1
|
Lengrand S, Dubois B, Pesenti L, Debode F, Legrève A. Humic substances increase tomato tolerance to osmotic stress while modulating vertically transmitted endophytic bacterial communities. FRONTIERS IN PLANT SCIENCE 2024; 15:1488671. [PMID: 39628527 PMCID: PMC11611569 DOI: 10.3389/fpls.2024.1488671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024]
Abstract
While humic substances (HS) are recognized for their role in enhancing plant growth under abiotic stress by modulating hormonal and redox metabolisms, a key question remains: how do HS influence the microbiota associated with plants? This study hypothesizes that the effects of HS extend beyond plant physiology, impacting the plant-associated bacterial community. To explore this, we investigated the combined and individual impacts of HS and osmotic stress on tomato plant physiology and root endophytic communities. Tomatoes were grown within a sterile hydroponic system, which allowed the experiment to focus on seed-transmitted endophytic bacteria. Moreover, sequencing the 16S-ITS-23S region of the rrn operon (~4,500 bp) in a metabarcoding assay using the PNA-chr11 clamp nearly eliminated the reads assigned to Solanum lycopersicum and allowed the species-level identification of these communities. Our findings revealed that HS, osmotic stress, and their combined application induce changes in bacterial endophytic communities. Osmotic stress led to reduced plant growth and a decrease in Bradyrhizobium sp., while the application of HS under osmotic stress resulted in increased tomato growth, accompanied by an increase in Frigoribacterium sp., Roseateles sp., and Hymenobacter sp., along with a decrease in Sphingomonas sp. Finally, HS application under non-stress conditions did not affect plant growth but did alter the endophytic community, increasing Hymenobacter sp. and decreasing Sphingomonas sp. This study enhances the understanding of plant-endophyte interactions under stress and HS application, highlighting the significance of the vertically transmitted core microbiome in tomato roots and suggesting new insights into the mode of action of HS that was used as a biostimulant.
Collapse
Affiliation(s)
- Salomé Lengrand
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Benjamin Dubois
- Unit 1, Bioengineering, Walloon Agricultural Research Centre (CRA–W), Gembloux, Belgium
| | - Lena Pesenti
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Frederic Debode
- Unit 1, Bioengineering, Walloon Agricultural Research Centre (CRA–W), Gembloux, Belgium
| | - Anne Legrève
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Mitsigiorgi K, Ntroumpogianni GC, Katsifas EA, Hatzinikolaou DG, Chassapis K, Skampa E, Stefi AL, Christodoulakis NS. Lettuce ( Lactuca sativa L.) Cultures and the Bioactivity of Their Root Microflora Are Affected by Amended Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:1872. [PMID: 38999711 PMCID: PMC11244522 DOI: 10.3390/plants13131872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to highlight the positive effects of various recycled organic substrates on lettuce plants (Lactuca sativa L.) and to promote sustainable waste management practices, contributing to the concept of a circular economy. Over a two-month period, the growth potential and rhizosphere microflora of lettuce plants grown in soil amended with different recycled substrates were investigated. All data were compared, and the effects of the culture substrates were evaluated. All groups containing soil improvers offered a significant increase in the number of leaves per plant and, in two cases, an increase in dry biomass as well as an increase in the concentration of all leaf pigments. Both MDA and H2O2 concentrations were the lowest in two groups containing soil improvers (VG 5% and PLUS 10%). At the end of the culture period, isolation and culture of bacteria from the plant rhizosphere were performed. Different bacterial strains were isolated and tested for the production of antimicrobial agents against six microbial indicators (B. subtilis, E. coli, S. aureus, S. cerevisiae, C. albicans, and P. aeruginosa). The greater percentage of the isolated strains showed an ability to inhibit the growth of the B. subtilis index. Most of the strains with antimicrobial activity were isolated from the soil samples of the plain soil group and the soil amended with the commercial fertilizer. Three of the isolated strains originating from the Ginagro 5% group are multiproducers as they inhibit the growth of three microbial indicators or more.
Collapse
Affiliation(s)
- Konstantina Mitsigiorgi
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Georgia C Ntroumpogianni
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Efstathios A Katsifas
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Dimitris G Hatzinikolaou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Konstantinos Chassapis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Elisavet Skampa
- Section of Historical Geology-Paleontology, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Athens, Greece
| | - Aikaterina L Stefi
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| | - Nikolaos S Christodoulakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
| |
Collapse
|
3
|
Abu-Ria ME, Elghareeb EM, Shukry WM, Abo-Hamed SA, Ibraheem F. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. BMC PLANT BIOLOGY 2024; 24:514. [PMID: 38849739 PMCID: PMC11157776 DOI: 10.1186/s12870-024-05184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Drought is a major determinant for growth and productivity of all crops, including cereals, and the drought-induced detrimental effects are anticipated to jeopardize world food security under the ongoing global warming scenario. Biostimulants such as humic acid (HA) can improve drought tolerance in many cereals, including maize and sorghum. These two plant species are genetically related; however, maize is more susceptible to drought than sorghum. The physiological and biochemical mechanisms underlying such differential responses to water shortage in the absence and presence of HA, particularly under field conditions, are not fully understood. RESULTS Herein, the effects of priming maize and sorghum seeds in 100 mg L-1 HA on their vegetative growth and physiological responses under increased levels of drought (100%, 80%, and 60% field capacity) were simultaneously monitored in the field. In the absence of HA, drought caused 37.0 and 58.7% reductions in biomass accumulation in maize compared to 21.2 and 32.3% in sorghum under low and high drought levels, respectively. These responses were associated with differential retardation in overall growth, relative water content (RWC), photosynthetic pigments and CO2 assimilation in both plants. In contrast, drought increased root traits as well as H2O2, malondialdehyde, and electrolyte leakage in both species. HA treatment significantly improved the growth of both plant species under well-watered and drought conditions, with maize being more responsive than sorghum. HA induced a 29.2% increase in the photosynthetic assimilation rate in maize compared to 15.0% in sorghum under high drought level. The HA-promotive effects were also associated with higher total chlorophyll, stomatal conductance, RWC, sucrose, total soluble sugars, total carbohydrates, proline, and total soluble proteins. HA also reduced the drought-induced oxidative stress via induction of non-enzymic and enzymic antioxidants at significantly different extents in maize and sorghum. CONCLUSION The current results identify significant quantitative differences in a set of critical physiological biomarkers underlying the differential responses of field-grown maize and sorghum plants against drought. They also reveal the potential of HA priming as a drought-alleviating biostimulant and as an effective approach for sustainable maize and sorghum production and possibly other crops in drought-affected lands.
Collapse
Affiliation(s)
- Mohamed E Abu-Ria
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Eman M Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Wafaa M Shukry
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Samy A Abo-Hamed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Farag Ibraheem
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Biology and Chemistry Department, Al-Qunfodah University College, Umm Al-Qura University, Al-Qunfodah, 21912, Saudi Arabia
| |
Collapse
|
4
|
Lamar RT, Gralian J, Hockaday WC, Jerzykiewicz M, Monda H. Investigation into the role of carboxylic acid and phenolic hydroxyl groups in the plant biostimulant activity of a humic acid purified from an oxidized sub-bituminous coal. FRONTIERS IN PLANT SCIENCE 2024; 15:1328006. [PMID: 38751833 PMCID: PMC11095639 DOI: 10.3389/fpls.2024.1328006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2024]
Abstract
Introduction Humic substances (HS) are increasingly being applied as crop plant biostimulants because they have been shown to increase plant productivity, especially under environmentally stressful conditions. There has been intense interest in elucidating the HS molecular structures responsible for eliciting the plant biostimulant response (PBR). The polar and weakly acidic carboxylic (COOH) and phenolic hydroxyl (ArOH) functional groups play major roles in the acid nature, pH dependent solubilities, conformation, and metal- and salt-binding capabilities of HS. Reports on the role played by these groups in the PBR of HS found growth parameters being both positively and negatively correlated with COOH and ArOH functionalities. Materials and methods To investigate the role of COOH and ArOH in HS biostimulant activity we used a humic acid (HA), purified from an oxidized sub bituminous coal to prepare HAs with COOH groups methylated (AHA), ArOH groups acetylated (OHA), and with both COOH and ArOH groups methylated (FHA). The original HA was designated (NHA). The four HAs were subjected to elemental, 13C-NMR, FTIR, and EPR analyses and their antioxidant properties were assessed using the trolox equivalents antioxidant capacity assay (TEAC). 13C-NMR and FTIR analysis revealed significant alkylation/acetylation. To determine the effects of alkylating/acetylating these functional groups on the HA elicited PBR, the HAs were evaluated in a plant bioassay on corn (Zea mays L.) seedling under nutrient and non-nutrient stressed conditions. Treatments consisted of the four HAs applied to the soil surface at a concentration of 80 mg C L-1, in 50 ml DI H2O with the control plants receiving 50ml DI H2O. Results The HA-treated plants, at both fertilization rates, were almost always significantly larger than their respective control plants. However, the differences produced under nutrient stress were always much greater than those produced under nutrient sufficiency, supporting previous reports that HA can reduce the effects of stress on plant growth. In addition, for the most part, the HAs with the alkylated/acetylated groups produced plants equal to or larger than plants treated with NHA. Conclusion These results suggests that COOH and ArOH groups play a limited or no role in the HA elicited PBR. Alternatively, the HA pro-oxidant to antioxidant ratio may play a role in the magnitude of the biostimulant response.
Collapse
Affiliation(s)
| | - Jason Gralian
- R&D Department, Huma, Inc., Gilbert, AZ, United States
| | | | | | - Hiarhi Monda
- R&D Department, Huma, Inc., Gilbert, AZ, United States
| |
Collapse
|
5
|
Hernández-Soto I, González-García Y, Juárez-Maldonado A, Hernández-Fuentes AD. Impact of Argemone mexicana L. on tomato plants infected with Phytophthora infestans. PeerJ 2024; 12:e16666. [PMID: 38188144 PMCID: PMC10771083 DOI: 10.7717/peerj.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024] Open
Abstract
Background Fungal diseases can cause significant losses in the tomato crop. Phytophthora infestans causes the late blight disease, which considerably affects tomato production worldwide. Weed-based plant extracts are a promising ecological alternative for disease control. Methods In this study, we analyzed the plant extract of Argemone mexicana L. using chromatography-mass spectrometry analysis (GC-MS). We evaluated its impact on the severity of P. infestans, as well as its effect on the components of the antioxidant defense system in tomato plants. Results The extract from A. mexicana contains twelve compounds most have antifungal and biostimulant properties. The findings of the study indicate that applying the A. mexicana extract can reduce the severity of P. infestans, increase tomato fruit yield, enhance the levels of photosynthetic pigments, ascorbic acid, phenols, and flavonoids, as well as decrease the biosynthesis of H2O2, malondialdehyde (MDA), and superoxide anion in the leaves of plants infected with this pathogen. These results suggest that using the extract from A. mexicana could be a viable solution to control the disease caused by P. infestans in tomato crop.
