1
|
Dong Y, Liu G, Situ X, Xia L, Zhang T, Zhu X, Jin H, Liu Y, Shou S. Non-Canonical STING-PERK Pathway Modulation of Cellular Senescence and Therapeutic Response in Sepsis-Associated Acute Kidney Injury. Inflammation 2025; 48:696-712. [PMID: 38913144 DOI: 10.1007/s10753-024-02081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
Abstract-This study explored the role of the non-canonical STING-PERK signaling pathway in sepsis-associated acute kidney injury (SA-AKI). Gene expression data from the GEO database and serum STING protein levels in patients with SA-AKI were analyzed. An LPS-induced mouse model and an in vitro model using HK-2 cells were used to investigate the role of STING in SA-AKI. STING expression was suppressed using shRNA silencing technology and the STING inhibitor C176. Kidney function, inflammatory markers, apoptosis, and senescence were measured. The role of the STING-PERK pathway was investigated by silencing PERK in HK-2 cells and administering the PERK inhibitor GSK2606414. STING mRNA expression and serum STING protein levels were significantly higher in patients with SA-AKI. Suppressing STING expression improved kidney function, reduced inflammation, and inhibited apoptosis and senescence. Silencing PERK or administering GSK2606414 suppressed the inflammatory response, cell apoptosis, and senescence, suggesting that PERK is a downstream effector in the STING signaling pathway. The STING-PERK signaling pathway exacerbates cell senescence and apoptosis in SA-AKI. Inhibiting this pathway could provide potential therapeutic targets for SA-AKI treatment.
Collapse
Affiliation(s)
- Yuxin Dong
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Guanghe Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaonan Situ
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lei Xia
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Tianyi Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiangxi Zhu
- Zunyi Medical University, No. 368 Jinwan Road, Jinhaian Community, Sanzao Town, Jinwan District, Zhuhai, 519041, Guangdong, China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
Lukacheva AV, Bogachev MI, Musorina AS, Kriger DV, Poljanskaya GG, Bobkov DE. It's Not Just About Speed: Single-Cell Tracking Reveals Changes in MSC Motility Associated with Replicative Senescence. Stem Cell Rev Rep 2025:10.1007/s12015-025-10868-x. [PMID: 40156639 DOI: 10.1007/s12015-025-10868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Mesenchymal stem cells, cultured in 2D, are motile fibroblast-like cells with a well-developed actin cytoskeleton. In this study, we analyzed changes in cell motility during long-term cultivation accompanied by replicative senescence (RS) for DF2 and MSCWJ-1 cell lines derived from various sources and donors of different age under both normal and inflammatory conditions, the latter obtained by treatment with lysophosphatidic acid (LPA). Our results indicate that RS is associated with non-stationary alterations in the average migration speed: while the median speed derived from single-cell tracking is unaffected by the senescence stage, the average speed in young cells is enhanced due to the contribution of a subpopulation of fast-moving cells. The sensitivity of cell motility metrics to the impact of LPA varied depending on their origin, with the most pronounced effects observed during the initial passages. Using multivariate statistical analysis, we have shown explicitly that the common motility metrics (average and maximum speed, distance, sinuosity of trajectories, etc.) are associated with the passage, thus clearly reflecting senescence effect. Altogether, our results indicate that cell motility exhibits complex alterations with RS, with multiple metrics besides the average speed being affected and associated with their RS stage.
Collapse
Affiliation(s)
| | - Mikhail I Bogachev
- Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University "LETI", St. Petersburg, 197022, Russia
| | | | - Darya V Kriger
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Galina G Poljanskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Danila E Bobkov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
3
|
Ding YY, Sussman JH, Madden K, Loftus JP, Chen RK, Falkenstein CD, Bárcenas López DA, Hottman DA, Mathier B, Yu W, Xu J, Chen C, Chen CH, He B, Bandyopadhyay S, Zhang Z, Lee D, Wang H, Peng J, Dang CV, Tan K, Tasian SK. Targeting senescent stemlike subpopulations in Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 2025; 145:1195-1210. [PMID: 39774844 PMCID: PMC11923434 DOI: 10.1182/blood.2024026482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
ABSTRACT Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like ALL) is driven by genetic alterations that induce constitutive kinase signaling and is associated with chemoresistance and high relapse risk in children and adults. Preclinical studies in the most common CRLF2-rearranged/JAK pathway-activated Ph-like ALL subtype have revealed variable responses to JAK inhibitor-based therapies, suggesting incomplete oncogene addiction and highlighting a need to elucidate alternative biologic dependencies and therapeutic vulnerabilities, whereas the ABL-class Ph-like ALL subtype seems preferentially sensitive to SRC/ABL- or PDGFRB-targeting inhibitors. Which patients may be responsive vs resistant to tyrosine kinase inhibitor (TKI)-based precision medicine approaches remains a critical knowledge gap. Using bulk and single-cell multiomics analyses, we profiled residual cells from CRLF2-rearranged or ABL1-rearranged Ph-like ALL patient-derived xenograft models treated in vivo with targeted inhibitors to identify TKI-resistant subpopulations and potential mechanisms of therapeutic escape. We detected a specific MYC dependency in Ph-like ALL cells and defined a new leukemia cell subpopulation with senescence-associated stem cell-like features regulated by AP-1 transcription factors. This dormant ALL subpopulation was effectively eradicated by dual pharmacologic inhibition of BCL-2 and JAK/STAT or SRC/ABL pathways, a clinically relevant therapeutic strategy. Single cell-derived molecular signatures of this senescence and stem/progenitor-like subpopulation further predicted poor clinical outcomes associated with other high-risk genetic subtypes of childhood B-ALL and thus may have broader prognostic applicability beyond Ph-like ALL.
