1
|
Zhang H, Mo H, Li P, Zhou Q, Shen G, Sun J. Identification of the relationship between 1400 blood metabolites and urolithiasis: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41911. [PMID: 40128055 PMCID: PMC11936622 DOI: 10.1097/md.0000000000041911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
Relationships between blood metabolites and urolithiasis have been identified in few previous observational studies, and causality remains uncertain. We tried to examine whether blood metabolites were causally associated with upper and lower urinary stones in this bidirectional Mendelian randomization (MR) study. The causal relationship between 1400 blood metabolites and upper and lower urinary stones was investigated using genome-wide association study data. The primary analysis for causality analysis was the inverse variance weighted method, with 4 other methods used as complementary analyses. Intersection was then conducted to show the shared metabolites between upper and lower urinary tract stones, followed by the MR-Egger intercept test, Cochran Q test, leave-one-out analysis, MR-PRESSO and the linkage disequilibrium score regressions. The metabolic pathway analysis was conducted to identify potential metabolic pathways. Lastly, reverse MR analyses were also performed. We identified 15 metabolites as potential causal predictors of urinary stones in forward MR analyses. These metabolites consisted of 1 azole, 2 carbohydrates, 6 lipids, 1 nucleotide, 1 peptide, 1 urea, and 3 metabolites with unknown chemical properties. Additionally, urinary stones were found to be significantly associated with some of the above metabolites in reverse MR analyses. Metabolic pathway analysis identified several pathways that may be implicated in the development of urolithiasis. This MR study has established a causal relationship between 12 blood metabolites and the risk of upper and lower urinary tract stones. The identification of these blood metabolites provides valuable insights into early screening, prevention, and treatment of urolithiasis.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haojie Mo
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peng Li
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Zhou
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Shen
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiale Sun
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Vonbrunn E, Ebert N, Cordasic N, Amann K, Büttner A, Büttner-Herold M, Scherberich JE, Daniel C. Serum Uromodulin as early marker for ischemic acute kidney injury and nephron loss: association with kidney tissue distribution pattern. J Transl Med 2025; 23:323. [PMID: 40087735 PMCID: PMC11907908 DOI: 10.1186/s12967-025-06125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Uromodulin (UMOD) is expressed in kidneys and is mainly excreted in the urine, although a smaller amount is also released into the serum. Here, we investigated UMOD in acute kidney injury (AKI), with particular focus on the utility of serum UMOD as marker for nephron loss. METHODS Blood and kidney samples were collected 6 h, 24 h, 3 days and 8 weeks after ischemia/reperfusion (I/R) in a rat model. To investigate the impact of nephron number on UMOD levels, sera and tissue from healthy, uninephrectomized (Unx) and 5/6-nephrectomized (Snx) rats were analyzed. Histological changes, kidney function and cell damage were evaluated and serum UMOD, Umod mRNA expression and distribution of UMOD protein in the kidney were examined. RESULTS In AKI, kidney function was markedly impaired 24 h after I/R, while kidney injury and serum UMOD was increased transiently. Simultaneously, the amount of UMOD-positive kidney cells rapidly decreased 24 h after I/R compared to healthy kidneys, and mRNA expression of Umod was lowest on days 1-3 after I/R. Serum UMOD correlated with nephron number showing the highest levels in healthy rats, which were reduced after Unx and further reduced after Snx. CONCLUSION In an AKI model with severe tubular damage, a transient increase in UMOD serum levels in parallel with loss of UMOD-positive cells suggests temporary release of UMOD from destroyed tubular cells into the blood. Serum UMOD appears to be not only a marker of chronic renal failure but also of acute loss of functional and cellular integrity of kidney epithelia in AKI.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Nadja Ebert
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Anke Büttner
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | | | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Hu D, Pan J, Deng A, Ge D, Yao R, Hou B, Hao Z. Mendelian randomization study of urolithiasis: exploration of risk factors using human blood metabolites. BMC Urol 2024; 24:182. [PMID: 39198784 PMCID: PMC11350957 DOI: 10.1186/s12894-024-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Urolithiasis is a highly prevalent global disease closely associated with metabolic factors; however, the causal relationship between blood metabolites and urolithiasis remains poorly understood. METHOD In our study, we employed a bi-directional two-sample Mendelian randomization (MR) analysis to investigate the causal associations between urolithiasis and metabolites. The random-effects inverse-variance weighted (IVW) estimation method was utilized as the primary approach, complemented by several other estimators including MR-Egger, weighted median, colocalization and MR-PRESSO. Furthermore, the study included replication and meta-analysis. Finally, we conducted metabolic pathway analysis to elucidate potential metabolic pathways. RESULTS After conducting multiple tests for correction, glycerol might contribute to the urolithiasis and dehydroisoandrosterone sulfate (DHEA-S) might inhibit this process. Furthermore, several blood metabolites had shown potential associations with a causal relationship. Among the protective metabolites were lipids (dehydroisoandrosterone sulfate and 1-stearoylglycerol (1-monostearin)), amino acids (isobutyrylcarnitine and 2-aminobutyrate), a keto acid (acetoacetate) and a carbohydrate (mannose). The risk metabolites included lipids (1-palmitoylglycerophosphoethanolamine, glycerol and cortisone), a carbohydrate (erythronate), a peptide (pro-hydroxy-pro) and a fatty acid (eicosenoate). In reverse MR analysis, urolithiasis demonstrated a statistically significant causal relationship with butyrylcarnitine, 3-methyl-2-oxobutyrate, scyllo-inositol, leucylleucine and leucylalanine. However, it was worth noting that none of the blood metabolites exhibited statistical significance after multiple corrections. Additionally, we identified one metabolic pathway associated with urolithiasis. CONCLUSION The results we obtained demonstrate the causal relevance between two metabolites and urolithiasis, as well as identify one metabolic pathway potentially associated with its development. Given the high prevalence of urolithiasis, further investigations are encouraged to elucidate the mechanisms of these metabolites and explore novel therapeutic strategies.
Collapse
Affiliation(s)
- Dekai Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Auhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Jiashan Pan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Auhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Anqi Deng
- Anhui Medical University, Hefei, Anhui, China
| | - Defeng Ge
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Auhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Rui Yao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Auhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China
| | - Bingbing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Institute of Urology, Anhui Medical University, Hefei, Auhui, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China.
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Institute of Urology, Anhui Medical University, Hefei, Auhui, China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
5
|
Jaques DA, Dufey Teso A, Wuerzner G, Martinez De Tejada B, Santagata M, Othenin Girard V, Le Tinier B, Pechere Bertschi A, Ponte B. Association of serum copeptin and urinary uromodulin with kidney function, blood pressure and albuminuria at 6 weeks post-partum in pre-eclampsia. Front Cardiovasc Med 2024; 11:1310300. [PMID: 38500759 PMCID: PMC10945001 DOI: 10.3389/fcvm.2024.1310300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Background Preeclampsia (PE) is associated with subsequent higher risk of cardiovascular and kidney disease. Serum copeptin, as a proxy for vasopressin, and urinary uromodulin, were associated with PE physiopathology and kidney functional mass respectively. We describe concentrations of these proteins in the post-partum period and characterize their association with persistent hypertension (HTN) or albuminuria. Methods Patients with PE and healthy controls with uncomplicated pregnancy were prospectively included at two teaching hospitals in Switzerland. Clinical parameters along with serum copeptin and urinary uromodulin were measured at 6 weeks post-partum. PE patients were further characterized based on presence of HTN (defined as either systolic BP (SBP) ≥140 mmHg or diastolic (BP) ≥90 mmHg) or albuminuria [defined as urinary albumin to creatinine ratio (ACR) ≥3 mg/mmol]. Results We included 226 patients with 35 controls, 120 (62.8%) PE with persistent HTN/albuminuria and 71 (37.1%) PE without persistent HTN/albuminuria. Median serum copeptin concentration was 4.27 (2.9-6.2) pmol/L without differences between study groups (p > 0.05). Higher copeptin levels were associated with higher SBP in controls (p = 0.039), but not in PE (p > 0.05). Median urinary uromodulin concentration was 17.5 (7.8-28.7) mg/g with lower levels in PE patients as compared to healthy controls (p < 0.001), but comparable levels between PE patients with or without HTN/albuminuria (p > 0.05). Higher uromodulin levels were associated with lower albuminuria in PE as well as control patients (p = 0.040). Conclusion Serum copeptin levels at 6 weeks post-partum are similar between PE patients and healthy controls and cannot distinguish between PE with or without residual kidney damage. This would argue against a significant pathophysiological role of the vasopressin pathway in mediating organ damage in the post-partum period. On the opposite, post-partum urinary uromodulin levels are markedly lower in PE patients as compared to healthy controls, potentially reflecting an increased susceptibility to vascular and kidney damage that could associate with adverse long-term cardiovascular and kidney outcomes.
Collapse
Affiliation(s)
- David A. Jaques
- Service of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Anne Dufey Teso
- Service of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Begona Martinez De Tejada
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marika Santagata
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Véronique Othenin Girard
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | - Bénédicte Le Tinier
- Division of Obstetrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland
| | | | - Belen Ponte
- Service of Nephrology and Hypertension, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
6
|
Chen TK, Estrella MM, Appel LJ, Surapaneni AL, Köttgen A, Obeid W, Parikh CR, Grams ME. Associations of Baseline and Longitudinal Serum Uromodulin With Kidney Failure and Mortality: Results From the African American Study of Kidney Disease and Hypertension (AASK) Trial. Am J Kidney Dis 2024; 83:71-78. [PMID: 37690632 DOI: 10.1053/j.ajkd.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 09/12/2023]
Abstract
RATIONALE & OBJECTIVE Uromodulin (UMOD) is the most abundant protein found in urine and has emerged as a promising biomarker of tubule health. Circulating UMOD is also detectable, but at lower levels. We evaluated whether serum UMOD levels were associated with the risks of incident kidney failure with replacement therapy (KFRT) and mortality. STUDY DESIGN Prospective cohort. SETTING & PARTICIPANTS Participants in AASK (the African American Study of Kidney Disease and Hypertension) with available stored serum samples from the 0-, 12-, and 24-month visits for biomarker measurement. PREDICTORS Baseline log-transformed UMOD and change in UMOD over 2 years. OUTCOMES KFRT and mortality. ANALYTICAL APPROACH Cox proportional hazards and mixed-effects models. RESULTS Among 500 participants with baseline serum UMOD levels (mean age, 54y; 37% female), 161 KFRT events occurred during a median of 8.5 years. After adjusting for baseline demographic factors, clinical factors, glomerular filtration rate, log-transformed urine protein-creatinine ratio, and randomized treatment groups, a 50% lower baseline UMOD level was independently associated with a 35% higher risk of KFRT (adjusted HR, 1.35; 95% CI, 1.07-1.70). For annual UMOD change, each 1-standard deviation lower change was associated with a 67% higher risk of KFRT (adjusted HR, 1.67; 95% CI, 1.41-1.99). Baseline UMOD and UMOD change were not associated with mortality. UMOD levels declined more steeply for metoprolol versus ramipril (P<0.001) as well as for intensive versus standard blood pressure goals (P = 0.002). LIMITATIONS Small sample size and limited generalizability. CONCLUSIONS Lower UMOD levels at baseline and steeper declines in UMOD over time were associated with a higher risk of subsequent KFRT in a cohort of African American adults with chronic kidney disease and hypertension. PLAIN-LANGUAGE SUMMARY Prior studies of uromodulin (UMOD), the most abundant protein in urine, and kidney disease have focused primarily on urinary UMOD levels. The present study evaluated associations of serum UMOD levels with the risks of kidney failure with replacement therapy (KFRT) and mortality in a cohort of African American adults with hypertension and chronic kidney disease. It found that participants with lower levels of UMOD at baseline were more likely to experience KFRT even after accounting for baseline kidney measures. Similarly, participants who experienced steeper annual declines in UMOD also had a heightened risk of kidney failure. Neither baseline nor annual change in UMOD was associated with mortality. Serum UMOD is a promising biomarker of kidney health.