Collapse
Affiliation(s)
- Iridiam Hernández-Soto
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Tulancingo de Bravo, Hidalgo, Mexico
| | - Yolanda González-García
- Centro de Investigación Regional Noreste, Campo Experimental Todos Santos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Emiliano Zapata, La Paz, B.C.S, Mexico
| | - Antonio Juárez-Maldonado
- Universidad Autónoma Agraria Antonio Narro, Departamento de Botánica, Saltillo, Coahuila, Mexico
| | - Alma Delia Hernández-Fuentes
- Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Tulancingo de Bravo, Hidalgo, Mexico
| |
Collapse
|
6
|
Asif A, Ali M, Qadir M, Karthikeyan R, Singh Z, Khangura R, Di Gioia F, Ahmed ZFR. Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1276117. [PMID: 38173926 PMCID: PMC10764035 DOI: 10.3389/fpls.2023.1276117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Plants experience constant exposed to diverse abiotic stresses throughout their growth and development stages. Given the burgeoning world population, abiotic stresses pose significant challenges to food and nutritional security. These stresses are complex and influenced by both genetic networks and environmental factors, often resulting in significant crop losses, which can reach as high as fifty percent. To mitigate the effects of abiotic stresses on crops, various strategies rooted in crop improvement and genomics are being explored. In particular, the utilization of biostimulants, including bio-based compounds derived from plants and beneficial microbes, has garnered considerable attention. Biostimulants offer the potential to reduce reliance on artificial chemical agents while enhancing nutritional efficiency and promoting plant growth under abiotic stress condition. Commonly used biostimulants, which are friendly to ecology and human health, encompass inorganic substances (e.g., zinc oxide and silicon) and natural substances (e.g., seaweed extracts, humic substances, chitosan, exudates, and microbes). Notably, prioritizing environmentally friendly biostimulants is crucial to prevent issues such as soil degradation, air and water pollution. In recent years, several studies have explored the biological role of biostimulants in plant production, focusing particularly on their mechanisms of effectiveness in horticulture. In this context, we conducted a comprehensive review of the existing scientific literature to analyze the current status and future research directions concerning the use of various biostimulants, such as plant-based zinc oxide, silicon, selenium and aminobutyric acid, seaweed extracts, humic acids, and chitosan for enhancing abiotic stress tolerance in crop plants. Furthermore, we correlated the molecular modifications induced by these biostimulants with different physiological pathways and assessed their impact on plant performance in response to abiotic stresses, which can provide valuable insights.
Collapse
Affiliation(s)
- Anam Asif
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muslim Qadir
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Balochistan, Pakistan
| | - Rajmohan Karthikeyan
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Ravjit Khangura
- Department of Primary Industries and Regional Development, Government of Western Australia, Kensington, WA, Australia
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural Sciences, The Pennsylvania State University, College State, PA, United States
| | - Zienab F. R. Ahmed
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
8
|
Tikoria R, Ohri P. Application of neem waste vermicompost in compensating nematode induced stress and upregulating physiological markers of tomato plants under glass house conditions after 10 days of exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30324-y. [PMID: 37864696 DOI: 10.1007/s11356-023-30324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Farming, food processing, animal husbandry and other agro-based activities contribute to global environmental degradation by producing millions of tons of organic and inorganic solid waste. In terms of sustainable agriculture, agricultural waste management and conversion into useful products are essential. In addition, plants are facing various kinds of biotic stress, which ultimately affects their defense system. Altered defense systems in plants ultimately lead to the death of plants and a reduction in crop production. The present study is designed to keep the abovementioned fact in mind, which mainly focuses on the reuse of agricultural waste and its application to the antioxidant potential and structural components of tomato plants during nematode stress. In the present study, neem leaves were collected and mixed with cattle dung for the preparation of vermicompost. Then, tomato seeds were pre-treated with vermicompost extract before being germinated in earthen pots. After germination, they were transplanted to separate pots and inoculated with freshly hatched juveniles of Meloidogyne incognita. The experiments were conducted for 10 days under glass house conditions, and after that, plants were harvested and various physiological (antioxidant capacity, percent electrolyte leakage) and structural markers (carbohydrate content, Fourier transform infrared spectroscopy) were analyzed. Results revealed that all physico-chemical properties make vermicompost superior as compared to soil and pre-compost material. Further, nematode stress leads to altered physiological and structural markers as compared to uninfected seedlings. However, treatment with vermicompost significantly increases carbohydrate content and antioxidative capacity in a concentration dependent manner. In addition, electrolyte leakage was found to be decrease with an increase in the concentration of vermicompost. All these findings conclude that vermicompost has strong potential to limit the damage caused by nematodes and boost the antioxidant potential of the host plants. Further, this study provides strong evidence for using vermicompost as an eco-friendly alternative to chemical nematicides and a potential strategy for agricultural waste management. This is the first study in which the tomato plant's structural and physiological markers were assessed during nematode stress after being supplemented with vermicompost under glass house conditions for an initial 10 days of nematode exposure.
Collapse
Affiliation(s)
- Raman Tikoria
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
- Department of Zoology, School of Bio-engineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
9
|
Santoro V, Della Lucia MC, Francioso O, Stevanato P, Bertoldo G, Borella M, Ferrari E, Zaccone C, Schiavon M, Pizzeghello D, Nardi S. Phosphorus Acquisition Efficiency and Transcriptomic Changes in Maize Plants Treated with Two Lignohumates. PLANTS (BASEL, SWITZERLAND) 2023; 12:3291. [PMID: 37765455 PMCID: PMC10535022 DOI: 10.3390/plants12183291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Lignohumates are increasing in popularity in agriculture, but their chemistry and effects on plants vary based on the source and processing. The present study evaluated the ability of two humates (H1 and H2) to boost maize plant performance under different phosphorus (P) availability (25 and 250 μM) conditions in hydroponics, while understanding the underlying mechanisms. Humates differed in chemical composition, as revealed via elemental analysis, phenol and phytohormone content, and thermal and spectroscopic analyses. H1 outperformed H2 in triggering plant responses to low phosphorus by enhancing phosphatase and phytase enzymes, P acquisition efficiency, and biomass production. It contained higher levels of endogenous auxins, cytokinins, and abscisic acid, likely acting together to stimulate plant growth. H1 also improved the plant antioxidant capacity, thus potentially increasing plant resilience to external stresses. Both humates increased the nitrogen (N) content and acted as biostimulants for P and N acquisition. Consistent with the physiological and biochemical data, H1 upregulated genes involved in growth, hormone signaling and defense in all plants, and in P recycling particularly under low-P conditions. In conclusion, H1 showed promising potential for effective plant growth and nutrient utilization, especially in low-P plants, involving hormonal modulation, antioxidant enhancement, the stimulation of P uptake and P-recycling mechanisms.
Collapse
Affiliation(s)
- Veronica Santoro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Maria Cristina Della Lucia
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 40, 40127 Bologna, Italy;
| | - Piergiorgio Stevanato
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Giovanni Bertoldo
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Matteo Borella
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Erika Ferrari
- Dipartimento di Scienze Chimiche e Geologiche, University of Modena and Reggio Emilia, Via Università 4, 41121 Modena, Italy;
| | - Claudio Zaccone
- Dipartimento di Biotecnologie, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michela Schiavon
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy;
| | - Diego Pizzeghello
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (M.C.D.L.); (P.S.); (G.B.); (M.B.); (D.P.); (S.N.)
| |
Collapse
|
10
|
Silva RM, Peres ANA, Peres LEP, Olivares FL, Sangi S, Canellas NA, Spaccini R, Cangemi S, Canellas LP. Humic Substances Isolated from Recycled Biomass Trigger Jasmonic Acid Biosynthesis and Signalling. PLANTS (BASEL, SWITZERLAND) 2023; 12:3148. [PMID: 37687394 PMCID: PMC10490330 DOI: 10.3390/plants12173148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.
Collapse
Affiliation(s)
- Rakiely M. Silva
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Alice N. A. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Lázaro E. P. Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 05508-090, Brazil
| | - Fábio L. Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Sara Sangi
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Natália A. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Silvana Cangemi
- Centro Interdipartimentale di Ricerca CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Luciano P. Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Ave Alberto Lamego 2000, Campos dos Goytacazes 28013-602, Brazil
| |
Collapse
|
11
|
Iqbal W, Ayyub CM, Jahangir MM, Ahmad R. Effect of foliar application of bio-stimulants on growth, yield and nutritional quality of broccoli. BRAZ J BIOL 2023; 83:e263302. [PMID: 37493781 DOI: 10.1590/1519-6984.263302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/17/2022] [Indexed: 07/27/2023] Open
Abstract
Broccoli is one of important cole crop grown all over the world due to its unique nutritional profile consumed fresh as well as processed. It contains a wide range of nutrients, vitamins, minerals and specific anti-cancer compounds such as glucosinolates. Broccoli cultivation in Pakistan is increasing rapidly, however, till now there is no standardized cropping technology for broccoli cultivation under local climate. Considering research gap (lack of suitable varieties, poor growth, and unavailability of optimized crop technology), trial was conducted at Vegetable research area, Institute of Horticultural Sciences, University of Agriculture, Faisalabad to evaluate the impact of bio-stimulants on different broccoli cultivars under local climatic conditions. The set of experimental treatments was laid out in Randomized Complete Block Design (RCBD) with three replications. Pre-harvest application of Isabion and Seaweed extract significantly enhanced the plant height (11%), dry weight (4%), leaf area (7%), and yield plant-1 (5%). Moreover, Isabion and seaweed extract application led to the increase in antioxidant enzymes i.e., superoxide dismutase (18%), peroxidase (38%) and catalase (12%). In crux, the foliar application of bio-stimulants (Isabion and seaweed extract) on broccoli enhanced the growth, yield, and contents of antioxidant enzymes.
Collapse
Affiliation(s)
- W Iqbal
- University of Agriculture, Institute of Horticultural Sciences, Faisalabad, Pakistan
| | - C M Ayyub
- University of Agriculture, Institute of Horticultural Sciences, Faisalabad, Pakistan
| | - M M Jahangir
- University of Agriculture, Institute of Horticultural Sciences, Faisalabad, Pakistan
| | - R Ahmad
- University of Agriculture, Department of Agronomy, Faisalabad, Pakistan
| |
Collapse
|
12
|
Yang F, Yuan Y, Liu Q, Zhang X, Gai S, Jin Y, Cheng K. Artificial humic acid promotes growth of maize seedling under alkali conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121588. [PMID: 37028787 DOI: 10.1016/j.envpol.2023.121588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Salinization of cropland is one of the major abiotic stresses affecting global agricultural sustainability, posing a serious threat to agricultural productivity and food security. Application of artificial humic acid (A-HA) as plant biostimulants has been increasingly attracting farmers and researchers. However, its regulation of seed germination and growth under alkali stress has rarely received attention. The purpose of this study was to investigate the response of maize (Zea mays L.) seed germination and seedling growth after the addition of A-HA. The effects of A-HA on seed germination, seedling growth, chlorophyll contents and osmoregulation substance under black and saline soil conditions were studied by soaking maize in solutions with and without various concentrations of A-HA. Artificial humic acid treatments significantly increased the seed germination index and dry weight of seedlings. The effects of maize root in absence and presence of A-HA under alkali stress were also evaluated using transcriptome sequencing. GO and KEGG analyzes were performed on differentially expressed genes, and the reliability of transcriptome data was verified by qPCR analysis. Results showed that A-HA significantly activated phenylpropanoid biosynthesis, oxidative phosphorylation pathways and plant hormone signal transduction. Moreover, Transcription factor analysis revealed that A-HA induced the expression of several transcription factors under alkali stress which had a regulatory effect on the alleviation of alkali damage in the root system. Overall, our results suggested that soaking seeds with A-HA can alleviate alkali accumulation and toxicity in maize, constituting a simple and effective strategy to mitigate saline toxicity. These results will provide new insights for the application of A-HA in management to reduce alkali-caused crop loss.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Qingyu Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
13
|
Ore OT, Adeola AO, Fapohunda O, Adedipe DT, Bayode AA, Adebiyi FM. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59106-59127. [PMID: 37022547 DOI: 10.1007/s11356-023-26809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.