Collapse
Affiliation(s)
- Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan H. Sussman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kellyn Madden
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Joseph P. Loftus
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Robert K. Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Catherine D. Falkenstein
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Diego A. Bárcenas López
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - David A. Hottman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Benjamin Mathier
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jason Xu
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Shovik Bandyopadhyay
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zhan Zhang
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - DongGeun Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hong Wang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chi V. Dang
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Ludwig Institute for Cancer Research, New York, NY
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Single Cell Biology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
4
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
5
|
Giles KA, Taberlay PC, Cesare AJ, Jones MJK. Roles for the 3D genome in the cell cycle, DNA replication, and double strand break repair. Front Cell Dev Biol 2025; 13:1548946. [PMID: 40083661 PMCID: PMC11903485 DOI: 10.3389/fcell.2025.1548946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Large eukaryotic genomes are packaged into the restricted area of the nucleus to protect the genetic code and provide a dedicated environment to read, copy and repair DNA. The physical organisation of the genome into chromatin loops and self-interacting domains provides the basic structural units of genome architecture. These structural arrangements are complex, multi-layered, and highly dynamic and influence how different regions of the genome interact. The role of chromatin structures during transcription via enhancer-promoter interactions is well established. Less understood is how nuclear architecture influences the plethora of chromatin transactions during DNA replication and repair. In this review, we discuss how genome architecture is regulated during the cell cycle to influence the positioning of replication origins and the coordination of DNA double strand break repair. The role of genome architecture in these cellular processes highlights its critical involvement in preserving genome integrity and cancer prevention.
Collapse
Affiliation(s)
- Katherine A. Giles
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Phillippa C. Taberlay
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Anthony J. Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Mathew J. K. Jones
- Faculty of Medicine, Frazer Institute, University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Agyapong N, Dominguez-Ortega L, Macdonough B, Mulluso P, Patel S, Prajapati B, Saville B, Shapiro A, Trim E, Battaglia K, Herrera J, Garifo-MacPartland G, Newcombe D, Okundaye L, Paglia H, Paxson J. Quiescence modulates age-related changes in the functional capacity of highly proliferative canine lung mesenchymal stromal cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.08.637273. [PMID: 39974876 PMCID: PMC11839019 DOI: 10.1101/2025.02.08.637273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The functional capacity of highly proliferative cell populations changes with age. Here, we report that the proliferative capacity of canine lung mesenchymal stromal cells (LMSCs) declines with increasing age of the donor. However, other functional changes such as reduced autophagy, reduced migration/wound healing, increased production of reactive oxygen species, and increased senescence are not significantly altered with increasing age. Furthermore, transcriptomic profiling suggests minimal age-related changes. These data suggest that the reduced proliferative capacity of lung LMSCs isolated from aging donors may be associated with reversible cell cycle arrest (quiescence), rather than irreversible cell cycle arrest (senescence). Similar findings have been reported in other systems, including neural and muscle stem cells that are associated with low turnover-rate tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ethan Trim
- College of the Holy Cross, Worcester MA USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
8
|
Costa CM, Pedrosa SS, Kirkland JL, Reis F, Madureira AR. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res Rev 2025; 104:102619. [PMID: 39638096 DOI: 10.1016/j.arr.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
During the last few decades, life expectancy has increased worldwide along with the prevalence of several age-related diseases. Among aging pathways, cellular senescence and chronic inflammation (or "inflammaging") appear to be connected to gut homeostasis and dysbiosis of the microbiome. Cellular senescence is a state of essentially irreversible cell cycle arrest that occurs in response to stress. Although senescent cells (SC) remain metabolically active, they do not proliferate and can secrete inflammatory and other factors comprising the senescence-associated secretory phenotype (SASP). Accumulation of SCs has been linked to onset of several age-related diseases, in the brain, bones, the gastrointestinal tract, and other organs and tissues. The gut microbiome undergoes substantial changes with aging and is tightly interconnected with either successful (healthy) aging or disease. Senotherapeutic drugs are compounds that can clear senescent cells or modulate the release of SASP factors and hence attenuate the impact of the senescence-associated pro-inflammatory state. Phytochemicals, phenolic compounds and terpenes, which have antioxidant and anti-inflammatory activities, could also be senotherapeutic given their ability to act upon senescence-linked cellular pathways. The aim of this review is to dissect links among the gut microbiome, cellular senescence, inflammaging, and disease, as well as to explore phytochemicals as potential senotherapeutics, focusing on their interactions with gut microbiota. Coordinated targeting of these inter-related processes might unveil new strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Célia Maria Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - Sílvia Santos Pedrosa
- Biorbis, Unipessoal LDA, Edifício de Biotecnologia da Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - James L Kirkland
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra, Coimbra 3004-531, Portugal.
