1
|
Ali Z, Sher N, Muhammad I, Nayab GE, Alouffi A, Almutairi MM, Khan I, Ali A. The combined effect of cadmium and copper induces bioaccumulation, and toxicity and disrupts the antioxidant enzymatic activities of goldfish ( Carassius auratus). Toxicol Rep 2025; 14:101972. [PMID: 40115003 PMCID: PMC11925159 DOI: 10.1016/j.toxrep.2025.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/28/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
An aquatic environment polluted with cadmium (Cd) and copper (Cu) has threatened fish health and adversely affected the aquaculture industry's sustainable development. The study revealed that exposure to Cd and Cu caused significant bioaccumulation in goldfish tissues, particularly in gills, intestine, and muscles. The bioaccumulation of these heavy metals increased with exposure time, with the highest levels recorded after 96 hours. This prolonged exposure led to a range of adverse effects on the fish's physiological functions. Hematological parameters, including white blood cells, red blood cells, and platelets, decreased significantly, indicating a compromised immune system. Conversely, some hematological parameters, such as hemoglobin and hematocrit, increased with exposure, suggesting a potential compensatory response. Biochemical parameters, including serum glutamic pyruvic transaminase, blood urea, and serum triglycerides, also increased with exposure, indicating liver damage and disrupted metabolic functions. Furthermore, the study found that antioxidant enzymes, including superoxide dismutase, catalase, and ascorbic acid, decreased significantly, while malondialdehyde concentration increased, indicating oxidative stress and lipid peroxidation. These findings collectively suggest that Cd and Cu exposure can cause significant toxicity in goldfish, affecting their hematological, biochemical, and enzymatic functions, and highlighting the need for further research into the effects of these heavy metals on aquatic organisms.
Collapse
Affiliation(s)
- Zeeshan Ali
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, China
| | - Nadia Sher
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ijaz Khan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, China
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
2
|
Sharma R, Jindal R, Jhamb N, Banaee M, Faggio C. Lead Nitrate (Pb(NO 3) 2) Toxicity Effects on DNA Structure and Histopathological Damage in Gills of Common Carp (Cyprinus carpio). Microsc Res Tech 2025; 88:810-817. [PMID: 39578944 PMCID: PMC11842955 DOI: 10.1002/jemt.24748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The toxic impact of environmentally relevant nominal sub-lethal concentration of lead nitrate (23 mg/L) on the gills of Cyprinus carpio after 30 days of exposure was assessed. Structural alterations were analyzed through histopathology, and the DNA damage rate in peripheral erythrocytes was evaluated by alkaline comet assay. A significant deviation in the gill histoarchitecture was observed compared to the control group. Significant changes, including the curling of secondary lamellae, loss of filaments, necrosis, hyperplasia, hypertrophy of cells of primary filament, and vacuolization, were found in the fish exposed to nominal sub-lethal concentration of lead nitrate. Moreover, the comet assay showed lead nitrate-induced DNA damage, evidenced by the length of the DNA "tail" in the exposed fish. The findings of this study strongly indicated that lead nitrate, even at sub-lethal levels, could significantly alter the overall physiology of the fish. This situation could lead to severe ecological consequences.
Collapse
Affiliation(s)
- Ritu Sharma
- Department of BiosciencesUniversity Institute of Biotechnology, Chandigarh UniversityGharuanPunjabIndia
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of ZoologyPanjab UniversityChandigarhIndia
| | - Nikhil Jhamb
- Aquatic Biology Laboratory, Department of ZoologyPanjab UniversityChandigarhIndia
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural ResourcesBehbahan Khatam Alanbia University of TechnologyBehbahanIran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
- Department of Eco‐Sustainable Marine BiotechnologyStazione Zoologica Anton DohrnNaplesItaly
| |
Collapse
|
3
|
Parvez I, Ahmed S, Tasnim N, Pervin R, Alam MA, Khan MN, Ara Y, Rashid H, Pradit S. Heavy metal contamination in freshwater habitats impairs the growth and reproductive health of wild spotted snakehead Channa punctata (Channidae) in Bangladesh. Heliyon 2025; 11:e42543. [PMID: 40028566 PMCID: PMC11867276 DOI: 10.1016/j.heliyon.2025.e42543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/11/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Heavy metal bioaccumulation in aquatic organisms of open water aquatic ecosystems was detected globally, including Bangladesh. This study evaluated the hypothesis of whether heavy metal contamination in aquatic habitats impacts fish growth and reproduction using wild Channa punctata as an experimental animal. The growth and reproductive health of a wild freshwater fish, C. punctata, collected from five freshwater habitats, were assayed with heavy metal bioaccumulation. Atomic absorption spectrometry detected the bioaccumulation of cadmium (Cd), chromium (Cr), mercury (Hg), and lead (Pb) in the muscle of C. punctata. Cd, Cr, and Pb concentrations were the highest in the specimen collected from the Turag River and the lowest in the Dharla River. The highest concentration of Hg was found in C. punctata specimens collected from the Karatoya River (0.093 ± 0.004 mg/kg). The length-weight relationship and condition factor of C. punctata indicated a negative allometric growth pattern (b < 3.0) and poor wellness (F < 1.0) in all the stocks except Dharla River. We estimated the size at first sexual maturity (L50), ova diameter, fecundity, and gonadosomatic index (GSI) to assess reproductive health and determined the correlation with heavy metal bioaccumulation. We found that higher bioaccumulation of heavy metal impairs the reproductive health of C. punctata by lowering spawning performance. This study showed that heavy metal bioaccumulation impaired fish's growth and reproductive health, potentially affecting future recruitment and fishery sustainability.
Collapse
Affiliation(s)
- Imran Parvez
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Sharmin Ahmed
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Nazifa Tasnim
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Rubaiya Pervin
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md Ashraful Alam
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Md Nasir Khan
- Department of Fisheries Biology and Genetics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Yeasmin Ara
- Department of Fisheries Management, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Harunur Rashid
- Department of Fisheries Management, Bangladesh Agricultural University (BAU), Mymensingh, 2202, Bangladesh
| | - Siriporn Pradit
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Marine and Coastal Resources Institute, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| |
Collapse
|
4
|
Zarate-Insúa J, Fonovich T, Nuñez-Cresto F, Pastrana G, Dufou L, Amable V, Pérez-Coll C, Svartz G. Toxicological assessment of the effects of CuCl 2 and CuO nanoparticles on early developmental stages of the South American toad, Rhinella arenarum by standardized bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64644-64655. [PMID: 39546244 DOI: 10.1007/s11356-024-35566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The release in aquatic environments of emergent contaminants such as copper oxide nanoparticles (CuO-NPs) has generated concerns on their short- and long-term toxicity and the potential risk for more vulnerable animal groups, such as amphibians. In this sense, the aim of this work was to evaluate the toxicity of CuO-NPs in comparison with its respective salt (CuCl2) in embryos and larvae of a native amphibian, Rhinella arenarum, by acute (96 h) and chronic (504 h) standardized bioassays. Lethality and sublethal effects such as developmental, morphological, and ethological alterations were assessed in a wide range of concentrations (0.001-100 mg/L). Neurotoxic effects by acetyl (AChE) and butyrylcholinesterase (BChE) activity levels and changes in the lipid content were also assessed at sublethal concentrations. Results showed that CuCl2 caused higher lethality than CuO-NPs in both developmental periods. Embryos were more sensitive than larvae with LC50-96 h = 0.080 mg CuCl2/L and 1.26 mg CuO-NPs/L and 0.21 mg CuCl2/L and 20.17 mg CuO-NPs/L, respectively. At acute exposure, embryos exhibited several developmental abnormalities such as developmental delay, edema, axial flexure, and microcephaly. Larvae presented spasmodic contractions and weak movements. Regarding neurotoxicity, a significant increase in AChE activity at low concentrations as well as an inhibition of BChE activity at all tested concentrations was evidenced for both substances at acute exposure. Moreover, an increment in phospholipid and triglyceride levels was observed at the highest concentration of CuO-NPs (10 mg/L) at chronic exposure. The chromatographic separation of lipids showed no apparent differences in acylglycerols and free fatty acid bands, between the treatments and the control. The differences in toxicity between CuO-NPs and CuCl2 could be due to structural and physicochemical characteristics that influence their bioavailability and toxicity. Considering the exponential growth in the production and use of these substances, it is expected that the levels of contamination will rise considerably in the future, so that wildlife, particularly aquatic organisms, will be more increasingly exposed, representing a potential risk for their populations.
