. nucleatum) is an anaerobic oral commensal and the major coaggregation bridge organism linking early and late colonisers. In recent years, a large number of studies suggest that F. nucleatum is closely related to the development of various systemic diseases, such as cardiovascular diseases, adverse pregnancy outcomes, inflammatory bowel diseases, cancer, Alzheimer's disease, respiratory infection, rheumatoid arthritis, etc. Objective To review the effect of F. nucleatum on systemic diseases and its possible pathogenesis and to open new avenues for prevention and treatment of F. nucleatum-associated systemic diseases. Design The research included every article published up to July 2022 featuring the keywords 'Systemic diseases' OR 'Atherosclerotic cardiovascular diseases' OR 'Atherosclerosis' OR 'Adverse pregnancy outcomes' OR 'Inflammatory bowel disease' OR 'Ulcerative colitis' OR 'Crohn’s disease' OR 'Cancers' OR 'Oral squamous cell carcinomas' OR 'Gastrointestinal cancers' OR 'Colorectal cancer' OR 'Breast cancer' OR 'Genitourinary cancers' OR 'Alzheimer’s disease ' OR 'Rheumatoid arthritis' OR 'Respiratory diseases' AND 'Fusobacterium nucleatum' OR 'Periodontal pathogen' OR 'Oral microbiota' OR 'Porphyromonas gingivalis' and was conducted in the major medical databases. Results F. nucleatum can induce immune response and inflammation in the body through direct or indirect pathways, and thus affect the occurrence and development of systemic diseases. Only by continuing to investigate the pathogenic lifestyles of F. nucleatum will we discover the divergent pathways that may be leveraged for diagnostic, preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Zixin Fan
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengzhou Tang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Yang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- State KeyLaboratory of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Collard MK, Tourneur-Marsille J, Uzzan M, Albuquerque M, Roy M, Dumay A, Freund JN, Hugot JP, Guedj N, Treton X, Panis Y, Ogier-Denis E. The Appendix Orchestrates T-Cell Mediated Immunosurveillance in Colitis-Associated Cancer. Cell Mol Gastroenterol Hepatol 2023; 15:665-687. [PMID: 36332814 PMCID: PMC9871441 DOI: 10.1016/j.jcmgh.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Although appendectomy may reduce colorectal inflammation in patients with ulcerative colitis (UC), this surgical procedure has been suggested to be associated with an increased risk of colitis-associated cancer (CAC). Our aim was to explore the mechanism underlying the appendectomy-associated increased risk of CAC. METHODS Five-week-old male BALB/c mice underwent appendectomy, appendicitis induction, or sham laparotomy. They were then exposed to azoxymethane/dextran sodium sulfate (AOM/DSS) to induce CAC. Mice were killed 12 weeks later, and colons were taken for pathological analysis and immunohistochemistry (CD3 and CD8 staining). Human colonic tumors from 21 patients with UC who underwent surgical resection for CAC were immunophenotyped and stratified according to appendectomy status. RESULTS Whereas appendectomy significantly reduced colitis severity and increased CAC number, appendicitis induction without appendectomy led to opposite results. Intratumor CD3+ and CD8+ T-cell densities were lower after appendectomy and higher after appendicitis induction compared with the sham laparotomy group. Blocking lymphocyte trafficking to the colon with the anti-α4β7 integrin antibody or a sphingosine-1-phosphate receptor agonist suppressed the inducing effect of the appendectomy on tumors' number and on CD3+/CD8+ intratumoral density. CD8+ or CD3+ T cells isolated from inflammatory neo-appendix and intravenously injected into AOM/DSS-treated recipient mice increased CD3+/CD8+ T-cell tumor infiltration and decreased tumor number. In UC patients with a history of appendectomy, intratumor CD3+ and CD8+ T-cell densities were decreased compared with UC patients without history of appendectomy. CONCLUSIONS In UC, appendectomy could suppress a major site of T-cell priming, resulting in a less efficient CAC immunosurveillance.
Collapse
Affiliation(s)
- Maxime K Collard
- Assistance Publique Hôpitaux de Paris, Service de Chirurgie Colorectale, Hôpital Beaujon, Clichy, France; Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Julien Tourneur-Marsille
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Mathieu Uzzan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; Assistance Publique Hôpitaux de Paris, Service de Gastroentérologie, Hôpital Beaujon, Clichy, France
| | - Miguel Albuquerque
- Assistance Publique Hôpitaux de Paris, Service d'Anatomopathologie, Hôpital Beaujon, Clichy, France
| | - Maryline Roy
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Anne Dumay
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Jean-Noël Freund
- Université de Strasbourg, Inserm, IRFAC / UMR-S1113, FHU ARRIMAGE, ITI InnoVec, FMTS, Strasbourg, France
| | - Jean-Pierre Hugot
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Nathalie Guedj
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; Assistance Publique Hôpitaux de Paris, Service d'Anatomopathologie, Hôpital Beaujon, Clichy, France
| | - Xavier Treton
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; Assistance Publique Hôpitaux de Paris, Service de Gastroentérologie, Hôpital Beaujon, Clichy, France
| | - Yves Panis
- Assistance Publique Hôpitaux de Paris, Service de Chirurgie Colorectale, Hôpital Beaujon, Clichy, France; Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France
| | - Eric Ogier-Denis
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM, U1149, CNRS, ERL8252, "Gut Inflammation", Paris, France; INSERM, Université Rennes, CLCC Eugène Marquis, «Chemistry, Oncogenesis, Stress Signaling» UMR_S 1242, Rennes, France.
| |
Collapse
|
14
|
Liang B, Wu C, Wang C, Sun W, Chen W, Hu X, Liu N, Xing D. New insights into bacterial mechanisms and potential intestinal epithelial cell therapeutic targets of inflammatory bowel disease. Front Microbiol 2022; 13:1065608. [PMID: 36590401 PMCID: PMC9802581 DOI: 10.3389/fmicb.2022.1065608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The global incidence of inflammatory bowel disease (IBD) has increased rapidly in recent years, but its exact etiology remains unclear. In the past decade, IBD has been reported to be associated with dysbiosis of gut microbiota. Although not yet proven to be a cause or consequence of IBD, the common hypothesis is that at least some alterations in the microbiome are protective or pathogenic. Furthermore, intestinal epithelial cells (IECs) serve as a protective physical barrier for gut microbiota, essential for maintaining intestinal homeostasis and actively contributes to the mucosal immune system. Thus, dysregulation within the intestinal epithelium increases intestinal permeability, promotes the entry of bacteria, toxins, and macromolecules, and disrupts intestinal immune homeostasis, all of which are associated with the clinical course of IBD. This article presents a selective overview of recent studies on bacterial mechanisms that may be protective or promotive of IBD in biological models. Moreover, we summarize and discuss the recent discovery of key modulators and signaling pathways in the IECs that could serve as potential IBD therapeutic targets. Understanding the role of the IECs in the pathogenesis of IBD may help improve the understanding of the inflammatory process and the identification of potential therapeutic targets to help ameliorate this increasingly common disease.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaokun Hu
- Intervention Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,School of Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|
15
|
Nicolae FM, Didilescu AC, Șurlin P, Ungureanu BS, Șurlin VM, Pătrașcu Ș, Ramboiu S, Jelihovschi I, Iancu LS, Ghilusi M, Cucu M, Gheonea DI. Subgingival Periopathogens Assessment and Clinical Periodontal Evaluation of Gastric Cancer Patients-A Cross Sectional Pilot Study. Pathogens 2022; 11:360. [PMID: 35335684 PMCID: PMC8949055 DOI: 10.3390/pathogens11030360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022] Open
Abstract
Oral microbiota have shown a higher bacterial diversity in patients with cancers of the digestive tract, with higher levels of periopathogens. Recent studies have shown that Fusobacterium links to gastro-intestinal neoplastic tissue and accelerates its progression, as well as worsening patient outcome. The present pilot study was carried out between February and December 2020 to evaluate the possible association between the abundance of some periopathogens (Fusobacterium nucleatum, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Treponema denticola and Tannerella forsythia) in subgingival plaque and periodontal status with characteristics of gastric cancer. The study was performed on a sample of 24 patients with gastric cancer from the 1st Department of Surgery and Department of Gastroenterology within the Clinical County Hospital of Emergency of Craiova, Romania. The patients' oral cavity was examined, gingival crevicular samples were collected, and signs of periodontal disease were recorded. On the histopathological exam, the differentiation grade and size of the tumour were registered. Our results showed that, from the periopathogens studied, the most abundant bacteria were F. nucleatum followed by T. forsythia in all groups. In our present study, the strong correlation between tumour dimension and all periodontal parameters but also between tumour dimension and F. nucleatum could suggest a positive association between periodontal disease, tumoral growth and periopathogens implication in this process.