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
9
|
Li Y, Zhu Z, He S, Tang J, Zhang Y, Yang Y, Dong Y, He L, Jia Y, Liu X. Shenling Baizhu Decoction treats ulcerative colitis of spleen-deficiency and dampness obstruction types by targeting 'gut microbiota and galactose metabolism-bone marrow' axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118599. [PMID: 39043352 DOI: 10.1016/j.jep.2024.118599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenlin Baizhu Decoction (SLBZD), which comes from 'Taiping Huimin Heji Ju Fang', belongs to a classical prescription for treating spleen deficiency and dampness obstruction (SQDDS)-type ulcerative colitis (UC) in traditional Chinese medicine. However, the mechanism of SLBZD in treating UC with SQDDS remains unclear. AIM OF THE STUDY This study aims to investigate the mechanism of SLBZD against SQDDS-type UC of based on the "gut microbiota and metabolism - bone marrow" axis to induce endogenous bone marrow mesenchymal stem cells (BMSCs) homing. MATERIALS AND METHODS Ultra-performance liquid chromatography-mass spectrometry was used to analysis of SLBZD qualitatively. The efficacy of SLBZD in SQDDS-type UC was evaluated based on the following indicators: the body weight, colon length, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, and intestinal permeability proteins (occluding and ZO-1). 16S rRNA gene sequencing and non-target metabolomics were performed to identify gut microbiota changes and its metabolites in feces, respectively. BMSCs in each group was collected, cultured, and analyzed. Optimal passaged BMSCs were injected by tail vein into UC rats of SQDDS types. BMSCs homing to the colonic mucosal tissue was observed by immunofluorescent. Finally, the repairing effect of BMSCs homing to the colonic mucosal tissue after SLBZD treatment was analyzed by transmission electron microscopy, qRT-PCR, and immunohistochemistry. RESULTS SLBZD effectively improved the colonic length and the body weight, reduced DAI and H&E scores, and increased the expression of the intestinal permeability proteins, including occluding and ZO-1, to treat SQDDS-type UC. After SLBZD treatment, the α-diversity and β-diversity of the gut microbiota were improved. The differential microbiota was screened as Aeromonadaceae, Lactobacillaceae, and Clostridiaceae at the family level, and Aeromonas, Lactobacillus, Clostridium_sensu_stricto_1 at the genus level. Meanwhile, the main metabolic pathway was the galactose metabolism pathway. SLBZD treatment timely corrected the aberrant levels of β-galactose in peripheral blood and bone marrow, senescence-associate-β-galactosidase in BMSCs, and galactose kinase-2, galactose mutase, and galactosidase beta-1 in peripheral blood to further elevate the expression levels of senescence-associated (SA) proteins (p16, p53, p21, and p27) in BMSCs. The Spearman's correlation analysis demonstrated the relationship between microbiota and metabolism, and the relationship between the galactose metabolism pathway and SA proteins. After BMSCs in each group injection via the tail vein, the pharmacodynamic effects were consistent with those of SLBZD in SQDDS-type UC rats. Furthermore, BMSCs have been homing to colonic mucosal tissue. BMSCs from the SLBZD treatment group had stronger restorative effects on intestinal permeability function due to increasing protein and mRNA expressions of occludin and ZO-1, and decreasing the proteins and mRNA expressions of SDF-1 and CXCR4 in colon. CONCLUSIONS SLBZD alleviated the damaged structure of gut microbiota and regulated their metabolism, specifically the galactose metabolism, to treat UC of SDDOS types. SLBZD treatment promotes endogenous BMSCs homing to colonic mucosal tissue to repaire the intestinal permeability. The current exploration revealed an underlying mechanism wherein SLBZD activates endogenous BMSCs by targeting 'the gut microbiota and its metabolism-bone marrow' axis and repairs colonic mucosal damage to treat SDDOS-type UC.