Collapse
Affiliation(s)
- Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, 001, Ondo State, Nigeria
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Demilade T Adedipe
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ajibola A Bayode
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, Ede, PMB 230, Osun State, Nigeria
| | - Festus M Adebiyi
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
- Management and Toxicology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, 002, Nigeria
| |
Collapse
|
14
|
Verrillo M, Koellensperger G, Puehringer M, Cozzolino V, Spaccini R, Rampler E. Evaluation of Sustainable Recycled Products to Increase the Production of Nutraceutical and Antibacterial Molecules in Basil Plants by a Combined Metabolomic Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:513. [PMID: 36771598 PMCID: PMC9919386 DOI: 10.3390/plants12030513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND An important goal of modern medicine is the development of products deriving from natural sources to improve environmental sustainability. In this study, humic substances (HS) and compost teas (CTs) extracted from artichoke (ART) and coffee grounds (COF) as recycled biomasses were employed on Ocimum basilicum plants to optimize the yield of specific metabolites with nutraceutical and antibacterial features by applying sustainable strategies. METHODS The molecular characteristics of compost derivates were elucidated by Nuclear Magnetic Resonance spectroscopy to investigate the structure-activity relationship between organic extracts and their bioactive potential. Additionally, combined untargeted and targeted metabolomics workflows were applied to plants treated with different concentrations of compost extracts. RESULTS The substances HS-ART and CT-COF improved both antioxidant activity (TEAC values between 39 and 55 μmol g-1) and the antimicrobial efficacy (MIC value between 3.7 and 1.3 μg mL-1) of basil metabolites. The metabolomic approach identified about 149 metabolites related to the applied treatments. Targeted metabolite quantification further highlighted the eliciting effect of HS-ART and CT-COF on the synthesis of aromatic amino acids and phenolic compounds for nutraceutical application. CONCLUSIONS The combination of molecular characterization, biological assays, and an advanced metabolomic approach, provided innovative insight into the valorization of recycled biomass to increase the availability of natural compounds employed in the medical field.
Collapse
Affiliation(s)
- Mariavittoria Verrillo
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marlene Puehringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Vincenza Cozzolino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Riccardo Spaccini
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
- Centro Interdipartimentale di Ricerca per la Risonanza Magnetica Nucleare per l’Ambiente, l’Agroalimentare, ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
15
|
Olk DC, Dinnes DL, Hatfield RD, Scoresby JR, Darlington JW. Variable humic product effects on maize structural biochemistry across annual weather patterns and soil types in two Iowa (U.S.A.) production fields. FRONTIERS IN PLANT SCIENCE 2023; 13:1058141. [PMID: 36714749 PMCID: PMC9878286 DOI: 10.3389/fpls.2022.1058141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Agronomic benefits of humic product application to crops are receiving increasing attention, though underlying biochemical changes remain unexplored, especially in field settings. In this study, maize (Zea mays L.) concentrations of 11 phenol and five carbohydrate monomers were determined in whole plant stover (four growing seasons) and roots (two growing seasons) at physiological maturity for two rainfed fields in Iowa (USA) having humic product applications. Stover and root tissues tended toward greater phenol concentrations in a drier upland transect but greater carbohydrate concentrations in a wetter lowland transect. Two humic treatments further accentuated these trends in upland roots. Their phenol content increased significantly with humic application in the droughtier season of root sampling (2013). Phenol increases above the unamended control averaged 20% for each monomer. Total phenols increased above the control by 12% and 19% for the two humic treatments. Five carbohydrate monomers in the upland roots did not respond to humic application. In the second year of root sampling (2014), which had abundant rainfall, upland root phenols did not respond substantively to humic application, but root carbohydrates increased on average by 11 or 20% for the two humic treatments compared to the control, reaching significance (P< 0.10) in 7 of 10 cases. Upland stover phenol concentrations responded differently to humic product application in each of four years, ranging from numeric increases in the droughtiest year (2012) to significant decreases with abundant rainfall (2014). In the lowland transect, root phenols and carbohydrates and stover phenols responded inconsistently to humic application in four years. Stover carbohydrates did not respond consistently to humic application in either transect. The phenols that were more responsive to humic application or to droughtier conditions included p-coumaric acid and syringaldehyde, which are heavily involved in late-season maize lignification. In summary, humic product application further promoted root lignification, a natural response to drought. Yet under non-drought conditions it promoted root carbohydrate production. Carbohydrate production might be the intrinsic plant response to humic product application in stress-free conditions. These results indicate complex interactions in field conditions between plant biochemistry, environmental signals, and the humic product.
Collapse
Affiliation(s)
- D. C. Olk
- U.S. Department of Agriculture – Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - D. L. Dinnes
- U.S. Department of Agriculture – Agricultural Research Service, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - R. D. Hatfield
- U.S. Department of Agriculture – Agricultural Research Service, U.S. Dairy Forage Research Center, Madison, WI, United States
- Retired, Princeton, WI, United States
| | - J. R. Scoresby
- Minerals Technologies, Inc., New York, NY, United States
- Retired, Homedale, ID, United States
| | | |
Collapse
|
16
|
Ji H, Yang G, Zhang X, Zhong Q, Qi Y, Wu K, Shen T. Regulation of salt tolerance in the roots of Zea mays by L-histidine through transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1049954. [PMID: 36518514 PMCID: PMC9742451 DOI: 10.3389/fpls.2022.1049954] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
Soil salinization is an important worldwide environmental problem and the main reason to reduce agricultural productivity. Recent findings suggested that histidine is a crucial residue that influences the ROS reduction and improves the plants' tolerance to salt stress. Herein, we conducted experiments to understand the underlying regulatory effects of histidine on maize root system under salt stress (100 mM NaCl solution system). Several antioxidant enzymes were determined. The related expressed genes (DEGs) with its pathways were observed by Transcriptome technologies. The results of the present study confirmed that histidine can ameliorate the adverse effects of salt stress on maize root growth. When the maize roots exposed to 100 mM NaCl were treated with histidine, the accumulation of superoxide anion radicals, hydrogen peroxide, and malondialdehyde, and the content of nitrate nitrogen and ammonium nitrogen were significantly reduced; while the activities of superoxide dismutase, peroxidase, catalase, nitrate reductase, glutamine synthetase, and glutamate synthase were significantly increased. Transcriptome analysis revealed that a total of 454 (65 up-regulated and 389 down-regulated) and 348 (293 up-regulated and 55 down-regulated) DEGs were observed when the roots under salt stress were treated with histidine for 12 h and 24 h, respectively. The pathways analysis of those DEGs showed that a small number of down-regulated genes were enriched in phytohormone signaling and phenylpropanoid biosynthesis at 12 h after histidine treatment, and the DEGs involved in the phytohormone signaling, glycolysis, and nitrogen metabolism were significantly enriched at 24 h after treatment. These results of gene expression and enzyme activities suggested that histidine can improve the salt tolerance of maize roots by enriching some DEGs involved in plant hormone signal transduction, glycolysis, and nitrogen metabolism pathways.
Collapse
|
17
|
Canellas NA, Olivares FL, da Silva RM, Canellas LP. Changes in Metabolic Profile of Rice Leaves Induced by Humic Acids. PLANTS (BASEL, SWITZERLAND) 2022; 11:3261. [PMID: 36501300 PMCID: PMC9739522 DOI: 10.3390/plants11233261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The use of humic substances in agriculture as a biostimulant emerged as one of the promising methods to promote sustainable production. Different molecular, biochemical, and physiological processes are triggered, resulting in nutrient efficiency use and protection against abiotic stress. Understanding plant changes promoted by humic substances is essential for innovative and tailored biostimulation technologies. Cell metabolites are the final target of the response chain, and the metabolomic approach can be helpful in unveiling pathways related to plant response. This study aimed to evaluate a global metabolic alteration of rice leaves induced by humic acids (HA) applied in a hydroponics system. Using 1H NMR and GC-TOF/MS analysis, we observed a significant decrease in all main metabolites classes in leaves treated with HA, including lipids, organic acids, amino acids, and carbohydrates. Metabolites in higher concentrations in HA-treated plants are candidates as markers of HA bioactivity, including amino acids, intermediates of tricarboxylic acid cycle, and lipids, and aromatic compounds related to plant-stress response.
Collapse
|
18
|
Sarabi B, Ghaderi N, Ghashghaie J. Light-emitting diode combined with humic acid improve the nutritional quality and enzyme activities of nitrate assimilation in rocket (Eruca sativa (Mill.) Thell.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:11-24. [PMID: 35939984 DOI: 10.1016/j.plaphy.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Belonging to the Brassicaceae family, rocket (Eruca sativa (Mill.) Thell.), is considered to be a nitrate-accumulating leafy vegetable. Many studies show that light-emitting diode (LED) lights can be a suitable tool to decrease anti-nutritional compounds (e.g., nitrate (and enhance antioxidant and nutritional quality for phytochemical-rich vegetable production. The positive influence of humic acid on health-promoting compounds in different crops is also well documented. This study aimed to investigate the effects of supplemental LED lights of various spectral compositions, namely 25-100% red, 25-100% blue, and 100% white, as well as their combination with humic acid on the physiological and biochemical responses of rocket plants. ANOVA results showed that almost all the measured traits were significantly affected by LED and humic acid treatments. Generally, LED combined with humic acid improved the accumulation of nutritional compounds (e.g., polyphenols, flavonoid, ascorbic acid, carbohydrate, tannin), increased the activity of key enzymes involved in nitrogen metabolism (e.g., nitrate reductase, nitrite reductase, and glutamine synthetase), and lowered nitrate and ammonium concentrations. The results of principal component analysis indicated that the combination of LED lights, regardless of the spectra, with humic acid was the most effective treatment to enhance the nutritional value and activity of enzymes involved in nitrate assimilation. In sum, these findings may be used as a reference in rocket production for supplemental LED light optimization and its combination with humic acid.