Collapse
Affiliation(s)
- Flavia Mirela Nicolae
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Boulevard, 050474 Bucharest, Romania;
| | - Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.M.Ș.); (Ș.P.); (S.R.)
| | - Ștefan Pătrașcu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.M.Ș.); (Ș.P.); (S.R.)
| | - Sandu Ramboiu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (V.M.Ș.); (Ș.P.); (S.R.)
| | - Igor Jelihovschi
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (I.J.); (L.S.I.)
| | - Luminita Smaranda Iancu
- Department of Preventive Medicine and Interdisciplinarity, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania; (I.J.); (L.S.I.)
| | - Mirela Ghilusi
- Department of Pathology, Clinical County Emergency Hospital of Craiova, 200349 Craiova, Romania;
| | - Mihai Cucu
- Department of Genetics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
16
|
Zhang L, Liu F, Xue J, Lee SA, Liu L, Riordan SM. Bacterial Species Associated With Human Inflammatory Bowel Disease and Their Pathogenic Mechanisms. Front Microbiol 2022; 13:801892. [PMID: 35283816 PMCID: PMC8908260 DOI: 10.3389/fmicb.2022.801892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with unknown etiology. The pathogenesis of IBD results from immune responses to microbes in the gastrointestinal tract. Various bacterial species that are associated with human IBD have been identified. However, the microbes that trigger the development of human IBD are still not clear. Here we review bacterial species that are associated with human IBD and their pathogenic mechanisms to provide an updated broad understanding of this research field. IBD is an inflammatory syndrome rather than a single disease. We propose a three-stage pathogenesis model to illustrate the roles of different IBD-associated bacterial species and gut commensal bacteria in the development of human IBD. Finally, we recommend microbe-targeted therapeutic strategies based on the three-stage pathogenesis model.
Collapse
Affiliation(s)
- Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Du Y, Neng Q, Li Y, Kang Y, Guo L, Huang X, Chen M, Yang F, Hong J, Zhou S, Zhao J, Yu F, Su H, Kong X. Gastrointestinal Autonomic Neuropathy Exacerbates Gut Microbiota Dysbiosis in Adult Patients With Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 11:804733. [PMID: 35211420 PMCID: PMC8861497 DOI: 10.3389/fcimb.2021.804733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The diabetic autonomic neuropathy is one of the most common complications in type 2 diabetes mellitus (T2DM), especially gastrointestinal autonomic neuropathy (GAN), which occurs in up to 75% of patients. The study aimed to investigate the gut microbiota composition, structure, and function in T2DM patients with GAN (T2DM_GAN) and set up a link between gut microbiota and clinical characteristics of patients. METHODS DNA was extracted from fecal samples of three groups using the kit method: healthy volunteers (n = 19), the patients with T2DM (n = 76), and T2DM_GAN (n = 27). Sequencing of 16S ribosomal DNA was performed using the MiSeq platform. RESULTS According to the clinical data, higher age, lower triglyceride, and lower body mass index were the main features of patients with T2DM_GAN. The gut microbiota analysis showed that Bacteroidetes, Firmicutes, and Proteobacteria constituted the three dominant phyla in healthy individuals. In addition, the gut microbiota structure and function of T2DM_GAN patients were clearly different from that of T2DM patients. T2DM patients were characterized by Fusobacteria, Fusobacteriia, Fusobacteriales, Fusobacteriaceae, Fusobacterium, Lachnoclostridium, and Fusobacterium_mortiferum. Those gut microbiota may be involved in carotenoid and flavonoid biosyntheses. Relatively, the Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae, Escherichia-Shigella, Megasphaera, Escherichia_coli, and Megasphaera_elsdenii were characteristic in the T2DM_GAN patients. Those may be involved in bacterial invasion of epithelial cells and pathogenic Escherichia coli infection. CONCLUSIONS GAN exacerbated gut microbiota dysbiosis in adult patients with T2DM. The findings indicated that phyla Fusobacteria and class Gammaproteobacteria were closely related to the occurrence of T2DM. Especially the latter may promote T2DM_GAN.
Collapse
Affiliation(s)
- Yuhui Du
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- Endocrinology Branch, The First People’s Hospital of Yunnan Province, Kunming, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qiongli Neng
- Endocrinology Branch, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yu Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yongbo Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Liqiong Guo
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Xinwei Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Minghui Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Fan Yang
- Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jingan Hong
- Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Shuai Zhou
- Neurosurgery Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Jianhua Zhao
- Neurosurgery Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Fubing Yu
- Digestive System Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Heng Su
- Endocrinology Branch, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiangyang Kong
- Medical Faculty, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
18
|
Qi Y, Wu HM, Yang Z, Zhou YF, Jin L, Yang MF, Wang FY. New Insights into the Role of Oral Microbiota Dysbiosis in the Pathogenesis of Inflammatory Bowel Disease. Dig Dis Sci 2022; 67:42-55. [PMID: 33527328 DOI: 10.1007/s10620-021-06837-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic intestinal inflammatory disorders with a prolonged duration characterized by recurrent relapse and remission. The exact etiology of IBD remains poorly understood despite the identification of relevant risk factors, including individual genetic susceptibility, environmental triggers, and disruption of immune homeostasis. Dysbiosis of the gut microbiota is believed to exacerbate the progression of IBD. Recently, increasing evidence has also linked oral microbiota dysbiosis with the development of IBD. On the one hand, IBD patients show significantly unbalanced composition and function of the oral microbiota known as dysbiosis. On the other, overabundances of oral commensal bacteria with opportunistic pathogenicity have been found in the gut microbiota of IBD patients. Herein, we review the current information on the causative factors of IBD, especially recent evidence of IBD-associated oral microbiota dysbiosis, which has seldom been covered in the previous literature review, highlighting the pathogenic mechanisms of specific oral bacteria in the development of IBD. Ectopic colonization of several oral bacteria, including a subset of Porphyromonas gingivalis, Streptococcus mutans, Fusobacterium nucleatum, Campylobacter concisus, and Klebsiella pneumoniae, may lead to destruction of the intestinal epithelial barrier, excessive secretion of inflammatory cytokines, disruption of the host immune system, and dysbiosis of gut microbiota, consequently aggravating chronic intestinal inflammation. Studying oral microbiota dysbiosis may open future horizons for understanding IBD pathogenesis and provide novel biomarkers for IBD. This review also presents the current treatment and new perspectives for IBD treatment.
Collapse
Affiliation(s)
- Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Hui-Min Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Yi-Fei Zhou
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Miao-Fang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Zhongshan East Road 305, Nanjing, 210002, China.
| |
Collapse
|
19
|
Wang X, Cheng MT, Chen ZP, Jiang YL, Ge YS, Xia R, Hou WT. Structural and biochemical analyses of the tetrameric carboxypeptidase S9Cfn from Fusobacterium nucleatum. Acta Crystallogr D Struct Biol 2021; 77:1554-1563. [PMID: 34866611 DOI: 10.1107/s2059798321010810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
As one of the most abundant bacteria in the human oral cavity, Fusobacterium nucleatum is closely involved in various oral diseases and is also a risk factor for other diseases. The peptidases of F. nucleatum can digest exogenous peptides into amino acids to satisfy its nutrient requirements. Here, a putative F. nucleatum peptidase, termed S9Cfn, which belongs to the S9C peptidase family was identified. Enzymatic activity assays combined with mass-spectrometric analysis revealed that S9Cfn is a carboxypeptidase, but not an aminopeptidase as previously annotated. The crystal structure of the S9Cfn tetramer was solved at 2.6 Å resolution and was found to contain a pair of oligomeric pores in the center. Structural analysis, together with site-directed mutagenesis and enzymatic activity assays, revealed a substrate-entrance tunnel that extends from each oligomeric pore to the catalytic triad, adjacent to which three conserved arginine residues are responsible for substrate binding. Moreover, comparison with other S9 peptidase structures indicated drastic conformational changes of the oligomeric pores during the catalytic cycle. Together, these findings increase the knowledge of this unique type of tetrameric carboxypeptidase and provide insight into the homeostatic control of microbiota in the human oral cavity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Meng Ting Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Zhi Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yong Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Yu Shu Ge
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Rong Xia
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, People's Republic of China
| | - Wen Tao Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| |
Collapse
|
20
|
Mandal DP, Mohanty N, Behera PK, Gopinath D, Panda S, Al-Kheraif AA, Divakar DD, Anil S, Panda S. A Plausible Proposition of CCL20-Related Mechanism in Fusobacterium nucleatum-Associated Oral Carcinogenesis. Life (Basel) 2021; 11:1218. [PMID: 34833094 PMCID: PMC8621507 DOI: 10.3390/life11111218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The objective of this prospective observational case-control study is to evaluate the prevalence of Fusobacterium nucleatum in the tissues of oral squamous cell carcinoma (OSCC). Reconnoitering the CCL20-related mechanism of carcinogenesis in Fusobacterium nucleatum-positive OSCC is another objective. METHODOLOGY Tissues from 50 OSCC patients and 30 healthy oral tissues were collected. The prevalence of Fusobacterium nucleatum was evaluated in both tumour and healthy tissue by polymerase chain reaction. The immunohistochemistry of OSCC tissues was conducted to evaluate the difference in the expression of CCL20 between Fusobacterium nucleatum-positive and -negative OSCC tissues. RESULTS Fusobacterium nucleatum was significantly (p < 0.001) prevalent in OSCC tissues (74%), compared to healthy tissues (26%). No association of Fusobacterium nucleatum or CCL20 immuno-expression with any clinical or histopathological features of OSCC was observed. While the intensity of CCL20 immuno-expression did not differ (p = 0.053), the CCL20-positive cell population was significantly different (p = 0.034) between Fusobacterium nucleatum-positive and -negative OSCC. CONCLUSION Fusobacterium nucleatum is possibly prevalent in oral cancer tissues in the Indian population. By using immunohistochemistry, this is the first study to propose that the carcinogenesis in Fusobacterium nucleatum-positive OSCC may be CCL20-related. The findings enrich the knowledge of mechanisms involved in Fusobacterium nucleatum-mediated oral carcinogenesis.