Collapse
Affiliation(s)
- Teresa K Chen
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California; San Francisco VA Health Care System, San Francisco, California; Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Michelle M Estrella
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California; San Francisco VA Health Care System, San Francisco, California
| | - Lawrence J Appel
- General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aditya L Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, New York
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, New York University Langone School of Medicine, New York, New York
| |
Collapse
|
7
|
Faustino M, Silva S, Costa EM, Pereira AM, Pereira JO, Oliveira AS, Ferreira CMH, Pereira CF, Durão J, Pintado ME, Carvalho AP. Effect of Mannan Oligosaccharides Extracts in Uropathogenic Escherichia coli Adhesion in Human Bladder Cells. Pathogens 2023; 12:885. [PMID: 37513732 PMCID: PMC10384913 DOI: 10.3390/pathogens12070885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are a common public health problem, mainly caused by uropathogenic Escherichia coli (UPEC). Patients with chronic UTIs are usually treated with long-acting prophylactic antibiotics, which promotes the development of antibiotic-resistant UPEC strains and may complicate their long-term management. D-mannose and extracts rich in D-mannose such as mannan oligosaccharides (MOS; D-mannose oligomers) are promising alternatives to antibiotic prophylaxis due to their ability to inhibit bacterial adhesion to urothelial cells and, therefore, infection. This highlights the therapeutic potential and commercial value of using them as health supplements. Studies on the effect of MOS in UTIs are, however, scarce. Aiming to evaluate the potential benefits of using MOS extracts in UTIs prophylaxis, their ability to inhibit the adhesion of UPEC to urothelial cells and its mechanism of action were assessed. Additionally, the expression levels of the pro-inflammatory marker interleukin 6 (IL-6) were also evaluated. After characterizing their cytotoxic profiles, the preliminary results indicated that MOS extracts have potential to be used for the handling of UTIs and demonstrated that the mechanism through which they inhibit bacterial adhesion is through the competitive inhibition of FimH adhesins through the action of mannose, validated by a bacterial growth impact assessment.
Collapse
Affiliation(s)
- Margarida Faustino
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Silva
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eduardo M Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Margarida Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Joana Odila Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana Sofia Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carlos M H Ferreira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
8
|
Huang CW, Lin SE, Huang SF, Yu MC, Tang JH, Tsai CN, Hsu HY. The Vessels That Encapsulate Tumor Clusters (VETC) Pattern Is a Poor Prognosis Factor in Patients with Hepatocellular Carcinoma: An Analysis of Microvessel Density. Cancers (Basel) 2022; 14:cancers14215428. [PMID: 36358846 PMCID: PMC9658947 DOI: 10.3390/cancers14215428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The outcomes of patients with hepatocellular carcinoma (HCC) are unsatisfactory because of its high recurrence rate. The Vessels that encapsulate tumor clusters (VETC) pattern is a unique vascular structure. In this study, we investigated the clinical−pathological features of HCC patients with the VETC pattern. We retrospectively reviewed patients with HCC who underwent curative hepatectomy at Chang Gung Memorial Hospital between 2007 and 2013. The form of the VETC pattern was established using an anti-CD31 stain. The results were classified into positive (VETC+) and negative (VETC−) patterns. We investigated and compared demographic data between these two groups. Overall, 174 patients were classified into either the VETC+ or VETC− groups. The median followed-up period was 80.5 months. There were significant differences in the number of hepatitis B carriers, the occurrence of vascular invasion, tumor size, TNM staging, microvessel density, and recurrence (all p < 0.05). Regarding the prediction of disease-free survival, after COX regression multivariate analysis, VETC+ remained independently associated with recurrent episodes (p = 0.003). The intra-tumoral microvessel density, demonstrated by CD-31, was the only clinical−pathological feature independently associated with VETC+. Our study demonstrated that the VETC pattern is an independent factor of poor prognosis for DFS. Higher intra-tumoral microvessel density was significantly associated with the VETC pattern. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Chun-Wei Huang
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Sey-En Lin
- Department of Pathology, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
| | - Song-Fong Huang
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
| | - Ming-Chin Yu
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33305, Taiwan
| | - Jui-Hsiang Tang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
| | - Chi-Neu Tsai
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Guishan District, Taoyuan City 33302, Taiwan
| | - Heng-Yuan Hsu
- Department of Surgery, New Taipei Municipal Tucheng Hospital, New Taipei City 23652, Taiwan
- Correspondence:
| |
Collapse
|
9
|
Gassner C, Castilho L, Chen Q, Clausen FB, Denomme GA, Flegel WA, Gleadall N, Hellberg Å, Ji Y, Keller MA, Lane WJ, Ligthart P, Lomas-Francis C, Nogues N, Olsson ML, Peyrard T, Storry JR, Tani Y, Thornton N, van der Schoot E, Veldhuisen B, Wagner F, Weinstock C, Wendel S, Westhoff C, Yahalom V, Hyland CA. International Society of Blood Transfusion Working Party on Red Cell Immunogenetics and Blood Group Terminology Report of Basel and three virtual business meetings: Update on blood group systems. Vox Sang 2022; 117:1332-1344. [PMID: 36121188 PMCID: PMC10680040 DOI: 10.1111/vox.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Under the ISBT, the Working Party (WP) for Red Cell Immunogenetics and Blood Group Terminology is charged with ratifying blood group systems, antigens and alleles. This report presents the outcomes from four WP business meetings, one located in Basel in 2019 and three held as virtual meetings during the COVID-19 pandemic in 2020 and 2021. MATERIALS AND METHODS As in previous meetings, matters pertaining to blood group antigen nomenclature were discussed. New blood group systems and antigens were approved and named according to the serologic, genetic, biochemical and cell biological evidence presented. RESULTS Seven new blood group systems, KANNO (defined numerically as ISBT 037), SID (038), CTL2 (039), PEL (040), MAM (041), EMM (042) and ABCC1 (043) were ratified. Two (039 and 043) were de novo discoveries, and the remainder comprised reported antigens where the causal genes were previously unknown. A further 15 blood group antigens were added to the existing blood group systems: MNS (002), RH (004), LU (005), DI (010), SC (013), GE (020), KN (022), JMH (026) and RHAG (030). CONCLUSION The ISBT now recognizes 378 antigens, of which 345 are clustered within 43 blood group systems while 33 still have an unknown genetic basis. The ongoing discovery of new blood group systems and antigens underscores the diverse and complex biology of the red cell membrane. The WP continues to update the blood group antigen tables and the allele nomenclature tables. These can be found on the ISBT website (http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/).
Collapse
Affiliation(s)
- Christoph Gassner
- Institute of Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | | | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, Jiangsu, China
| | - Frederik Banch Clausen
- Department of Clinical Immunology, Laboratory of Blood Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Nick Gleadall
- Department of Haematology, University of Cambridge and NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK
| | - Åsa Hellberg
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Yanli Ji
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, People’s Republic of China
| | | | - William J. Lane
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Ligthart
- Department of Diagnostic Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Christine Lomas-Francis
- Laboratory of Immunohematology and Genomics, New York Blood Center Enterprise, New York, New York, USA
| | | | - Martin L. Olsson
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Thierry Peyrard
- Etablissement Français du Sang Ile-de-France, Centre National de Référence pour les Groupes sanguins, Ivry-sur-Seine, France
- UMR_S1134 Inserm Université Paris Cité, Paris, France
| | - Jill R. Storry
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
- Department of Laboratory Medicine, Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | | | - Nicole Thornton
- International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK
| | - Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Barbera Veldhuisen
- Department of Diagnostic Immunohematology, Sanquin, Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin, Amsterdam, The Netherlands
| | - Franz Wagner
- German Red Cross Blood Service NSTOB, Springe, Germany
- MVZ Clementinenkrankenhaus, Springe, Germany
| | - Christof Weinstock
- Department of Transfusion Medicine, Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Service, Ulm, Germany
| | | | - Connie Westhoff
- Laboratory of Immunohematology and Genomics, New York Blood Center Enterprise, New York, New York, USA
| | - Vered Yahalom
- Rabin Medical Center, Petach Tiqva and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
10
|
Suwandi A, Alvarez KG, Galeev A, Steck N, Riedel CU, Puente JL, Baines JF, Grassl GA. B4galnt2-mediated host glycosylation influences the susceptibility to Citrobacter rodentium infection. Front Microbiol 2022; 13:980495. [PMID: 36033875 PMCID: PMC9403859 DOI: 10.3389/fmicb.2022.980495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Histo-blood group antigens in the intestinal mucosa play important roles in host–microbe interactions and modulate the susceptibility to enteric pathogens. The B4galnt2 gene, expressed in the GI tract of most mammals, including humans, encodes a beta-1,4-N-acetylgalactosaminyltransferase enzyme which catalyzes the last step in the biosynthesis of the Sd(a) and Cad blood group antigens by adding an N-acetylgalactosamine (GalNAc) residue to the precursor molecules. In our study, we found that loss of B4galnt2 expression is associated with increased susceptibility to Citrobacter rodentium infection, a murine model pathogen for human enteropathogenic Escherichia coli. We observed increased histopathological changes upon C. rodentium infection in mice lacking B4galnt2 compared to B4galnt2-expressing wild-type mice. In addition, wild-type mice cleared the C. rodentium infection faster than B4galnt2−/− knockout mice. It is known that C. rodentium uses its type 1 fimbriae adhesive subunit to bind specifically to D-mannose residues on mucosal cells. Flow cytometry analysis of intestinal epithelial cells showed the absence of GalNAc-modified glycans but an increase in mannosylated glycans in B4galnt2-deficient mice compared to B4galnt2-sufficient mice. Adhesion assays using intestinal epithelial organoid-derived monolayers revealed higher C. rodentium adherence to cells lacking B4galnt2 expression compared to wild-type cells which in turn was reduced in the absence of type I fimbriae. In summary, we show that B4galnt2 expression modulates the susceptibility to C. rodentium infection, which is partly mediated by fimbriae-mannose interaction.