Collapse
Affiliation(s)
- Julieta Zarate-Insúa
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Teresa Fonovich
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
| | - Florencia Nuñez-Cresto
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Pastrana
- Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, CNEA, Bariloche, Río Negro, Argentina
| | - Leandro Dufou
- Complejo Tecnológico Pilcaniyeu, Centro Atómico Bariloche, CNEA, Bariloche, Río Negro, Argentina
| | | | - Cristina Pérez-Coll
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriela Svartz
- IIIA-UNSAM-CONICET, Instituto de Investigación E Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Av. 25 de Mayo 1021 (CP. 1650), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Garncarek-Musiał M, Maruszewska A, Kowalska-Góralska M, Mijowska E, Zielinkiewicz K, Dziewulska K. Comparative study of influence of Cu, CuO nanoparticles and Cu 2+ on rainbow trout (Oncorhynchus mykiss W.) spermatozoa. Sci Rep 2024; 14:22242. [PMID: 39333544 PMCID: PMC11437131 DOI: 10.1038/s41598-024-72956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The same elements can yield disparate nanoproducts that may elicit different harmful effects in cells and organisms. This study aimed to compare the effects of copper (Cu NPs) and copper oxide (CuO NPs) nanoparticles and Cu2+ (from CuSO4) on the physico-biochemical variables of rainbow trout spermatozoa. The cell death assay, along with the activation of caspases 8 and 9, the level of reactive oxygen species (ROS), and the percentage of cells exhibiting a high mitochondrial membrane potential (MMP) were quantified over 24-hour incubation. Interestingly, during exposure, all copper products induced cell apoptosis. However, Cu NPs had a stronger effect than CuO NPs, while the impact of the Cu in ionic form was found to be between the other two compounds. The extrinsic and intrinsic apoptotic pathways were activated, as evidenced by the activation of caspases 8 and 9. Initially, caspase activation increased without a corresponding decrease in MMPs but prolonged exposure resulted in a significant decrease in MMP levels. In all treated cells, the ROS levels increased over time. Further studies are needed to confirm the lower CuO NPs' toxicity compared to Cu NPs because their effect on cells also depends on many other parameters such as size or shape.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- Doctoral School, Institute of Biology, University of Szczecin, Mickiewicza 18, Szczecin, 70- 383, Poland
- Institute of Biology, Department of Hydrobiology, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland
| | - Agnieszka Maruszewska
- Institute of Biology, Department of Physiology and Biochemistry, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland
- Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, Szczecin, 71- 415, Poland
| | - Monika Kowalska-Góralska
- Faculty of Biology and Animal Science, Department of Limnology and Fishery, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38c, Wrocław, 51-630, Poland
| | - Ewa Mijowska
- Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Piastow Ave. 45, Szczecin, 70-310, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, Szczecin, Poland
| | - Klaudia Zielinkiewicz
- Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Piastow Ave. 45, Szczecin, 70-310, Poland
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), West Pomeranian University of Technology, Szczecin, Poland
| | - Katarzyna Dziewulska
- Institute of Biology, Department of Hydrobiology, University of Szczecin, Felczaka 3c, Szczecin, 71-412, Poland.
- Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, Szczecin, 71- 415, Poland.
| |
Collapse
|
6
|
Garncarek-Musiał M, Dziewulska K, Kowalska-Góralska M. Effect of different sizes of nanocopper particles on rainbow trout (Oncorhynchus mykiss W.) spermatozoa motility kinematics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173763. [PMID: 38839004 DOI: 10.1016/j.scitotenv.2024.173763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In recent years, nanocopper (Cu NPs) has gained attention due to its antimicrobial properties and potential for industrial, agricultural, and consumer applications. But it also has several effects on the aquatic environment. Widespread use of various nanoproducts has raised concerns about impacts of different nanoparticle size on environment and biological objects. Spermatozoa is a model for studying the ecotoxic effects of pollutants on cells and organisms. This study aimed to investigate the effects of different sizes of copper nanoparticles on rainbow trout spermatozoa motility, and to compare their effects with copper ionic solution. Computer assisted sperm analysis (CASA) was used to detect movement parameters at activation of gametes (direct effect) with milieu containing nanocopper of primary particle size of 40-60, 60-80 and 100 nm. The effect of the elements ions was also tested using copper sulfate solution. All products was prepared in concentration of 0, 1, 5, 50, 125, 250, 350, 500, 750, and 1000 mg Cu L-1. Six motility parameters were selected for analysis. The harmful effect of Cu NPS nanoparticle was lower than ionic form of copper but the effect depends on the motility parameters. Ionic form caused complete immobilization (MOT = 0 %, IC100) at 350 mg Cu L-1 whilst Cu NPs solution only decreased the percentage of motile sperm (MOT) up to 76.4 % at highest concentration tested of 1000 mg Cu L-1 of 40-60 nm NPs. Cu NPs of smaller particles size had more deleterious effect than the bigger one particularly in percentage of MOT and for curvilinear velocity (VCL). Moreover, nanoparticles decrease motility duration (MD). This may influence fertility because the first two parameters positively correlate with fertilization rate. However, the ionic form of copper has deleterious effect on the percentage of MOT and linearity (LIN), but in some concentrations it slightly increases VCL and MD.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- University of Szczecin, Doctoral School, Mickiewicza 18, 70-383 Szczecin, Poland; University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland.
| | - Katarzyna Dziewulska
- University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
| | - Monika Kowalska-Góralska
- Wrocław University of Environmental and Life Sciences, Faculty of Biology and Animal Science, Institute of Animal Breeding, Department of Limnology and Fishery, Chełmońskiego 38c, 51-630 Wrocław, Poland.
| |
Collapse
|
7
|
Xia YQ, Yang Y, Liu Y, Li CH, Liu PF. Investigation of copper-induced intestinal damage and proteome alterations in Takifugu rubripes: Potential health risks and environmental toxicology detection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116718. [PMID: 39024957 DOI: 10.1016/j.ecoenv.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Copper is one of the predominant water pollutants. Excessive exposure to copper can cause harm to animal health, affecting the central nervous system and causing blood abnormalities. Cuproptosis is a novel form of cell death that differs from previous programmed cell death methods. However, the impact of copper on the intestines remains unclear. Therefore, we investigated the effects of different concentrations of copper exposure on the intestinal proteome of Takifugu rubripes (T. rubripes). Relevant biomarkers were used to detect cuproptosis. We revealed the crosstalk relationship between cuproptosis and self-rescue at different concentrations, and discussed the feasibility of using potential cuproptosis indicators as anti-infection factors. We observed intestinal damage in the three copper exposure groups, especially in T. rubripes treated with 100 and 500 μg/L copper, with shedding and breakage of intestinal villus and fuzzy and loose structure of intestinal mucosa. The presence of copper stress not only causes cuproptosis but also oxidative damage caused by reactive oxygen species (ROS). The results of quantitative proteomics by TMT showed that compared to the 50 and 100 μg/L copper exposure groups, the expression of glutaminase, pyruvate kinase, and skin mucus lectin in the 500 μg/L group was significantly increased. The positive mediators COX5A and CTNNB1, as well as the negative mediators CD4 and FDXR, were found to be differentially expressed. Using the protein expression trends of cuproptosis indicator factors FDX1 and DLAT to indicate the concentration of copper ions in the environment. In addition, we found a new effect of promoting ferroptosis: providing additional copper ions can activate the phenomenon of ferroptosis. Our results expand our understanding of the potential health risks of copper in T. rubripes. At the same time, it is of great significance for the process of copper poisoning and the development of new environmental toxicology detection reagents.
Collapse
Affiliation(s)
- Yu-Qing Xia
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China; Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Cheng-Hua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Peng-Fei Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, 52 Heishijiao Street, Dalian 116023, PR China; College of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, PR China.
| |
Collapse
|
8
|
Sadeghi S, Mousavi-Sabet H, Hedayati A, Zargari A, Multisanti CR, Faggio C. Copper-oxide nanoparticles effects on goldfish (Carassius auratus): Lethal toxicity, haematological, and biochemical effects. Vet Res Commun 2024; 48:1611-1620. [PMID: 38413536 DOI: 10.1007/s11259-024-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
The advancement of nanotechnology and the widespread use of nanoparticles (NPs) in various industries have highlighted the importance of studying the potential harmful effects of nanomaterials on organisms. This study aimed to evaluate the lethal toxicity thresholds of Copper Oxide Nanoparticles (CuO-NPs). The investigation focused on examining the sub-lethal toxicity effects of CuO-NPs on blood parameters, as well as their influence on the gill tissue and liver of goldfish (Carassius auratus). Goldfish were exposed to varying concentrations of CuO-NPs (10, 20, 30, 40, 60, 80, and 100 mg/L) for 96 h. The Probit software was employed to determine the LC50 (lethal concentration causing 50% fish mortality) by monitoring and documenting fish deaths at 24, 48, 72, and 96-hour intervals. Subsequently, sub-lethal concentrations of 5% LC50 (T1), 10% LC50 (T2), and 15% LC50 (T3) of CuO-NPs were administered based on the LC50 level to investigate their effects on haematological parameters, encompassing the number of red blood cells and white blood cells, hematocrit and haemoglobin levels, mean corpuscular volume, mean corpuscular haemoglobin and mean corpuscular haemoglobin concentration. Additionally, histopathological examinations were conducted on the gill and liver tissues of the studied fish. Results indicated concentration-response of fish mortalities. In general, changes in the blood biochemical parameters of fish exposed to sub-lethal concentrations of CuO-NPs included a significant decrease in leukocyte count and glucose level and an increase in protein and triglyceride levels. Furthermore, an escalation in tissue damage such as gill apical and basal hyperplasia, lamellae attachment, squamous cell swelling, blood cell infiltration, and cellular oedema in gills tissue. and bleeding, increased sinusoidal space, necrosis, lateralization of the nucleus, cell swelling, and water retention in the liver. The findings showed dose-dependent increasing toxicity in goldfish specimens exposed to CuO-NPs.