Collapse
Affiliation(s)
- Yongyu Li
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Zhongbo Zhu
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Shu He
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Jing Tang
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yanmei Zhang
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yujie Yang
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yawei Dong
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Lanlan He
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Yuxin Jia
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Xiping Liu
- Gansu Engineering Laboratory for New Products of Traditional Chinese Medicine, Gansu Key Laboratory of TCM Excavation and Innovative Transformation, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
10
|
Nam D, Park J, Lee J, Son J, Kim JE. mTOR potentiates senescent phenotypes and primary cilia formation after cisplatin-induced G2 arrest in retinal pigment epithelial cells. Cell Signal 2024; 124:111402. [PMID: 39251051 DOI: 10.1016/j.cellsig.2024.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cisplatin, a platinum-based anticancer drug, is used to treat several types of cancer. Despite its effectiveness, cisplatin-induced side effects have often been reported. Although cisplatin-induced toxicities, such as apoptosis and/or necrosis, have been well studied, the fate of cells after exposure to sublethal doses of cisplatin needs further elucidation. Treatment with a sublethal dose of cisplatin induced cell cycle arrest at the G2 phase in retinal pigment epithelial cells. Following cisplatin withdrawal, the cells irreversibly exited the cell cycle and became senescent. Notably, the progression from the G2 to the G1 phase occurred without mitotic entry, a phenomenon referred to as mitotic bypass, resulting in the accumulation of cells containing 4N DNA content. Cisplatin-exposed cells exhibited morphological changes associated with senescence, including an enlarged size of cell and nucleus and increased granularity. In addition, the senescent cells possessed primary cilia and persistent DNA lesions. Senescence induced by transient exposure to cisplatin involves mTOR activation. Although transient co-exposure with an mTORC1 inhibitor rapamycin did not prevent mitotic bypass and entry into senescence, it delayed the progression of senescence and attenuated senescent phenotypes, resulting in shorter primary cilia formation. Conclusively, cisplatin induces senescence in retinal pigment epithelial cells by promoting mTOR activation.
Collapse
Affiliation(s)
- Dajeong Nam
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaejung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jaehong Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juyoung Son
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Al‐Katat A, Boudreau L, Gagnon E, Assous I, Villeneuve L, Leblanc CA, Bergeron A, Sirois M, El‐Hamamsy I, Calderone A. Greater TIMP-1 protein levels and neointimal formation represent sex-dependent cellular events limiting aortic vessel expansion in female rats. IUBMB Life 2024; 76:1356-1376. [PMID: 39264710 PMCID: PMC11580379 DOI: 10.1002/iub.2916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024]
Abstract
Fragmentation/loss of the structural protein elastin represents the precipitating event translating to aortic expansion and subsequent aneurysm formation. The present study tested the hypothesis that greater protein expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and neointimal growth secondary to a reduction of medial elastin content represent sex-dependent events limiting aortic vessel expansion in females. TIMP-1 protein levels were higher in the ascending aorta of female versus male patients diagnosed with a bicuspid aortic valve (BAV). The latter paradigm was recapitulated in the aorta of adult male and female rats complemented by greater TIMP-2 expression in females. CaCl2 (0.5 M) treatment of the infrarenal aorta of adult male and female rats increased the in situ vessel diameter and expansion was significantly smaller in females despite a comparable reduction of medial elastin content. The preferential appearance of a neointimal region of the CaCl2-treated infrarenal aorta of female rats may explain in part the smaller in situ expansion and neointimal growth correlated positively with the % change of the in situ diameter. Neointimal formation was secondary to a significant increase in the density of medial/neointimal vascular smooth muscle cells (VSMCs) that re-entered the G2-M phase whereas VSMC cell cycle re-entry was attenuated in the CaCl2-treated infrarenal aorta of male rats. Thus, greater TIMP-1 expression in the aorta of female BAV patients may prevent excessive elastin fragmentation and preferential neointimal growth following CaCl2-treatment of the infrarenal aorta of female rats represents a sex-dependent biological event limiting vessel expansion secondary to a significant loss of the structural protein.
Collapse
Affiliation(s)
| | | | | | - Ines Assous
- Montreal Heart InstituteMontréalQuébecCanada
| | | | | | | | - Martin Sirois
- Montreal Heart InstituteMontréalQuébecCanada
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQuébecCanada
| | - Ismael El‐Hamamsy
- Department of Cardiovascular Surgery, Mount Sinai HospitalIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Angelino Calderone
- Montreal Heart InstituteMontréalQuébecCanada
- Département de Pharmacologie et PhysiologieUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
12
|
Chanda F, Lin KX, Chaurembo AI, Huang JY, Zhang HJ, Deng WH, Xu YJ, Li Y, Fu LD, Cui HD, Shu C, Chen Y, Xing N, Lin HB. PM 2.5-mediated cardiovascular disease in aging: Cardiometabolic risks, molecular mechanisms and potential interventions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176255. [PMID: 39276993 DOI: 10.1016/j.scitotenv.2024.176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Air pollution, particularly fine particulate matter (PM2.5) with <2.5 μm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.
Collapse
Affiliation(s)
- Francis Chanda
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yang Chen
- University of Chinese Academy of Sciences, Beijing, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China.