Collapse
Affiliation(s)
- Abdulhadi Suwandi
- Institute of Cell Biochemistry, Center of Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Kris Gerard Alvarez
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Alibek Galeev
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Natalie Steck
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Christian U. Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - José Luis Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- *Correspondence: Guntram A. Grassl,
| |
Collapse
|
11
|
Akwo EA, Chen HC, Liu G, Triozzi JL, Tao R, Yu Z, Chung CP, Giri A, Ikizler TA, Stein CM, Siew ED, Feng Q, Robinson-Cohen C, Hung AM. Phenome-Wide Association Study of UMOD Gene Variants and Differential Associations With Clinical Outcomes Across Populations in the Million Veteran Program a Multiethnic Biobank. Kidney Int Rep 2022; 7:1802-1818. [PMID: 35967117 PMCID: PMC9366371 DOI: 10.1016/j.ekir.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Common variants in the UMOD gene are considered an evolutionary adaptation against urinary tract infections (UTIs) and have been implicated in kidney stone formation, chronic kidney disease (CKD), and hypertension. However, differences in UMOD variant-phenotype associations across population groups are unclear. Methods We tested associations between UMOD/PDILT variants and up to 1528 clinical diagnosis codes mapped to phenotype groups in the Million Veteran Program (MVP), using published phenome-wide association study (PheWAS) methodology. Associations were tested using logistic regression adjusted for age, sex, and 10 principal components of ancestry. Bonferroni correction for multiple comparisons was applied. Results Among 648,593 veterans, mean (SD) age was 62 (14) years; 9% were female, 19% Black, and 8% Hispanic. In White patients, the rs4293393 UMOD risk variant associated with increased uromodulin was associated with increased odds of CKD (odds ratio [OR]: 1.22, 95% CI: 1.20-1.24, P = 5.90 × 10-111), end-stage kidney disease (OR: 1.17, 95% CI: 1.11-1.24, P = 2.40 × 10-09), and hypertension (OR: 1.03, 95% CI: 1.05-1.05, P = 2.11 × 10-06) and significantly lower odds of UTIs (OR: 0.94, 95% CI: 0.92-0.96, P = 1.21 × 10-10) and kidney calculus (OR: 0.85, 95% CI: 0.83-0.86, P = 4.27 × 10-69). Similar findings were observed across UMOD/PDILT variants. The rs77924615 PDILT variant had stronger associations with acute cystitis in White female (OR: 0.73, 95% CI: 0.59-0.91, P = 4.98 × 10-03) versus male (OR: 0.99, 95% CI: 0.89-1.11, P = 8.80 × 10-01) (P interaction = 0.01) patients. In Black patients, the rs77924615 PDILT variant was significantly associated with pyelonephritis (OR: 0.65, 95% CI: 0.54-0.79, P = 1.05 × 10-05), whereas associations with UMOD promoter variants were attenuated. Conclusion Robust associations were observed between UMOD/PDILT variants linked with increased uromodulin expression and lower odds of UTIs and calculus and increased odds of CKD and hypertension. However, these associations varied significantly across ancestry groups and sex.
Collapse
Affiliation(s)
- Elvis A. Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ge Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jefferson L. Triozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
| | - Zhihong Yu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cecilia P. Chung
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ayush Giri
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - T. Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - C. Michael Stein
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward D. Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - QiPing Feng
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Adriana M. Hung
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - the VA Million Veteran Program12
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Nashville, Tennessee, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Stenfelt L, Nilsson J, Hellberg Å, Liew YW, Morrison J, Larson G, Olsson ML. Glycoproteomic and Phenotypic Elucidation of B4GALNT2 Expression Variants in the SID Histo-Blood Group System. Int J Mol Sci 2022; 23:ijms23073936. [PMID: 35409292 PMCID: PMC8999409 DOI: 10.3390/ijms23073936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
The Sda histo-blood group antigen (GalNAcβ1-4(NeuAcα2-3)Galβ-R) is implicated in various infections and constitutes a potential biomarker for colon cancer. Sd(a−) individuals (2−4% of Europeans) may produce anti-Sda, which can lead to incompatible blood transfusions, especially if donors with the high-expressing Sd(a++)/Cad phenotype are involved. We previously reported the association of B4GALNT2 mutations with Sd(a−), which established the SID blood-group system. The present study provides causal proof underpinning this correlation. Sd(a−) HEK293 cells were transfected with different B4GALNT2 constructs and evaluated by immunostaining and glycoproteomics. The predominant SIDnull candidate allele with rs7224888:T>C (p.Cys406Arg) abolished Sda synthesis, while this antigen was detectable as N- or O-glycans on glycoproteins following transfection of wildtype B4GALNT2. Surprisingly, two rare missense variants, rs148441237:A>G and rs61743617:C>T, found in a Sd(a−) compound heterozygote, gave results similar to wildtype. To elucidate on whether Sd(a++)/Cad also depends on B4GALNT2 alterations, this gene was sequenced in five individuals. No Cad-specific changes were identified, but a detailed erythroid Cad glycoprotein profile was obtained, especially for glycophorin-A (GLPA) O-glycosylation, equilibrative nucleoside transporter 1 (S29A1) O-glycosylation, and band 3 anion transport protein (B3AT) N-glycosylation. In conclusion, the p.Cys406Arg β4GalNAc-T2 variant causes Sda-deficiency in humans, while the enigmatic Cad phenotype remains unresolved, albeit further characterized.
Collapse
Affiliation(s)
- Linn Stenfelt
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, SE 221 85 Lund, Sweden;
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, SE 405 30 Gothenburg, Sweden
- Correspondence: (J.N.); (M.L.O.)
| | - Åsa Hellberg
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, SE 221 85 Lund, Sweden;
| | - Yew Wah Liew
- Red Cell Reference Laboratory, Clinical Services and Research, Australian Red Cross Lifeblood, Kelvin Grove, Brisbane, QLD 4059, Australia; (Y.W.L.); (J.M.)
| | - Jenny Morrison
- Red Cell Reference Laboratory, Clinical Services and Research, Australian Red Cross Lifeblood, Kelvin Grove, Brisbane, QLD 4059, Australia; (Y.W.L.); (J.M.)
| | - Göran Larson
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, SE 413 45 Gothenburg, Sweden;
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Martin L. Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, SE 221 85 Lund, Sweden;
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, SE 221 85 Lund, Sweden;
- Correspondence: (J.N.); (M.L.O.)
| |
Collapse
|
13
|
Galassi A, Fasulo EM, Ciceri P, Casazza R, Bonelli F, Zierold C, Calleri M, Blocki FA, Palmieri MA, Mastronardo C, Cozzolino MG. 1,25-dihydroxyvitamin D as Predictor of Renal Worsening Function in Chronic Kidney Disease. Results From the PASCaL-1,25D Study. Front Med (Lausanne) 2022; 9:840801. [PMID: 35308556 PMCID: PMC8924653 DOI: 10.3389/fmed.2022.840801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Background Heterogeneous progression of chronic kidney disease (CKD) toward dialysis advocates improving in renal care management. Diagnosis and staging of CKD relies on estimated glomerular filtration rate (eGFR) and albuminuria. Tubular biomarkers emerged as new predictors of worsening renal function (WRF), due to partial inaccuracy of eGFR and existing WRF in non-proteinuric patients. Active vitamin D is synthesized in renal tubules and participates to mineral adaptation in CKD. Circulating 1,25-dihydroxyvitamin D [1,25(OH)2D] was poorly investigated as a biomarker of endocrine tubular function and predictor of WRF. Objective Investigate capability of 1,25(OH)2D to predict parathormone (PTH) increase and WRF in CKD stage 3-4. Methods PASCaL-1,25D was an observational, prospective, monocentric study. Primary outcomes were absolute and 20% increase in PTH, and WRF defined as 20% reduction in eGFR or dialysis initiation at 6 months. Results Seventy-one patients completed follow up. Absolute increase in PTH (1-84) was independently predicted by lower 1,25(OH)2D levels (p = 0.0134). No association was detected between 1,25(OH)2D and iPTH increase. Higher 1,25(OH)2D was associated with reduced risk of WRF at univariate analysis [OR 0.89 (95% CI 0.86-0.93), p = 0.006]. The 1,25(OH)2D/PTH (1-84) ratio was associated with non-significant 84% risk reduction for WRF [OR 0.16 (95% CI 0.06-0.41), p = 0.05]. Low 1,25(OH)2D reached 100% sensitivity in predicting WRF in CKD stage 3 (AUC 9.909, p < 0.0001) and non-elderly patients (AUC 0.883, p < 0.0001). Machine learning models retained 1,25(OH)2D/PTH (1-84) as relevant predictor of WRF together with eGFR and albuminuria. Age influenced interaction between renal and mineral biomarkers. Conclusion 1,25(OH)2D deserves attention as biomarker of tubular health, and sensible predictor of WRF on the short run among non-elderly patients affected by stage 3 CKD. The 1,25(OH)2D/PTH (1-84) ratio may represent a composite biomarker of tubular reserve/endocrine response to the transition from adaptive to maladaptive equilibrium in CKD-MBD.
Collapse
Affiliation(s)
- Andrea Galassi
- Renal Division, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy
| | - Eliana Maria Fasulo
- Renal Division, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy
| | - Roberta Casazza
- Renal Division, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy
| | | | | | | | | | | | | | - Mario G Cozzolino
- Renal Division, Azienda Socio Sanitaria Territoriale (ASST) Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Lupo F, Ingersoll MA, Pineda MA. The glycobiology of uropathogenic E. coli infection: the sweet and bitter role of sugars in urinary tract immunity. Immunology 2021; 164:3-14. [PMID: 33763853 PMCID: PMC8358714 DOI: 10.1111/imm.13330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTI) are among the most prevalent infectious diseases and the most common cause of nosocomial infections, worldwide. Uropathogenic E. coli (UPEC) are responsible for approximately 80% of all UTI, which most commonly affect the bladder. UPEC colonize the urinary tract by ascension of the urethra, followed by cell invasion, and proliferation inside and outside urothelial cells, thereby causing symptomatic infections and quiescent intracellular reservoirs that may lead to recurrence. Sugars, or glycans, are key molecules for host–pathogen interactions, and UTI are no exception. Surface glycans regulate many of the events associated with UPEC adhesion and infection, as well as induction of the host immune response. While the bacterial protein FimH binds mannose‐containing host glycoproteins to initiate infection and UPEC‐secreted polysaccharides block immune mechanisms to favour intracellular replication, host glycans on the urothelial surface and on secreted glycoproteins prevent or limit infection by inhibiting UPEC adhesion. Given the importance of glycans during UTI, here we review the glycobiology of UPEC infection to highlight fundamental sugar‐mediated processes of immunological interest for their potential clinical applications. Interdisciplinary approaches incorporating glycomics and infection biology may help to develop novel non‐antibiotic‐based therapeutic strategies for bacterial infections as the spread of antimicrobial‐resistant uropathogens is currently threatening modern healthcare systems.
Collapse
Affiliation(s)
- Federico Lupo
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Galeev A, Suwandi A, Cepic A, Basu M, Baines JF, Grassl GA. The role of the blood group-related glycosyltransferases FUT2 and B4GALNT2 in susceptibility to infectious disease. Int J Med Microbiol 2021; 311:151487. [PMID: 33662872 DOI: 10.1016/j.ijmm.2021.151487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The glycosylation profile of the gastrointestinal tract is an important factor mediating host-microbe interactions. Variation in these glycan structures is often mediated by blood group-related glycosyltransferases, and can lead to wide-ranging differences in susceptibility to both infectious- as well as chronic disease. In this review, we focus on the interplay between host glycosylation, the intestinal microbiota and susceptibility to gastrointestinal pathogens based on studies of two exemplary blood group-related glycosyltransferases that are conserved between mice and humans, namely FUT2 and B4GALNT2. We highlight that differences in susceptibility can arise due to both changes in direct interactions, such as bacterial adhesion, as well as indirect effects mediated by the intestinal microbiota. Although a large body of experimental work exists for direct interactions between host and pathogen, determining the more complex and variable mechanisms underlying three-way interactions involving the intestinal microbiota will be the subject of much-needed future research.