Collapse
Affiliation(s)
- Saeed Sadeghi
- Faculty of Natural Resources, Guilan University, Rasht, Iran
| | | | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ashkan Zargari
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
9
|
Türkmen EU, Arslan P, Erkoç F, Günal AÇ, Duran H. The cerium oxide nanoparticles toxicity induced physiological, histological and biochemical alterations in freshwater mussels, Unio crassus. J Trace Elem Med Biol 2024; 83:127371. [PMID: 38176319 DOI: 10.1016/j.jtemb.2023.127371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Releasing of cerium oxide nanoparticles (nano-CeO2) to the nature has increased due to the widespread use in many fields ranging from cosmetics to the food industry. Therefore, nano-CeO2 has been included in the Organization for Economic Co-operation and Development's (OECD) priority list for engineering nanomaterials. In this study, the effects of nano-CeO2 on the freshwater mussels were investigated to reveal the impact on the freshwater systems on model organism. METHODS First, the chemical and structural properties of nano-CeO2 were characterized in details. Second, the freshwater mussels were exposed to environmentally relevant concentrations of nano-CeO2 as 10 mg, 25 mg and 50 mg/L during 48-h and 7-d. Third, after the exposure periods, hemolymph and tissue samples were taken to analyse the Total Hemocyte Counts (THCs) histology and oxidative stress parameters (total antioxidant status, glutathione, glutathione-S-transferase, and advanced oxidative protein products). RESULTS Significant decrease of the THCs was observed in the nano-CeO2 exposed mussels compared to the control group (P < 0.05). The histological results showed a positive association between nano-CeO2 exposure concentration in the water and level of tissue damage and histopathological alterations were detected in the gill and the digestive gland tissues. Oxidative stress parameters were slightly affected after exposure to nano-CeO2 (P > 0.05). In conclusion, this study showed that acute exposure of freshwater mussels to nano-CeO2 did not pose significant biological risk. However, it has been proven that mussels are able to accumulate nano-CeO2 significantly in their bodies. CONCLUSION This suggests that nano-CeO2 may be a potential risk to other organisms in the ecosystem through trophic transfer in the food-web based on their habitat and niche in the ecosystem.
Collapse
Affiliation(s)
- Ezgi Uluer Türkmen
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Türkiye
| | - Pınar Arslan
- Department of Biology, Faculty of Science, Çankırı Karatekin University, 18100 Çankırı, Türkiye
| | - Figen Erkoç
- Department of Biology Education, Gazi Faculty of Education, Gazi University, Teknikokullar, Ankara, Türkiye; Department of Biomedical Engineering, Faculty of Engineering, Başkent University, Etimesgut, Ankara, Türkiye
| | - Aysel Çağlan Günal
- Department of Biology Education, Gazi Faculty of Education, Gazi University, Teknikokullar, Ankara, Türkiye; Environmental Health and Environmental Sciences Program, Health Services Vocational School, Gazi University, Ankara, Türkiye.
| | - Hatice Duran
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara, Türkiye; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Türkiye
| |
Collapse
|
10
|
Badran SR, Hamed A. Is the trend toward a sustainable green synthesis of copper oxide nanoparticles completely safe for Oreochromis niloticus when compared to chemical ones?: using oxidative stress, bioaccumulation, and histological biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9477-9494. [PMID: 38190069 PMCID: PMC10824803 DOI: 10.1007/s11356-023-31707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Scientists worldwide have noticed that cutting-edge technologies can be used to produce nanoparticles (NPs) in a sustainable and environmentally friendly way, instead of the old methods. However, the effectiveness of this approach for aquatic environments and species still needs to be determined. Therefore, this study aims to compare between the toxicity of green and chemically synthesized copper oxide nanoparticles (GS and CS) CuO NPs at two different concentrations on Nile tilapia (Oreochromis niloticus) using various biomarkers. CuO NPs' formation was proved, and their different characterizations were recorded. Then, the fish samples were randomly allocated in glass aquaria into five groups: one acted as a control group, and the other groups were exposed to two concentrations (25 and 50 mg/L) of GS-CuO NPs and CS-CuO NPs, separately, for 4 days. After the experimental time, in all groups that were exposed to two concentrations of both synthesized CuO NPs, the results revealed that glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substances (TBARS) levels were elevated in the liver and gills compared to glutathione reduced (GSH) content, which showed a significant decline. Bioaccumulation of Cu was more prevalent in the liver than in the gills, and the highest bioaccumulation capacity was more evident in the groups exposed to CS-CuO NPs. Moreover, the bioaccumulation of Cu caused severe histological changes in the liver and gills. In conclusion, the results suggested that GS-CuO NPs revealed less toxicity than CS-CuO NPs to the examined fish. However, they are still toxic, and their toxic effect cannot be overlooked.
Collapse
Affiliation(s)
- Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
11
|
Aliko V, Vasjari L, Ibrahimi E, Impellitteri F, Karaj A, Gjonaj G, Piccione G, Arfuso F, Faggio C, Istifli ES. "From shadows to shores"-quantitative analysis of CuO nanoparticle-induced apoptosis and DNA damage in fish erythrocytes: A multimodal approach combining experimental, image-based quantification, docking and molecular dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167698. [PMID: 37832669 DOI: 10.1016/j.scitotenv.2023.167698] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
The usage of copper (II) oxide nanoparticles (CuO NPs) has significantly expanded across industries and biomedical fields. However, the potential toxic effects on non-target organisms and humans lack comprehensive understanding due to limited research on molecular mechanisms. With this study, by combining the 96 h in vivo exposure of crucian carp fish, Carassius carassius, to sub-lethal CuO NPs doses (0.5 and 1 mg/dL) with image-based quantification, and docking and molecular dynamics approaches, we aimed to understand the mechanism of CuO NPs-induced cyto-genotoxicity in the fish erythrocytes. The results revealed that both doses of copper NPs used were toxic to erythrocytes causing oxidative stress response and serious red blood cell morphological abnormalities, and genotoxicity. Docking and 10-ns molecular dynamics confirmed favorable interactions (ΔG = -2.07 kcal mol-1) and structural stability of Band3-CuO NP complex, mainly through formation of H-bonds, implying the potential of CuO NPs to induce mitotic nuclear abnormalities in C. carassius erythrocytes via Band3 inhibition. Moreover, conventional and multiple ligand simultaneous docking with DNA revealed that single, double and triple CuO NPs bind preferentially to AT-rich regions consistently in the minor grooves of DNA. Of note, the DNA-binding strength subtantially increased (ΔG = -2.13 kcal mol-1, ΔG = -4.08 kcal mol-1, and ΔG = -6.03 kcal mol-1, respectively) with an increasing number of docked CuO NPs, suggesting that direct structural perturbation on DNA could also count for the molecular basis of in-vivo induced DNA damage in C. carassius erythrocytes. This study introduces the novel term "erythrotope" to describe comprehensive red blood cell morphological abnormalities. It proves to be a reliable and cost-effective biomarker for evaluating allostatic erythrocyte load in response to metallic nanoparticle exposure, serving as a distinctive fingerprint to assess fish erythrocyte health and physiological fitness.
Collapse
Affiliation(s)
- Valbona Aliko
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Ledia Vasjari
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Eliana Ibrahimi
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| | - Ambra Karaj
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Grejsi Gjonaj
- University of Tirana, Faculty of Natural Sciences, Department of Biology, Tirana, Albania.
| | - Giuseppe Piccione
- University of Messina, Department of Veterinary Sciences, Messina, Italy.
| | - Francesca Arfuso
- University of Messina, Department of Veterinary Sciences, Messina, Italy.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina, Italy.
| | - Erman S Istifli
- University of Cukurova, Faculty of Science and Literature, Department of Biology, Adana, Turkey
| |
Collapse
|
12
|
Rashidian G, Mohammadi-Aloucheh R, Hosseinzadeh-Otaghvari F, Chupani L, Stejskal V, Samadikhah H, Zamanlui S, Multisanti CR, Faggio C. Long-term exposure to small-sized silica nanoparticles (SiO 2-NPs) induces oxidative stress and impairs reproductive performance in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109715. [PMID: 37595938 DOI: 10.1016/j.cbpc.2023.109715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
The widespread use of silica nanoparticles (SiO2-NPs) in various industries, including chemical polishing, cosmetics, varnishes, medical, and food products, has increased the risk of their release into aquatic ecosystems. The toxic effects of small-size SiO2-NPs on the reproductive performance of zebrafish (Danio rerio) have yet to be widely studied. This study aimed to investigate the impact of chronic exposure to small-sized (35 ± 6 nm) SiO2-NPs on adult zebrafish through waterborne exposure to concentrations of 5 (SNP5), 10 (SNP10), 15 (SNP15), and 20 (SNP20) μg/L of SiO2-NPs for 28 days. Our results showed that SiO2-NPs significantly impacted several biochemical parameters, including cholesterol, triglycerides, LDL, HDL, total protein, albumin, urea levels, and alkaline phosphatase and aspartate aminotransferase activity. Cortisol and glucose levels in the SNP20 group significantly differed from the control group. All the exposed groups, apart from SNP5, experienced a significant increase in their total immunoglobulin levels and lysozyme activity. While there was a considerable increase in the activity of catalase and superoxide dismutase in all exposed groups, the expression of antioxidant genes did not appear to be affected. Furthermore, the expression level of il8 was significantly higher in SNP5 and SNP10 than in other treatments. Exposure to SiO2-NPs caused a decrease in gonad weight, absolute fecundity, and larval survival rate, particularly in the SNP20 group. The present study indicates that SiO2-NPs can harm zebrafish and thus further research is necessary to assess their health and environmental risks.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05 České Budějovice, Czech Republic.
| | | | - Farnaz Hosseinzadeh-Otaghvari
- Department of Cell and molecular biology, Faculty of Basic Science, University of Maragheh, 55181-83111 Maragheh, Iran.
| | - Latifeh Chupani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Czech Republic.
| | - Vlastimil Stejskal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Husova třída 458/102, 370 05 České Budějovice, Czech Republic.
| | - Hamidreza Samadikhah
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 13185/768, Iran.
| | - Soheila Zamanlui
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, P.O. Box 13185-768, Tehran, Iran.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S Agata, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S Agata, Messina, Italy.