Collapse
Affiliation(s)
- Devi Prasad Mandal
- Institute of Dental Sciences, Siksha ’O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Neeta Mohanty
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha ’O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Paresh Kumar Behera
- Head and Neck Oncology, Acharya Harihar Regional Cancer Centre, Cuttack 753007, Odisha, India;
| | - Divya Gopinath
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sasmita Panda
- Department of Pathology, Acharya Harihar Regional Cancer Centre, Cuttack 753007, Odisha, India;
| | - Abdulaziz A. Al-Kheraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (D.D.D.)
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (D.D.D.)
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- College of Dental Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha ’O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| |
Collapse
|
21
|
Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe? J Inorg Biochem 2021; 224:111586. [PMID: 34425476 DOI: 10.1016/j.jinorgbio.2021.111586] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/16/2023]
Abstract
Fusobacterium nucleatum (F. nucleatum) is one of the most abundant Gram-negative anaerobic bacteria, part of the gut, and oral commensal flora, generally found in human dental plaque. Its presence could be associated with various human diseases, including, e.g., periodontal, angina, lung and gynecological abscesses. This bacteria can enter the blood circulation as a result of periodontal infection. It was proven that F. nucleatum migrates from its primary site of colonization in the oral cavity to other parts of the body. It could cause numerous diseases, including cancers. On the other hand, it was shown that Fusobacterium produces significant amounts of butyric acid, which is a great source of energy for colonocytes (anti-inflammatory cells). Therefore, it is very interesting to get to know the two faces of F. nucleatum.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Karolina Jagiełło
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
22
|
Li DH, Li ZP, Yan Zhang, Zhou GZ, Ren RR, Zhao HJ, Zhang NN, Li JF, Peng LH, Yang YS. Fecal Fusobacterium nucleatum harbored virulence gene fadA are associated with ulcerative colitis and clinical outcomes. Microb Pathog 2021; 157:104964. [PMID: 34022363 DOI: 10.1016/j.micpath.2021.104964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
OBJECT Fusobacterium nucleatum (F.nucleatum), a gram-negative, obligately anaerobe of oral commensal,has been regarded as culprit of periodontal diseases previously and is being unveiled as possible pathogen of gastrointestinal disorders. The key virulence factor of F.nucleatum is FadA adhesin for binding and invading of the host's epithelial cells. Here, we detected fecal F.nucleatum and virulence gene fadA in patients with ulcerative colitis(UC) and evaluated the clinical relevance with UC. METHODS AND SUBJECTS A total of 310 subjects were enrolled including 100 patients with UC, 70 healthy controls (HC), 70 patients with irritable bowel syndrome subtype diarrhea(IBS-D), and 70 colorectal cancer patients(CRC). Stool samples of UC patients compared with healthy controls as well as IBS-D and CRC patients were collected for Polymerase Chain Reaction(PCR) detection of F.nucleatum (based on 16s rRNA) and virulence gene fadA. RESULTS The detection rate of 16s rRNA based PCR for F.nucleatum of UC patients(39/100, 39.00%) and CRC(26/70, 37.14%) patients are significantly higher than HC (12/70, 17.14%, P < 0.01) and IBS-D patients (14/70, 20.00%, P < 0.01). Moreover, 19 samples were detected fadA positive from 39 F.nucleatum positive samples of UC patients (19/39, 48.72%), which is significantly higher than HC(2/12, 16.66%, P < 0.05). There were 3 samples detected fadA positive from 14 F.nucleatum positive samples of IBS-D patients(3/14, 21.43%) and 13 out of 26(50.00%) of CRC patients, which were both no significant differences compared with UC patients(21.4% vs 48.72%, P > 0.05; 50.00% vs 48.72%, P > 0.05). For both F.nucleatum and fadA gene positive patients, there were no statistical significances between erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), white blood cells(WBC), and hemoglobin compared with negative patients(defined by either F.nucleatum or fadA negative, or both negative). However, it is worth noting that detection rate of F.nucleatum with virulence gene fadA in patients of severe ulcerative colitis was significantly higher than patients with mild and moderate colitis(28.89% vs 10.91%, P < 0.05). In addition, the fecal F.nucleatum and fadA gene positive patients were more likely to have pancolitis other than left-sided colitis(pancolitis/left-sided colitis: 26.92% vs 10.42%, P < 0.05). CONCLUSIONS The presence of F.nucleatum and fadA gene increased in UC patients, especially in patients with severe colitis and pancolitis. Strains of F.nucleatum harbored virulence gene fadA are suggested to play a role in the pathogenesis of UC.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guan-Zhou Zhou
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rong-Rong Ren
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hui-Jun Zhao
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Na-Na Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jian-Feng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Li-Hua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| | - Yun-Sheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
23
|
Maldonado-Arriaga B, Sandoval-Jiménez S, Rodríguez-Silverio J, Lizeth Alcaráz-Estrada S, Cortés-Espinosa T, Pérez-Cabeza de Vaca R, Licona-Cassani C, Gámez-Valdez JS, Shaw J, Mondragón-Terán P, Hernández-Cortez C, Suárez-Cuenca JA, Castro-Escarpulli G. Gut dysbiosis and clinical phases of pancolitis in patients with ulcerative colitis. Microbiologyopen 2021; 10:e1181. [PMID: 33970546 PMCID: PMC8087925 DOI: 10.1002/mbo3.1181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Ulcerative colitis (UC) is a frequent type of inflammatory bowel disease, characterized by periods of remission and exacerbation. Gut dysbiosis may influence pathophysiology and clinical response in UC. The purpose of this study was to evaluate whether gut microbiota is related to the active and remission phases of pancolitis in patients with UC as well as in healthy participants. Fecal samples were obtained from 18 patients with UC and clinical‐endoscopic evidenced pancolitis (active phase n = 9 and remission phase n = 9), as well as 15 healthy participants. After fecal DNA extraction, the 16S rRNA gene was amplified and sequenced (Illumina MiSeq), operational taxonomic units were analyzed with the QIIME software. Gut microbiota composition revealed a higher abundance of the phyla Proteobacteria and Fusobacteria in active pancolitis, as compared with remission and healthy participants. Likewise, a marked abundance of the genus Bilophila and Fusobacteria were present in active pancolitis, whereas a higher abundance of Faecalibacterium characterized both remission and healthy participants. LEfSe analysis showed that the genus Roseburia and Faecalibacterium were enriched in remission pancolitis, and genera Bilophila and Fusobacterium were enriched in active pancolitis. The relative abundance of Fecalibacterium and Roseburia showed a higher correlation with fecal calprotectin, while Bilophila and Fusobacterium showed AUCs (area under the curve) of 0.917 and 0.988 for active vs. remission pancolitis. The results of our study highlight the relation of gut dysbiosis with clinically relevant phases of pancolitis in patients with UC. Particularly, Fecalibacterium, Roseburia, Bilophila, and Fusobacterium were identified as genera highly related to the different clinical phases of pancolitis.
Collapse
Affiliation(s)
- Brenda Maldonado-Arriaga
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México.,Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sergio Sandoval-Jiménez
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | | | - Tomás Cortés-Espinosa
- Clínica de Enfermedad Inflamatoria Intestinal, Servicio de Gastroenterología, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Rebeca Pérez-Cabeza de Vaca
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cuauhtémoc Licona-Cassani
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - July Stephany Gámez-Valdez
- Laboratorio de Genómica Industrial, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Jonathan Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Paul Mondragón-Terán
- Coordinación de Investigación y División de Investigación Biomédica, C.M.N. "20 de Noviembre", ISSSTE, Ciudad de México, México
| | - Cecilia Hernández-Cortez
- Laboratorio de Bioquímica Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Antonio Suárez-Cuenca
- Laboratorio de Metabolismo Experimental e Investigación Clínica, División de Investigación Clínica, C.M.N. "20 de Noviembre", ISSSTE and Hospital General de 2A Troncoso, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Graciela Castro-Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
24
|
Engevik MA, Danhof HA, Ruan W, Engevik AC, Chang-Graham AL, Engevik KA, Shi Z, Zhao Y, Brand CK, Krystofiak ES, Venable S, Liu X, Hirschi KD, Hyser JM, Spinler JK, Britton RA, Versalovic J. Fusobacterium nucleatum Secretes Outer Membrane Vesicles and Promotes Intestinal Inflammation. mBio 2021; 12:e02706-20. [PMID: 33653893 PMCID: PMC8092269 DOI: 10.1128/mbio.02706-20] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Heather A Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Amy C Engevik
- Department of Surgical Sciences, Vanderbilt University Medical Center, Nashville Tennessee, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kristen A Engevik
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Yanling Zhao
- Department of Pediatrics, Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas, USA
| | - Colleen K Brand
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Evan S Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Kendal D Hirschi
- Department of Pediatrics and Human and Molecular Genetics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
25
|
Șurlin P, Nicolae FM, Șurlin VM, Pătrașcu Ș, Ungureanu BS, Didilescu AC, Gheonea DI. Could Periodontal Disease through Periopathogen Fusobacterium Nucleatum be an Aggravating Factor for Gastric Cancer? J Clin Med 2020; 9:3885. [PMID: 33260439 PMCID: PMC7761398 DOI: 10.3390/jcm9123885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease affects the supporting tissues of the teeth, being a chronic inflammatory disease caused by specific microorganisms from subgingival biofilm. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that acts as a periodontal pathogen, being an important factor in linking Gram-positive and Gram-negative bacteria in the periodontal biofilm, but its involvement in systemic diseases has also been found. Several studies regarding the implication of Fusobacterium nucleatum in gastro-enterological cancers have been conducted. The present review aims to update and systematize the latest information about Fusobacterium nucleatum in order to evaluate the possibility of an association between periodontal disease and the evolution of gastroenterological cancers through the action of Fusobacterium nucleatum, highlighting gastric cancer. This would motivate future research on the negative influence of periodontal pathology on the evolution of gastric cancer in patients suffering from both pathologies.