Collapse
Affiliation(s)
- Behrooz Sarabi
- Department of Horticultural Sciences and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran; Research Center of Medicinal Plants Breeding and Development, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Nasser Ghaderi
- Department of Horticultural Sciences and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Jaleh Ghashghaie
- Laboratoire D'Ecologie, Systématique et Evolution (ESE), Université de Paris-Sud, CNRS, AgroParisTech, Université de Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
19
|
Effects of Chlorella extracts on growth of Capsicum annuum L. seedlings. Sci Rep 2022; 12:15455. [PMID: 36104483 PMCID: PMC9474868 DOI: 10.1038/s41598-022-19846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The long-term application of chemical fertilizers has caused to the farmland soil compaction, water pollution, and reduced the quality of vegetable to some extent. So, its become a trend in agriculture to find new bio-fertilizers. Chlorella extract is rich in amino acids, peptides, nucleic acids, growth hormones, potassium, calcium, magnesium, iron, zinc ions, vitamin E, B1, B2, C, B6, folic acid, free biotin and chlorophyll. Chlorella extract can promote biological growth, mainly by stimulating the speed of cell division, thereby accelerating the proliferation rate of cells and playing a role in promoting plant growth. Whether Chlorella extract can be used to improve the growth of pepper (Capsicum annuum), needs to be verified. In current study, a pepper variety 'Chao Tian Jiao' was used as experiment material, by determining the changes of the related characteristics after spraying the seedlings with Chlorella extract, and its effect on growth of Capsicum annuum plants was investigated. The results showed that the Chlorella extract significantly increased plant height of pepper seedlings (treatment: 32.2 ± 0.3 cm; control: 24.2 ± 0.2 cm), stem diameter (treatment: 0.57 ± 0.02 cm; control: 0.41 ± 0.03 cm) and leaf area (treatment: 189.6 ± 3.2 cm2; control: 145.8 ± 2.5 cm2). Particularly, the pepper seedlings treated with Chlorella extract, developed the root system in better way, significantly increased the chlorophyll a, and the activities of SOD, POD and CAT enzymes were also improved significantly. Based on our results, we can speculate that it is possible to improve the growth of Capsicum annuum seedlings and reduce the application of chemical fertilizers in pepper production by using Chlorella extract.
Collapse
|
20
|
Ali EF, Al-Yasi HM, Issa AA, Hessini K, Hassan FAS. Ginger Extract and Fulvic Acid Foliar Applications as Novel Practical Approaches to Improve the Growth and Productivity of Damask Rose. PLANTS (BASEL, SWITZERLAND) 2022; 11:412. [PMID: 35161393 PMCID: PMC8838052 DOI: 10.3390/plants11030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Plant biostimulants (BIOs) have been identified as among the best agricultural practices over the past few decades. Ginger extract (GE) and fulvic acid (FA) are a new family of multifunctional BIOs that positively affect development processes in plants. However, the underlying mechanisms that influence these development processes are still unknown. The objective of this study was to determine how GE and FA affect the plant growth and productivity in damask rose. Furthermore, the mechanisms of these BIOs that regulate the performance of this plant were investigated. Damask rose plants were foliar-sprayed with GE (5, 10 and 15 mg L-1) or FA (1, 3 and 5 g L-1), while control plants were sprayed with tap water. The results showed that GE or FA foliar applications enhanced plant height and branch number much more than the control; however, FA treatment was more effective than GE. Intriguingly, flower number, flower yield, relative water content, and total chlorophyll content were all improved by either GE or FA, paying attention to reducing the blind shoot number per plant. Relative to the control, foliar application with 15 mg L-1 GE or 3 mg L-1FA increased the flower number by 16.11% and 19.83% and the flower yield per hectare by 40.53% and 52.75%, respectively. Substantial enhancements in volatile oil content and oil yield were observed due to GE and FA treatments, especially with the highest concentrations of both BIOs. The treatments of GE and FA considerably improved the total soluble sugars, total phenolic content, total anthocyanin content, and total carotenoid content, more so with FA. Additionally, the contents of N, P, K, Mg, Fe, and Zn elements were also enhanced by applying either GE or FA, especially at higher levels of both BIOs. In sum, our findings illuminate the potential functions of exogenous application of GE and FA in improving the growth, flower yield, and volatile oil yield in damask rose through enhancing the phytochemical and nutrient profiles. Applications of GE and FA can, thus, be a promising approach for enhancing the productivity of damask rose.
Collapse
Affiliation(s)
- Esmat F. Ali
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.-Y.); (A.A.I.); (K.H.)
| | - Hatim M. Al-Yasi
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.-Y.); (A.A.I.); (K.H.)
| | - Ahmed A. Issa
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.-Y.); (A.A.I.); (K.H.)
| | - Kamel Hessini
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.-Y.); (A.A.I.); (K.H.)
| | - Fahmy A. S. Hassan
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
21
|
Leonardites Rich in Humic and Fulvic Acids Had Little Effect on Tissue Elemental Composition and Dry Matter Yield in Pot-Grown Olive Cuttings. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of humic substances in agriculture has increased in recent years, and leonardite has been an important raw material in the manufacture of commercial products rich in humic and fulvic acids. Leonardite-based products have been used to improve soil properties and to help plants cope with abiotic and biotic stresses. In this study, the effects of two commercial leonardites and an organic compost, in addition to a control treatment, were assessed for pot-grown olive plants over a period of fourteen months on soil properties, tissue elemental composition and dry matter yield (DMY). Three organic amendments were applied at single and double rates of that set by the manufacturer. The study was arranged in two experiments: one containing the seven treatments mentioned above and the other containing the same treatments supplemented with mineral nitrogen (N), phosphorus (P) and potassium (K) fertilization. Overall, organic compost increased soil organic carbon by ~8% over the control. In the experiment without NPK supplementation, N concentrations in shoots and P in roots were the highest for the compost application (leaf N 12% and root P 32% higher than in the control), while in the experiment with NPK supplementation, no significant differences were observed between treatments. Total DMY was ~10% higher in the set of treatments with NPK in comparison to treatments without NPK. Leonardites did not affect significantly any measured variables in comparison to the control. In this study, a good management of the majority of environmental variables affecting plant growth may have reduced the possibility of obtaining a positive effect on plant nutritional status and growth from the use of commercial leonardites. The leonardites seemed to have caused a slight effect on biological N immobilization. This is not necessarily an advantage or a drawback; it is rather a feature that must be understood to help farmers make better use of these products.
Collapse
|
22
|
Sani MNH, Yong JWH. Harnessing Synergistic Biostimulatory Processes: A Plausible Approach for Enhanced Crop Growth and Resilience in Organic Farming. BIOLOGY 2021; 11:biology11010041. [PMID: 35053039 PMCID: PMC8773105 DOI: 10.3390/biology11010041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Demand for organically grown crops has risen globally due to its healthier and safer food products. From a sustainability perspective, organic farming offers an eco-friendly cultivation system that minimizes agrochemicals and producing food with little or no environmental footprint. However, organic agriculture’s biggest drawback is the generally lower and variable yield in contrast to conventional farming. Compatible with organic farming, the selective use of biostimulants can close the apparent yield gap between organic and conventional cultivation systems. A biostimulant is defined as natural microorganisms (bacteria, fungi) or biologically active substances that are able to improve plant growth and yield through several processes. Biostimulants are derived from a range of natural resources including organic materials (composts, seaweeds), manures (earthworms, fish, insects) and extracts derived from microbes, plant, insect or animal origin. The current trend is indicative that a mixture of biostimulants is generally delivering better growth, yield and quality rather than applying biostimulant individually. When used correctly, biostimulants are known to help plants cope with stressful situations like drought, salinity, extreme temperatures and even certain diseases. More research is needed to understand the different biostimulants, key components, and also to adjust the formulations to improve their reliability in the field. Abstract Demand for organically grown food crops is rising substantially annually owing to their contributions to human health. However, organic farm production is still generally lower compared to conventional farming. Nutrient availability, content consistency, uptake, assimilation, and crop responses to various stresses were reported as critical yield-limiting factors in many organic farming systems. In recent years, plant biostimulants (BSs) have gained much interest from researchers and growers, and with the objective of integrating these products to enhance nutrient use efficiency (NUE), crop performance, and delivering better stress resilience in organic-related farming. This review gave an overview of direct and indirect mechanisms of microbial and non-microbial BSs in enhancing plant nutrient uptake, physiological status, productivity, resilience to various stressors, and soil-microbe-plant interactions. BSs offer a promising, innovative and sustainable strategy to supplement and replace agrochemicals in the near future. With greater mechanistic clarity, designing purposeful combinations of microbial and non-microbial BSs that would interact synergistically and deliver desired outcomes in terms of acceptable yield and high-quality products sustainably will be pivotal. Understanding these mechanisms will improve the next generation of novel and well-characterized BSs, combining microbial and non-microbial BSs strategically with specific desired synergistic bio-stimulatory action, to deliver enhanced plant growth, yield, quality, and resilience consistently in organic-related cultivation.
Collapse
Affiliation(s)
- Md. Nasir Hossain Sani
- School of Natural Sciences, Bangor University, Bangor LL57 2DG, UK
- Correspondence: (M.N.H.S.); (J.W.H.Y.)
| | - Jean W. H. Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 234 56 Alnarp, Sweden
- Correspondence: (M.N.H.S.); (J.W.H.Y.)
| |
Collapse
|
23
|
Lamar RT, Monda H, Sleighter R. Use of Ore-Derived Humic Acids With Diverse Chemistries to Elucidate Structure-Activity Relationships (SAR) of Humic Acids in Plant Phenotypic Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:758424. [PMID: 34925408 DOI: 10.3389/fpls.2021.758424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
For legal reasons, the publisher has withdrawn this article from public view. For additional information, please contact the publisher.
Collapse
Affiliation(s)
| | - Hiarhi Monda
- Bio Huma Netics, Inc., Gilbert, AZ, United States
| | | |
Collapse
|
24
|
da Silva MSRDA, Dos Santos BDMS, da Silva CSRDA, da Silva CSRDA, Antunes LFDS, Dos Santos RM, Santos CHB, Rigobelo EC. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front Microbiol 2021; 12:719653. [PMID: 34777275 PMCID: PMC8589081 DOI: 10.3389/fmicb.2021.719653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) and humic substances (HSs) are promising options for reducing the use of pesticides and mineral fertilizers. Although many studies have shown the effects of PGPB and HSs separately, little information is available on plant responses to the combined application of these biostimulants despite the great potential for the simultaneous action of these biological inputs. Thus, the objective of this review is to present an overview of scientific studies that addressed the application of PGPB and HSs to different crops. First, we discuss the effect of these biostimulants on biological nitrogen fixation, the various effects of the inoculation of beneficial bacteria combined with the application of HSs on promoting the growth of nonleguminous plants and how this combination can increase bacterial colonization of plant hosts. We also address the effect of PGPB and HSs on plant responses to abiotic stresses, in addition to discussing the role of HSs in protecting plants against pathogens. There is a lack of studies that address the role of PGPB + HSs in biocontrol. Understanding the factors involved in the promotion of plant growth through the application of PGPB and HSs can assist in the development of efficient biostimulants for agricultural management. This approach has the potential to accelerate the transition from conventional cultivation to sustainable agrosystems.