| |
Collapse
|
13
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
14
|
Zhao C, Chu P, Tang X, Yan J, Han X, Ji J, Ning X, Zhang K, Yin S, Wang T. Exposure to copper nanoparticles or copper sulfate dysregulated the hypothalamic-pituitary-gonadalaxis, gonadal histology, and metabolites in Pelteobagrus fulvidraco. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131719. [PMID: 37257385 DOI: 10.1016/j.jhazmat.2023.131719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study evaluated the effects of chronic exposure to copper nanoparticles (Cu-NPs) and waterborne copper (CuSO4) on the reproductive system of yellow catfish (Pelteobagrus fulvidraco). Juvenile yellow catfish were exposed to 100 and 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 for 42 days. The results showed clear reproductive defects in both female and male yellow catfish in the 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 groups. Exposure to Cu-NPs or CuSO4 inhibited folliculogenesis and vitellogenesis in the ovaries, and spermatogenesis in the testes, accompanied by elevation of the apoptotic signal. Ultrastructural observations also revealed damaged organelles of gonadal cells in both testes and ovaries. Most of the hypothalamic-pituitary-gonadal (HPG) axis genes examined and serum sex steroid hormones tended to be downregulated after Cu exposure. Metabolomic analysis suggested that gonadal estradiol level is sensitive to Cu-NPs or CuSO4. The heat map of gonadal metabolomics suggested a similar effect of 200 μg Cu/L Cu-NPs and 100 μg Cu/L CuSO4 in both the ovaries and testes. Additionally, metabolomics data showed that the reproductive toxicity due to Cu-NPs and CuSO4 may occur via different metabolic pathways. Cu-NPs tend to dysregulate the metabolic pathways of sphingolipid and linoleic acid metabolism in the ovary and the biosynthesis of amino acids and pantothenate and CoA in the testis. Overall, these findings revealed the toxicological effects of Cu-NPs and CuSO4 on the HPG axis and gonadal metabolism in yellow catfish.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Peng Chu
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xiaodong Tang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Jie Yan
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Xiaomen Han
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China
| | - Jie Ji
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Xianhui Ning
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Kai Zhang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China
| | - Shaowu Yin
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| | - Tao Wang
- College of Life Science, College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, China.
| |
Collapse
|
15
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
16
|
Mahjoubian M, Naeemi AS, Moradi-Shoeili Z, Tyler CR, Mansouri B. Toxicity of Silver Nanoparticles in the Presence of Zinc Oxide Nanoparticles Differs for Acute and Chronic Exposures in Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:1-17. [PMID: 36333621 DOI: 10.1007/s00244-022-00965-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We assessed the acute toxicity effects (96 h) of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) and chronic (28 d) exposure to Ag NPs, including in combination with ZnO NPs. In the chronic studies, we further assessed the toxicokinetics and bioaccumulation of Ag and the resulting histopathological effects in the gill, intestine, and liver of zebrafish. Co-exposures with ZnO NPs reduced the toxicity of Ag NPs for acute (lethality) but enhanced the toxicity effects (tissue histopathology) for chronic exposures. The histological lesions for both NPs exposures in the gill included necrosis and fusion of lamellae, for the intestine necrosis and degeneration, and in the liver, mainly necrosis. The severity of the histological lesions induced by the Ag NPs was related to the amount of accumulated Ag in the zebrafish organs. The Ag accumulation in different organs was higher in the presence of ZnO NPs in the order of the gill > intestine > liver. Depuration kinetics illustrated the lowest half-life for Ag occurred in the gill and for the combined exposure of Ag with ZnO NPs. Our findings illustrate that in addition to tissue, time, and exposure concentration dependencies, the Ag NPs toxicity can also be influenced by the co-exposure to other NPs (here ZnO NPs), emphasizing the need for more combination exposure effects studies for NPs to more fully understand their potential environmental health risks.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | | | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, Devon, UK
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Saha S, Chukwuka AV, Mukherjee D, Dhara K, Saha NC, Faggio C. Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109450. [PMID: 36058464 DOI: 10.1016/j.cbpc.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
The toxic effects of Zinc oxide nanoparticles (nZnO) on Branchiura sowerbyi and Heteropneustes fossilis, was assessed in a 96-hour acute exposure regime using behavioral (including loss-of balance and clumping tendencies) and physiological (mucus secretion and oxygen consumption) endpoints. While the relationship between behavioral, physiological biomarkers, and exposure concentrations was assessed using correlation analysis, nZnO toxicity was further predicted using the General Unified Threshold model for Survival (GUTS). The time-dependent lethal limits for acute nZnO toxicity (LC50) on B. sowerbyi were estimated to be 0.668, 0.588, 0.448, and 0.400 mg/l, respectively, at 24, 48, 72, and 96 h whereas for H. fossilis the LC50 values are 0.954, 0.905, 0.874 and 0.838 mg/l. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) threshold effect values at 96 h were higher for fish compared to the oligochaete. For B. sowerbyi, the GUTS-SD (stochastic death) model is a better predictor of nanoparticle exposure effects compared to the GUTS-IT (individual tolerance) model, however in the case of H. fossilis, the reverse pattern was observed. Oxygen consumption rate was negatively correlated to mortality under acute exposure duration. The strong negative correlation between mortality and oxygen consumption strongly suggests a metabolic-toxicity pathway for nZnO exposure effects. The higher toxicity threshold values i.e., LOEC, NOEC, and MATC for fish compared to the oligochaete invertebrate indicates greater risks for invertebrates compared to vertebrates, with resultant implications for local habitat trophic relationships.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24, Parganas 743 611, West Bengal, India. https://twitter.com/@DrShubhajitS
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Dip Mukherjee
- Department of Zoology, S.B.S. Government College, Hili, Dakshin Dinajpur 733126, India
| | - Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kalyani, Nadia 741 251, India
| | - Nimai Chandra Saha
- Department of Zoology, University of Burdwan, Purba Barddhaman 713 104, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
18
|
Akintelu SA, Olabemiwo OM, Ibrahim AO, Oyebamiji JO, Oyebamiji AK, Olugbeko SC. Biosynthesized nanoparticles as a rescue aid for agricultural sustainability and development. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Noureen A, De Marco G, Rehman N, Jabeen F, Cappello T. Ameliorative Hematological and Histomorphological Effects of Dietary Trigonella foenum-graecum Seeds in Common Carp ( Cyprinus carpio) Exposed to Copper Oxide Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13462. [PMID: 36294038 PMCID: PMC9603639 DOI: 10.3390/ijerph192013462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Different types of metal oxide nanoparticles (NPs) are being used for wastewater treatment worldwide but concerns have been raised regarding their potential toxicities, especially toward non-targeted aquatic organisms including fishes. Therefore, the present study aimed to evaluate the toxicity of copper oxide (CuO) NPs (1.5 mg/L; positive control group) in a total of 130 common carp (Cyprinus carpio), as well as the potential ameliorative effects of fenugreek (Trigonella foenum-graecum) seed extracts (100 mg/L as G-1 group, 125 mg/L as G-2 group, and 150 mg/L as G-3 group) administered to fish for 28 days. Significant changes were observed in the morphometric parameters: the body weight and length of the CuO-NP-treated fish respectively decreased from 45.28 ± 0.34 g and 14.40 ± 0.56 cm at day one to 43.75 ± 0.41 g and 13.57 ± 0.67 cm at day 28. Conversely, fish treated with T. foenum-graecum seed extract showed significant improvements in body weight and length. After exposure to CuO NPs, a significant accumulation of Cu was recorded in the gills, livers, and kidneys (1.18 ± 0.006 µg/kg ww, 1.38 ± 0.006 µg/kg ww, and 0.05 ± 0.006 µg/kg ww, respectively) of the exposed common carp, and significant alterations in fish hematological parameters and oxidative stress biomarkers (lipid peroxidation (LPO), glutathione (GSH), and catalase (CAT)) were also observed. However, supplementing diets with fenugreek extracts modulated the blood parameters and the oxidative stress enzymes. Similarly, histological observations revealed that sub-lethal exposure to CuO NPs caused severe histomorphological changes in fish gills (i.e., degenerative epithelium, fused lamellae, necrotic lamellae, necrosis of primary lamellae, complete degeneration, and complete lamellar fusion), liver (i.e., degenerative hepatocytes, vacuolization, damaged central vein, dilated sinusoid, vacuolated degeneration, and complete degeneration), and kidney (i.e., necrosis and tubular degeneration, abnormal glomerulus, swollen tubules, and complete degeneration), while the treatment with the fenugreek extract significantly decreased tissue damage in a dose-dependent manner by lowering the accumulation of Cu in the selected fish tissues. Overall, this work demonstrated the ameliorative effects of dietary supplementation with T. foenum-graecum seed extract against the toxicity of NPs in aquatic organisms. The findings of this study therefore provided evidence of the promising nutraceutical value of fenugreek and enhanced its applicative potential in the sector of fish aquaculture, as it was shown to improve the growth performance and wellness of organisms.