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, SIMM, CAS, Zhongshan, Guangdong, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Song M, Deng M, Peng Z, Dai F, Wang Y, Shu W, Zhou X, Zhang J, Hou Y, Yu B. Granulocyte colony-stimulating factor mediates bone loss via the activation of IL-1β/JNK signaling pathway in murine Staphylococcus aureus-induced osteomyelitis. Int Immunopharmacol 2024; 141:112959. [PMID: 39163688 DOI: 10.1016/j.intimp.2024.112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
Staphylococcus aureus (S. aureus)-induced bone loss is a significant challenge in the treatment of osteomyelitis. Our previous study was the first to confirm that granulocyte colony-stimulating factor (G-CSF) mediates S. aureus-induced bone loss. However, the underlying mechanism remains unknown. The objective of this study was to elucidate this. We found G-CSF mediated BMSC senescence and increased IL-1β concentration of serum and bone marrow in mice after S. aureus infection. Furthermore, we demonstrated that G-CSF promoted the expression of IL1b in murine bone marrow-derived neutrophils. Notably, we identified that IL-1β mediated BMSC (bone marrow mesenchymal stromal cell) senescence in mice after S. aureus infection. Importantly, IL-1β neutralizing antibody effectively alleviated BMSC senescence and bone loss caused by S. aureus infection in mice. In terms of molecular mechanism, we found IL-1β induced BMSC senescence by JNK/P53 and JNK/BCL2 pathways. Collectively, G-CSF promotes IL-1β production which induces BMSC senescence via JNK/P53 and JNK/BCL2 pathways, leading to S. aureus-induced bone loss. This study identified novel targets for preventing and treating S. aureus-induced bone loss in osteomyelitis.
Collapse
Affiliation(s)
- Mingrui Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingye Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyue Peng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangfang Dai
- Huiqiao Medical Center, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yutian Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Shu
- Department of Trauma Orthopedics, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuyou Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinye Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Anconelli L, Farioli F, Lodeserto P, Andreadi A, Borsetti F, Voltattorni M, Galassi L, Rossi M, Farruggia G, Blasi P, Orienti I. Antiproliferative and Morphological Effects of Fenretinide Lipid Nanosystems in Colon Adenocarcinoma Cells. Pharmaceutics 2024; 16:1421. [PMID: 39598544 PMCID: PMC11597870 DOI: 10.3390/pharmaceutics16111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Objective: Colon adenocarcinoma is characterized by the downregulation of the retinoic acid receptor, making natural retinoids such as all-trans retinoic acid, 9-cis retinoic acid and 13-cis retinoic acid effective in treatment and chemoprevention due to their ability to increase RARβ expression. However, major limitations to their use include tolerability and acquired resistance. In this study, we evaluated fenretinide, a semisynthetic derivative of all-trans retinoic acid, in an HT-29 cell line. Fenretinide was evaluated both as a free drug and encapsulated in self-assembling phosphatidylcholine nanosystems with the aim of increasing the aqueous solubility and cell availability of the drug. Methods: Fenretinide was encapsulated in lipid nanosystems obtained in water by the dispersion of an amphiphilic mixture of phospholipids, glyceryl tributyrate and polysorbate 80. The physico-chemical characterization of the nanosystems was carried out by dynamic light scattering and spectrophotometry. The biological activity was evaluated by quantitative phase imaging microscopy, MTT assay, flow cytometry and confocal laser-scanning fluorescence microscopy. Results: Fenretinide in phosphatidylcholine nanosystems was more active than free fenretinide in inhibiting HT-29 cells' proliferation, as indicated by quantitative phase imaging data. Indeed, encapsulated fenretinide increased duplication time, decreased dry mass and decreased the rate of cell growth more efficiently than fenretinide. Moreover, encapsulated fenretinide effectively decreased the motility of the cells that survived the treatment. Conclusions: The results indicate that the proposed nanosystems can be considered a valuable alternative to natural retinoids in the chemoprevention and treatment of colorectal cancer. This is due to the favorable pharmacologic characteristics of fenretinide in colorectal cancer and the improved drug activity provided by nanoencapsulation.
Collapse
Affiliation(s)
- Lorenzo Anconelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Francesca Farioli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Pietro Lodeserto
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (A.A.)
| | - Aikaterini Andreadi
- Section of Endocrinology and Metabolic Diseases, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (P.L.); (A.A.)
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Manuela Voltattorni
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Lucrezia Galassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Martina Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Via dei Carpegna 19, 00165 Rome, Italy
| | - Paolo Blasi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40126 Bologna, Italy
| | - Isabella Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy; (L.A.); (F.F.); (F.B.); (M.V.); (L.G.); (M.R.); (G.F.)
| |
Collapse
|
15
|
Li L, Yang L, Shen L, Zhao Y, Wang L, Zhang H. Fat Mass and Obesity-Associated Protein Regulates Granulosa Cell Aging by Targeting Matrix Metalloproteinase-2 Gene Via an N6-Methyladenosine-YT521-B Homology Domain Family Member 2-Dependent Pathway in Aged Mice. Reprod Sci 2024; 31:3498-3511. [PMID: 38995602 PMCID: PMC11527923 DOI: 10.1007/s43032-024-01632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024]
Abstract
In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.