Collapse
Affiliation(s)
- Alibek Galeev
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Aleksa Cepic
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Meghna Basu
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany and Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany.
| |
Collapse
|
16
|
Li H, Kostel SA, DiMartino SE, Hashemi Gheinani A, Froehlich JW, Lee RS. Uromodulin Isolation and Its N-Glycosylation Analysis by NanoLC-MS/MS. J Proteome Res 2021; 20:2662-2672. [PMID: 33650863 DOI: 10.1021/acs.jproteome.0c01053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glycoprotein uromodulin (UMOD) is the most abundant protein in urine, and N-glycans are critical for many biological functions of UMOD. Comprehensive glycan profiling of UMOD provides valuable information to understand the exact mechanisms of glycan-regulated functions. To perform comprehensive glycosylation analysis of UMOD from urine samples with limited volumes, we developed a streamlined workflow that included UMOD isolation from 5 mL of urine from 6 healthy adult donors (3 males and 3 females) and a glycosylation analysis using a highly sensitive and reproducible nanoLC-MS/MS based glycomics approach. In total, 212 N-glycan compositions were identified from the purified UMOD, and 17% were high-mannose glycans, 2% were afucosylated/asialylated, 3% were neutral fucosylated, 28% were sialylated (with no fucose), 46% were fucosylated and sialylated, and 4% were sulfated. We found that isolation of UMOD resulted in a significant decrease in the relative quantity of high-mannose and sulfated glycans with a significant increase of neutral fucosylated glycans in the UMOD-depleted urine relative to the undepleted urine, but depletion had little impact on the sialylated glycans. To our knowledge, this is the first study to perform comprehensive N-glycan profiling of UMOD using nanoLC-MS/MS. This analytical workflow would be very beneficial for studies with limited sample size, such as pediatric studies, and can be applied to larger patient cohorts not only for UMOD interrogation but also for global glycan analysis.
Collapse
Affiliation(s)
- Haiying Li
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stephen A Kostel
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shannon E DiMartino
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ali Hashemi Gheinani
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - John W Froehlich
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Richard S Lee
- Department of Urology and The Proteomics Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
17
|
Alesutan I, Luong TTD, Schelski N, Masyout J, Hille S, Schneider MP, Graham D, Zickler D, Verheyen N, Estepa M, Pasch A, Maerz W, Tomaschitz A, Pilz S, Frey N, Lang F, Delles C, Müller OJ, Pieske B, Eckardt KU, Scherberich J, Voelkl J. Circulating uromodulin inhibits vascular calcification by interfering with pro-inflammatory cytokine signalling. Cardiovasc Res 2021; 117:930-941. [PMID: 32243494 DOI: 10.1093/cvr/cvaa081] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1β-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated β cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aorta/immunology
- Aorta/metabolism
- Cell Transdifferentiation/drug effects
- Cells, Cultured
- Chondrogenesis
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis
- Phenotype
- Protein Carbamylation
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/immunology
- Signal Transduction
- Uromodulin/blood
- Uromodulin/genetics
- Uromodulin/pharmacology
- Vascular Calcification/blood
- Vascular Calcification/immunology
- Vascular Calcification/prevention & control
- Young Adult
- Mice
Collapse
Affiliation(s)
- Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | - Trang T D Luong
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jaber Masyout
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Markus P Schneider
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Misael Estepa
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Calciscon AG, Aarbergstrasse 5, 2560 Nidau-Biel, Switzerland
- Nierenpraxis Bern, Bubenbergplatz 5, 3011 Bern, Switzerland
- Department of Nephrology, Lindenhofspital, Bremgartenstrasse 117, 3001 Bern, Switzerland
| | - Winfried Maerz
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Ludolf Krehl Street 7-11, 68167 Mannheim, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, P5,7, 68161 Mannheim, Germany
| | | | - Stefan Pilz
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls University, Wilhelmstr. 56, 72076 Tübingen, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, 20246 Hamburg, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin (DHZB), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
- German Chronic Kidney Disease (GCKD) Study
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juergen Scherberich
- Department of Nephrology and Clinical Immunology, Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Sanatoriumsplatz 2, 81545 München, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Internal Medicine and Cardiology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
18
|
Gong K, Xia M, Wang Y, Wang N, Liu Y, Zhang VW, Cheng H, Chen Y. Autosomal dominant tubulointerstitial kidney disease genotype and phenotype correlation in a Chinese cohort. Sci Rep 2021; 11:3615. [PMID: 33574344 PMCID: PMC7878898 DOI: 10.1038/s41598-020-79331-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Genes of UMOD, HNF1B, MUC1, REN and SEC61A1 were reported to be associated with autosomal dominant tubulointerstitial kidney disease (ADTKD). 48 probands and their family members (N = 27) were enrolled in this genetic screening study. A combination of methods was employed for comprehensive molecular analysis of both copy number variations (CNVs) and single nucleotide variants (SNVs). 35 probands were followed for years. The phenotype-genotype and genotype-outcome correlation were inferred from these datasets. In this cohort, 18 probands were diagnosed with ADTKD, according to Kidney Disease: Improving Global Outcomes (KDIGO) guideline. Moreover, 11 probands were diagnosed with ADTKD-UMOD, one with ADTKD-REN and one with ADTKD-HNF1B, based on molecularly confirmed pathogenic variants. The 11 UMOD variants were mainly located in codons 28 to 289 and half of the variants were found to change the cysteine amino acid. According to the follow-up data, suspected ADTKD individuals had a better prognosis compared to ADTKD individuals (p = 0.029). Individuals with a cysteine substitution in the UMOD gene appeared to have a better prognosis than individuals with other amino acid substitutions (p = 0.015).
Collapse
Affiliation(s)
- Kunjing Gong
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Peking University, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, 100034, China
| | - Min Xia
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Peking University, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, 100034, China
| | - Yaqin Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Peking University, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, 100034, China
| | - Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Peking University, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, 100034, China
| | - Ying Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, 100034, China.,Institute of Nephrology, Peking University, Beijing, 100034, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, 100034, China
| | - Victor Wei Zhang
- AmCare Genomics Laboratory, Guangzhou, China.,Baylor College of Medicine Department of Human and Molecular Genetics, Houston, USA
| | - Hong Cheng
- Division of Nephrology, Beijing AnZhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yuqing Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, 100034, China. .,Institute of Nephrology, Peking University, Beijing, 100034, China. .,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, China. .,Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, 100034, China.
| |
Collapse
|
19
|
Immler R, Lange-Sperandio B, Steffen T, Beck H, Rohwedder I, Roth J, Napoli M, Hupel G, Pfister F, Popper B, Uhl B, Mannell H, Reichel CA, Vielhauer V, Scherberich J, Sperandio M, Pruenster M. Extratubular Polymerized Uromodulin Induces Leukocyte Recruitment and Inflammation In Vivo. Front Immunol 2020; 11:588245. [PMID: 33414784 PMCID: PMC7783395 DOI: 10.3389/fimmu.2020.588245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/17/2020] [Indexed: 11/13/2022] Open
Abstract
Uromodulin (UMOD) is produced and secreted by tubular epithelial cells. Secreted UMOD polymerizes (pUMOD) in the tubular lumen, where it regulates salt transport and protects the kidney from bacteria and stone formation. Under various pathological conditions, pUMOD accumulates within the tubular lumen and reaches extratubular sites where it may interact with renal interstitial cells. Here, we investigated the potential of extratubular pUMOD to act as a damage associated molecular pattern (DAMP) molecule thereby creating local inflammation. We found that intrascrotal and intraperitoneal injection of pUMOD induced leukocyte recruitment in vivo and led to TNF-α secretion by F4/80 positive macrophages. Additionally, pUMOD directly affected vascular permeability and increased neutrophil extravasation independent of macrophage-released TNF-α. Interestingly, pUMOD displayed no chemotactic properties on neutrophils, did not directly activate β2 integrins and did not upregulate adhesion molecules on endothelial cells. In obstructed neonatal murine kidneys, we observed extratubular UMOD accumulation in the renal interstitium with tubular atrophy and leukocyte infiltrates. Finally, we found extratubular UMOD deposits associated with peritubular leukocyte infiltration in kidneys from patients with inflammatory kidney diseases. Taken together, we identified extratubular pUMOD as a strong inducer of leukocyte recruitment, underlining its critical role in mounting an inflammatory response in various kidneys pathologies.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Tobias Steffen
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jonas Roth
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Matteo Napoli
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Georg Hupel
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Frederik Pfister
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Bastian Popper
- Core facility animal models, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Christoph A. Reichel
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Volker Vielhauer
- Medizinische Klinik und Poliklinik IV, Nephrologisches Zentrum, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jürgen Scherberich
- Klinikum Harlaching, teaching hospital of the Ludwig-Maximilians University Munich, Munich, Germany
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Monika Pruenster
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|
21
|
Weiss GL, Stanisich JJ, Sauer MM, Lin CW, Eras J, Zyla DS, Trück J, Devuyst O, Aebi M, Pilhofer M, Glockshuber R. Architecture and function of human uromodulin filaments in urinary tract
infections. Science 2020; 369:1005-1010. [DOI: 10.1126/science.aaz9866] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022]
Abstract
Uromodulin is the most abundant protein in human urine, and it forms
filaments that antagonize the adhesion of uropathogens; however, the filament
structure and mechanism of protection remain poorly understood. We used
cryo–electron tomography to show that the uromodulin filament consists of a
zigzag-shaped backbone with laterally protruding arms. N-glycosylation mapping and
biophysical assays revealed that uromodulin acts as a multivalent ligand for the
bacterial type 1 pilus adhesin, presenting specific epitopes on the regularly
spaced arms. Imaging of uromodulin-uropathogen interactions in vitro and in
patient urine showed that uromodulin filaments associate with uropathogens and
mediate bacterial aggregation, which likely prevents adhesion and allows clearance
by micturition. These results provide a framework for understanding uromodulin in
urinary tract infections and in its more enigmatic roles in physiology and
disease.
Collapse
Affiliation(s)
- Gregor L. Weiss
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Jessica J. Stanisich
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Maximilian M. Sauer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Chia-Wei Lin
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Jonathan Eras
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Dawid S. Zyla
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Johannes Trück
- University Children’s Hospital Zürich, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Division of Nephrology, UCLouvain Medical School, Brussels, Belgium
| | - Markus Aebi
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, CH-8093 Zürich, Switzerland
| |
Collapse
|
22
|
Then C, Then HL, Lechner A, Thorand B, Meisinger C, Heier M, Peters A, Koenig W, Rathmann W, Scherberich J, Seissler J. Serum uromodulin and decline of kidney function in older participants of the population-based KORA F4/FF4 study. Clin Kidney J 2020; 14:205-211. [PMID: 33564420 PMCID: PMC7857794 DOI: 10.1093/ckj/sfaa032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Uromodulin, a tissue-specific tubular glycoprotein, has recently emerged as a promising biomarker for kidney function and tubular integrity. However, the association of serum uromodulin (sUmod) with renal function decline is still unknown in an older general population. Methods We analysed the association of sUmod with the estimated glomerular filtration rate (eGFR) and albuminuria in 1075 participants of the population-based Cooperative Health Research in the Region of Augsburg (KORA) F4 study, ages 62-81 years, at baseline and prospectively after a mean follow-up time of 6.5 years (n = 605) using logistic and linear regression models as well as receiver operating characteristics (ROC) analyses. Results Cross-sectionally, sUmod was positively associated with eGFR (β = 0.31 ± 0.02 per higher standard deviation sUmod; P < 0.001) and inversely associated with the urinary albumin:creatinine ratio (β = -0.19 ± 0.04; P < 0.001) after adjustment for sex, age, body mass index, arterial hypertension, prediabetes and diabetes. After multivariable adjustment including baseline eGFR, sUmod was not associated with incident chronic kidney disease (CKD), defined as a decrease in eGFR <60 mL/min/1.73 m2 after 6.5 years of follow-up {odds ratio [OR] 1.02 [95% confidence interval (CI) 0.77-1.36] per higher SD sUmod} but was inversely associated with advanced CKD, defined as incident eGFR <45 mL/min/1.73 m2 [OR 0.64 (95% CI 0.42-0.98)]. The ROC showed no added predictive value of sUmod for kidney function decline in the fully adjusted model. Conclusions Higher sUmod was inversely associated with progression to advanced kidney disease but does not provide additional predictive value for the development of CKD in elderly participants of the population-based KORA study.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| | | | - Andreas Lechner
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Barbara Thorand
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Department of Epidemiology, Ludwig-Maximilians-Universität München, UNIKAT Augsburg, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,KORA Study Center, University Hospital Augsburg, Augsburg, Germany
| | - Annette Peters
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany.,Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Wolfgang Rathmann
- German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany.,Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany.,Freie Waldorfschule Augsburg, Augsburg, Germany
| |
Collapse
|
23
|
Dvanajscak Z, Cossey LN, Larsen CP. A practical approach to the pathology of renal intratubular casts. Semin Diagn Pathol 2020; 37:127-134. [PMID: 32147230 DOI: 10.1053/j.semdp.2020.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022]
Abstract
The identification and proper characterization of pathologic renal intratubular casts can be an arduous task, especially since they often admixed with non-pathologic casts, obfuscating debris and inflammation. The list of pathologic intratubular casts is long, and they can be easily missed or misdiagnosed without a thorough understanding of their pathophysiology and morphologic variety. Correct characterization of tubular casts is important since each cast type has a unique pathogenic mechanism, with specific treatment and prognostic implications. This review discusses the clinicopathologic characteristics of the six most common pathologic casts: light chain, hemoglobin, myoglobin, red cell, neutrophilic and bile casts. We also discuss hyaline and uromodulin casts, the commonly encountered "benign" cast types that share certain histologic features with pathologic casts. We limit the discussion to proteinaceous and cellular intratubular casts, with crystalline casts discussed in a separate review within the same journal issue. While not exhaustive, this review covers pathogenesis, clinical and prognostic significance, and a practical discussion of the histomorphologic spectrum of each cast type, along with commonly encountered pitfalls.