Collapse
Affiliation(s)
- Aasma Noureen
- Department of Zoology, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
- Department of Biology, Virtual University of Pakistan, Faisalabad 38000, Pakistan
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Nagina Rehman
- Department of Zoology, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
20
|
Selvaraj V, Mahboub HH, Ganapathi U, Chandran SK, Al-Onazi W, Al-Mohaimeed AM, Chen TW, Faggio C, Paulraj B. Enhanced photodegradation of methylene blue from aqueous solution using Al-doped ZnS nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73528-73541. [PMID: 35622286 DOI: 10.1007/s11356-022-20634-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
The post-transition semiconducting material of pure zinc sulfide (ZnS) and various concentrations of aluminum (Al) (2.5 wt%, 5.0% wt, 7.5 wt%, and 10% calcined at 200 °C) doped ZnS nanoparticles (NPs) were synthesized by sol-gel procedure. The crystal-like nature and phase structure of the product were examined by powder XRD analysis. This analysis shows that the pure ZnS nanoparticle does not form any secondary phase. The functional group of synthesized materials was analyzed by FTIR examination. The energy gap of the materials is calculated using electro-optic analysis and the Kubelka-Munk equation varies from 3.04 nm to 3.63 nm. The photoluminescence studies show the wide emissions (blue to green) for pure ZnS and Al-doped ZnS nanomaterials. The SEM images show the spherical structure and the agglomerated nanostructures. The presence of Zn, S, and Al are confirmed by EDAX spectra. From HR-TEM studies, pure ZnS and Al-doped ZnS nanoparticles exhibit uniform particle sizes. The rate of degradation was observed using MB dye. MB dye has maximum wavelength (λmax) of 664 nm. The dye degradation efficiency was improved as the dye ratio increased. Photocatalytic activities studies show the intensity of photocatalytic activities decreased for the maximum time interval. Doping of Al in ZnS boosts the photocatalytic activity. Hence, Al-doped ZnS appears to be better decomposing MB dye when exposed to visible light.
Collapse
Affiliation(s)
- Vijayan Selvaraj
- Department of Physics, Govt. Arts College, Coimbatore, Tamilnadu, India
- Department of Physics, MGR College, Hosur, Tamilnadu, India
| | - Heba H Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Umadevi Ganapathi
- Department of Physics, Govt. Arts College, Coimbatore, Tamilnadu, India.
| | | | - Wedad Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Amal Mohammed Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Hosur, Tamilnadu, India
| |
Collapse
|
21
|
Hedayati SA, Sheikh Veisi R, Hosseini Shekarabi SP, Shahbazi Naserabad S, Bagheri D, Ghafarifarsani H. Effect of Dietary Lactobacillus casei on Physiometabolic Responses and Liver Histopathology in Common Carp (Cyprinus carpio) After Exposure to Iron Oxide Nanoparticles. Biol Trace Elem Res 2022; 200:3346-3354. [PMID: 34458957 DOI: 10.1007/s12011-021-02906-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
A 60-day feeding trial was performed to assess the dietary effect of Lactobacillus casei as a probiotic supplement on some serum biochemical parameters and liver histopathology in common carp fry after exposure to iron oxide nanoparticles (IoNPs). Six treatments were prepared as follows: control (no IoNP exposure and no dietary probiotic), P6: 106 CFU/g probiotic diet, P7: 107 CFU/g probiotic diet, NPs: 0.15 mg/l IoNPs, NPs + P6: 0.15 mg/l IoNPs with 106 CFU/g probiotic diet, and NPs + P7: 0.15 mg/l IoNPs with 107 CFU/gprobiotic diet. Based on the results, serum aspartate aminotransferase and alanine aminotransferase levels were significantly increased in 0.15 mg/l IoNPs, P7, and NPs + P6 treatments compared to the control group. In addition, the examination of antioxidant enzymes showed a significant increase in the levels of cortisol and glutathione S-transferase as well as malondialdehyde level. IoNPs also caused significant histopathological changes in the fish liver during the experiment such as hyperemia in sinusoidal spaces, hepatocytes vacuolation and necrosis, pyknosis, and disruption of hepatic lobules and atrophy. Results revealed the protective effects of dietary L. casei to mitigate the adverse impacts of IoNPs on the physiological processes of common carp.
Collapse
Affiliation(s)
- Seyed Aliakbar Hedayati
- Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | - Rouhollah Sheikh Veisi
- Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural and Natural Resources, Gorgan, Iran
| | | | | | - Dara Bagheri
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| |
Collapse
|
22
|
Mottola G, Nikinmaa M, Anttila K. Copper exposure improves the upper thermal tolerance in a sex-specific manner, irrespective of fish thermal history. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106145. [PMID: 35338914 DOI: 10.1016/j.aquatox.2022.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Ectotherms can respond to climate change via evolutionary adaptation, usually resulting in an increase of their upper thermal tolerance. But whether such adaptation influences the phenotypic plasticity of thermal tolerance when encountering further environmental stressors is not clear yet. This is crucial to understand because organisms experience multiple stressors, besides warming climate, in their natural environment and pollution is one of those. Here, we studied the phenotypic plasticity of thermal tolerance in three-spined stickleback populations inhabiting spatially replicated thermally polluted and pristine areas before and after exposing them to a sublethal concentration of copper for one week. We found that the upper thermal tolerance and its phenotypic plasticity after copper exposure did not depend on the thermal history of fish, suggesting that five decades of thermal pollution did not result in evolutionary adaptation to thermal tolerance. The upper thermal tolerance of fish was, on the other hand, increased by ∼ 1.5 °C after 1-week copper exposure in a sex-specific manner, with males having higher plasticity. To our knowledge this is the first study that shows an improvement of the upper thermal tolerance as a result of metal exposure. The results suggest that three-spined sticklebacks are having high plasticity and they are capable of surviving in a multiple-stressor scenario in the wild and that male sticklebacks seem more resilient to fluctuating environmental conditions than female.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland.
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, Turku 20500, Finland
| |
Collapse
|
23
|
Taslima K, Al-Emran M, Rahman MS, Hasan J, Ferdous Z, Rohani MF, Shahjahan M. Impacts of heavy metals on early development, growth and reproduction of fish - A review. Toxicol Rep 2022; 9:858-868. [PMID: 36561955 PMCID: PMC9764183 DOI: 10.1016/j.toxrep.2022.04.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Heavy metals pollution causes a threat to the aquatic environment and to its inhabitants when their concentrations exceed safe limits. Heavy metals cause toxicity in fish due to their non-biodegradable properties and their long persistence in the environment. This review investigated the effects of heavy metals on early development, growth and reproduction of fish. Fish embryos/larvae and each developmental stage of embryo respond differently to the intoxication and vary from species to species, types of metals and their mode of actions, concentration of heavy metals and their exposure time. Many of the heavy metals are considered as essential nutrient elements that positively improve the growth and feed utilization of fishes but upon crossing the maximum tolerable limit these metals cause not only a hazard to fish health but also to human consumers and the disruption of ecological systems. Reduced gonadosomatic index (GSI), fecundity, hatching rate, fertilization success, abnormal shape of reproductive organs, and finally failure of reproduction in fish have been attributed to heavy metal toxicity. In summary, this review sheds light on the manipulation of fish physiology by heavy metals and seeks to raise sensitivity to the prevention and control of aquatic environmental contamination, particularly from heavy metals.
Collapse
Affiliation(s)
- Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zannatul Ferdous
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
24
|
Malafaia G, Nóbrega RH, Luz TMD, Araújo APDC. Shedding light on the impacts of gestational exposure to polystyrene nanoplastics on the reproductive performance of Poecilia reticulata female and on the biochemical response of embryos. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127873. [PMID: 34863562 DOI: 10.1016/j.jhazmat.2021.127873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of nanoplastics (NPs) has already been reported in experimental aquatic models, their possible effects on the reproductive performance of viviparous freshwater fish and their consequences for embryos, so far, are unknown. Thus, we aimed to evaluate whether the gestational exposure of Poecilia reticulata to polystyrene NPs (PS NPs) impacts the reproductive performance of females, induces teratogenic effects and/or predictive alterations of redox unbalance and cholinesterasic effect. Our results demonstrate that gestational exposure of P. reticulata females (for 30 days) to PS NPs (50 µg/L) affected reproductive aspects of the animals, inferred by the lower percentage of pregnancy and reduced offspring quantity. Although we did not observe teratogenic effect, we observed that the accumulation of PS NPs in embryos was significantly correlated with a redox unbalance, without, however, having a cholinesterasic effect (via evaluation of AChE and BChE activity) in embryos. Thus, by evidencing the accumulation of PS NPs in embryos of P. reticulata females exposed to the pollutant during the gestational period, we confirm not only the plausibility of the maternal transfer of these nanomaterials, but also their consequent physiological impacts on the offspring, which has not yet been demonstrated in live-bearing freshwater fish.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia (MG/Brasil), Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás and Instituto Federal Goiano (GO/Brasil), Brazil; Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil.
| | - Rafael Henrique Nóbrega
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (SP/Brasil), Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil
| | - Amanda Pereira da Costa Araújo
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano - Campus Urutaí (GO/Brasil), Brazil; Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Goias - Campus Samambaia (GO/Brasil), Brazil
| |
Collapse
|
25
|
Javanshir Khoei A. A comparative study on the accumulation of toxic heavy metals in fish of the Oman Sea: effects of fish size, spatial distribution and trophic level. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
26
|
Ecotoxicological Effects of Silver Nanoparticles (Ag-NPs) on Parturition Time, Survival Rate, Reproductive Success and Blood Parameters of Adult Common Molly (Poecilia sphenops) and Their Larvae. WATER 2022. [DOI: 10.3390/w14020144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanoparticles (NPs) can display toxicological effects on aquatic organisms. This study investigates ecotoxicological effects of Ag-NPs on reproductive and blood parameters of adult common molly (Poecilia sphenops) and their larvae. During the LC50 96 h test, female fish were exposed to concentrations of 0, 5, 15, 25, 35, 45 and 60 mg L−1 of Ag-NPs, while larvae were exposed to 0, 3, 5, 10 and 15 mg L−1. Finally, we aim to evaluate the effects of 0, 5, 10 and 15 mg L−1 of Ag-NPs on parturition time, reproductive success and hematological parameters of the mature fish exposed to sub-lethal concentration during a 62-day period. We also evaluated the survival rate of larvae. The results show a positive correlation between mortality rate and Ag-NP concentration. Values for LC50 96 h in adult fish and larvae were 26.85 mg L−1 and 6.22 mg L−1, respectively. A lack of parturition and reproductive success were seen in fish that underwent chronic exposure to Ag-NPs (15 mg L−1). The results show that RBC, WBC and hematocrit were significantly decreased in fish exposed to Ag-NPs. In addition, the serum concentrations of total protein, albumin, cholesterol and triglycerides were significantly increased in fish submitted to Ag-NPs (concentrations of 5–15). In conclusion, submitting a fish to higher concentration than 10 mg L−1 has adverse effects on reproductive system and blood parameters.