Collapse
Affiliation(s)
- Linshuang Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Le Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Lin Shen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Yiqing Zhao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
16
|
Karabag D, Heneka MT, Ising C. The putative contribution of cellular senescence to driving tauopathies. Trends Immunol 2024; 45:837-848. [PMID: 39306559 DOI: 10.1016/j.it.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells. Senescent markers and SASP factors have been detected in multiple brain cells in tauopathies, including microglia, astrocytes, and perhaps even post-mitotic neurons, possibly contributing to the initiation as well as progression of these diseases. Here, we discuss the implications of presenting a senescent phenotype in tauopathies and highlight a potential role for the NOD-like receptor protein 3 (NLRP3) inflammasome as a newfound mechanism implicated in senescence and SASP formation.
Collapse
Affiliation(s)
- Deniz Karabag
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Michael T Heneka
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Christina Ising
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
17
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
18
|
Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. NEUROPROTECTION 2024; 2:182-195. [PMID: 39364217 PMCID: PMC11449118 DOI: 10.1002/nep3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 10/05/2024]
Abstract
The existing literature on neurodegenerative diseases (NDDs) reveals a common pathological feature: the accumulation of misfolded proteins. However, the heterogeneity in disease onset mechanisms and the specific brain regions affected complicates the understanding of the diverse clinical manifestations of individual NDDs. Dementia, a hallmark symptom across various NDDs, serves as a multifaceted denominator, contributing to the clinical manifestations of these disorders. There is a compelling hypothesis that therapeutic strategies capable of mitigating misfolded protein accumulation and disrupting ongoing pathogenic processes may slow or even halt disease progression. Recent research has linked disease-associated microglia to their transition into a senescent state-characterized by irreversible cell cycle arrest-in aging populations and NDDs. Although senescent microglia are consistently observed in NDDs, few studies have utilized animal models to explore their role in disease pathology. Emerging evidence from experimental rat models suggests that disease-associated microglia exhibit characteristics of senescence, indicating that deeper exploration of microglial senescence could enhance our understanding of NDD pathogenesis and reveal novel therapeutic targets. This review underscores the importance of investigating microglial senescence and its potential contributions to the pathophysiology of NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Additionally, it highlights the potential of targeting microglial senescence through iron chelation and senolytic therapies as innovative approaches for treating age-related NDDs.
Collapse
Affiliation(s)
- Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O. Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Omolabake I. Omotosho
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Oritoke M. Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, School of Basic Medical Science, Federal University of Technology, Akure, Ondo, Nigeria
| | - Olayemi J. Olajide
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Omamuyouwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
19
|
Weston WA, Holt JA, Wiecek AJ, Pilling J, Schiavone LH, Smith DM, Secrier M, Barr AR. An image-based screen for secreted proteins involved in breast cancer G0 cell cycle arrest. Sci Data 2024; 11:868. [PMID: 39127790 PMCID: PMC11316812 DOI: 10.1038/s41597-024-03697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Secreted proteins regulate the balance between cellular proliferation and G0 arrest and therefore play important roles in tumour dormancy. Tumour dormancy presents a significant clinical challenge for breast cancer patients, where non-proliferating, G0-arrested cancer cells remain at metastatic sites, below the level of clinical detection, some of which can re-enter proliferation and drive tumour relapse. Knowing which secreted proteins can regulate entry into and exit from G0 allows us to manipulate their signalling to prevent tumour relapse. To identify novel secreted proteins that can promote breast cancer G0 arrest, we performed a secretome-wide, image-based screen for proteins that increase the fraction of cells in G0 arrest. From a secretome library of 1282 purified proteins, we identified 29 candidates that promote G0 arrest in non-transformed and transformed breast epithelial cells. The assay we have developed can be adapted for use in other perturbation screens in other cell types. All datasets have been made available for re-analysis and our candidate proteins are presented for alternative bioinformatic refinement or further experimental follow up.