Collapse
Affiliation(s)
| | | | - Camilla Santos Reis de Andrade da Silva
- Department of Soil, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,National Agrobiology Research Center, Embrapa Agrobiologia, Seropédica, Brazil
| | | | | | | | | | - Everlon Cid Rigobelo
- Department of Agricultural Production Sciences, Universidade Estadual Paulista, Jaboticabal, Brazil
| |
Collapse
|
25
|
Amer A, Ghoneim M, Shoala T, Mohamed HI. Comparative studies of eco-friendly compounds like humic acid, salicylic, and glycyrrhizic acids and their nanocomposites on French basil (Ocimum basilicum L. cv. Grand verde). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47196-47212. [PMID: 33886052 DOI: 10.1007/s11356-021-14022-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
As the green tactics for enhancing plant growth and production using naturally occurring materials are highly needed, it is important to use the nanoformulation of these materials as an attractive novel technique. Therefore, this research has been performed to evaluate the plants' morphological traits, the qualitative parameters, and molecular genetic characteristics using random amplified polymorphic DNA (RAPD) of French basil independence on growth biostimulators and their nanocomposite. The treatments included normal formulations and nanocomposite formulation of humic acid (5 mM HA), salicylic acid (1.4 mM SA), and glycyrrhizic acid ammonium salt (0.4 mM GA) and control treatment (water application). The results show that foliar spray with HA, SA, GA, and their nanocomposites significantly increased (p ≤ 0.05) on all vegetative growth characters, photosynthetic pigments, oil yield/plant, mineral content, and antibacterial activity as compared with control plants. Also, 1,1-diphenyl-2-picrylhydrazyl (DPPH) values of different samples used varied from 70.63 to 74.93%, with a significant increase compared to untreated plants. The most marked increases have been observed in treated plants with biostimulants in the nanocomposites form than in the natural form. On the other hand, GA and its nanocomposite showed variable effects on basil plants and gave the lowest increase values in all parameters than the other biostimulant but have high antimicrobial activity. For the molecular study, ten selected primers displayed a total of 288 amplified fragments scored per primer ranging from 7 to 46 fragments; 157 bands were polymorphic with 69% polymorphism. It could be concluded that humic acid and its nanocomposite are the most effective biostimulants that increased plant productivity and oil content.
Collapse
Affiliation(s)
- Alia Amer
- Medicinal and Aromatic plants Department, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Marwa Ghoneim
- Cell Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Tahsin Shoala
- College of Biotechnology, Misr University for Science & Technology , Giza, October 6 City, Giza, Egypt, Egypt
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
26
|
A Metabolic Choreography of Maize Plants Treated with a Humic Substance-Based Biostimulant under Normal and Starved Conditions. Metabolites 2021; 11:metabo11060403. [PMID: 34202973 PMCID: PMC8235525 DOI: 10.3390/metabo11060403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Humic substance (HS)-based biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, cellular and molecular mechanisms governing the agronomically observed effects of HS on plants remain enigmatic. Here, we report a global metabolic reprogramming of maize leaves induced by a humic biostimulant under normal and nutrient starvation conditions. This reconfiguration of the maize metabolism spanned chemical constellations, as revealed by molecular networking approaches. Plant growth and development under normal conditions were characterized by key differential metabolic changes such as increased levels of amino acids, oxylipins and the tricarboxylic acid (TCA) intermediate, isocitric acid. Furthermore, under starvation, the humic biostimulant significantly impacted pathways that are involved in stress-alleviating mechanisms such as redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodelling. Thus, this study reveals that the humic biostimulant induces a remodelling of inter-compartmental metabolic networks in maize, subsequently readjusting the plant physiology towards growth promotion and stress alleviation. Such insights contribute to ongoing efforts in elucidating modes of action of biostimulants, generating fundamental scientific knowledge that is necessary for development of the biostimulant industry, for sustainable food security.
Collapse
|
27
|
González-Morales S, Solís-Gaona S, Valdés-Caballero MV, Juárez-Maldonado A, Loredo-Treviño A, Benavides-Mendoza A. Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Front Genet 2021; 12:583888. [PMID: 33613631 PMCID: PMC7888440 DOI: 10.3389/fgene.2021.583888] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.
Collapse
|
28
|
Pizzeghello D, Schiavon M, Francioso O, Dalla Vecchia F, Ertani A, Nardi S. Bioactivity of Size-Fractionated and Unfractionated Humic Substances From Two Forest Soils and Comparative Effects on N and S Metabolism, Nutrition, and Root Anatomy of Allium sativum L. FRONTIERS IN PLANT SCIENCE 2020; 11:1203. [PMID: 32922415 PMCID: PMC7457123 DOI: 10.3389/fpls.2020.01203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/24/2020] [Indexed: 05/03/2023]
Abstract
Humic substances (HS) are powerful natural plant biostimulants. However, there is still a lack of knowledge about the relationship between their structure and bioactivity in plants. We extracted HS (THE1-2) from two forest soils covered with Pinus mugo (1) or Pinus sylvestris (2). The extracts were subjected to weak acid treatment to produce size-fractionated HS (high molecular size, HMS1-2; low molecular size, LMS1-2). HS were characterized for total acidity, functional groups, element and auxin (IAA) contents, and hormone-like activity. HS concentrations ranging from 0 to 5 mg C L-1 were applied to garlic (Allium sativum L.) plantlets in hydroponics to ascertain differences between unfractionated and size-fractionated HS in the capacity to promote mineral nutrition, root growth and cell differentiation, activity of enzymes related to plant development (invertase, peroxidase, and esterase), and N (nitrate reductase, glutamine synthetase) and S (O-acetylserine sulphydrylase) assimilation into amino acids. A positive linear dose-response relationship was determined for all HS in the range 0-1 mg C L-1, while higher HS doses were less effective or ineffective in promoting physiological-biochemical attributes of garlic. Bioactivity was higher for size-fractionated HS according to the trend LMS1-2>HMS1-2>THE1-2, with LMS2 and HMS2 being overall more bioactive than LMS1 and HMS1, respectively. LMS1-2 contained more N, oxygenated functional groups and IAA compared to THE1-2 and HMS1-2. Also, they exhibited higher hormone-like activities. Such chemical properties likely accounted for the greater biostimulant action of LMS1-2. Beside plant growth, nutrition and N metabolism, HS stimulated S assimilation by promoting the enrichment of garlic plantlets with the S amino acid alliin, which has recognized beneficial properties in human health. Concluding, this study endorses that i) treating THE with a weak acid produced sized-fractionated HS with higher bioactivity and differing in properties, perhaps because of novel molecular arrangements of HS components that better interacted with garlic roots; ii) LMS from forest soils covered with P. mugo or P. sylvestris were the most bioactive; iii) the cover vegetation affected HS bioactivity iv); HS stimulated N and S metabolism with relevant benefits to crop nutritional quality.
Collapse
Affiliation(s)
- Diego Pizzeghello
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Torino, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università degli Studi di Padova, Legnaro, Italy
| |
Collapse
|
29
|
Mars Regolith Simulant Ameliorated by Compost as in situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects. PLANTS 2020; 9:plants9050628. [PMID: 32423057 PMCID: PMC7285329 DOI: 10.3390/plants9050628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate’s fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova®) were chosen to be cultivated in four different mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use efficiency and quality traits of lettuce. In particular, red Salanova® showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture.
Collapse
|
30
|
Rouphael Y, Lucini L, Miras-Moreno B, Colla G, Bonini P, Cardarelli M. Metabolomic Responses of Maize Shoots and Roots Elicited by Combinatorial Seed Treatments With Microbial and Non-microbial Biostimulants. Front Microbiol 2020; 11:664. [PMID: 32435233 PMCID: PMC7218175 DOI: 10.3389/fmicb.2020.00664] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial and non-microbial plant biostimulants have been successfully used to improve agriculture productivity in a more sustainable manner. Since the mode of action of biostimulants is still largely unknown, the present work aimed at elucidating the morpho-physiological and metabolomic changes occurring in maize (Zea mays L.) leaves and roots following seed treatment with (i) a consortium of two beneficial fungi [arbuscular mycorrhizal fungi (AMF) and Trichoderma koningii TK7] and rhizobacteria, (ii) a protein hydrolyzate-based biostimulant (PH) alone, or (iii) in combination with a consortium of T. koningii TK7 and rhizobacteria. The application of PH alone or in combination with Trichoderma elicited significant increases (+16.6%) in the shoot biomass compared to untreated maize plants, whereas inoculation with AMF + Trichoderma elicited significant increases in root dry biomass (+48.0%) compared to untreated plants. Distinctive metabolomic signatures were achieved from the different treatments, hence suggesting that different molecular processes were involved in the plants response to the biostimulants. The metabolic reprogramming triggered by the treatments including the protein hydrolyzate was hierarchically more pronounced than the application of microorganisms alone. Most of the differential metabolites could be ascribed to the secondary metabolism, with phenylpropanoids and terpenes being the most represented compounds. The application of PH triggered an accumulation of secondary metabolites, whereas the opposite trend of accumulation was seen in the case of microorganisms alone. The increase in biomass could be related to two processes, namely the modulation of the multilayer phytohormone interaction network and a possible increase in nitrogen use efficiency via the GS-GOGAT system.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | - Mariateresa Cardarelli
- Consiglio per la Ricerca in Agricoltura el' Analisi dell'Economia Agraria, Centro di Ricerca Orticoltura e Florovivaismo, Pontecagnano Faiano, Italy
| |
Collapse
|
31
|
Interaction between Humic Substances and Plant Hormones for Phosphorous Acquisition. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) deficiency is a major constraint in highly weathered tropical soils. Although phosphorous rock reserves may last for several hundred years, there exists an urgent need to research efficient P management for sustainable agriculture. Plant hormones play an important role in regulating plant growth, development, and reproduction. Humic substances (HS) are not only considered an essential component of soil organic carbon (SOC), but also well known as a biostimulant which can perform phytohormone-like activities to induce nutrient uptake. This review paper presents an overview of the scientific outputs in the relationship between HS and plant hormones. Special attention will be paid to the interaction between HS and plant hormones for nutrient uptake under P-deficient conditions.
Collapse
|
32
|
Ceccarini C, Antognoni F, Biondi S, Fraternale A, Verardo G, Gorassini A, Scoccianti V. Polyphenol-enriched spelt husk extracts improve growth and stress-related biochemical parameters under moderate salt stress in maize plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:95-104. [PMID: 31136935 DOI: 10.1016/j.plaphy.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Biostimulants improve yield, quality, and stress acclimation in crops. In this work, we tested the possibility of using phenolics-rich extracts from spelt (Triticum dicoccum L.) husks to attenuate the effects of salt stress (100-200 mM NaCl) in maize. Two methanolic extracts were prepared from the soluble-conjugated (SC), and the insoluble-bound (IB) phenolic acid fractions of the spelt husk, and their effects were investigated on several stress-associated biochemical parameters, such as proline, lipid peroxidation, H2O2, GSH levels, and ion content. Results show that SC and IB fractions of husk extracts behaved very differently, no doubt due to their greatly divergent chemical composition, as revealed by both GC-MS and HPLC analyses. The efficacy of treatments in mitigating salt stress was also dose- and timing-dependent. IB, even at the lower concentration tested, was able to recover the performance of stressed plants in terms of growth, photosynthetic pigments content, and levels of salt stress markers. Recovery of shoot growth to control levels and reduction of stress-induced proline accumulation occurred regardless of whether plants were pre-treated or post-treated with IB, whereas only pre-treatment with the higher dose of IB was effective in mitigating oxidative stress. Although in some cases SC and even methanol alone exerted some positive effects, they could also be deleterious whereas IB never was. Overall, results indicate that a polyphenol-containing extract obtained from spelt by-products can behave as biostimulant in maize plants and can mitigate their response to salt stress, by acting on different biochemical targets.