Collapse
Affiliation(s)
- Zeljko Dvanajscak
- Renal Pathology Division, Arkana Laboratories, 10810 Executive Center Dr., Suite 100, Little Rock, AR 72211, United States.
| | - L Nicholas Cossey
- Renal Pathology Division, Arkana Laboratories, 10810 Executive Center Dr., Suite 100, Little Rock, AR 72211, United States
| | - Christopher P Larsen
- Renal Pathology Division, Arkana Laboratories, 10810 Executive Center Dr., Suite 100, Little Rock, AR 72211, United States
| |
Collapse
|
24
|
Steubl D, Buzkova P, Garimella PS, Ix JH, Devarajan P, Bennett MR, Chaves PHM, Shlipak MG, Bansal N, Sarnak MJ. Association of Serum Uromodulin With ESKD and Kidney Function Decline in the Elderly: The Cardiovascular Health Study. Am J Kidney Dis 2019; 74:501-509. [PMID: 31128770 PMCID: PMC7188359 DOI: 10.1053/j.ajkd.2019.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
Abstract
RATIONALE & OBJECTIVE Uromodulin is released by tubular epithelial cells into the serum and lower levels are associated with more severe interstitial fibrosis and tubular atrophy. Low serum uromodulin (sUMOD) levels are associated with mortality and cardiovascular disease. However, little is known about the association of sUMOD levels with long-term kidney outcomes in older adults, a population with a high prevalence of interstitial fibrosis and tubular atrophy. STUDY DESIGN Case-cohort study and case-control study. SETTING & PARTICIPANTS Random subcohort (n=933) and additional cases of end-stage kidney disease (ESKD) and kidney function decline (≥30% decline in estimated glomerular filtration rate [eGFR]) during follow-up of the Cardiovascular Health Study (CHS). PREDICTOR sUMOD level. OUTCOMES ESKD (n=14) from the random subcohort and all additional ESKD cases from outside the random subcohort (n=39) during follow-up (10 years, case-cohort study); kidney function decline of≥30% eGFR at 9 years of follow-up in individuals with repeated eGFR assessments from the random subcohort (n=56) and additional cases (n=123). 224 participants from the random subcohort served as controls (case-control study). ANALYTICAL APPROACH Modified multivariable Cox regression for ESKD and multivariable logistic regression for kidney function decline. Both analyses adjusted for demographics, eGFR, urinary albumin-creatinine ratio, and other kidney disease progression risk factors. RESULTS Mean age of the random subcohort was 78 years, 40% were men, 15% were black. Mean sUMOD level was 127±64ng/mL and eGFR was 63±19mL/min/1.73m2. In multivariable analysis, each 1-SD higher sUMOD level was associated with 63% lower risk for ESKD (HR, 0.37; 95% CI, 0.14-0.95). In demographic-adjusted analyses of kidney function decline, each 1-SD higher sUMOD level was associated with 25% lower odds of kidney function decline (OR, 0.75; 95% CI, 0.60-0.95); after multivariable adjustment, the association was attenuated and no longer significant (OR, 0.88; 95% CI, 0.68-1.14). LIMITATIONS Possibility of survival bias in the kidney function decline analysis. CONCLUSIONS Higher sUMOD levels may identify elderly persons at reduced risk for ESKD.
Collapse
Affiliation(s)
- Dominik Steubl
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA; Division of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Pranav S Garimella
- Division of Nephrology-Hypertension, University of California San Diego, San Diego, CA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, University of California San Diego, San Diego, CA
| | - Prasad Devarajan
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| | - Michael R Bennett
- Department of Nephrology and Hypertension, Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH
| | - Paolo H M Chaves
- Benjamin Leon Center for Geriatric Research and Education, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Michael G Shlipak
- Division of General Internal Medicine, University of California San Francisco, San Francisco, CA
| | - Nisha Bansal
- Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA.
| |
Collapse
|
25
|
Hepsin-mediated Processing of Uromodulin is Crucial for Salt-sensitivity and Thick Ascending Limb Homeostasis. Sci Rep 2019; 9:12287. [PMID: 31444371 PMCID: PMC6707305 DOI: 10.1038/s41598-019-48300-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Uromodulin is a zona pellucida-type protein essentially produced in the thick ascending limb (TAL) of the mammalian kidney. It is the most abundant protein in normal urine. Defective uromodulin processing is associated with various kidney disorders. The luminal release and subsequent polymerization of uromodulin depend on its cleavage mediated by the serine protease hepsin. The biological relevance of a proper cleavage of uromodulin remains unknown. Here we combined in vivo testing on hepsin-deficient mice, ex vivo analyses on isolated tubules and in vitro studies on TAL cells to demonstrate that hepsin influence on uromodulin processing is an important modulator of salt transport via the sodium cotransporter NKCC2 in the TAL. At baseline, hepsin-deficient mice accumulate uromodulin, along with hyperactivated NKCC2, resulting in a positive sodium balance and a better adaptation to water deprivation. In conditions of high salt intake, defective uromodulin processing predisposes hepsin-deficient mice to a salt-wasting phenotype, with a decreased salt sensitivity. These modifications are associated with intracellular accumulation of uromodulin, endoplasmic reticulum-stress and signs of tubular damage. These studies expand the physiological role of hepsin and uromodulin and highlight the importance of hepsin-mediated processing of uromodulin for kidney tubule homeostasis and salt sensitivity.
Collapse
|
26
|
Scherberich JE, Gruber R, Nockher WA, Christensen EI, Schmitt H, Herbst V, Block M, Kaden J, Schlumberger W. Serum uromodulin-a marker of kidney function and renal parenchymal integrity. Nephrol Dial Transplant 2019; 33:284-295. [PMID: 28206617 PMCID: PMC5837243 DOI: 10.1093/ndt/gfw422] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/07/2016] [Indexed: 11/12/2022] Open
Abstract
Background An ELISA to analyse uromodulin in human serum (sUmod) was developed, validated and tested for clinical applications. Methods We assessed sUmod, a very stable antigen, in controls, patients with chronic kidney disease (CKD) stages 1-5, persons with autoimmune kidney diseases and recipients of a renal allograft by ELISA. Results Median sUmod in 190 blood donors was 207 ng/mL (women: men, median 230 versus 188 ng/mL, P = 0.006). sUmod levels in 443 children were 193 ng/mL (median). sUmod was correlated with cystatin C (rs = -0.862), creatinine (rs = -0.802), blood urea nitrogen (BUN) (rs = -0.645) and estimated glomerular filtration rate (eGFR)-cystatin C (rs = 0.862). sUmod was lower in systemic lupus erythematosus-nephritis (median 101 ng/mL), phospholipase-A2 receptor- positive glomerulonephritis (median 83 ng/mL) and anti-glomerular basement membrane positive pulmorenal syndromes (median 37 ng/mL). Declining sUmod concentrations paralleled the loss of kidney function in 165 patients with CKD stages 1-5 with prominent changes in sUmod within the 'creatinine blind range' (71-106 µmol/L). Receiver-operating characteristic analysis between non-CKD and CKD-1 was superior for sUmod (AUC 0.90) compared with eGFR (AUC 0.39), cystatin C (AUC 0.39) and creatinine (AUC 0.27). sUmod rapidly recovered from 0 to 62 ng/mL (median) after renal transplantation in cases with immediate graft function and remained low in delayed graft function (21 ng/mL, median; day 5-9: relative risk 1.5-2.9, odds ratio 1.5-6.4). Immunogold labelling disclosed that Umod is transferred within cytoplasmic vesicles to both the apical and basolateral plasma membrane. Umod revealed a disturbed intracellular location in kidney injury. Conclusions We conclude that sUmod is a novel sensitive kidney-specific biomarker linked to the structural integrity of the distal nephron and to renal function.
Collapse
Affiliation(s)
- Jürgen E Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rudolf Gruber
- Krankenhaus Barmherzige Brüder, Teaching Hospital of the University of Regensburg, Regensburg, Germany
| | | | | | | | - Victor Herbst
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Matthias Block
- Institute for Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Jürgen Kaden
- Kidney Transplant Centre, Municipal Hospital Berlin-Friedrichshain, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | | |
Collapse
|
27
|
Stenfelt L, Hellberg Å, Möller M, Thornton N, Larson G, Olsson ML. Missense mutations in the C-terminal portion of the B4GALNT2-encoded glycosyltransferase underlying the Sd(a-) phenotype. Biochem Biophys Rep 2019; 19:100659. [PMID: 31367682 PMCID: PMC6646742 DOI: 10.1016/j.bbrep.2019.100659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sda is a high-frequency carbohydrate histo-blood group antigen, GalNAcβ1-4(NeuAcα2-3)Galβ, implicated in pathogen invasion, cancer, xenotransplantation and transfusion medicine. Complete lack of this glycan epitope results in the Sd(a−) phenotype observed in 4% of individuals who may produce anti-Sda. A candidate gene (B4GALNT2), encoding a Sda-synthesizing β-1,4-N-acetylgalactosaminyltransferase (β4GalNAc-T2), was cloned in 2003 but the genetic basis of human Sda deficiency was never elucidated. Experimental and bioinformatic approaches were used to identify and characterize B4GALNT2 variants in nine Sd(a−) individuals. Homozygosity for rs7224888:T > C dominated the cohort (n = 6) and causes p.Cys466Arg, which targets a highly conserved residue located in the enzymatically active domain and is judged deleterious to β4GalNAc-T2. Its allele frequency was 0.10–0.12 in different cohorts. A Sd(a−) compound heterozygote combined rs7224888:T > C with a splice-site mutation, rs72835417:G > A, predicted to alter splicing and occurred at a frequency of 0.11–0.12. Another compound heterozygote had two rare nonsynonymous variants, rs148441237:A > G (p.Gln436Arg) and rs61743617:C > T (p.Arg523Trp), in trans. One sample displayed no differences compared to Sd(a+). When investigating linkage disequilibrium between B4GALNT2 variants, we noted a 32-kb block spanning intron 9 to the intergenic region downstream of B4GALNT2. This block includes RP11-708H21.4, a long non-coding RNA recently reported to promote tumorigenesis and poor prognosis in colon cancer. The expression patterns of B4GALNT2 and RP11-708H21.4 correlated extremely well in >1000 cancer cell lines. In summary, we identified a connection between variants of the cancer-associated B4GALNT2 gene and Sda, thereby establishing a new blood group system and opening up for the possibility to predict Sd(a+) and Sd(a‒) phenotypes by genotyping.