Collapse
Affiliation(s)
- Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Flavia Mirela Nicolae
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefan Pătrașcu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Andreea Cristiana Didilescu
- Department of Embriology, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania;
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| |
Collapse
|
26
|
Qi Y, Zang SQ, Wei J, Yu HC, Yang Z, Wu HM, Kang Y, Tao H, Yang MF, Jin L, Zen K, Wang FY. High-throughput sequencing provides insights into oral microbiota dysbiosis in association with inflammatory bowel disease. Genomics 2020; 113:664-676. [PMID: 33010388 DOI: 10.1016/j.ygeno.2020.09.063] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Although the prevalence of inflammatory bowel disease (IBD) has been increasing worldwide, the etiology remains elusive. Investigating oral microbiota dysbiosis is essential to understanding IBD pathogenesis. Our study evaluated variations in salivary microbiota and identified potential associations with IBD. The saliva microbiota of 22 IBD patients and 8 healthy controls (HCs) was determined using 16S ribosomal RNA (rRNA) gene sequencing and analyzed using QIIME2. A distinct saliva microbiota dysbiosis in IBD, characterized by alterations in microbiota biodiversity and composition, was identified. Saccharibacteria (TM7), Absconditabacteria (SR1), Leptotrichia, Prevotella, Bulleidia, and Atopobium, some of which are oral biofilm-forming bacteria, were significantly increased. Moreover, levels of inflammatory cytokines associated with IBD were elevated and positively correlated with TM7 and SR1. Functional variations include down-regulation of genetic information processing, while up-regulation of carbohydrate metabolism and protein processing in the endoplasmic reticulum in IBD. Our data implicate salivary microbiota dysbiosis involving in IBD pathogenesis.
Collapse
Affiliation(s)
- Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Sheng-Qi Zang
- Department of Stomatology, Jinling Hospital, Nanjing, Jiangsu, China
| | - Juan Wei
- Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Hong-Chuan Yu
- Department of Stomatology, Jinling Hospital, Nanjing, Jiangsu, China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui-Min Wu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ying Kang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hui Tao
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Miao-Fang Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lei Jin
- Department of Stomatology, Jinling Hospital, Nanjing, Jiangsu, China
| | - Ke Zen
- School of life sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fang-Yu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China..
| |
Collapse
|
27
|
Zhao Y, Jiang Q. Roles of the Polyphenol-Gut Microbiota Interaction in Alleviating Colitis and Preventing Colitis-Associated Colorectal Cancer. Adv Nutr 2020; 12:546-565. [PMID: 32905583 PMCID: PMC8009754 DOI: 10.1093/advances/nmaa104] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence indicates that the gut microbiota can promote or inhibit colonic inflammation and carcinogenesis. Promotion of beneficial gut bacteria is considered a promising strategy to alleviate colonic diseases including colitis and colorectal cancer. Interestingly, dietary polyphenols, which have been shown to attenuate colitis and inhibit colorectal cancer in animal models and some human studies, appear to reach relatively high concentrations in the large intestine and to interact with the gut microbial community. This review summarizes the modulatory effects of polyphenols on the gut microbiota in humans and animals under healthy and diseased conditions including colitis and colitis-associated colorectal cancer (CAC). Existing human and animal studies indicate that polyphenols and polyphenol-rich whole foods are capable of elevating butyrate producers and probiotics that alleviate colitis and inhibit CAC, such as Lactobacillus and Bifidobacterium. Studies in colitis and CAC models indicate that polyphenols decrease opportunistic pathogenic or proinflammatory microbes and counteract disease-induced dysbiosis. Consistently, polyphenols also change microbial functions, including increasing butyrate formation. Moreover, polyphenol metabolites produced by the gut microbiota appear to have anticancer and anti-inflammatory activities, protect gut barrier integrity, and mitigate inflammatory conditions in cells and animal models. Based on these results, we conclude that polyphenol-mediated alteration of microbial composition and functions, together with polyphenol metabolites produced by the gut microbiota, likely contribute to the protective effects of polyphenols on colitis and CAC. Future research is needed to validate the causal role of the polyphenol-gut microbiota interaction in polyphenols' anti-colitis and anti-CAC effects, and to further elucidate mechanisms underlying such interaction.
Collapse
Affiliation(s)
- Yiying Zhao
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
28
|
Liu H, Hong XL, Sun TT, Huang XW, Wang JL, Xiong H. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis 2020; 21:385-398. [PMID: 32441482 DOI: 10.1111/1751-2980.12909] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Fusobacterium nucleatum (F. nucleatum) has been reported to be enriched in patients with inflammatory bowel disease (IBD). This study aimed to explore the role of F. nucleatum in IBD and its pathogenic mechanism. METHODS Several bacteria that have been reported to be associated with IBD or colorectal cancer were measured in the fecal samples of 91 patients with IBD and 43 healthy individuals. Mice with dextran sulfate sodium (DSS)-induced colitis and a Caco-2 cell line were used to explore the pathogenicity of F. nucleatum. Barrier damage was evaluated by a transmission electron microscope, the permeability of fluorescein isothiocyanate-dextran, transepithelial electrical resistance and immunofluorescence. Protein levels of the cell-cell junction and activation of the STAT3 signaling pathway were detected by immunohistochemistry and immunoblot. Cytokine secretion and T-cell differentiation were measured by quantitative real-time polymerase chain reaction and flow cytometry. RESULTS F. nucleatum was significantly enriched in the feces of patients with IBD and its abundance correlated with disease activity. Administration of F. nucleatum markedly exacerbated colitis in a DSS mouse model. Mechanistically, F. nucleatum damaged epithelial integrity and increased permeability by regulating the expression and distribution of tight junction proteins zonula occludens-1 and occludin. Moreover, F. nucleatum promoted the secretion of cytokines (tumor necrosis factor-α, interferon-γ, interleukin [IL]-1β, IL-6, and IL-17), activated the STAT3 signaling pathway, and induced CD4+ T cell proliferation and Th1 and Th17 subset differentiations. CONCLUSION F. nucleatum can damage the intestinal barrier and induce aberrant inflammation, which exacerbates colitis.
Collapse
Affiliation(s)
- Hua Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Lu Hong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Tian Sun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Wen Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Lin Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Xiong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Quyushengxin Formula Causes Differences in Bacterial and Phage Composition in Ulcerative Colitis Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5859023. [PMID: 32454865 PMCID: PMC7240791 DOI: 10.1155/2020/5859023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Background Ulcerative colitis (UC) is a chronic inflammatory disease that affects the colon and the rectum. Recently, some studies have shown that microorganisms in the gut play important roles in many chronic diseases such as UC. Methods To study the candidate viruses and bacteria involved in UC and to investigate the therapeutic mechanism of Quyushengxin formula (QYSX) in UC patients, metagenomic sequencing was performed on the feces from healthy donors and UC patients before and after QYSX treatment. Results QYSX improved the symptoms of UC. In all participants, Caudovirales and Herpesvirales were the most dominant viruses. The abundance of Caudovirales in UC patients was significantly higher than that in the normal controls, while QYSX restored Caudovirales abundance. Furthermore, the abundance of crAssphage was enhanced in UC patients compared with the normal control, while the diversity was then decreased after QYSX treatment. However, there was no significant difference (P > 0.05). Additionally, other non-crAssphage bacteriophages including phiST, SP-10, and phi17:2 were higher in UC patients and QYSX decreased these viruses, while the trends of MED4−213, P-HM1, and P−HM2 were adverse. Interestingly, PhiDP23.1 was only found in UC patients before and after QYSX treatment. In addition, Bifidobacterium, Bacteroidetes, Prevotellaceae, Actinobacteria, and Corynebacteriales were the biomarkers in UC patients after QYSX treatment due to their high abundance. GO terms and KEGG analysis showed that the identified gut microbiome was involved in many biological processes and pathways. Conclusions QYSX could regulate disordered gut microbiome and phages, indicating that QYSX has great therapeutic potential for UC.