Collapse
Affiliation(s)
- Chiara Ceccarini
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, 61029, Urbino, Italy
| | - Fabiana Antognoni
- Dipartimento di Scienze per La Qualità della Vita, Università di Bologna, 47921, Rimini, Italy.
| | - Stefania Biondi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, 40126, Bologna, Italy
| | - Alessandra Fraternale
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, 61029, Urbino, Italy
| | - Giancarlo Verardo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, 33100, Udine, Italy
| | - Andrea Gorassini
- Dipartimento di Studi Umanistici e del Patrimonio Culturale, Università di Udine, 33100, Udine, Italy
| | - Valeria Scoccianti
- Dipartimento di Scienze Biomolecolari, Università di Urbino Carlo Bo, 61029, Urbino, Italy
| |
Collapse
|
33
|
Ertani A, Nardi S, Francioso O, Sanchez-Cortes S, Foggia MD, Schiavon M. Effects of Two Protein Hydrolysates Obtained From Chickpea ( Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:954. [PMID: 31404240 PMCID: PMC6671868 DOI: 10.3389/fpls.2019.00954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/09/2019] [Indexed: 05/29/2023]
Abstract
Two liquid protein hydrolysates obtained from chickpea (Cicer arietinum L.) (CA) and Spirulina platensis (SP) were analyzed via FT-IR and SERS spectroscopy. Their hormone-like activities and contents in indole-3-acetic acid (IAA), isopentenyladenosine (IPA), nitrogen (N), carbon (C), sulfur (S), phenols, amino acids, and reducing sugars were determined. CA and SP showed different chemical compositions in N, C, sugars, amino acid, and TP contents, which were generally higher in CA. The two products exhibited (IAA)-like and gibberellin (GA)-like activities and contained the hormones IAA and IPA. Specifically, CA held higher (∼3.6 fold) IAA-like activity than SP, while its GA-like activity was comparable to SP. The content in IAA was similar between hydrolysates, but CA contained ∼6 fold more IPA. CA and SP were further supplied at two different dosages (0.1 and 1 mL L-1) for 2 days to maize (Zea mays L.) plants grown in hydroponics. They positively influenced plant growth and accumulation of N-compounds (proteins, chlorophylls and phenols), with a more pronounced effect observed in plants treated with CA. Furthermore, they increased the activity of two enzymes, i.e., peroxidase and esterase, which are established markers for plant growth, differentiation and organogenesis-related processes. Peroxidase activity in particular, was enhanced by ∼1.6 and ∼2.3 fold in leaves and roots of CA-treated plants, respectively. Greater accumulation of macro (Ca, Mg, and K) and micro (Cu, Zn) elements was also evident in plants supplied with these products. In conclusion, our data indicate that both CA and SP exert positive effects in maize plants. However, CA appeared to be more efficient than SP to improve plant nutrition and growth parameters in some respects, likely by virtue of its higher content in phytochemicals (hormones, phenols, amino acids, reducing sugars) that may act as signaling molecules, and more pronounced IAA-like activity.
Collapse
Affiliation(s)
- Andrea Ertani
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente (DAFNAE), Università di Padova, Padua, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente (DAFNAE), Università di Padova, Padua, Italy
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | | | | | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente (DAFNAE), Università di Padova, Padua, Italy
| |
Collapse
|
34
|
Monsees H, Suhl J, Paul M, Kloas W, Dannehl D, Würtz S. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS One 2019; 14:e0218368. [PMID: 31220125 PMCID: PMC6586398 DOI: 10.1371/journal.pone.0218368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/02/2019] [Indexed: 11/18/2022] Open
Abstract
Decoupled aquaponic systems have the potential to become one of the most effective sustainable production systems for the combined production of animal protein and plant crops. Here, recirculating aquaculture systems for fish production are combined with hydroponics for soilless plant production thereby recycling dissolved nutrients derived from metabolism of the fish. The aim of the present study was to characterize hydroponic lettuce production using conventional nutrient solution in comparison with decoupled aquaponics using the nutrient rich fish water as basis for the nutrient solution being supplemented by missing nutrients. In addition, one aquaponic treatment became disinfected in order to assess any occurring advantage of the aquaponics derived fish water. For evaluation the temperature, electrical conductivity, pH, and the mineral composition of the nutrient solution, as well as colony forming units in the fish water were monitored. Additionally, plant growth (fresh and dry weight, number and area of leaves) and quality parameters of lettuce leaves (nitrate, mineral content, phenolic compounds) were examined. Carbon sources and microorganisms derived from fish water seem to have neither beneficial nor detrimental effects on plant growth in this study. Except for some differences in the mineral content of the lettuce leaves, all other quality parameters were not significantly different. The use of aquaponic fish water saved 62.8% mineral fertilizer and fully substituted the required water for the nutrient solution in comparison to the control. Additionally, the reduced fertilizer demand using decoupled aquaponics can contribute to reduce greenhouse gas emissions of an annual lettuce production site per ha by 72% due to saving the energy for fertilizer production. This study clearly demonstrates the huge potential of the innovative approach of decoupled aquaponics to foster the transformation of our conventional agriculture towards sustainable production systems saving resources and minimizing emissions.
Collapse
Affiliation(s)
- Hendrik Monsees
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johanna Suhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer–Institute of Agricultural and Horticultural Sciences, Division Biosystems Engineering, Berlin, Germany
| | - Maurice Paul
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Department of Endocrinology, Berlin, Germany
| | - Dennis Dannehl
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer–Institute of Agricultural and Horticultural Sciences, Division Biosystems Engineering, Berlin, Germany
| | - Sven Würtz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
35
|
Bernstein N, Gorelick J, Zerahia R, Koch S. Impact of N, P, K, and Humic Acid Supplementation on the Chemical Profile of Medical Cannabis ( Cannabis sativa L). FRONTIERS IN PLANT SCIENCE 2019; 10:736. [PMID: 31263470 PMCID: PMC6589925 DOI: 10.3389/fpls.2019.00736] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/16/2019] [Indexed: 05/11/2023]
Abstract
Mineral nutrition is a major factor affecting plant growth and function. Increasing evidence supports the involvement of macro and micronutrients in secondary metabolism. The use of the appropriate nutritional measures including organic fertilizers, supplements, and biostimulants is therefore a vital aspect of medicinal plant production including medical cannabis. Due to legal restriction on cannabis research, very little information is available concerning the effects of nutritional supplements on physiological and chemical properties of medical cannabis, and their potential role in standardization of the active compounds in the plant material supplied to patients. This study therefore evaluated the potential of nutritional supplementations, including humic acids (HAs) and inorganic N, P, and K to affect the cannabinoid profile throughout the plant. The plants were exposed to three enhanced nutrition treatments, compared to a commercial control treatment. The nutrition treatments were supplemented with HA, enhanced P fertilization, or enhanced NPK. The results demonstrate sensitivity of cannabinoids metabolism to mineral nutrition. The nutritional supplements affected cannabinoid content in the plants differently. These effects were location and organ specific, and varied between cannabinoids. While the P enhancement treatment did not affect THC, CBD, CBN, and CBG concentrations in the flowers from the top of the plants, a 16% reduction of THC concentration was observed in the inflorescence leaves. Enhanced NPK and HA treatments also produced organ-specific and spatially specific responses in the plant. NPK supplementation increased CBG levels in flowers by 71%, and lowered CBN levels in both flowers and inflorescence leaves by 38 and 36%, respectively. HA was found to reduce the natural spatial variability of all of the cannabinoids studied. However, the increased uniformity came at the expense of the higher levels of cannabinoids at the top of the plants, THC and CBD were reduced by 37 and 39%, respectively. Changes in mineral composition were observed in specific areas of the plants. The results demonstrate that nutritional supplements influence cannabinoid content in cannabis in an organ- and spatial-dependent manner. Most importantly, the results confirm the potential of environmental factors to regulate concentrations of individual cannabinoids in medical cannabis. The identified effects of nutrient supplementation can be further developed for chemical control and standardization in cannabis.
Collapse
Affiliation(s)
- Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion, Israel
| | | | - Roei Zerahia
- Pernick Faculty of Engineering, Shenkar College of Engineering and Design, Ramat Gan, Israel
| | - Sraya Koch
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion, Israel
- Eastern Regional R&D Center, Kiryat Arba, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
36
|
Zanin L, Tomasi N, Cesco S, Varanini Z, Pinton R. Humic Substances Contribute to Plant Iron Nutrition Acting as Chelators and Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:675. [PMID: 31178884 PMCID: PMC6538904 DOI: 10.3389/fpls.2019.00675] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
Improvement of plant iron nutrition as a consequence of metal complexation by humic substances (HS) extracted from different sources has been widely reported. The presence of humified fractions of the organic matter in soil sediments and solutions would contribute, depending on the solubility and the molecular size of HS, to build up a reservoir of Fe available for plants which exude metal ligands and to provide Fe-HS complexes directly usable by plant Fe uptake mechanisms. It has also been shown that HS can promote the physiological mechanisms involved in Fe acquisition acting at the transcriptional and post-transcriptional level. Furthermore, the distribution and allocation of Fe within the plant could be modified when plants were supplied with water soluble Fe-HS complexes as compared with other natural or synthetic chelates. These effects are in line with previous observations showing that treatments with HS were able to induce changes in root morphology and modulate plant membrane activities related to nutrient acquisition, pathways of primary and secondary metabolism, hormonal and reactive oxygen balance. The multifaceted action of HS indicates that soluble Fe-HS complexes, either naturally present in the soil or exogenously supplied to the plants, can promote Fe acquisition in a complex way by providing a readily available iron form in the rhizosphere and by directly affecting plant physiology. Furthermore, the possibility to use Fe-HS of different sources, size and solubility may be considered as an environmental-friendly tool for Fe fertilization of crops.
Collapse
Affiliation(s)
- Laura Zanin
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Nicola Tomasi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Zeno Varanini
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Roberto Pinton
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
37
|
Xu D, Deng Y, Xi P, Yu G, Wang Q, Zeng Q, Jiang Z, Gao L. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem 2019; 286:226-233. [PMID: 30827600 DOI: 10.1016/j.foodchem.2019.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Gray mold caused by Botrytis cinerea is a major postharvest disease of table grapes that leads to enormous economic losses during storage and transportation. The objective of this study was to evaluate the effectiveness of fulvic acid on controlling gray mold of table grapes and explore its mechanism of action. The results showed that fulvic acid application significantly reduced downy blight severity in table grapes without exhibiting any antifungal activity in vitro. Fulvic acid induced phenylpropanoid metabolism, as evidenced by accumulation of phenolic compounds and flavonoids, higher activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL), up-regulation of genes related to phenylpropanoid biosynthesis (PAL, C4H, 4CL, STS, ROMT and CHS). Our results suggested that fulvic acid induces resistance to B. cinerea mainly through the activation of phenylpropanoid pathway and can be used as a new activator of plant defense responses to control postharvest gray mold in table grapes.