Collapse
Affiliation(s)
- Linn Stenfelt
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, BMC C14, Sölvegatan 19, SE-22184, Lund, Sweden
| | - Åsa Hellberg
- Department of Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Service, F-blocket, Klinikgatan 21, SE-22185, Lund, Sweden
| | - Mattias Möller
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, BMC C14, Sölvegatan 19, SE-22184, Lund, Sweden
| | - Nicole Thornton
- International Blood Group Reference Laboratory, NHS Blood and Transplant, 500, North Bristol Park, Filton, Bristol, BS34 7QH, United Kingdom
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Stråket 16, SE-41345, Gothenburg, Sweden.,Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Bruna Stråket 16, SE-41345, Gothenburg, Sweden
| | - Martin L Olsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, BMC C14, Sölvegatan 19, SE-22184, Lund, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Laboratory Medicine, Office of Medical Service, F-blocket, Klinikgatan 21, SE-22185, Lund, Sweden
| |
Collapse
|
28
|
van der Wijst J, van Goor MK, Schreuder MF, Hoenderop JG. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int 2019; 96:1283-1291. [PMID: 31471161 DOI: 10.1016/j.kint.2019.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
Nephrolithiasis or renal stone disease is an increasingly common problem, and its relatively high recurrence rate demands better treatment options. The majority of patients with nephrolithiasis have stones that contain calcium (Ca2+), which develop upon "supersaturation" of the urine with insoluble Ca2+ salts; hence processes that influence the delivery and renal handling of Ca2+ may influence stone formation. Idiopathic hypercalciuria is indeed frequently observed in patients with kidney stones that contain Ca2+. Genetic screens of nephrolithiasis determinants have identified an increasing number of gene candidates, most of which are involved in renal Ca2+ handling. This review provides an outline of the current knowledge regarding genetics of nephrolithiasis and will mainly focus on the epithelial Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), an important player in Ca2+ homeostasis. Being a member of the TRP family of ion channels, TRPV5 is currently part of a revolution in structural biology. Recent technological breakthroughs in the cryo-electron microscopy field, combined with improvements in biochemical sample preparation, have resulted in high-resolution 3-dimensional structural models of integral membrane proteins, including TRPV5. These models currently are being used to explore the proteins' structure-function relationship, elucidate the molecular mechanisms of channel regulation, and study the putative effects of disease variants. Combined with other multidisciplinary approaches, this approach may open an avenue toward better understanding of the pathophysiological mechanisms involved in hypercalciuria and stone formation, and ultimately it may facilitate prevention of stone recurrence through the development of effective drugs.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark K van Goor
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
29
|
Then C, Then H, Meisinger C, Heier M, Peters A, Koenig W, Rathmann W, Scherberich J, Seissler J. Serum uromodulin is associated with but does not predict type 2 diabetes in elderly KORA F4/FF4 study participants. J Clin Endocrinol Metab 2019; 104:3795-3802. [PMID: 30892596 DOI: 10.1210/jc.2018-02557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/14/2019] [Indexed: 11/19/2022]
Abstract
AIMS Serum uromodulin has recently emerged as promising biomarker for kidney function and was suggested to be associated with type 2 diabetes (T2D) in coronary patients. Here, we analyzed the association of serum uromodulin with T2D in the population-based KORA F4/FF4 study. METHODS In 1119 participants of the KORA F4 study aged 62 - 81 years, serum uromodulin was measured and the association of serum uromodulin with T2D was assessed using logistic and linear regression models stratified for sex. After a mean follow-up time of 6.5 years, 635 participants where reevaluated. Glucose tolerance status was determined by oral glucose tolerance test at baseline and at the follow-up examination except in cases of known T2D. RESULTS Serum uromodulin was inversely associated with T2D in the crude analysis and after adjustment for age and BMI in men (p < 0.001) and in women (p < 0.05). After further adjustment for estimated glomerular filtration rate, serum uromodulin was significantly inversely associated with T2D in men (p < 0.001), but not in women. Serum uromodulin was not associated with prediabetes after multivariate adjustment and did not predict T2D in men or in women after the follow-up time of 6.5 ± 0.3 years. CONCLUSIONS In participants of the KORA F4 study, serum uromodulin is independently associated with T2D in men, but is no predictor of future development of T2D.
Collapse
Affiliation(s)
- Cornelia Then
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| | | | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology at UNIKAT Augsburg, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit of Molecular Epidemiology, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Biostatistics, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Rathmann
- German Diabetes Center, Leibniz Institute at Heinrich Heine University Düsseldorf, Institute of Biometrics and Epidemiology, Düsseldorf, Germany
| | - Jürgen Scherberich
- Klinikum München-Harlaching, Teaching Hospital of the Ludwig-Maximilians-Universität, Munich, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Germany
- Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universität München and Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
30
|
Liu Y, Goldfarb DS, El-Achkar TM, Lieske JC, Wu XR. Tamm-Horsfall protein/uromodulin deficiency elicits tubular compensatory responses leading to hypertension and hyperuricemia. Am J Physiol Renal Physiol 2018; 314:F1062-F1076. [PMID: 29357410 DOI: 10.1152/ajprenal.00233.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Expression of Tamm-Horsfall protein (THP or uromodulin) is highly restricted to the kidney thick ascending limb (TAL) of loop of Henle. Despite the unique location and recent association of THP gene mutations with hereditary uromodulin-associated kidney disease and THP single nucleotide polymorphisms with chronic kidney disease and hypertension, the physiological function(s) of THP and its pathological involvement remain incompletely understood. By studying age-dependent changes of THP knockout (KO) mice, we show here that young KO mice had significant salt and water wasting but were partially responsive to furosemide, due to decreased luminal translocation of Na-K-Cl cotransporter 2 (NKCC2) in the TAL. Aged THP KO mice were, however, markedly oliguric and unresponsive to furosemide, and their NKCC2 was localized primarily in the cytoplasm as evidenced by lipid raft floatation assay, cell fractionation, and confocal and immunoelectron microscopy. These aged KO mice responded to metolazone and acetazolamide, known to target distal and proximal tubules, respectively. They also had marked upregulation of renin in juxtaglomerular apparatus and serum, and they were hypertensive. Finally, the aged THP KO mice had significant upregulation of Na-coupled urate transporters Slc5a8 and Slc22a12 as well as sodium-hydrogen exchanger 3 (NHE3) in the proximal tubule and elevated serum uric acid and allantoin. Collectively, our results suggest that THP deficiency can cause progressive disturbances in renal functions via initially NKCC2 dysfunction and later compensatory responses, resulting in prolonged activation of the renin-angiotensin-aldosterone axis and hyperuricemia.
Collapse
Affiliation(s)
- Yan Liu
- Department of Urology, New York University School of Medicine , New York, New York
| | - David S Goldfarb
- Department of Nephrology, New York University School of Medicine , New York, New York.,Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, New York
| | - Tarek M El-Achkar
- Division of Nephrology, Indiana University School of Medicine and Indianapolis Veterans Affairs , Indianapolis, Indiana
| | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine , New York, New York.,Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, New York.,Department of Pathology, New York University School of Medicine , New York, New York
| |
Collapse
|
31
|
Devuyst O, Pattaro C. The UMOD Locus: Insights into the Pathogenesis and Prognosis of Kidney Disease. J Am Soc Nephrol 2017; 29:713-726. [PMID: 29180396 DOI: 10.1681/asn.2017070716] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification of genetic factors associated with kidney disease has the potential to provide critical insights into disease mechanisms. Genome-wide association studies have uncovered genomic regions associated with renal function metrics and risk of CKD. UMOD is among the most outstanding loci associated with CKD in the general population, because it has a large effect on eGFR and CKD risk that is consistent across different ethnic groups. The relevance of UMOD for CKD is clear, because the encoded protein, uromodulin (Tamm-Horsfall protein), is exclusively produced by the kidney tubule and has specific biochemical properties that mediate important functions in the kidney and urine. Rare mutations in UMOD are the major cause of autosomal dominant tubulointerstitial kidney disease, a condition that leads to CKD and ESRD. In this brief review, we use the UMOD paradigm to describe how population genetic studies can yield insight into the pathogenesis and prognosis of kidney diseases.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
32
|
Patras KA, Coady A, Olson J, Ali SR, RamachandraRao SP, Kumar S, Varki A, Nizet V. Tamm-Horsfall glycoprotein engages human Siglec-9 to modulate neutrophil activation in the urinary tract. Immunol Cell Biol 2017; 95:960-965. [PMID: 28829050 PMCID: PMC5698129 DOI: 10.1038/icb.2017.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Urinary tract infections (UTI) are a major problem in human medicine for which better understanding of native immune defenses may reveal new pathways for therapeutic intervention. Tamm-Horsfall glycoprotein (THP), the most abundant urinary protein, interacts with bacteria including uropathogenic E. coli (UPEC) as well host immune cells. In addition to its well-studied functions to antagonize bacterial colonization, we hypothesize that THP serves a critical host defense function through innate immune modulation. Using isolated human neutrophils, we found that THP binds neutrophils and that this interaction reduces reactive oxygen species generation, chemotaxis, and killing of UPEC. We discovered that THP engages the inhibitory neutrophil receptor sialic acid-binding Ig-like lectin-9 (Siglec-9), and mouse functional ortholog Siglec-E, in a manner dependent on sialic acid on its N-glycan moieties. THP-null mice have significantly more neutrophils present in the urine compared to WT mice, both with and without the presence of inflammatory stimuli. These data support THP as an important negative regulator of neutrophil activation in the urinary tract, with dual functions to counteract bacterial colonization and suppress excessive inflammation within the urinary tract.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.,Glycobiology Research and Training Center, UC San Diego, La Jolla, CA, USA
| | - Alison Coady
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.,Glycobiology Research and Training Center, UC San Diego, La Jolla, CA, USA
| | - Joshua Olson
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Syed Raza Ali
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Satish P RamachandraRao
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.,Division of Infectious Diseases, Department of Medicine, UC San Diego, La Jolla, CA, USA.,Department of Cell Biology and Molecular Genetics, Devaraj Urs Medical College and Hospital, Kolar, India
| | - Satish Kumar
- Section of Nephrology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, UC San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.,Department of Medicine, UC San Diego, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.,Glycobiology Research and Training Center, UC San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
33
|
Devuyst O, Olinger E, Rampoldi L. Uromodulin: from physiology to rare and complex kidney disorders. Nat Rev Nephrol 2017; 13:525-544. [PMID: 28781372 DOI: 10.1038/nrneph.2017.101] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is exclusively produced in the kidney and is the most abundant protein in normal urine. The function of uromodulin remains elusive, but the available data suggest that this protein might regulate salt transport, protect against urinary tract infection and kidney stones, and have roles in kidney injury and innate immunity. Interest in uromodulin was boosted by genetic studies that reported involvement of the UMOD gene, which encodes uromodulin, in a spectrum of rare and common kidney diseases. Rare mutations in UMOD cause autosomal dominant tubulointerstitial kidney disease (ADTKD), which leads to chronic kidney disease (CKD). Moreover, genome-wide association studies have identified common variants in UMOD that are strongly associated with risk of CKD and also with hypertension and kidney stones in the general population. These findings have opened up a new field of kidney research. In this Review we summarize biochemical, physiological, genetic and pathological insights into the roles of uromodulin; the mechanisms by which UMOD mutations cause ADTKD, and the association of common UMOD variants with complex disorders.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Eric Olinger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
34
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
35
|
Ghirotto S, Tassi F, Barbujani G, Pattini L, Hayward C, Vollenweider P, Bochud M, Rampoldi L, Devuyst O. The Uromodulin Gene Locus Shows Evidence of Pathogen Adaptation through Human Evolution. J Am Soc Nephrol 2016; 27:2983-2996. [PMID: 26966016 DOI: 10.1681/asn.2015070830] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/30/2016] [Indexed: 12/15/2022] Open
Abstract
Common variants in the UMOD gene encoding uromodulin, associated with risk of hypertension and CKD in the general population, increase UMOD expression and urinary excretion of uromodulin, causing salt-sensitive hypertension and renal lesions. To determine the effect of selective pressure on variant frequency, we investigated the allelic frequency of the lead UMOD variant rs4293393 in 156 human populations, in eight ancient human genomes, and in primate genomes. The T allele of rs4293393, associated with CKD risk, has high frequency in most modern populations and was the one detected in primate genomes. In contrast, we identified only the derived, C allele in Denisovan and Neanderthal genomes. The distribution of the UMOD ancestral allele did not follow the ancestral susceptibility model observed for variants associated with salt-sensitive hypertension. Instead, the global frequencies of the UMOD alleles significantly correlated with pathogen diversity (bacteria, helminths) and prevalence of antibiotic-resistant urinary tract infections (UTIs). The inverse correlation found between urinary levels of uromodulin and markers of UTIs in the general population substantiates the link between UMOD variants and protection against UTIs. These data strongly suggest that the UMOD ancestral allele, driving higher urinary excretion of uromodulin, has been kept at a high frequency because of its protective effect against UTIs.