Collapse
|
30
|
Guo XY, Liu XJ, Hao JY. Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. J Dig Dis 2020; 21:147-159. [PMID: 32040250 DOI: 10.1111/1751-2980.12849] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Gut microbiota constitute the largest reservoir of the human microbiome and are an abundant and stable ecosystem-based on its diversity, complexity, redundancy, and host interactions This ecosystem is indispensable for human development and health. The integrity of the intestinal mucosal barrier depends on its interactions with gut microbiota. The commensal bacterial community is implicated in the pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC). The dysbiosis of microbes is characterized by reduced biodiversity, abnormal composition of gut microbiota, altered spatial distribution, as well as interactions among microbiota, between different strains of microbiota, and with the host. The defects in microecology, with the related metabolic pathways and molecular mechanisms, play a critical role in the innate immunity of the intestinal mucosa in UC. Fecal microbiota transplantation (FMT) has been used to treat many diseases related to gut microbiota, with the most promising outcome reported in antibiotic-associated diarrhea, followed by IBD. This review evaluated the results of various reports of FMT in UC. The efficacy of FMT remains highly controversial, and needs to be regularized by integrated management, standardization of procedures, and individualization of treatment.
Collapse
Affiliation(s)
- Xiao Yan Guo
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin Juan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Yu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Song YF, Pei LX, Chen L, Geng H, Yuan MQ, Xu WL, Wu J, Zhou JY, Sun JH. Electroacupuncture Relieves Irritable Bowel Syndrome by Regulating IL-18 and Gut Microbial Dysbiosis in a Trinitrobenzene Sulfonic Acid-Induced Post-Inflammatory Animal Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:77-90. [PMID: 31918565 DOI: 10.1142/s0192415x20500044] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post inflammatory irritable bowel syndrome (PI-IBS), a subset of IBS, is characterized by symptoms of visceral pain, bloating, and changed bowel habits that occur post initial episode of intestinal infection. Gut microbial dysbiosis or inflammation plays a key role in the pathogenesis of abdominal hypersensitivity of PI-IBS. Electroacupuncture (EA) stimulation results in an alleviated PI-IBS-associated symptom. This study investigated the effect of EA on IL-18 and gut microbial dysbiosis in one visceral hypersensitive rat models with PI-IBS. A trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity rat model was developed. EA stimulation was applied to the ST25 and ST36 acupoints. Animals were assessed using abdominal withdrawal reflex (AWR) scores to determine the development of colonic visceral hypersensitivity. The 16S rRNA was used to correlate microbial diversity. IL-18 expression in colon was quantified by quantitative real-time PCR and western blotting. We identified that model rats had an increased visceral hypersensitivity to colorectal distention at different distention pressures compared with the normal group. Sensitivity to colorectal distention decreased after EA stimulation. The composition of the fecal microbiota was different between groups. Specifically, in the model group Empedobacter, Psychrobacter, Enterococcus, Butyricimonas, Vampirovibrio, Kurthia, Intestinimonas, Neisseria, Falsiporphyromonas, Bilophila, Fusobacterium, Alistipes, Veillonella, Flavonifractor, Clostridium XlVa were more abundant affected genera, whereas Lactobacillus was enriched in normal rats. EA stimulation was correlated with significant decrease in the phyla of Fusobacteria. The mRNA and protein levels of IL-18 were higher in the model group. Meanwhile, EA stimulation attenuated this response. In a word, our findings suggest that PI-IBS is associated with significant increase in IL-18 levels as well as an alteration in microbiome diversity. These changes can be reversed with EA treatment. EA stimulation has a positive effect in alleviating symptoms of visceral hypersensitivity and protecting the gastrointestinal tract.
Collapse
Affiliation(s)
- Ya-Fang Song
- Department of Acupuncture, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Li-Xia Pei
- Department of Acupuncture, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Lu Chen
- Department of Acupuncture, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Hao Geng
- Department of Acupuncture, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Meng-Qian Yuan
- Department of Acupuncture, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Wan-Li Xu
- Department of the First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P. R. China
| | - Jian Wu
- Department of Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Jin-Yong Zhou
- Department of Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| | - Jian-Hua Sun
- Department of Acupuncture, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P. R. China
| |
Collapse
|
32
|
Schmidt J, Weigert M, Leuschner C, Hartmann H, Raddatz D, Haak R, Mausberg RF, Kottmann T, Schmalz G, Ziebolz D. Active matrix metalloproteinase-8 and periodontal bacteria-interlink between periodontitis and inflammatory bowel disease? J Periodontol 2019; 89:699-707. [PMID: 29574823 DOI: 10.1002/jper.17-0486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The aim of this study was the investigation of concentration and prevalence of selected periodontal pathogenic bacteria and concentration of active matrix metalloproteinase-8 (aMMP-8) within a group of patients with inflammatory bowel diseases (IBD) and to compare the results with a group of healthy control subjects (HC). METHODS Fifty-nine IBD patients with Crohn`s disease (CD, n = 30) or ulcerative colitis (UC, n = 29) and 59 HC were included in this cross-sectional study. Based on periodontal probing depth (PD) and clinical attachment level (CAL), periodontitis was classified as healthy/mild, moderate, or severe. aMMP-8 was analyzed from gingival crevicular fluid using enzyme linked immunosorbent assay. Eleven selected periodontal pathogenic bacteria were analyzed in subgingival plaque samples using polymerase chain reaction. RESULTS IBD patients showed higher CAL (P < 0.01), more severe periodontitis (P = 0.04), gingival bleeding (P < 0.01) and aMMP-8 concentration (P < 0.01) than HC. Only in CD, increasing severity of periodontitis was associated with an increase in aMMP-8 concentration (P = 0.02). The prevalences of Eubacterium nodatum and Eikenella corrodens were significantly lower in IBD compared to HC (P = 0.01). Additionally, the prevalence of Eikenella corrodens was significantly higher in CD compared to the UC group (P = 0.04). Further statistically significant differences in selected bacteria between IBD and HC or CD and UC groups could not be found (P > 0.05). CONCLUSIONS The results reveal changes in host immune response of IBD patients in terms of aMMP-8. Only in CD increasing aMMP-8 was associated with severity of periodontal disease. The role of periodontal pathogenic bacteria in the interrelationship between IBD and periodontitis remains unclear.
Collapse
Affiliation(s)
- J Schmidt
- Dept. of Cariology, Endodontology and Periodontology, University of Leipzig, Germany
| | - M Weigert
- Dept. of Preventive Dentistry, Periodontology and Cariology, University Medical Center Goettingen, Germany
| | - C Leuschner
- Dept. of Preventive Dentistry, Periodontology and Cariology, University Medical Center Goettingen, Germany
| | - H Hartmann
- Practice for Gastroenterology, Herne, Germany
| | - D Raddatz
- Clinic for Gastroenterology und Gastrointestinal Oncology, University Medical Center Goettingen, Germany
| | - R Haak
- Dept. of Cariology, Endodontology and Periodontology, University of Leipzig, Germany
| | - R F Mausberg
- Dept. of Preventive Dentistry, Periodontology and Cariology, University Medical Center Goettingen, Germany
| | | | - G Schmalz
- Dept. of Cariology, Endodontology and Periodontology, University of Leipzig, Germany
| | - D Ziebolz
- Dept. of Cariology, Endodontology and Periodontology, University of Leipzig, Germany
| |
Collapse
|
33
|
Shao D, Vogtmann E, Liu A, Qin J, Chen W, Abnet CC, Wei W. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer 2019; 125:3993-4002. [PMID: 31355925 DOI: 10.1002/cncr.32403] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Little is known about the microbiota and upper gastrointestinal tumors. Esophageal squamous cell carcinoma (ESCC) and gastric cardia adenocarcinoma (GCA) occur in adjacent organs, co-occur geographically, and share many risk factors despite being of different tissue types. METHODS This study characterized the microbial communities of paired tumor and nontumor samples from 67 patients with ESCC and 36 patients with GCA in Henan, China. DNA was extracted with the MoBio PowerSoil kit. The V4 region of the 16S ribosomal RNA gene was sequenced with MiniSeq and was processed with Quantitative Insights Into Microbial Ecology 1. The linear discriminant analysis effect size method was used to identify differentially abundant microbes, the Wilcoxon rank-sum test was used to test α diversity differences, and permutational multivariate analysis of variance was used to test for differences in β diversity. RESULTS The microbial environments of ESCC and GCA tissues were all composed primarily of Firmicutes, Bacteroidetes, and Proteobacteria. ESCC tumor tissues contained more Fusobacterium (3.2% vs 1.3%) and less Streptococcus (12.0% vs 30.2%) than nontumor tissues. GCA nontumor tissues had a greater abundance of Helicobacter (60.5% vs 11.8%), which may have been linked to the lower α diversity (58.0 vs 102.5; P = .0012) in comparison with tumor tissues. A comparison of ESCC and GCA nontumor tissues showed that the microbial composition (P = .0040) and the α diversity (87.0 vs 58.0; P = .00052) were significantly different. No significant differences were detected for α diversity within ESCC and GCA tumor tissues. CONCLUSIONS This study showed differences in the microbial compositions of paired ESCC and GCA tumor and nontumor tissues and differences by organ site. Large-scale, prospective cohort studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Dantong Shao
- Cancer Registry Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Emily Vogtmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anqi Liu
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Qin
- Promegene Translational Research Institute, Shenzhen, China
| | - Wen Chen
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Christian C Abnet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenqiang Wei
- Cancer Registry Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Idrissi Janati A, Karp I, Sabri H, Emami E. Is a fusobacterium nucleatum infection in the colon a risk factor for colorectal cancer?: a systematic review and meta-analysis protocol. Syst Rev 2019; 8:114. [PMID: 31077259 PMCID: PMC6511124 DOI: 10.1186/s13643-019-1031-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite a considerable amount of epidemiological research for identification of risk factors involved in the development of colorectal cancer, the current understanding of the etiology of this disease remains rather poor. Accumulating evidence suggests a potentially important role of infection with Fusobacterium nucleatum in the colon in colorectal carcinogenesis. The objective of this systematic review is to synthesize the epidemiological evidence on the association between infection with Fusobacterium nucleatum in the colon and colorectal cancer. METHODS This systematic review will include observational studies (cohort, case-control, cross-sectional) in humans in which the role of Fusobacterium nucleatum in the etiology of colorectal cancer was investigated. MEDLINE, EMBASE, Web of Science, and Cochrane Database of Systematic Reviews will be searched using a comprehensive search strategy and manual screening of references. Two reviewers will independently identify eligible studies and extract the data from the included studies. The quality of studies will be assessed by using the Newcastle-Ottawa scale. Random-effects models will be used to estimate pooled measures of association (where feasible). Meta-regression and subgroup analyses will be conducted to explore the potential sources of heterogeneity. The Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement will be followed for reporting. DISCUSSION Deepening knowledge regarding the etiology of colorectal cancer and the potential implications of Fusobacterium nucleatum in this disease is instrumental for prevention, diagnosis, and treatment of this often-fatal disease. This review will produce summarized current evidence on this topic. SYSTEMATIC REVIEW REGISTRATION This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 10 July 2018 (registration number CRD42018095866).