Collapse
|
27
|
Chao SJ, Huang CP, Lam CC, Hua LC, Chang SH, Huang C. Transformation of copper oxide nanoparticles as affected by ionic strength and its effects on the toxicity and bioaccumulation of copper in zebrafish embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112759. [PMID: 34500387 DOI: 10.1016/j.ecoenv.2021.112759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the transformation of copper oxide nanoparticles (CuO NPs) in aquatic environments under different ionic strength and further examine its effects on copper toxicity and bioaccumulation by monitoring the responses and uptake behaviours of zebrafish embryo. Ionic strength (IS) was simulated according to surface water (1.5 mM), groundwater (15 mM), and wastewater (54 mM), representing low-, mid-, and high-IS water, respectively. At the highest exposure of 10 mg CuO/L, zebrafish larvae mortality was increased from 21.3% to 33.3%, when IS decreased from 54 to 1.5 mM. Low-IS solution also caused the highest numbers of delayed hatching embryo (81.3%) and opaque yolk deformation (36.3%). Copper bioaccumulation markedly increased when larvae were exposed to low-IS water (35%) relative to high-IS water (15%). Exposing to low-IS particularly enhanced copper uptake (~15 ng Cu/g inside embryo), facilitating the copper accumulation in the heart of larvae, whereas aggregated CuO NPs (>500 nm) in mid- and high-IS water were blocked from the embryo and found abundantly in the body axis and tail. Results indicate that CuO NPs in low-IS solutions rapidly form the relatively small CuO NP aggregates with a high copper dissolution, which would pose great concern for aquatic organisms.
Collapse
Affiliation(s)
- Shu-Ju Chao
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - C P Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chi-Cuong Lam
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Lap-Cuong Hua
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung 402, Taiwan
| | - Chihpin Huang
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
28
|
Mohamadi Yalsuyi A, Forouhar Vajargah M, Hajimoradloo A, Mohammadi Galangash M, Prokić MD, Faggio C. Can Betadine (10% povidone-iodine solution) act on the survival rate and gill tissue structure of Oranda goldfish (Carassius auratus)? Vet Res Commun 2021; 46:389-396. [PMID: 34816339 DOI: 10.1007/s11259-021-09862-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/07/2021] [Indexed: 11/25/2022]
Abstract
Industrial chemical solutions are widely used as a method to disinfection of aquaculture water and environments. The aim of the present study was to evaluate the toxicity effect of Betadine (10% solution of povidone-iodine) as a disinfectant solution on the survival and gill tissue of Oranda goldfish (Carassius auratus). For these purposes, 225 fingerling Oranda goldfish with an average weight 5 ± 0.67 g were divided into 15 groups with 3 replications. Fish were exposed to series of concentrations (0, 10, 20, 40, 60, 80, 90, 100, 120, 140, 160, 180, 200, 220 and 240 mg/L) of Betadine for 96 h. The mortality of fish and the samples of gill were observed at 6, 12, 18, 24, 48, 72 and 96 h after exposure. The results of the present study showed that the half-life of Betadine was less than 24 h and mortality were not record after 24 h. The highest mortality rate was at 240 mg/L, and LC50 24 h of Betadine was 158.800 mg/L. Histopathological results showed that lethal concentrations of Betadine lead to hyperemia, hypertrophy, hyperplasia and adhesion of secondary lamellar of the gill. Moreover, fish that were exposed to these concentrations displayed clinical signs such as anxiety, darkening of the skin. Overall results showed that Betadine have short half-life in the aquatic environment and are toxic to fish at very high concentrations, therefore it can be considered as practically non-toxic and useful for disinfection of the aquatic environment.
Collapse
Affiliation(s)
- Ahmad Mohamadi Yalsuyi
- Department of Fisheries Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | | | - Abdolmajid Hajimoradloo
- Department of Fisheries Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohsen Mohammadi Galangash
- Department of Environmental Sciences and Engineering, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
29
|
Evaluation of Behavioral Changes and Tissue Damages in Common Carp ( Cyprinus carpio) after Exposure to the Herbicide Glyphosate. Vet Sci 2021; 8:vetsci8100218. [PMID: 34679048 PMCID: PMC8540590 DOI: 10.3390/vetsci8100218] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Pesticides can induce changes in behavior and reduce the survival chance of aquatic organisms. In this study, the toxic effects of glyphosate suspension (Glyphosate Aria 41% SL, Tehran Iran) on behavior and tissues of common carp (Cyprinus carpio) were assessed. For this purpose, a 96 h LC50 of glyphosate suspension (68.788 mL·L-1) was used in the toxicity test. All individuals were divided into control and treatment groups with four replicates. Exposure operations were performed under two conditions: increasing concentration of suspension from 0 to 68.788 mL·L-1; then, decreasing to the first level. The swimming pattern was recorded by digital cameras during the test and tissue samples were collected at the end of the test. There were significant differences between the swimming pattern of treated individuals and control ones during both steps. The sublethal concentration of glyphosate led to hypertrophy, hyperplasia and hyperemia in the gill of fish. However, changes were obvious only after sampling. The exposed fish also displayed clinical signs such as darkening of the skin and increasing movement of the operculum. Moreover, glyphosate suspension affected swimming patterns of fish suggest that the swimming behavior test can indicate the potential toxicity of environmental pollutants and be used as a noninvasive, useful method for managing environmental changes and assessing fish health conditions by video monitoring.
Collapse
|
30
|
Zeng L, Li WC, Zhang H, Cao P, Ai CX, Hu B, Song W. Hypoxic acclimation improves mitochondrial bioenergetic function in large yellow croaker Larimichthys crocea under Cu stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112688. [PMID: 34425539 DOI: 10.1016/j.ecoenv.2021.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 05/14/2023]
Abstract
The purpose of this study was to investigate how pre-hypoxia exposure affected the mitochondrial structure and bioenergetic function of large yellow croaker in responding to Cu stress. Fish were acclimated to normoxia and 3.0 mg DO L-1 for 48 h, then subjected to 0 and 120 μg Cu L-1 for another 48 h. Hypoxic acclimation did not affect mitochondrial ultrastructure and reactive oxygen species (ROS), but reduced oxidative phosphorylation (OXPHOS) efficiency. Cu exposure impaired mitochondrial ultrastructure, increased ROS generation and inhibited OXPHOS efficiency. Compared with Cu exposure alone, hypoxic acclimation plus Cu exposure reduced ROS production and improved OXPHOS efficiency by enhancing mitochondrial respiratory control ratio, mitochondrial membrane potential, and activities and gene expressions of electron transport chain enzymes. In conclusion, hypoxic acclimation improved the mitochondrial energy metabolism of large yellow croaker under Cu stress, facilitating our understanding of the molecular mechanisms regarding adaptive responses of hypoxia-acclimated fish under Cu stress.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Wen-Cheng Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hui Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Ping Cao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China.
| | - Bing Hu
- Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fuqing 350300, PR China
| | - Wei Song
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| |
Collapse
|
31
|
Histological effects of sublethal concentrations of insecticide Lindane on intestinal tissue of grass carp (Ctenopharyngodon idella). Vet Res Commun 2021; 45:373-380. [PMID: 34363149 DOI: 10.1007/s11259-021-09818-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
This study investigates acute toxicity and histological effects of Lindane insecticide on intestinal tissues of immature grass carp (Ctenopharyngodon idella). For these purposes, 105 fish were exposed to different concentrations of Lindane for 96 h in 5 groups with 3 replications. Samples of intestinal tissues were prepared in both control and exposure groups during and after the toxicity test. Vaculation, necrosis, bleeding and epithelial degeneration were apparent in the intestine tissue of treated individuals. The LC50 96 h of Lindane was 0.788 ppm in the present study, also the results showed besides pesticide-induced lesions, symptoms of abnormal swimming, anxiety, tendency to swim near the surface, and death due to terminal toxicity with mouth widely open. The exposed fish were pale in color, showed oxygen deficit and severe respiratory problems. Overall, our results confirm the toxicity of different concentrations of Lindane insecticide affecting behavior, intestinal function and inducing tissue lesions of immature grass carp.