Collapse
Affiliation(s)
- Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Tassi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Caroline Hayward
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Vollenweider
- Department of Internal Medicine, Institute of Social and Preventive Medicine, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Murielle Bochud
- Department of Internal Medicine, Institute of Social and Preventive Medicine, Lausanne University Hospital Center, Lausanne, Switzerland
| | - Luca Rampoldi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy; and
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Cohen M. Notable Aspects of Glycan-Protein Interactions. Biomolecules 2015; 5:2056-72. [PMID: 26340640 PMCID: PMC4598788 DOI: 10.3390/biom5032056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses).
Collapse
Affiliation(s)
- Miriam Cohen
- Depatment of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, BRF2 MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
37
|
Interstitial calcinosis in renal papillae of genetically engineered mouse models: relation to Randall's plaques. Urolithiasis 2014; 43 Suppl 1:65-76. [PMID: 25096800 DOI: 10.1007/s00240-014-0699-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/22/2014] [Indexed: 02/08/2023]
Abstract
Genetically engineered mouse models (GEMMs) have been highly instrumental in elucidating gene functions and molecular pathogenesis of human diseases, although their use in studying kidney stone formation or nephrolithiasis remains relatively limited. This review intends to provide an overview of several knockout mouse models that develop interstitial calcinosis in the renal papillae. Included herein are mice deficient for Tamm-Horsfall protein (THP; also named uromodulin), osteopontin (OPN), both THP and OPN, Na(+)-phosphate cotransporter Type II (Npt2a) and Na(+)/H(+) exchanger regulatory factor (NHERF-1). The baseline information of each protein is summarized, along with key morphological features of the interstitial calcium deposits in mice lacking these proteins. Attempts are made to correlate the papillary interstitial deposits found in GEMMs with Randall's plaques, the latter considered precursors of idiopathic calcium stones in patients. The pathophysiology that underlies the renal calcinosis in the knockout mice is also discussed wherever information is available. Not all the knockout models are allocated equal space because some are more extensively characterized than others. Despite the inroads already made, the exact physiological underpinning, origin, evolution and fate of the papillary interstitial calcinosis in the GEMMs remain incompletely defined. Greater investigative efforts are warranted to pin down the precise role of the papillary interstitial calcinosis in nephrolithiasis using the existing models. Additionally, more sophisticated, second-generation GEMMs that allow gene inactivation in a time-controlled manner and "compound mice" that bear several genetic alterations are urgently needed, in light of mounting evidence that nephrolithiasis is a multifactorial, multi-stage and polygenic disease.
Collapse
|
38
|
Mao S, Zhang A, Huang S. The signaling pathway of uromodulin and its role in kidney diseases. J Recept Signal Transduct Res 2014; 34:440-4. [PMID: 24849497 DOI: 10.3109/10799893.2014.920029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The uromodulin (UMOD) is a glycoprotein expressed exclusively by renal tubular cells lining the thick ascending limb of the loop of Henle. UMOD acts as a regulatory protein in health and in various conditions. For kidney diseases, its role remains elusive. On one hand, UMOD plays a role in binding and excretion of various potentially injurious products from the tubular fluid. On the other hand, chronic kidney disease is associated with higher serum levels of UMOD. Signaling pathways might be very important in the pathogenesis of kidney diseases. We performed this review to provide a relatively complete signaling pathway flowchart for UMOD to the investigators who were interested in the role of UMOD in the pathogenesis of kidney diseases. Here, we reviewed the signal transduction pathway of UMOD and its role in the pathogenesis of kidney diseases.
Collapse
Affiliation(s)
- Song Mao
- Department of Nephrology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University , Nanjing , China
| | | | | |
Collapse
|
39
|
Gouin SG, Roos G, Bouckaert J. Discovery and Application of FimH Antagonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_52] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
40
|
Mathison BD, Kimble LL, Kaspar KL, Khoo C, Chew BP. Development and validation of a sensitive, high-throughput bioassay for the adhesion of radiolabeled E. coli to uroepithelial cells in vitro. JOURNAL OF NATURAL PRODUCTS 2013; 76:1605-1611. [PMID: 23964569 DOI: 10.1021/np400264b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vaccinium macrocarpon (cranberry) products have been used to prevent uropathogenic Escherichia (E.) coli adherence to uroepithelial cells (UEC) and may help reduce risk of urinary tract infection. Reported herein are the development and validation of an assay to assess antiadhesion activity of V. macrocarpon extracts and human urine. P-fimbriated E. coli (CFT073) was labeled with ³H-uridine, then co-incubated with HTB-4 UEC at a 400:1 ratio. V. macrocarpon extracts (0-17 mg proanthocyanidins/mL) were added to ³H-labeled E. coli before co-incubating with UEC. The assay yielded a sensitive inhibition curve: the lower limit of detection and half-maximal inhibitory concentration were 0.43 and 1.59 mg proanthocyanidins/mL for V. macrocarpon extract CEP 55; intra- and interassay coefficients of variance were <10% and <15%, respectively. V. macrocarpon extract CEP 3283 showed identical adhesion inhibition. Serial dilutions of urine from human participants who consumed V. macrocarpon beverages showed a linear decrease in antiadhesion activity. Antiadhesion assays conducted with urine from a human intervention study also showed good agreement with results obtained using the hemagglutination assay. Therefore, a sensitive, high-throughput, biologically relevant antiadhesion assay using ³H-E. coli co-incubated with UEC is reported, which can be used for studying the action of V. macrocarpon bioactives.
Collapse
Affiliation(s)
- Bridget D Mathison
- School of Food Science, Washington State University , Pullman, Washington 99164-6376, United States
| | | | | | | | | |
Collapse
|
41
|
Uekuri C, Shigetomi H, Ono S, Sasaki Y, Matsuura M, Kobayashi H. Toward an understanding of the pathophysiology of clear cell carcinoma of the ovary (Review). Oncol Lett 2013; 6:1163-1173. [PMID: 24179489 PMCID: PMC3813717 DOI: 10.3892/ol.2013.1550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Endometriosis-associated ovarian cancers demonstrate substantial morphological and genetic diversity. The transcription factor, hepatocyte nuclear factor (HNF)-1β, may be one of several key genes involved in the identity of ovarian clear cell carcinoma (CCC). The present study reviews a considerably expanded set of HNF-1β-associated genes and proteins that determine the pathophysiology of CCC. The current literature was reviewed by searching MEDLINE/PubMed. Functional interpretations of gene expression profiling in CCC are provided. Several important CCC-related genes overlap with those known to be regulated by the upregulation of HNF-1β expression, along with a lack of estrogen receptor (ER) expression. Furthermore, the genetic expression pattern in CCC resembles that of the Arias-Stella reaction, decidualization and placentation. HNF-1β regulates a subset of progesterone target genes. HNF-1β may also act as a modulator of female reproduction, playing a role in endometrial regeneration, differentiation, decidualization, glycogen synthesis, detoxification, cell cycle regulation, implantation, uterine receptivity and a successful pregnancy. In conclusion, the present study focused on reviewing the aberrant expression of CCC-specific genes and provided an update on the pathological implications and molecular functions of well-characterized CCC-specific genes.
Collapse
Affiliation(s)
- Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Liu Y, El-Achkar TM, Wu XR. Tamm-Horsfall protein regulates circulating and renal cytokines by affecting glomerular filtration rate and acting as a urinary cytokine trap. J Biol Chem 2012; 287:16365-78. [PMID: 22451664 DOI: 10.1074/jbc.m112.348243] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this "trapping" effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity.
Collapse
Affiliation(s)
- Yan Liu
- Department of Urology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
43
|
Klisch K, Contreras DA, Sun X, Brehm R, Bergmann M, Alberio R. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction 2011; 142:667-74. [PMID: 21896636 DOI: 10.1530/rep-11-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Spermatogonia are a potential source of adult pluripotent stem cells and can be used for testis germ cell transplantation. Markers for the isolation of these cells are of great importance for biomedical applications. Primordial germ cells and prepubertal spermatogonia in many species can be identified by their binding of Dolichos biflorus agglutinin (DBA). This lectin binds to two different types of glycans, which are α-linked N-acetylgalactosamine (GalNac) and β-linked GalNac, if this is part of the Sda or GM2 glycotopes. We used the MAB CT1, which is specific for the trisaccharides motif NeuAcα2-3(GalNAcβ1-4)Galβ1-, which is common to both Sda and GM2 glycotopes, to further define the glycosylation of DBA binding germ cells. In porcine embryos, CT1 bound to migratory germ cells and gonocytes. CT1/DBA double staining showed that the mesonephros was CT1 negative but contained DBA-positive cells. Gonocytes in the female gonad became CT1 negative, while male gonocytes remained CT1 positive. In immunohistological double staining of cattle, pig, horse and llama testis, DBA and CT1 staining was generally colocalised in a subpopulation of spermatogonia. These spermatogonia were mainly single, sometimes paired or formed chains of up to four cells. Our data show that the Sda/GM2 glycotope is present in developing germ cells and spermatogonia in several species. Owing to the narrower specificity of the CT1 antibody, compared with DBA, the former is likely to be a useful tool for labelling and isolation of these cells.