Collapse
Affiliation(s)
- William A Weston
- MRC Laboratory of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Jordan A Holt
- MRC Laboratory of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Anna J Wiecek
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - James Pilling
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, CB2 0AA, UK
| | | | - David M Smith
- Emerging Innovation Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, CB2 0AA, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alexis R Barr
- MRC Laboratory of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0HS, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
20
|
Pulipaka S, Chempon H, Singuru G, Sahoo S, Shaikh A, Kumari S, Thennati R, Kotamraju S. Mitochondria-targeted esculetin and metformin delay endothelial senescence by promoting fatty acid β-oxidation: Relevance in age-associated atherosclerosis. Mech Ageing Dev 2024; 219:111931. [PMID: 38554949 DOI: 10.1016/j.mad.2024.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Impaired mitochondrial fatty acid β-oxidation (FAO) plays a role in the onset of several age-associated diseases, including atherosclerosis. In the current work, we investigated the efficacies of mitochondria-targeted esculetin (Mito-Esc) and metformin in enhancing FAO in human aortic endothelial cells (HAECs), and its relevance in the delay of cellular senescence and age-associated atherosclerotic plaque formation in Apoe-/- mice. Chronic culturing of HAECs with either Mito-Esc or metformin increased oxygen consumption rates (OCR), and caused delay in senescence features. Conversely, etomoxir (CPT1 inhibitor) reversed Mito-Esc- and metformin-induced OCR, and caused premature endothelial senescence. Interestingly, Mito-Esc, unlike metformin, in the presence of etomoxir failed to preserve OCR. Thereby, underscoring Mito-Esc's exclusive reliance on FAO as an energy source. Mechanistically, chronic culturing of HAECs with either Mito-Esc or metformin led to AMPK activation, increased CPT1 activity, and acetyl-CoA levels along with a concomitant reduction in malonyl-CoA levels, and lipid accumulation. Similar results were observed in Apoe-/- mice aorta and liver tissue with a parallel reduction in age-associated atherosclerotic plaque formation and degeneration of liver with either Mito-Esc or metformin administration. Together, Mito-Esc and metformin by potentiating FAO, may have a role in the delay of cellular senescence by modulating mitochondrial function.
Collapse
Affiliation(s)
- Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Hridya Chempon
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Altab Shaikh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sunita Kumari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Rajamannar Thennati
- High Impact Innovations-Sustainable Health Solutions (HISHS), Sun Pharmaceutical Industries Ltd, Vadodara 390012, India
| | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| |
Collapse
|
21
|
Wang Y, Wang L, Wei Y, Wei C, Yang H, Chen Q, Zhang R, Shen H. Advances in the molecular regulation mechanism of tumor dormancy and its therapeutic strategy. Discov Oncol 2024; 15:184. [PMID: 38795254 PMCID: PMC11127899 DOI: 10.1007/s12672-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/20/2024] [Indexed: 05/27/2024] Open
Abstract
Tumor dormancy is a stage in the growth and development of malignant cells and is one of the biological characteristics of malignant cells. Complex transitions involving dormant tumor cells between quiescent and proliferative states pose challenges for tumor eradication. This paper explores the biological features and molecular mechanisms of tumor dormancy and highlights emerging therapies. The strategies discussed promise innovative clinical potential against malignant tumors. Understanding the mechanisms of dormancy can help provide valuable insights into the diagnosis and treatment of malignant tumors to advance the fight against this world problem.
Collapse
Affiliation(s)
- Yuan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Linlin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Yaojun Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Chuang Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Haohang Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
22
|
Asghar A, Chohan TA, Khurshid U, Saleem H, Mustafa MW, Khursheed A, Alafnan A, Batul R, Bin Break MK, Almansour K, Anwar S. A systematic review on understanding the mechanistic pathways and clinical aspects of natural CDK inhibitors on cancer progression.: Unlocking cellular and biochemical mechanisms. Chem Biol Interact 2024; 393:110940. [PMID: 38467339 DOI: 10.1016/j.cbi.2024.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.
Collapse
Affiliation(s)
- Andleeb Asghar
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan.
| | - Mian Waqar Mustafa
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
| | - Anjum Khursheed
- Department of Pharmacy, Grand Asian University, Sialkot, Pakistan
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| | - Rahila Batul
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, Saudi Arabia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Saudi Arabia
| |
Collapse
|
23
|
Bramwell LR, Harries LW. Senescence, regulators of alternative splicing and effects of trametinib treatment in progeroid syndromes. GeroScience 2024; 46:1861-1879. [PMID: 37751047 PMCID: PMC10828446 DOI: 10.1007/s11357-023-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
24
|
Bramwell LR, Frankum R, Harries LW. Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones. Cells 2024; 13:517. [PMID: 38534362 PMCID: PMC10969307 DOI: 10.3390/cells13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Collapse
Affiliation(s)
| | | | - Lorna W. Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK; (L.R.B.); (R.F.)