Collapse
Affiliation(s)
- Amal Idrissi Janati
- Faculté de Médecine Dentaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7 Canada
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151, Richmond St., Kresge Building, Room K214, London, Ontario N6A 5C1 Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Hisham Sabri
- Department of Psychology, Concordia University, Montreal, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, Montreal, Canada
- Department of Restorative Dentistry, Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC H3A 1G1 Canada
| |
Collapse
|
35
|
Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiome as a Target for IBD Treatment: Are We There Yet? ACTA ACUST UNITED AC 2019; 17:115-126. [DOI: 10.1007/s11938-019-00221-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Basso PJ, Câmara NOS, Sales-Campos H. Microbial-Based Therapies in the Treatment of Inflammatory Bowel Disease - An Overview of Human Studies. Front Pharmacol 2019; 9:1571. [PMID: 30687107 PMCID: PMC6335320 DOI: 10.3389/fphar.2018.01571] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of multifactorial and inflammatory infirmities comprised of two main entities: Ulcerative colitis (UC) and Crohn's disease (CD). Classic strategies to treat IBD are focused on decreasing inflammation besides inducing and extending disease remission. However, these approaches have several limitations such as low responsiveness, excessive immunosuppression, and refractoriness. Despite the multifactorial causality of IBD, immune disturbances and intestinal dysbiosis have been suggested as the central players in disease pathogenesis. Hence, therapies aiming at modulating intestinal microbial composition may represent a promising strategy in IBD control. Fecal microbiota transplantation (FMT) and probiotics have been explored as promising candidates to reestablish microbial balance in several immune-mediated diseases such as IBD. These microbial-based therapies have demonstrated the ability to reduce both the dysbiotic environment and production of inflammatory mediators, thus inducing remission, especially in UC. Despite these promising results, there is still no consensus on the relevance of such treatments in IBD as a potential clinical strategy. Thus, this review aims to critically review and describe the use of FMT and probiotics to treat patients with IBD.
Collapse
Affiliation(s)
- Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
37
|
Chen R, Wu P, Cai Z, Fang Y, Zhou H, Lasanajak Y, Tang L, Ye L, Hou C, Zhao J. Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain-gut barriers. J Nutr Biochem 2018; 65:101-114. [PMID: 30710886 DOI: 10.1016/j.jnutbio.2018.12.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
The combination of Puerariae Lobatae Radix (PLR) and Chuanxiong Rhizoma (CXR) is commonly used to treat cerebrovascular diseases. This work aimed to clarify the mechanisms of their action in treating cerebral ischemic stroke from the perspective of gut microecology. The PLR and CXR combination effectively improved the neurological function, reduced the cerebral infarction and relieved the complications of cerebral ischemic stroke, including dyslipidemia, increased blood viscosity and thrombotic risk. Cerebral ischemic stroke triggered gut microbial disturbances by enriching pathogens and opportunistic microorganisms, including Bacteroides, Escherichia_Shigella, Haemophilus, Eubacterium_nodatum_group, Collinsella, Enterococcus, Proteus, Alistipes, Klebsiella, Shuttleworthia and Faecalibacterium. Cerebral ischemic stroke also increased the intestinal permeability, disrupted the gut barrier and caused intestinal microbial translocation. Occludin, claudin-5 and ZO-1 levels in the brain-gut barriers showed a high positive correlation. However, the combination remodeled the gut microecology by modulating endogenous bacteria whose effects may mitigate cerebral damage, such as Alloprevotella, Ruminococcaceae, Oscillospira, Lachnospiraceae_NK4B4_group, Akkermansia and Megasphaera, protected the brain-gut barriers by increasing claudin-5 and ZO-1 levels; and weakened the gut microbiota translocation by decreasing diamine oxidase, lipopolysaccharide and d-lactate. Although nimodipine effectively reduced the cerebral infarction, it did not relieve the gut microbiota dysbiosis and instead aggravated the gut barrier disruption and microbiota translocation. In conclusion, cerebral ischemic stroke caused gut microbiota dysbiosis, increased intestinal permeability, disrupted the gut barrier and triggered gut microbiota translocation. The PLR and CXR combination was an effective treatment for cerebral ischemic stroke that relieved the gut microbiota dysbiosis and brain-gut barriers disruption.
Collapse
Affiliation(s)
- Runzhi Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Cai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yingying Fang
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Hospital Infection Management of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Lasanajak
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuqi Hou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
38
|
Lee SC, Chua LL, Yap SH, Khang TF, Leng CY, Raja Azwa RI, Lewin SR, Kamarulzaman A, Woo YL, Lim YAL, Loke P, Rajasuriar R. Enrichment of gut-derived Fusobacterium is associated with suboptimal immune recovery in HIV-infected individuals. Sci Rep 2018; 8:14277. [PMID: 30250162 PMCID: PMC6155144 DOI: 10.1038/s41598-018-32585-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
We explored the gut microbiota profile among HIV-infected individuals with diverse immune recovery profiles following long-term suppressive ART and investigated the relationship between the altered bacteria with markers of immune dysfunction. The microbiota profile of rectal swabs from 26 HIV-infected individuals and 20 HIV-uninfected controls were examined. Patients were classified as suboptimal responders, sIR (n = 10, CD4 T-cell <350 cells/ul) and optimal responders, oIR (n = 16, CD4 T-cell >500 cells/ul) after a minimum of 2 years on suppressive ART. Canonical correlation analysis(CCA) and multiple regression modelling were used to explore the association between fecal bacterial taxa abundance and immunological profiles in optimal and suboptimal responders. We found Fusobacterium was significantly enriched among the HIV-infected and the sIR group. CCA results showed that Fusobacterium abundance was negatively correlated with CD4 T-cell counts, but positively correlated with CD4 T-cell activation and CD4 Tregs. Multiple linear regression analysis adjusted for age, baseline CD4 T-cell count, antibiotic exposure and MSM status indicated that higher Fusobacterium relative abundance was independently associated with poorer CD4 T-cell recovery following ART. Enrichment of Fusobacterium was associated with reduced immune recovery and persistent immune dysfunction following ART. Modulating the abundance of this bacterial taxa in the gut may be a viable intervention to improve immune reconstitution in our setting.