Collapse
Affiliation(s)
- K Klisch
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Viswanathan P, Rimer JD, Kolbach AM, Ward MD, Kleinman JG, Wesson JA. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein. UROLOGICAL RESEARCH 2011; 39:269-282. [PMID: 21229239 PMCID: PMC3117096 DOI: 10.1007/s00240-010-0353-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 12/04/2010] [Indexed: 02/07/2023]
Abstract
Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 μg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation.
Collapse
Affiliation(s)
- Pragasam Viswanathan
- The Nephrology Division of the Medical College of Wisconsin, Department of Veterans Affairs Medical Center, 111K, 5000 West National Ave, Milwaukee 53295, WI, USA
| | - Jeffrey D. Rimer
- Department of Chemistry, Molecular Design Institute, New York University, 100 Washington Ave, SE, New York, NY, USA
| | - Ann M. Kolbach
- The Nephrology Division of the Medical College of Wisconsin, Department of Veterans Affairs Medical Center, 111K, 5000 West National Ave, Milwaukee 53295, WI, USA
| | - Michael D. Ward
- Department of Chemistry, Molecular Design Institute, New York University, 100 Washington Ave, SE, New York, NY, USA
| | - Jack G. Kleinman
- The Nephrology Division of the Medical College of Wisconsin, Department of Veterans Affairs Medical Center, 111K, 5000 West National Ave, Milwaukee 53295, WI, USA
| | - Jeffrey A. Wesson
- The Nephrology Division of the Medical College of Wisconsin, Department of Veterans Affairs Medical Center, 111K, 5000 West National Ave, Milwaukee 53295, WI, USA
| |
Collapse
|
45
|
Glycosylation changes as important factors for the susceptibility to urinary tract infection. Biochem Soc Trans 2011; 39:349-54. [PMID: 21265802 DOI: 10.1042/bst0390349] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
FimH is the type 1 fimbrial tip adhesin and invasin of Escherichia coli. Its ligands are the glycans on specific proteins enriched in membrane microdomains. FimH binding shows high-affinity recognition of paucimannosidic glycans, which are shortened high-mannose glycans such as oligomannose-3 and -5. FimH can recognize equally the (single) high-mannose glycan on uroplakin Ia, on the urinary defence protein uromodulin or Tamm-Horsfall glycoprotein and on the intestinal GP2 glycoprotein present in Peyer's patches. E. coli bacteria may attach to epithelial cells via hundreds of fimbriae in a multivalent fashion. This binding is considered to provoke conformational changes in the glycoprotein receptor that translate into signalling in the cytoplasm of the infected epithelial cell. Bladder cell invasion by the uropathogenic bacterium is the prelude to recurrent and persistent urinary tract infections in humans. Patients suffering from diabetes mellitus are more prone to contract urinary tract infections. In a study of women, despite longer treatments with a more potent antibiotic, these patients also have more often recurrences of urinary tract infections compared with women without diabetes. Type 1 fimbriae are the most important virulence factors used not only for adhesion of E. coli in the urinary tract, but also for the colonization by E. coli in patients with Crohn's disease or ulcerative colitis. It appears that the increased prevalence of urinary tract infections in diabetic women is not the result of a difference in the bacteria, but is due to changes in the uroepithelial cells leading to an increased adherence of E. coli expressing type 1 fimbriae. Hypothetically, these changes are in the glycosylation of the infected cells. The present article focuses on possible underlying mechanisms for glycosylation changes in the uroepithelial cell receptors for FimH. Like diabetes, bacterial adhesion induces apoptosis that may bring the endoplasmic reticulum membrane with immature mannosylated glycoproteins to the surface. Indicatively, clathrin-mediated vesicle trafficking of glucose transporters is disturbed in diabetics, which would interfere further with the biosynthesis and localization of complex N-linked glycans.
Collapse
|
46
|
Liu Y, Mo L, Goldfarb DS, Evan AP, Liang F, Khan SR, Lieske JC, Wu XR. Progressive renal papillary calcification and ureteral stone formation in mice deficient for Tamm-Horsfall protein. Am J Physiol Renal Physiol 2010; 299:F469-78. [PMID: 20591941 DOI: 10.1152/ajprenal.00243.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian urine contains a range of macromolecule proteins that play critical roles in renal stone formation, among which Tamm-Horsfall protein (THP) is by far the most abundant. While THP is a potent inhibitor of crystal aggregation in vitro and its ablation in vivo predisposes one of the two existing mouse models to spontaneous intrarenal calcium crystallization, key controversies remain regarding the role of THP in nephrolithiasis. By carrying out a long-range follow-up of more than 250 THP-null mice and their wild-type controls, we demonstrate here that renal calcification is a highly consistent phenotype of the THP-null mice that is age and partially gene dosage dependent, but is gender and genetic background independent. Renal calcification in THP-null mice is progressive, and by 15 mo over 85% of all the THP-null mice develop spontaneous intrarenal crystals. The crystals consist primarily of calcium phosphate in the form of hydroxyapatite, are located more frequently in the interstitial space of the renal papillae than intratubularly, particularly in older animals, and lack accompanying inflammatory cell infiltration. The interstitial deposits of hydroxyapatite observed in THP-null mice bear strong resemblances to the renal crystals found in human kidneys bearing idiopathic calcium oxalate stones. Compared with 24-h urine from the wild-type mice, that of THP-null mice is supersaturated with brushite (calcium phosphate), a stone precursor, and has reduced urinary excretion of citrate, a stone inhibitor. While less frequent than renal calcinosis, renal pelvic and ureteral stones and hydronephrosis occur in the aged THP-null mice. These results provide direct in vivo evidence indicating that normal THP plays an important role in defending the urinary system against calcification and suggest that reduced expression and/or decreased function of THP could contribute to nephrolithiasis.
Collapse
Affiliation(s)
- Yan Liu
- Dept. of Urology, New York Univ. School of Medicine, NY 10010, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Prajczer S, Heidenreich U, Pfaller W, Kotanko P, Lhotta K, Jennings P. Evidence for a role of uromodulin in chronic kidney disease progression. Nephrol Dial Transplant 2010; 25:1896-903. [PMID: 20075439 DOI: 10.1093/ndt/gfp748] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Uromodulin (also known as Tamm-Horsfall protein) is the most abundant urinary protein in healthy individuals and exhibits diverse functions including prevention of ascending urinary tract infections by binding type I-fimbriated Escherichia coli. Although uromodulin is targeted to the apical membrane of thick ascending limb (TAL) cells and secreted into the lumen, detectable levels are also found in venous blood. Uromodulin has been shown to interact with and activate specific components of the immune system, and thus, may act as a signalling molecule for renal tubular damage. METHODS In order to investigate the potential involvement of uromodulin in chronic kidney disease (CKD), we quantified uromodulin in paired urine and serum from 14 healthy volunteers and 77 CKD patients. Clinical parameters such as estimated GFR (eGFR), proteinuria and urinary N-acetyl-beta-D-glucosaminidase (NAG) were measured. Mean infiltration and atrophy score were assessed in patient biopsies. Additionally, tumour necrosis factor-alpha, interleukin-6 (IL-6), IL-8 and IL-1 beta were measured in serum samples. RESULTS eGFR correlated positively with urinary uromodulin and negatively with serum uromodulin. Patients with abnormally low urinary uromodulin showed a broader range of serum uromodulin. Patients with both very low urinary and serum uromodulin had the highest tubular atrophy scores. There was a positive correlation of serum uromodulin with all cytokines measured. Additionally, in in vitro experiments, uromodulin caused a dose-dependent increase in pro-inflammatory cytokine release from whole blood. CONCLUSIONS Our data suggest that TAL damage, or damage distal to the TAL, results in an elevated interstitial uromodulin, which stimulates an inflammatory response. Persistent chronic TAL damage reduces TAL cell numbers and attenuates urinary and serum uromodulin concentrations. The combined analysis of serum and urinary uromodulin provides new insights into the role of uromodulin in CKD and suggest that uromodulin may be an active player in CKD progression.
Collapse
Affiliation(s)
- Sinikka Prajczer
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Fritz-Pregl Strasse 3, A-6020, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
48
|
Wellens A, Garofalo C, Nguyen H, Van Gerven N, Slättegård R, Hernalsteens JP, Wyns L, Oscarson S, De Greve H, Hultgren S, Bouckaert J. Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 2008; 3:e2040. [PMID: 18446213 PMCID: PMC2323111 DOI: 10.1371/journal.pone.0002040] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 03/17/2008] [Indexed: 11/19/2022] Open
Abstract
Background Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and α3β1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections. Methodology/Principal Findings We demonstrate that α-d-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl α-d-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl α-d-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl α-d-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Manα1,3Manβ1,4GlcNAcβ1,4GlcNAc in an extended binding site. The interactions along the α1,3 glycosidic bond and the first β1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl α-d-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group. Conclusions/Significance The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection.
Collapse
Affiliation(s)
- Adinda Wellens
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Corinne Garofalo
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hien Nguyen
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nani Van Gerven
- Viral Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rikard Slättegård
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Lode Wyns
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Henri De Greve
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
| | - Scott Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Julie Bouckaert
- Department of Molecular and Cellular Interactions, Vrije Universiteit Brussel, Brussels, Belgium
- Ultrastructure, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
49
|
Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta Gen Subj 2006; 1760:527-37. [PMID: 16564136 DOI: 10.1016/j.bbagen.2005.12.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/07/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
Adhesion of pathogenic organisms to host tissues is the prerequisite for the initiation of the majority of infectious diseases. In many systems, it is mediated by lectins present on the surface of the infectious organism that bind to complementary carbohydrates on the surface of the host tissues. Lectin-deficient mutants often lack the ability to initiate infection. The bacterial lectins are typically in the form of elongated submicroscopic multi-subunit protein appendages, known as fimbriae (or pili). The best characterized of these are the mannose-specific type 1 fimbriae, the galabiose-specific P fimbriae and the N-acetylglucosamine-specific fimbriae of Escherichia coli. Soluble carbohydrates recognized by the bacterial surface lectins block the adhesion of the bacteria to animal cells in vitro. Aromatic alpha-mannosides are potent inhibitors of type 1 fimbriated E. coli, being up to 1000 times more active than MealphaMan, with affinities in the nanomolar range. This is due to the presence of a hydrophobic region next to the monosaccharide-binding site of the fimbriae, as recently demonstrated by X-ray studies. Polyvalent saccharides (e.g., neoglycoproteins or dendrimers) are also powerful inhibitors of bacterial adhesion in vitro. Very significantly, lectin-inhibitory saccharides have been shown to protect mice, rabbits, calves and monkeys against experimental infection by lectin-carrying bacteria. Since anti-adhesive agents do not act by killing or arresting the growth of the pathogens, it is very likely that strains resistant to such agents will emerge at a markedly lower rate than of strains that are resistant to antibiotics. Suitable sugars also inhibit the binding to cells of carbohydrate-specific toxins, among them those of Shigella dysenteriae Type 1, and of the homologous Verotoxins of E. coli, specific for galabiose. Appropriately designed polyvalent ligands are up to six orders of magnitude stronger inhibitors of toxin binding in vitro than the monovalent ones, and they protect mice against the Shigella toxin. The above data provide clear proof for the feasibility of anti-adhesion therapy of infectious diseases, although this has not yet been successful in humans. All in all, however, there is little doubt that inhibitors of microbial lectins will in the near future join the arsenal of drugs for therapy of infectious diseases.
Collapse
Affiliation(s)
- Nathan Sharon
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|