Collapse
|
32
|
Kulasza M, Skuza L. Changes of Gene Expression Patterns from Aquatic Organisms Exposed to Metal Nanoparticles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168361. [PMID: 34444111 PMCID: PMC8394891 DOI: 10.3390/ijerph18168361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022]
Abstract
Metal nanoparticles are used in various branches of industry due to their physicochemical properties. However, with intensive use, most of the waste and by-products from industries and household items, and from weathering of products containing nanoparticles, end up in the waters. These pollutants pose a risk to aquatic organisms, one of which is a change in the expression of various genes. Most of the data that focus on metal nanoparticles and their effects on aquatic organisms are about copper and silver nanoparticles, which is due to their popularity in general industry, but information about other nanoparticulate metals can also be found. This review aims to evaluate gene expression patterns in aquatic organisms by metal nanoparticles, specifying details about the transcription changes of singular genes and, if possible, comparing the changes in the expression of the same genes in different organisms. To achieve this goal, available publications tackling this problem are studied and summarized. Nanometals were found to have a modulatory effect on gene expression in different aquatic organisms. Data show both up-regulation and down-regulation of genes. Nano silver, nano copper, and nano zinc show a regulatory effect on genes involved in inflammation and apoptosis, cell cycle regulation and ROS defense as well as in general stress response and have a negative effect on the expression of genes involved in development. Nano gold, nano titanium, nano zinc, and nano iron tend to elevate the transcripts of genes involved in response to ROS, but also pro-apoptotic genes and down-regulate DNA repair-involved genes and anti-apoptotic-involved genes. Nano selenium showed a rare effect that is protective against harmful effects of other nanoparticles, but also induced up-regulation of stress response genes. This review focuses only on the effects of metal nanoparticles on the expression of various genes of aquatic organisms from different taxonomic groups.
Collapse
Affiliation(s)
- Mateusz Kulasza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
- Correspondence:
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland;
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 71-415 Szczecin, Poland
| |
Collapse
|
33
|
Yalsuyi AM, Hajimoradloo A, Ghorbani R, Jafari VA, Prokić MD, Faggio C. Behavior evaluation of rainbow trout (Oncorhynchus mykiss) following temperature and ammonia alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103648. [PMID: 33812012 DOI: 10.1016/j.etap.2021.103648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In the study, we assessed how acute changes in water temperature and dissolved ammonia concentration can affect the swimming behavior pattern of rainbow trout (Oncorhynchus mykiss). The behavior was analyzed in three different stages: 1) increase stage, (where temperature and ammonia concentration increase during this step, respectively); 2) unchanged stage, (where levels of both factors do not change during this stage); 3) reduction stage, (where ammonia concentration and temperature during this stage are reduced), respectively. The results showed that both factors significantly changed the swimming pattern of the rainbow trout. There were significant differences in swimming parameters (distance from the center, swimming speed, total movement and the average of angular changes of movement) of treated fish in the comparison between treatments, and with the control group. The changes in the swimming pattern of fish in response to physicochemical parameters of water were confirmed to be a good tool in ecotoxicological studies.
Collapse
Affiliation(s)
- Ahmad Mohamadi Yalsuyi
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Rasul Ghorbani
- Department of Aquatic production and Exploitation, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Vally-Allah Jafari
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S, Agata-Messina, Italy.
| |
Collapse
|
34
|
Javanshir Khoei A, Rezaei K. Toxicity of titanium nano-oxide nanoparticles (TiO2) on the pacific oyster, Crassostrea gigas: immunity and antioxidant defence. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1864649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Kiadokht Rezaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
35
|
Rashidian G, Lazado CC, Mahboub HH, Mohammadi-Aloucheh R, Prokić MD, Nada HS, Faggio C. Chemically and Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp ( Cyprinus carpio) Skin Mucus. Int J Mol Sci 2021; 22:ijms22063270. [PMID: 33806904 PMCID: PMC8004943 DOI: 10.3390/ijms22063270] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to compare the effects of commercially available (C) and green synthesized (GS) Zinc oxide nanoparticles (ZnO-NPs) on immunological responses of common carp (Cyprinus carpio) skin mucus. GS ZnO-NPs were generated using Thymus pubescent and characterized by UV–vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Fish (n = 150) were randomly allocated into five groups in triplicate and received a waterborne concentration of 0% (control), 25%, and 50% of LC50 96 h of commercially available (C1 and C2) and green synthesized ZnO-NPs (GS1 and GS2) for 21 days. Results from XRD displayed ZnO-NPs with 58 nm in size and UV-vis DRS, EDX, and FT-IR analysis showed that some functional groups from plant extract bonded to the surface of NPs. The SEM images showed that ZnO-NPs have conical morphology. Acute toxicity study showed a higher dose of LC5096h for green synthesized ZnO-NPs (78.9 mg.L−1) compared to the commercial source (59.95 mg.L−1). The highest activity of lysozyme and alternative complement activity (ACH50) were found in control and GS1 groups. A significant decrease in alkaline phosphatase activity (ALP) was found in C1 and C2 groups compared to other treatments. Protease activity (P) was significantly decreased in the C2 group compared to the control and GS groups. Total immunoglobulin (total Ig) content was the highest in the control. In addition, total Ig in the GS1 group was higher than GS2. The exposure to ZnO-NPs lowered total protein content in all experimental groups when compared to control. Present findings revealed lower induced immunosuppressive effects by green synthesized ZnO-NPs on key parameters of fish skin mucus.
Collapse
Affiliation(s)
- Ghasem Rashidian
- Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 4641776489, Iran
- Correspondence: (G.R.); (C.F.); Tel.:+98-9359487330 (G.R.); +39-090-6765213 (C.F.)
| | - Carlo C. Lazado
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, 1433 Ås, Norway;
| | - Heba H. Mahboub
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | | | - Marko D. Prokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia;
| | - Hend S. Nada
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 S Agata-Messina, Italy
- Correspondence: (G.R.); (C.F.); Tel.:+98-9359487330 (G.R.); +39-090-6765213 (C.F.)
| |
Collapse
|
36
|
Naveira C, Rodrigues N, Santos FS, Santos LN, Neves RAF. Acute toxicity of Bisphenol A (BPA) to tropical marine and estuarine species from different trophic groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115911. [PMID: 33128931 DOI: 10.1016/j.envpol.2020.115911] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
BPA is chemical pollutant of very high concern due to its toxicity to the environment and risks for human health. Environmental concern consists in BPA entrance into aquatic ecosystems due to acute and chronic toxicity to invertebrates and vertebrates. This study aimed to determine acute BPA toxicity to tropical estuarine-marine species of four trophic levels and integrate BPA toxicity values using species sensitivity distribution (SSD) analysis. Our hypothesis is that BPA toxicity increases towards higher trophic levels. Microalga (Tetraselmis sp.), zooplanktonic grazer (Artemia salina), deposit-feeder invertebrate (Heleobia australis), and omnivorous fish (Poecilia vivipara) were chosen as experimental models. Tetraselmis sp. showed the highest BPA tolerance, without a concentration-dependent response. Species sensitivity have increased from A. salina (LC50,96h = 107.2 mg L-1), followed by H. australis (LC50,96h = 11.53.5 mg L-1), to P. vivipara (LC50,96h = 3.5 mg L-1). Despite the toxicity hierarchy towards trophic levels, which partially supported our hypothesis, SSD did not evidence a clear pattern among estuarine-marine trophic groups. Our study disclosed the sensitivity of not yet investigated species to BPA and, in an integrative way, highlighted BPA toxic effects at different trophic levels. Although estimated acute hazardous concentration (HC5 = 1.18 mg L-1) for estuarine and marine species was higher than environmentally relevant concentrations, sublethal adverse effects induced by BPA exposure may lead to unbalances in population levels and consequently affect the ecological functioning of tropical coastal systems.
Collapse
Affiliation(s)
- Clarissa Naveira
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO). Avenida Pasteur, 458 - 307, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| | - Nathália Rodrigues
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO). Avenida Pasteur, 458 - 307, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| | - Fernanda S Santos
- Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO). Avenida Pasteur, 458 - 307, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Graduate Program in Science and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), Rua Mario Santos Braga, S/n, Centro, Niterói, Brazil
| | - Luciano N Santos
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO). Avenida Pasteur, 458 - 307, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Lab. 314A, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil
| | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 458, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil; Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO). Avenida Pasteur, 458 - 307, Urca, Rio de Janeiro, CEP: 22.290-240, Brazil.
| |
Collapse
|
37
|
Dawood MAO, Eweedah NM, Moustafa EM, El-Sharawy ME, Soliman AA, Amer AA, Atia MH. Copper Nanoparticles Mitigate the Growth, Immunity, and Oxidation Resistance in Common Carp (Cyprinus carpio). Biol Trace Elem Res 2020; 198:283-292. [PMID: 32026341 DOI: 10.1007/s12011-020-02068-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
The present investigation aimed to evaluate the influence of copper nanoparticles (Cu-NPs) on the growth, immunity, and oxidation resistance of common carp (3.02 ± 0.01 g, initial mean weight ± S.E.). Five groups of fish fed diets with Cu-NPs at 0, 0.5, 1, 2, and 4 mg/kg for 8 weeks. The results suggested that Cu-NPs in diets increased the growth performance and reduced FCR with linear and quadratic model (P < 0.05). Also, common carp fed Cu-NPs showed increased carcass protein, lipid, and ash contents in a dose-dependent manner (P < 0.05). The Cu accumulation in the carcass, liver, muscle, and gills increased by Cu-NPs and showed the maximum at 4 mg Cu-NPs/kg (P < 0.05). No significant alterations were found in the blood variables due to Cu-NP supplementation except for the Hb, RBCs, total protein, albumin, and globulin levels which showed the highest level in 2 mg/kg (P < 0.05). IgM level, phagocytic, lysozyme, SOD, CAT, and GPX activities were boosted by Cu-NPs with decreased malondialdehyde (MDA) content (P < 0.05). Based on regression analysis, the requirement of dietary Cu-NPs for common carp was estimated to be 2.19 to 2.91 mg/kg diet.