Collapse
Affiliation(s)
- Soo Ching Lee
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ling Ling Chua
- University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Hwei Yap
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tsung Fei Khang
- Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.,University of Malaya Centre for Data Analytics, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chan Yoon Leng
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Raja Iskandar Raja Azwa
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sharon R Lewin
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Monash University and Alfred Hospital; Royal Melbourne Hospital, Melbourne, Australia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yin Ling Woo
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - P'ng Loke
- Department of Microbiology and Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
39
|
Ma CT, Luo HS, Gao F, Tang QC, Chen W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol Lett 2018; 16:2606-2612. [PMID: 30013655 PMCID: PMC6036566 DOI: 10.3892/ol.2018.8947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggests that Fusobacterium nucleatum is involved in colorectal carcinogenesis. Previous studies have explored whether F. nucleatum may trigger colonic epithelial-mesenchymal transition. The results of the present study demonstrated that F. nucleatum enhances the proliferation and invasion of NCM460 cells compared with that of normal control and DH5α cells. Furthermore, F. nucleatum significantly increased the phosphorylation of p65 (a subunit of nuclear factor-κB), as well as the expression of interleukin (IL)-6, IL-1β and matrix metalloproteinase (MMP)-13. Additionally, F. nucleatum infection did not affect the expression levels of epithelial (E-)cadherin and β-catenin. E-cadherin knockdown in NCM460 cells did not induce the activation of inflammatory responses in response to F. nucleatum infection, whereas it increased inflammation in response to β-catenin silencing. F. nucleatum infection could not increase the proportion of cells at S phase when E-cadherin was silenced. Nevertheless, F. nucleatum infection enhanced the proportion of NCM460 cells at S phase when transfected with small interfering RNAs to knock down β-catenin expression. In conclusion, the results of the present study demonstrated that F. nucleatum infection interacted with E-cadherin instead of β-catenin, which in turn enhances the malignant phenotype of colorectal cancer cells.
Collapse
Affiliation(s)
- Chun-Ting Ma
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He-Sheng Luo
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Gao
- Department of Gastroenterology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 8320001, P.R. China
| | - Qin-Cai Tang
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Chen
- Department of Gastroenterology, RenMin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
40
|
Rajagopalan D, Jha S. An epi(c)genetic war: Pathogens, cancer and human genome. Biochim Biophys Acta Rev Cancer 2018; 1869:333-345. [DOI: 10.1016/j.bbcan.2018.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
|
41
|
Rohr M, Narasimhulu CA, Sharma D, Doomra M, Riad A, Naser S, Parthasarathy S. Inflammatory Diseases of the Gut. J Med Food 2018; 21:113-126. [PMID: 29389238 DOI: 10.1089/jmf.2017.0138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic inflammatory disorders of the gastrointestinal tract whose prevalence has been dramatically increasing over the past decade. New studies have shown that IBD is the second most common chronic inflammatory disease worldwide after rheumatoid arthritis, affecting millions of people mainly in industrialized countries. Symptoms of IBD include frequent bloody diarrhea, abdominal cramping, anorexia, abdominal distension, and emesis. Although the exact etiology is unknown, it has been postulated that immunological, microbial, environmental, nutritional, and genetic factors contribute to the pathogenesis and severity of IBD. Today, no treatment has consistently been shown to be successful in treating IBD. This review summarizes current research on the epidemiology, etiology, pathophysiology, and existing treatment approaches, including pharmaceutical and nutritional options for IBD.
Collapse
Affiliation(s)
- Michael Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | | | - Dhara Sharma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Mitsushita Doomra
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Aladdin Riad
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Saleh Naser
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida , Orlando, Florida, USA
| |
Collapse
|
42
|
Yusof N, Hamid N, Ma ZF, Lawenko RM, Wan Mohammad WMZ, Collins DA, Liong MT, Odamaki T, Xiao J, Lee YY. Exposure to environmental microbiota explains persistent abdominal pain and irritable bowel syndrome after a major flood. Gut Pathog 2017; 9:75. [PMID: 29255490 PMCID: PMC5729606 DOI: 10.1186/s13099-017-0224-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Background After an environmental disaster, the affected community is at increased risk for persistent abdominal pain but mechanisms are unclear. Therefore, our study aimed to determine association between abdominal pain and poor water, sanitation and hygiene (WaSH) practices, and if small intestinal bacterial overgrowth (SIBO) and/or gut dysbiosis explain IBS, impaired quality of life (QOL), anxiety and/or depression after a major flood. Results New onset abdominal pain, IBS based on the Rome III criteria, WaSH practices, QOL, anxiety and/or depression, SIBO (hydrogen breath testing) and stools for metagenomic sequencing were assessed in flood victims. Of 211 participants, 37.9% (n = 80) had abdominal pain and 17% (n = 36) with IBS subtyped diarrhea and/or mixed type (n = 27 or 12.8%) being the most common. Poor WaSH practices and impaired quality of life during flood were significantly associated with IBS. Using linear discriminant analysis effect size method, gut dysbiosis was observed in those with anxiety (Bacteroidetes and Proteobacteria, effect size 4.8), abdominal pain (Fusobacteria, Staphylococcus, Megamonas and Plesiomonas, effect size 4.0) and IBS (Plesiomonas and Trabulsiella, effect size 3.0). Conclusion Disturbed gut microbiota because of environmentally-derived organisms may explain persistent abdominal pain and IBS after a major environmental disaster in the presence of poor WaSH practices. Electronic supplementary material The online version of this article (10.1186/s13099-017-0224-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- NurFadhilah Yusof
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan Malaysia
| | - Nurhazwani Hamid
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan Malaysia
| | - Zheng Feei Ma
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan Malaysia.,Department of Public Health, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | | | | | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Min Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang Malaysia
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Tokyo, Japan
| | - Jinzhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Tokyo, Japan
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan Malaysia
| |
Collapse
|
43
|
Zhang SL, Wang SN, Miao CY. Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Front Immunol 2017; 8:1674. [PMID: 29234327 PMCID: PMC5712343 DOI: 10.3389/fimmu.2017.01674] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with chronic and recurrent characteristics caused by multiple reasons. Although the pathogenic factors have not been clarified yet, recent studies have demonstrated that intestinal microbiota plays a major role in UC, especially in the immune system. This review focuses on the description of several major microbiota communities that affect UC and their interactions with the host. In this review, eight kinds of microbiota that are highly related to IBD, including Faecalibacterium prausnitzii, Clostridium clusters IV and XIVa, Bacteroides, Roseburia species, Eubacterium rectale, Escherichia coli, Fusobacterium, and Candida albicans are demonstrated on the changes in amount and roles in the onset and progression of IBD. In addition, potential therapeutic targets for UC involved in the regulation of microbiota, including NLRPs, vitamin D receptor as well as secreted proteins, are discussed in this review.
Collapse
Affiliation(s)
- Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
44
|
Yan X, Liu L, Li H, Qin H, Sun Z. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco Targets Ther 2017; 10:5031-5046. [PMID: 29081665 PMCID: PMC5652912 DOI: 10.2147/ott.s145949] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common digestive malignancy and emerging studies have closely linked its initiation and development with gut microbiota changes. Fusobacterium nucleatum (Fn) has been recently identified as a pathogenic bacteria for CRC; however, its prognostic significance for patients is poorly investigated and is less for patients within late stage. Therefore, in this study, we made efforts to analyze its level and prognostic significance in a retrospective cohort of 280 stage III/IV CRC patients. We found that the Fn level was abnormally high in tumor tissues and correlated with tumor invasion, lymph node metastasis status, and distant metastasis. We also identified it as an independent adverse prognostic factor for cancer-specific survival (CSS) and disease-free survival (DFS). The following subgroup analysis indicated that Fn level could stratify CSS and DFS in stage IIIB/C and IV patients but failed in stage IIIA patients. In addition, stage III/IV patients with low Fn level were found to benefit more from adjuvant chemotherapy than those with high Fn level, in terms of DFS. Finally, we analyzed the expression and clinical significance of epithelial-to-mesenchymal transition (EMT) markers (E-cadherin and N-cadherin) and cancer stem cell (CSC) markers (Nanog, Oct-4, and Sox-2) in CRC tissues. The results indicated that N-cadherin, Nanog, Oct-4, and Sox-2 were adverse prognostic factors in these patients, while the opposite was true for E-cadherin. More importantly, expression of E-cadherin, N-cadherin, and Nanog was significantly correlated with Fn level in tumor tissues, suggesting the potential involvement of Fn in EMT-CSC cross talk during CRC progression. Taken together, these findings indicate that Fn is a novel predictive biomarker for clinical management in stage III/IV patients, and targeting Fn may be an effective adjuvant approach for preventing CRC metastasis and chemotherapy resistance.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Liguo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Zhenliang Sun
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine.,Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, South Campus, Shanghai, China
| |
Collapse
|
45
|
Yamamura K, Baba Y, Miyake K, Nakamura K, Shigaki H, Mima K, Kurashige J, Ishimoto T, Iwatsuki M, Sakamoto Y, Yamashita Y, Yoshida N, Watanabe M, Baba H. Fusobacterium nucleatum in gastroenterological cancer: Evaluation of measurement methods using quantitative polymerase chain reaction and a literature review. Oncol Lett 2017; 14:6373-6378. [PMID: 29151903 PMCID: PMC5678348 DOI: 10.3892/ol.2017.7001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
The human microbiome Fusobacterium nucleatum, which primarily inhabits the oral cavity, causes periodontal disease and has also been implicated in the development of colorectal cancer. However, whether F. nucleatum is present in other gastroenterological cancer tissues remains to be elucidated. The present study evaluated whether quantitative polymerase chain reaction (qPCR) assays were able to detect F. nucleatum DNA and measure the quantity of F. nucleatum DNA in esophageal, gastric, pancreatic and liver cancer tissues. The accuracy of the qPCR assay was determined from a calibration curve using DNA extracted from cells from the oral cavity. Formalin-fixed paraffin-embedded (FFPE) tumor tissues from 20 patients with gastroenterological [esophageal (squamous cell carcinoma), gastric, colorectal, pancreatic and liver] cancer and 20 matched normal tissues were evaluated for F. nucleatum DNA content. The cycle threshold values in the qPCR assay for F. nucleatum and solute carrier organic anion transporter family member 2A1 (reference sample) decreased linearly with the quantity of input DNA (r2>0.99). The F. nucleatum detection rate in esophageal, gastric and colorectal cancer tissues were 20% (4/20), 10% (2/20) and 45% (9/20), respectively. F. nucleatum was not detected in liver and pancreatic cancer tissues. The qPCR results from the frozen and FFPE tissues were consistent. Notably, F. nucleatum was detected at a higher level in superficial areas compared with the invasive areas. F. nucleatum in esophageal, gastric and colorectal cancer tissues was evaluated by qPCR using FFPE tissues. F. nucleatum may be involved in the development of esophageal, gastric and colorectal cancer.