Collapse
Affiliation(s)
- Dandan Xu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Guangdong Institute of Traditional Chinese Medicine, Guangzhou 510640, China
| | - Yizhen Deng
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Ge Yu
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Qi Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Qingqian Zeng
- Guangdong Institute of Traditional Chinese Medicine, Guangzhou 510640, China
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Lingwang Gao
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-14846-1_1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Aguiar NO, Olivares FL, Novotny EH, Canellas LP. Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. PeerJ 2018; 6:e5445. [PMID: 30202643 PMCID: PMC6129145 DOI: 10.7717/peerj.5445] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) and humic acids (HA) have been used as biostimulants in field conditions. The complete genomic and proteomic transcription of Herbaspirillum seropedicae and Gluconacetobacter diazotrophicus is available but interpreting and utilizing this information in the field to increase crop performance is challenging. The identification and characterization of metabolites that are induced by genomic changes may be used to improve plant responses to inoculation. The objective of this study was to describe changes in sugarcane metabolic profile that occur when HA and PGPB are used as biostimulants. Inoculum was applied to soil containing 45-day old sugarcane stalks. One week after inoculation, the methanolic extracts from leaves were obtained and analyzed by gas chromatography coupled to time-of-flight mass spectrometry; a total of 1,880 compounds were observed and 280 were identified in all samples. The application of HA significantly decreased the concentration of 15 metabolites, which generally included amino acids. HA increased the levels of 40 compounds, and these included metabolites linked to the stress response (shikimic, caffeic, hydroxycinnamic acids, putrescine, behenic acid, quinoline xylulose, galactose, lactose proline, oxyproline and valeric acid) and cellular growth (adenine and adenosine derivatives, ribose, ribonic acid and citric acid). Similarly, PGPB enhanced the level of metabolites identified in HA-treated soils; e.g., 48 metabolites were elevated and included amino acids, nucleic acids, organic acids, and lipids. Co-inoculation (HA+PGPB) boosted the level of 110 metabolites with respect to non-inoculated controls; these included amino acids, lipids and nitrogenous compounds. Changes in the metabolic profile induced by HA+PGPB influenced both glucose and pentose pathways and resulted in the accumulation of heptuloses and riboses, which are substrates in the nucleoside biosynthesis and shikimic acid pathways. The mevalonate pathway was also activated, thus increasing phytosterol synthesis. The improvement in cellular metabolism observed with PGPB+HA was compatible with high levels of vitamins. Glucuronate and amino sugars were stimulated in addition to the products and intermediary compounds of tricarboxylic acid metabolism. Lipids and amino acids were the main compounds induced by co-inoculation in addition to antioxidants, stress-related metabolites, and compounds involved in cellular redox. The primary compounds observed in each treatment were identified, and the effect of co-inoculation (HA+PGPB) on metabolite levels was discussed.
Collapse
Affiliation(s)
- Natalia O Aguiar
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense, Campos dos Goytacaes, Rio de Janeiro, Brazil
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense, Campos dos Goytacaes, Rio de Janeiro, Brazil
| | | | - Luciano P Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense, Campos dos Goytacaes, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Noroozisharaf A, Kaviani M. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme ( Thymus vulgaris L.) under greenhouse conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:423-431. [PMID: 29692550 PMCID: PMC5911258 DOI: 10.1007/s12298-018-0510-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/21/2017] [Accepted: 01/15/2018] [Indexed: 05/02/2023]
Abstract
Humic acid is natural biological organic, which has a high effect on plant growth and quality. However, the mechanisms of the promoting effect of humic acid on the volatile composition were rarely reported. In this study, the effects of soil application of humic acid on the chemical composition and nutrients uptake of Thymus vulgaris were investigated. Treatments comprised 0, 50, 75 and 100 g m-2. Essential oil was extracted by hydrodistillation and analyzed using GC-MS and GC-FID. Essential oil content was enhanced by increase of the humic acid level and its content ranged from 0.8% (control) to 2.0% (75 g m-2). Thirty-two volatile compounds were identified and these compounds were considerably affected by humic acid. The highest percentage of thymol (74.15%), carvacrol (6.20%), p-cymene (4.24%), borneol (3.42%), trans-caryophyllene (1.70%) and cis-sabinene hydrate (1.35%) as major compounds were observed in T. vulgaris under 100 g m-2 humic acid. There was a linear relationship (R2 = 97%) between humic acid levels and thymol as a major compound. The oils were dominated by oxygenated monoterpenes followed by monoterpene hydrocarbons and sesquiterpene hydrocarbons. Based on the path coefficient analysis, the highest direct effects on essential oil content were observed in monoterpene esters (3.465) and oxygenated sesquiterpenes (3.146). The humic acid application also enhanced the uptake of N, P, K, Mg and Fe in garden thyme. The highest N (2.42%), P (0.75%), K (2.63%), Mg (0.23%) and Fe (1436.58 ppm) were observed in medium supplemented with 100 g m-2 humic acid. In all, the utilization of humic acid could positively change nutrients uptake, essential oil content and its major constituents in T. vulgaris.
Collapse
Affiliation(s)
- Alireza Noroozisharaf
- Department of Horticultural Science, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Maryam Kaviani
- Department of Horticultural Science, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| |
Collapse
|
41
|
Abou Chehade L, Al Chami Z, De Pascali SA, Cavoski I, Fanizzi FP. Biostimulants from food processing by-products: agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1426-1436. [PMID: 28771745 DOI: 10.1002/jsfa.8610] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Biostimulants have recently gained increased attention due to their multiple benefits for sustainable agriculture. In this study, three food processing by-products - fennel processing residues (FPR), lemon processing residues (LPR) and brewer's spent grain (BSG) - were investigated as potential sources of biostimulants. Their aqueous extracts as individual and associated applications were assessed for their effects on agronomic, quality and metabolic performance of organic tomato in comparison to extract of humic substances (HS) and untreated control (CTRL). RESULTS Only FPR extracts stimulated shoot growth and tomato dry matter content, whereas all candidates improved tomato yield. FPR and BSG increased fruit mineral content and BSG-FPR-LPR in combination enhanced titratable acidity. FPR-treated fruits had also 20% more vitamin C than CTRL, and higher phenol content was obtained in those of BSG-LPR. Fruit metabolomic profile showed the tendency of all extracts, except BSG-LPR, to increase tomato citric acid and to decrease β-glucose and methanol concentrations. The analysis revealed accordingly the indispensable role of FPR in combined applications for inducing an HS-like response in fruits. CONCLUSION The results were indicative of the biostimulant activity of these extracts and demonstrated them, particularly FPR, as promising candidates for enhancing plant productivity and fruit quality. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lara Abou Chehade
- CIHEAM - Istituto Agronomico Mediterraneo di Bari, 70010, Valenzano, Italy
| | - Ziad Al Chami
- CIHEAM - Istituto Agronomico Mediterraneo di Bari, 70010, Valenzano, Italy
| | - Sandra Angelica De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100, Lecce, Italy
| | - Ivana Cavoski
- CIHEAM - Istituto Agronomico Mediterraneo di Bari, 70010, Valenzano, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100, Lecce, Italy
| |
Collapse
|
42
|
Ertani A, Francioso O, Tinti A, Schiavon M, Pizzeghello D, Nardi S. Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. FRONTIERS IN PLANT SCIENCE 2018; 9:428. [PMID: 29681909 PMCID: PMC5897654 DOI: 10.3389/fpls.2018.00428] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
Seaweed extracts can be employed as biostimulants during crop cultivation owing to their positive effects on plant performance. Therefore, in this study one extract from Laminaria (A) and five extracts from Ascophyllum nodosum (B-F) were assayed on maize (Zea mays L.) plants supplied for 2 days with 0.5 mL L-1 of single products to evaluate their capacity to stimulate root growth and morphology, nutrition, and sugars accumulation. Firstly, extracts were chemically characterized via Fourier transform infrared (FT-IR) and FT-Raman spectroscopies, and their content in carbon, nitrogen, phenolic acids and hormones (indole-3-acetic acid, IAA, and Isopentenyladenosine, IPA) was quantified. The auxin like- and gibberellic acid -like activities of all extracts were also determined. FT-IR and FT-Raman spectra provided complementary information depicting distinct spectral pattern for each extract. Bands assigned to alginic and uronic acids were dominant in FT-IR spectra, while those corresponding to polyaromatic rings were evident in FT-Raman spectra. In general, extracts stimulated root growth, nutrition, esterase activity, and sugar content. However, they showed high variation in chemical features, which may explain their different capacity in triggering physiological responses in maize. Among A. nodosum extracts for instance, E was the most efficient in promoting root morphology traits, likely because of its elevate content in IAA (32.43 nM), while F extract was the highest in phenol content (1,933 mg L-1) and the most successful in improving plant nutrition. On the other hand, C extract was very effective in stimulating root elongation, but did not influence plant nutrition. B and D extracts induced similar positive effects on plants, although they greatly varied in chemical composition. Laminaria extract (A) differed from A. nodosum extracts, because of its low content in total phenols and the presence of both IAA- and GA-like activity. We conclude that all seaweed extracts acted as biostimulants in maize, but their chemical properties appeared crucial in predicting the physiological response preferentially elicited by individual seaweed extracts.
Collapse
Affiliation(s)
- Andrea Ertani
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Padova, Italy
| | - Ornella Francioso
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy
| | - Anna Tinti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Padova, Italy
| | - Diego Pizzeghello
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Padova, Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università di Padova, Padova, Italy
- *Correspondence: Serenella Nardi
| |
Collapse
|
43
|
Kocira S, Szparaga A, Kocira A, Czerwińska E, Wójtowicz A, Bronowicka-Mielniczuk U, Koszel M, Findura P. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids. FRONTIERS IN PLANT SCIENCE 2018; 9:388. [PMID: 29636764 PMCID: PMC5880921 DOI: 10.3389/fpls.2018.00388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/09/2018] [Indexed: 05/14/2023]
Abstract
In recent years, attempts have been made to use preparations that allow obtaining high and good quality yields, while reducing the application of pesticides and mineral fertilizers. These include biostimulants that are safe for the natural environment and contribute to the improvement of yield size and quality, especially after the occurrence of stressors. Their use is advisable in the case of crops sensitive to such biotic stress factors like low temperatures or drought. One of these is soybean which is a very important plant from the economic viewpoint. Field experiments were established in the years 2014-2016 in a random block design in four replicates on experimental plots of 10 m2. Three soybean cultivars: Annushka, Mavka, and Atlanta were planted in the third decade of April. Fylloton biostimulant was used at 0.7% or 1% concentrations as single spraying (BBCH 13-15) or double spraying (BBCH 13-15, BBCH 61) in the vegetation period. The number of seeds per 1 m2, seed yield, thousand seed weight, number of pods per plant, number of nodes in the main shoot, height of plants, and protein and fat contents in seeds were determined. The content of phenolic compounds, antioxidant capacity and antioxidant effect of soybean seeds were assayed as well. Foliar treatment of soybean with Fylloton stimulated the growth and yield of plants without compromising their nutritional and nutraceutical properties. The double application of the higher concentration of Fylloton was favorable for the plant height, seed number and soybean yield. Moreover, the highest number of pods was obtained after single treatment of plants with the lower biostimulant concentration. There was also a positive effect of using this biostimulant on the content and activity of some bioactive compounds, such as phenolics and flavonoids, and on the reducing power.