Collapse
Affiliation(s)
- Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Nabil M Eweedah
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Eman Moustafa Moustafa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed E El-Sharawy
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Asem A Amer
- Abbassa, Sharkia, Sakha Aquaculture Research Unit, Central Laboratory for Aquaculture Research,, Kafrelsheikh, Egypt
| | - Mesbah Hagag Atia
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
38
|
Elia AC, Burioli E, Magara G, Pastorino P, Caldaroni B, Menconi V, Dörr AJM, Colombero G, Abete MC, Prearo M. Oxidative stress ecology on Pacific oyster Crassostrea gigas from lagoon and offshore Italian sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139886. [PMID: 32554117 DOI: 10.1016/j.scitotenv.2020.139886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 05/29/2023]
Abstract
Crassostrea gigas is a sentinel species along the Italian coast. In mussels, the levels of oxidative stress biomarkers can be modulated by several environmental pollutants or pathogens and also fluctuate in response to reproductive stages and seasonal changes. In this study, adult Crassostrea gigas were sampled during summer and autumn from two lagoon and two offshore sites along the Adriatic coast of Italy in order to investigate the influence of seasonality on oxidative stress biomarkers. Trace elements load of Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn suggests low contamination for lagoon and offshore sites. Levels of total glutathione, superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase and glutathione S-transferase were analyzed in digestive gland and gills of the Pacific oysters in June, July, September and October. OsHV-1 and Vibrio aestuarianus were detected in lagoon sites, but both pathogens did not affect the biomarkers levels in both tissues. Although several biological responses were found different among the four sites in the same month, principal component analysis revealed similar trend in biomarkers levels between sites during the whole sampling period. On the other hand, a different biochemical pattern through the months emerged, suggesting that the level of oxidative stress biomarkers in both tissues may be related to seasonal progress and biological cycle of oysters sampled from the two lagoons and offshore sites along the Italian coasts of the Mediterranean Sea.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| | | | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Vasco Menconi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | | | - Giorgio Colombero
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
39
|
Duarte GSC, Lehun AL, Leite LAR, Consolin-Filho N, Bellay S, Takemoto RM. Acanthocephalans parasites of two Characiformes fishes as bioindicators of cadmium contamination in two neotropical rivers in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140339. [PMID: 32806342 DOI: 10.1016/j.scitotenv.2020.140339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Studies have demonstrated the role of acanthocephalan as environmental bioindicators. The dynamics in the parasite-host relationship that define the patterns of distribution of trace metals in parasites and, in its host, are extremely variable. In addition, the neotropical region, which is a major maintainer of the biodiversity of fish and parasites, remains little explored in this subject. Therefore, our objective was to analyze and compare the concentration of Cadmium (Cd) in the tissues of Prochilodus lineatus and Serrasalmus marginatus collected from Baía and Paraná rivers, as well as to assess the use of acanthocephalan as environmental bioindicators of pollution and their Cd bioaccumulation capacity. We collected 53 fish, 20 specimens of Prochilodus lineatus from Paraná River and 17 from Baía River, in addition to 16 specimens of Serrasalmus marginatus from Baía River, in September 2017 and March 2018. Tissues of the fish along with their parasites were subjected a Cd concentration analysis by Atomic Absorption Spectroscopy. The results revealed that the parasites had higher concentrations than all the tissues of S. marginatus, P. lineatus from Baía River and Paraná River. The high Cd concentrations in these parasites derived from their bioaccumulation capacity, because of the absorption of nutrients directly from the intestinal content of the fish through the tegument, as well as for the presence of Cd on the surface waters of Praná River floodplain. Besides that, the Coefficient of Spearman Rank Correlation showed that the infrapopulation size seems to affect Cd bioaccumulation in the parasites, smaller infrapopulations demonstrate a higher accumulation capacity compared to the larger ones. With that, we concluded that the two acanthocephalans species analyzed in this study have a good capacity for Cd accumulation, and can be used as accumulation indicators of trace-metal pollution. Accumulation indicators provide important information on the biological availability of pollutants.
Collapse
Affiliation(s)
| | - Atsler Luana Lehun
- Graduate Program of Professional Mastering in Ecology of Continental Aquatic Environments, Maringá State University, Paraná, Brazil
| | | | - Nelson Consolin-Filho
- Graduate Program of Professional Mastering in Management and Regulation of Water Resources (Profwater), Federal Technological University of Paraná (UTFPR), Campus of Campo Mourão, Paraná, Brazil
| | - Sybelle Bellay
- Research Center in Limnology, Ichthyology, and Aquaculture (Nupélia), Maringá State University, Paraná, Brazil
| | - Ricardo Massato Takemoto
- Research Center in Limnology, Ichthyology, and Aquaculture (Nupélia), Maringá State University, Paraná, Brazil
| |
Collapse
|
40
|
Mohsenpour R, Mousavi‐Sabet H, Hedayati A, Rezaei A, Yalsuyi AM, Faggio C. In vitro effects of silver nanoparticles on gills morphology of female Guppy (
Poecilia reticulate
) after a short‐term exposure. Microsc Res Tech 2020; 83:1552-1557. [DOI: 10.1002/jemt.23549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Reza Mohsenpour
- Department of Fisheries, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Hamed Mousavi‐Sabet
- Department of Fisheries, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Aliakbar Hedayati
- Department of Fisheries Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Amir Rezaei
- Department of Fisheries, Faculty of Natural Resources & Marine Sciences Tarbiat Modares University Noor Iran
| | - Ahmad Mohamadi Yalsuyi
- Department of Fisheries Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
41
|
Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KHC, Hsiao CD. Review of Copper and Copper Nanoparticle Toxicity in Fish. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1126. [PMID: 32517348 PMCID: PMC7353310 DOI: 10.3390/nano10061126] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
Abstract
This review summarizes the present knowledge on the toxicity of copper and copper nanoparticles (CuNPs) to various fish species. In previous decades, the excessive usage of metal and metallic nanoparticles has increased significantly, increasing the probability of the accumulation and discharge of metals in various trophic levels of the environment. Due to these concerns, it is important to understand the toxicity mechanisms of metals and metallic nanoparticles before they lead to unhealthy effects on human health. In this review paper, we specifically focus on the effect of metal copper and CuNPs on different fish organs under different physiochemical parameters of various water bodies. Nowadays, different forms of copper have distinctive and specific usages, e.g., copper sulfate is a well-established pesticide which is used to control the growth of algae in lakes and ponds. Deactivating the fungi enzymes prevents fungal spores from germinating. This process of deactivation is achieved via the free cupric ions, which are established as the most toxic forms of copper. Complexes of copper with other ligands may or may not be bioavailable for use in aquatic organisms. On the other hand, CuNPs have shown cost-effectiveness and numerous promising uses, but the toxicity and availability of copper in a nanoparticle form is largely unknown, Additionally, physiochemical factors such as the hardness of the water, alkalinity, presence of inorganic and organic ligands, levels of pH, and temperature in various different water bodies affect the toxicity caused by copper and CuNPs. However, comprehensive knowledge and data regarding the pattern of toxicity for copper metal ions and CuNPs in marine organisms is still limited. In this review, we carry out a critical analysis of the availability of the toxicological profiles of copper metal ions and CuNPs for different fishes in order to understand the toxicity mechanisms of copper and CuNPs. We believe that this review will provide valuable information on the toxicological profile of copper, which will further help in devising safe guidelines for the usage of copper and CuNPs in a sustainable manner.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (N.M.); (T.-R.G.)
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (N.M.); (T.-R.G.)
| | - Boontida Uapipatanakul
- Department of Applied Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi 12110, Thailand;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
42
|
Naeemi AS, Elmi F, Vaezi G, Ghorbankhah M. Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Bioconcentration of Essential and Nonessential Elements in Black Sea Turbot (Psetta Maxima Maeotica Linnaeus, 1758) in Relation to Fish Gender. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7120466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study investigates the influence of gender in the bioconcentration of essential and nonessential elements in different parts of Black Sea turbot (Psetta maxima maeotica) body, from an area considered under high anthropogenic pressure (the Constanta City Black Sea Coastal Area in Romania). A number of 13 elements (Ca, Mg, Na, K, Fe, Zn, Mn, Cu, Ni, Cr, As, Pb and Cd) were measured in various sample types: muscle, stomach, stomach content, intestine, intestine content, gonads, liver, spleen, gills and caudal fin. Turbot adults (4–5 years old) were separated, according to their gender, into two groups (20 males, 20 females, respectively), and a high total number of samples (1200 from both groups) were prepared and analyzed, in triplicate, with Flame Atomic Absorption Spectrometry and High-Resolution Continuum Source Atomic Absorption Spectrometry with Graphite Furnace techniques. The results were statistically analyzed in order to emphasize the bioconcentration of the determined elements in different tissues of wild turbot males vs. females, and also to contribute to an upgraded characterization of the Romanian Black Sea Coast, around Constanta City, in terms of heavy metals pollution. The essential elements Mg and Zn have different roles in the gonads of males and females, as they were the only elements with completely different patterns between the analyzed groups of specimens. The concentrations of studied elements in muscle were not similar with the data provided by literature, suggesting that chemistry of the habitat and food plays a major role in the availability of the metals in the body of analyzed fish species. The gender influenced the bioaccumulation process of all analyzed elements in most tissues since turbot male specimens accumulated higher concentration of metals compared to females. The highest bioaccumulation capacity in terms of Ca, Mg, Na, Ni, As, Zn and Cd was registered in caudal fin, liver and intestine tissues. Also, other elements such as K, Fe, Cu and Mn had the highest bioaccumulation in their muscle, spleen, liver and gills tissues. The concentrations of toxic metals in Black Sea turbot from this study were lower in the muscle samples compared with the studies conducted in Turkey, suggesting that the anthropogenic activity in the studied area did not pose a major impact upon the habitat contamination.
Collapse
|