Collapse
Affiliation(s)
- Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hironobu Shigaki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
46
|
Tahara T, Hirata I, Nakano N, Tahara S, Horiguchi N, Kawamura T, Okubo M, Ishizuka T, Yamada H, Yoshida D, Ohmori T, Maeda K, Komura N, Ikuno H, Jodai Y, Kamano T, Nagasaka M, Nakagawa Y, Tuskamoto T, Urano M, Shibata T, Kuroda M, Ohmiya N. Potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in ulcerative colitis. Oncotarget 2017; 8:61917-61926. [PMID: 28977914 PMCID: PMC5617474 DOI: 10.18632/oncotarget.18716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND AIM Fusobacterium enrichment has been associated with colorectal cancer development. Ulcerative colitis (UC) associated tumorigenesis is characterized as high degree of methylation accumulation through continuous colonic inflammation. The aim of this study was to investigate a potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in UC. METHODS In the candidate analysis, inflamed colonic mucosa from 86 UC patients were characterized the methylation status of colorectal a panel of cancer related 24 genes. In the genome-wide analysis, an Infinium HumanMethylation450 BeadChip array was utilized to characterize the methylation status of >450,000 CpG sites for fourteen UC patients. Results were correlated with Fusobacterium status. RESULTS UC with Fusobacterium enrichment (FB-high) was characterized as high degree of type C (for cancer-specific) methylation compared to other (FB-low/neg) samples (P<0.01). Genes hypermethylated in FB-high samples included well-known type C genes in colorectal cancer, such as MINT2 and 31, P16 and NEUROG1. Multivariate analysis demonstrated that the FB high status held an increased likelihood for methylation high as an independent factor (odds ratio: 16.18, 95% confidence interval: 1.94-135.2, P=0.01). Genome-wide methylation analysis demonstrated a unique methylome signature of FB-high cases irrespective of promoter, outside promoter, CpG and non-CpG sites. Group of promoter CpG sites that were exclusively hypermethylated in FB-high cases significantly codified the genes related to the catalytic activity (P=0.039). CONCLUSION Our findings suggest that Fusobacterium accelerates DNA methylation in specific groups of genes in the inflammatory colonic mucosa in UC.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ichiro Hirata
- Department of Gastroenterology, Kenporen Osaka Central Hospital Japan, Osaka, Japan
| | - Naoko Nakano
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Sayumi Tahara
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Noriyuki Horiguchi
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomohiko Kawamura
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Okubo
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takamitsu Ishizuka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hyuga Yamada
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Dai Yoshida
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takafumi Ohmori
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Maeda
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naruomi Komura
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirokazu Ikuno
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasutaka Jodai
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Toshiaki Kamano
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Tuskamoto
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Makoto Urano
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Kuroda
- Department of Diagnostic Pathology I, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Naoki Ohmiya
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
47
|
Lee Y, Eun CS, Lee AR, Park CH, Han DS. Fusobacterium Isolates Recovered From Colonic Biopsies of Inflammatory Bowel Disease Patients in Korea. Ann Lab Med 2017; 36:387-9. [PMID: 27139617 PMCID: PMC4855064 DOI: 10.3343/alm.2016.36.4.387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/15/2015] [Accepted: 03/04/2016] [Indexed: 02/01/2023] Open
Affiliation(s)
- Yangsoon Lee
- Department of Laboratory Medicine, Hanyang University Seoul Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - A Reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.
| |
Collapse
|
48
|
Chhibber-Goel J, Singhal V, Bhowmik D, Vivek R, Parakh N, Bhargava B, Sharma A. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients. NPJ Biofilms Microbiomes 2016. [PMID: 28649401 PMCID: PMC5460270 DOI: 10.1038/s41522-016-0009-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease is an inflammatory disorder characterized by narrowing of coronary arteries due to atherosclerotic plaque formation. To date, the accumulated epidemiological evidence supports an association between oral bacterial diseases and coronary artery disease, but has failed to prove a causal link between the two. Due to the recent surge in microbial identification and analyses techniques, a number of bacteria have been independently found in atherosclerotic plaque samples from coronary artery disease patients. In this study, we present meta-analysis from published studies that have independently investigated the presence of bacteria within atherosclerotic plaque samples in coronary artery disease patients. Data were collated from 63 studies covering 1791 patients spread over a decade. Our analysis confirms the presence of 23 oral commensal bacteria, either individually or in co-existence, within atherosclerotic plaques in patients undergoing carotid endarterectomy, catheter-based atherectomy, or similar procedures. Of these 23 bacteria, 5 (Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella nigrescens) are unique to coronary plaques, while the other 18 are additionally present in non-cardiac organs, and associate with over 30 non-cardiac disorders. We have cataloged the wide spectrum of proteins secreted by above atherosclerotic plaque-associated bacteria, and discuss their possible roles during microbial migration via the bloodstream. We also highlight the prevalence of specific poly-microbial communities within atherosclerotic plaques. This work provides a resource whose immediate implication is the necessity to systematically catalog landscapes of atherosclerotic plaque-associated oral commensal bacteria in human patient populations. A review of bacterial populations in the mouth and in diseased arteries will help research into the role of bacteria in heart disease. Amit Sharma and colleagues at the International Centre for Genetic Engineering and Biotechnology, with co-workers at the All India Institute of Medical Sciences, both in New Delhi, India, analyzed 63 studies covering 1791 patients spread over a decade. They summarize evidence of 23 types of oral bacteria that are also found in atherosclerotic plaques in artery walls. The review also cataloged the proteins secreted by the bacteria and discussed possible involvement of these proteins in the migration of bacteria through the bloodstream. Full genetic details are available for 19 of the 23 bacterial species, which should greatly assist further investigations into the significance of bacteria in the onset of heart disease.
Collapse
Affiliation(s)
- Jyoti Chhibber-Goel
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Varsha Singhal
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Debaleena Bhowmik
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Vivek
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeraj Parakh
- Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Balram Bhargava
- Cardiothoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
49
|
Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, Sawayama H, Kinoshita K, Ishimoto T, Iwatsuki M, Sakamoto Y, Yamashita Y, Yoshida N, Watanabe M, Baba H. Human Microbiome Fusobacterium Nucleatum in Esophageal Cancer Tissue Is Associated with Prognosis. Clin Cancer Res 2016; 22:5574-5581. [PMID: 27769987 DOI: 10.1158/1078-0432.ccr-16-1786] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Fusobacterium nucleatum (F. nucleatum) is a component of the human microbiome that primarily inhabits the oral cavity. It causes periodontal disease and has also been implicated in the development of human cancers. Although there are several reports of the relationship between F. nucleatum and the clinical outcome in human cancers, its prognostic significance in esophageal cancer remains unclear. EXPERIMENTAL DESIGN We quantified F. nucleatum DNA in 325 resected esophageal cancer specimens by qPCR. Significant pathways in F. nucleatum-positive esophageal cancer tissues were identified by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using microarray data. RESULTS Esophageal cancer tissues contained significantly more F. nucleatum DNA than matched normal esophageal mucosa (P = 0.021; n = 60). F. nucleatum DNA was detected in 74 of 325 cases (23%). F. nucleatum DNA positivity was significantly associated with tumor stage, but not with sex, age, performance status, tobacco use, alcohol use, histology, tumor location, or preoperative treatment. F. nucleatum DNA positivity was also significantly associated with cancer-specific survival [log-rank P = 0.0039; univariate HR = 2.01; 95% confidence interval (CI), 1.22-3.23; P = 0.0068; multivariate HR = 1.78; 95% CI, 1.06-2.94; P = 0.031]. The top-ranked KEGG pathway in F. nucleatum-positive tissues was "cytokine-cytokine receptor interaction." A significant relationship between F. nucleatum and the chemokine CCL20 was validated by IHC. CONCLUSIONS F. nucleatum in esophageal cancer tissues was associated with shorter survival, suggesting a potential role as a prognostic biomarker. F. nucleatum might also contribute to aggressive tumor behavior through activation of chemokines, such as CCL20. Clin Cancer Res; 22(22); 5574-81. ©2016 AACR.
Collapse
Affiliation(s)
- Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
50
|
Intestinal microbiota and ulcerative colitis. J Infect Chemother 2015; 21:761-8. [DOI: 10.1016/j.jiac.2015.07.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/30/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
|