Collapse
Affiliation(s)
- Sławomir Kocira
- Department of Machinery Exploitation and Production Process Management, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
- *Correspondence: Sławomir Kocira
| | - Agnieszka Szparaga
- Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin, Poland
| | - Anna Kocira
- Institute of Agricultural Sciences, State School of Higher Education in Chełm, Chełm, Poland
| | - Ewa Czerwińska
- Department of Biomedical Engineering, Faculty of Technology and Education, Koszalin University of Technology, Koszalin, Poland
| | - Agnieszka Wójtowicz
- Department of Food Process Engineering, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Urszula Bronowicka-Mielniczuk
- Department of Applied Mathematics and Computer Sciences, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Milan Koszel
- Department of Machinery Exploitation and Production Process Management, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Pavol Findura
- Department of Machines and Production Biosystems, Faculty of Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
44
|
Scaglia B, Pognani M, Adani F. The anaerobic digestion process capability to produce biostimulant: the case study of the dissolved organic matter (DOM) vs. auxin-like property. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:36-45. [PMID: 28259834 DOI: 10.1016/j.scitotenv.2017.02.223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Biostimulants improve plant growth by stimulating nutrient uptake and efficiency, improving tolerance to abiotic stress and raising crop quality. Biostimulants are currently only recognised in five categories. However, the recent interest in this sector has led to the identification of some new ones. The aim of this work was to study the auxin-like activity of digestate dissolved organic matter (DOM) obtained from full scale anaerobic digester plants. All DOMs had biostimulant capacity comparable with humic acid and amino acids. The auxin-like activities depended mainly on the hydrophobic DOM fractions for the presence of auxin-active and other auxin-like molecules. Significant correlations were found for the auxin-effect in relation to auxin-active molecules and fatty acids responsible for most of the auxin-like effects (67% of the total importance in giving auxin-like activity) while a minor or null contribution was attributable to the carboxylic acids and aminoacid categories. Therefore, the anaerobic digestion process seems to be a useful biotechnology to produce biostimulants. Basing on these first results, the expanding anaerobic digestion sector could become important for the production of new biostimulant classes to meet the agricultural sector's new requirements and saving on raw materials.
Collapse
Affiliation(s)
- Barbara Scaglia
- Gruppo Ricicla Labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, Milano, Italy.
| | - Michele Pognani
- Gruppo Ricicla Labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, Milano, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Labs - DiSAA - Università degli Studi di Milano, Via Celoria 2, Milano, Italy
| |
Collapse
|
45
|
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. FRONTIERS IN PLANT SCIENCE 2017; 7:2049. [PMID: 28184225 PMCID: PMC5266735 DOI: 10.3389/fpls.2016.02049] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Collapse
Affiliation(s)
- Oleg I. Yakhin
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of SciencesUfa, Russia
- R&D Company Eco PrirodaUlkundy, Russia
| | | | | | - Patrick H. Brown
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| |
Collapse
|
46
|
Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. Biostimulants in Plant Science: A Global Perspective. FRONTIERS IN PLANT SCIENCE 2017; 7:2049. [PMID: 28184225 DOI: 10.3389/fpls] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 05/27/2023]
Abstract
This review presents a comprehensive and systematic study of the field of plant biostimulants and considers the fundamental and innovative principles underlying this technology. The elucidation of the biological basis of biostimulant function is a prerequisite for the development of science-based biostimulant industry and sound regulations governing these compounds. The task of defining the biological basis of biostimulants as a class of compounds, however, is made more complex by the diverse sources of biostimulants present in the market, which include bacteria, fungi, seaweeds, higher plants, animals and humate-containing raw materials, and the wide diversity of industrial processes utilized in their preparation. To distinguish biostimulants from the existing legislative product categories we propose the following definition of a biostimulant as "a formulated product of biological origin that improves plant productivity as a consequence of the novel or emergent properties of the complex of constituents, and not as a sole consequence of the presence of known essential plant nutrients, plant growth regulators, or plant protective compounds." The definition provided here is important as it emphasizes the principle that biological function can be positively modulated through application of molecules, or mixtures of molecules, for which an explicit mode of action has not been defined. Given the difficulty in determining a "mode of action" for a biostimulant, and recognizing the need for the market in biostimulants to attain legitimacy, we suggest that the focus of biostimulant research and validation should be upon proof of efficacy and safety and the determination of a broad mechanism of action, without a requirement for the determination of a specific mode of action. While there is a clear commercial imperative to rationalize biostimulants as a discrete class of products, there is also a compelling biological case for the science-based development of, and experimentation with biostimulants in the expectation that this may lead to the identification of novel biological molecules and phenomenon, pathways and processes, that would not have been discovered if the category of biostimulants did not exist, or was not considered legitimate.
Collapse
Affiliation(s)
- Oleg I Yakhin
- Institute of Biochemistry and Genetics, Ufa Scientific Center, Russian Academy of SciencesUfa, Russia; R&D Company Eco PrirodaUlkundy, Russia
| | | | | | - Patrick H Brown
- Department of Plant Sciences, University of California, Davis Davis, CA, USA
| |
Collapse
|
47
|
Fiorentino N, Ventorino V, Rocco C, Cenvinzo V, Agrelli D, Gioia L, Di Mola I, Adamo P, Pepe O, Fagnano M. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1375-1383. [PMID: 27720598 DOI: 10.1016/j.scitotenv.2016.09.220] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 05/25/2023]
Abstract
Phytoremediation is a cost-effective "green technology" that uses plants to improve the soil properties of polluted sites, preventing the dispersion of pollutants and reducing the mobility of potentially toxic elements (PTEs) through their adsorption and accumulation by roots or precipitation within the root zone. Being highly tolerant to pollutants and other abiotic stresses, giant reed (Arundo donax L.) is a suitable biomass crop for phytoremediation of contaminated soils. We report the results of a two-year open-air lysimeter study aimed at assessing the adaptability of giant reed to grow on industrial substrates polluted by Pb and Zn and at testing commercial humic acids from leonardite as improvers of plant performance. We evaluated giant reed potential for: 1) biomass production for energy or biomaterial recovery; 2) PTE phytoextraction and 3) soil fertility restoration. Chemical fertility was monitored by measuring soil C while soil biological fertility was estimated by quantifying the abundance of bacterial functional genes regulating nitrogen fixation (nifH) and nitrification (amoA). Giant reed above-ground growth on the polluted soils was slightly lower (-16%) than on a non-polluted soil, with a preferential storage of biomass in the rhizome acting as a survival strategy in limiting growing conditions. Humic acids improved plant stress tolerance and production levels. As aerial biomass (shoots) did not accumulate PTEs, the plant in question can be used for bioenergy or biopolymer production. In contrast, below-ground biomass (rhizomes) accumulated PTEs, and can thus be harvested and removed from soil to improve phytoremediation protocols and also used as industrial biofuel. Giant reed growth increased the abundance of N-cycling bacteria and soil C in the rhizospheric soil, as well as reduced soil Pb and Zn EDTA extractable fraction.
Collapse
Affiliation(s)
- N Fiorentino
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy.
| | - V Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - C Rocco
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - V Cenvinzo
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - D Agrelli
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - L Gioia
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - I Di Mola
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - P Adamo
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - O Pepe
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| | - M Fagnano
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100, 8055 Portici, Italy
| |
Collapse
|
48
|
Ertani A, Schiavon M, Nardi S. Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays. FRONTIERS IN PLANT SCIENCE 2017; 8:1159. [PMID: 28725232 PMCID: PMC5496959 DOI: 10.3389/fpls.2017.01159] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/16/2017] [Indexed: 05/02/2023]
Abstract
An alfalfa-based protein hydrolysate (EM) has been tested in tomato (Solanum lycopersicon L.) plants at two different concentrations (0.1 and 1 mL L-1) to get insight on its efficacy as biostimulant in this species and to unravel possible metabolic targets and molecular mechanisms that may shed light on its mode of action. EM was efficient in promoting the fresh biomass and content in chlorophyll and soluble sugars of tomato plants, especially when it was applied at the concentration of 1 mL L-1. This effect on plant productivity was likely related to the EM-dependent up-regulation of genes identified via microarray and involved in primary carbon and nitrogen metabolism, photosynthesis, nutrient uptake and developmental processes. EM also up-regulated a number of genes implied in the secondary metabolism that leads to the synthesis of compounds (phenols and terpenes) functioning in plant development and interaction with the environment. Concomitantly, phenol content was enhanced in EM-treated plants. Several new genes have been identified in tomato as potential targets of EM action, like those involved in detoxification processes from reactive oxygen species and xenobiotic (particularly glutathione/ascorbate cycle-related and ABC transporters), and defense against abiotic and biotic stress. The model hypothesized is that elicitors present in the EM formulation like auxins, phenolics, and amino acids, may trigger a signal transduction pathway via modulation of the intracellular levels of the hormones ethylene, jasmonic acid and abscissic acid, which then further prompt the activation of a cascade events requiring the presence and activity of many kinases and transcription factors to activate stress-related genes. The genes identified suggest these kinases and transcription factors as players involved in a complex crosstalk between biotic and abiotic stress signaling pathways. We conclude that EM acts as a biostimulant in tomato due to its capacity to stimulate plant productivity and up-regulate stress-related responses. Its use in agricultural practices may reduce the need of inorganic fertilizers and pesticides, thereby reducing the environmental impact of productive agriculture.
Collapse
Affiliation(s)
- Andrea Ertani
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of PadovaPadua, Italy
- *Correspondence: Andrea Ertani,
| | - Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of PadovaPadua, Italy
- Biology Department, Colorado State University, Fort CollinsCO, United States
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of PadovaPadua, Italy
| |
Collapse
|
49
|
|
50
|
Scaglia B, Nunes RR, Rezende MOO, Tambone F, Adani F. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:289-295. [PMID: 27100009 DOI: 10.1016/j.scitotenv.2016.03.212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 05/24/2023]
Abstract
This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6).
Collapse
Affiliation(s)
- Barbara Scaglia
- Gruppo Ricicla Labs - DiSAA, Università degli Studi di Milano, Via Celoria 2, Italy.
| | - Ramom Rachide Nunes
- Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos, Brazil
| | - Maria Olímpia Oliveira Rezende
- Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos, Brazil
| | - Fulvia Tambone
- Gruppo Ricicla Labs - DiSAA, Università degli Studi di Milano, Via Celoria 2, Italy
| | - Fabrizio Adani
- Gruppo Ricicla Labs - DiSAA, Università degli Studi di Milano, Via Celoria 2, Italy.
| |
Collapse
|