| |
Collapse
|
25
|
Fraile-Martinez O, De Leon-Oliva D, Boaru DL, De Castro-Martinez P, Garcia-Montero C, Barrena-Blázquez S, García-García J, García-Honduvilla N, Alvarez-Mon M, Lopez-Gonzalez L, Diaz-Pedrero R, Guijarro LG, Ortega MA. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Front Genet 2024; 15:1345459. [PMID: 38469117 PMCID: PMC10925776 DOI: 10.3389/fgene.2024.1345459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Joaquin García-García
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, Alcala deHenares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, Alcala deHenares, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, Alcala deHenares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala deHenares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala deHenares, Spain
| |
Collapse
|
26
|
Miao Y, Wang P, Huang J, Qi X, Liang Y, Zhao W, Wang H, Lyu J, Zhu H. Metabolomics, Transcriptome and Single-Cell RNA Sequencing Analysis of the Metabolic Heterogeneity between Oral Cancer Stem Cells and Differentiated Cancer Cells. Cancers (Basel) 2024; 16:237. [PMID: 38254728 PMCID: PMC10813553 DOI: 10.3390/cancers16020237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Understanding the distinct metabolic characteristics of cancer stem cells (CSC) may allow us to better cope with the clinical challenges associated with them. In this study, OSCC cell lines (CAL27 and HSC3) and multicellular tumor spheroid (MCTS) models were used to generate CSC-like cells. Quasi-targeted metabolomics and RNA sequencing were used to explore altered metabolites and metabolism-related genes. Pathview was used to display the metabolites and transcriptome data in a KEGG pathway. The single-cell RNA sequencing data of six patients with oral cancer were analyzed to characterize in vivo CSC metabolism. The results showed that 19 metabolites (phosphoethanolamine, carbamoylphosphate, etc.) were upregulated and 109 metabolites (2-aminooctanoic acid, 7-ketocholesterol, etc.) were downregulated in both MCTS cells. Integration pathway analysis revealed altered activity in energy production (glycolysis, citric cycle, fatty acid oxidation), macromolecular synthesis (purine/pyrimidine metabolism, glycerophospholipids metabolism) and redox control (glutathione metabolism). Single-cell RNA sequencing analysis confirmed altered glycolysis, glutathione and glycerophospholipid metabolism in in vivo CSC. We concluded that CSCs are metabolically inactive compared with differentiated cancer cells. Thus, oral CSCs may resist current metabolic-related drugs. Our result may be helpful in developing better therapeutic strategies against CSC.
Collapse
Affiliation(s)
- Yuwen Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310020, China;
| | - Pan Wang
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Qi
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Yingjiqiong Liang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenquan Zhao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310020, China;
| | - Jiong Lyu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| | - Huiyong Zhu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (P.W.); (H.Z.)
| |
Collapse
|
27
|
Mason EC, Menon S, Schneider BR, Gaskill CF, Dawson MM, Moore CM, Armstrong LC, Cho O, Richmond BW, Kropski JA, West JD, Geraghty P, Gomperts BN, Ess KC, Gally F, Majka SM. Activation of mTOR signaling in adult lung microvascular progenitor cells accelerates lung aging. J Clin Invest 2023; 133:e171430. [PMID: 37874650 PMCID: PMC10721153 DOI: 10.1172/jci171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function. Following mTOR activation, these MVPCs adapt a unique transcriptome signature and emerge as a venous subpopulation in the angiodiverse microvascular endothelial subclusters. Thus, our findings support a significant role for mTOR in the maintenance of MVPC function and microvascular niche homeostasis as well as a cell-based mechanism driving loss of tissue structure underlying lung aging and the development of emphysema.
Collapse
Affiliation(s)
- Emma C. Mason
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Swapna Menon
- Pulmonary Vascular Research Institute Kochi and AnalyzeDat Consulting Services, Kerala, India
| | - Benjamin R. Schneider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christa F. Gaskill
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maggie M. Dawson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Camille M. Moore
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Craig Armstrong
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Okyong Cho
- Genomics and Microarray Core, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, Colorado, USA
| | - Bradley W. Richmond
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - James D. West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Brigitte N. Gomperts
- Translational Research, UCLA Broad Stem Cell Research Center; Pediatrics Division of Pulmonary Medicine, University of California, Los Angeles, California, USA
| | - Kevin C. Ess
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fabienne Gally
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M. Majka
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
28
|
Wilson GA, Vuina K, Sava G, Huard C, Meneguello L, Coulombe-Huntington J, Bertomeu T, Maizels RJ, Lauring J, Kriston-Vizi J, Tyers M, Ali S, Bertoli C, de Bruin RAM. Active growth signaling promotes senescence and cancer cell sensitivity to CDK7 inhibition. Mol Cell 2023; 83:4078-4092.e6. [PMID: 37977119 DOI: 10.1016/j.molcel.2023.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
Tumor growth is driven by continued cellular growth and proliferation. Cyclin-dependent kinase 7's (CDK7) role in activating mitotic CDKs and global gene expression makes it therefore an attractive target for cancer therapies. However, what makes cancer cells particularly sensitive to CDK7 inhibition (CDK7i) remains unclear. Here, we address this question. We show that CDK7i, by samuraciclib, induces a permanent cell-cycle exit, known as senescence, without promoting DNA damage signaling or cell death. A chemogenetic genome-wide CRISPR knockout screen identified that active mTOR (mammalian target of rapamycin) signaling promotes samuraciclib-induced senescence. mTOR inhibition decreases samuraciclib sensitivity, and increased mTOR-dependent growth signaling correlates with sensitivity in cancer cell lines. Reverting a growth-promoting mutation in PIK3CA to wild type decreases sensitivity to CDK7i. Our work establishes that enhanced growth alone promotes CDK7i sensitivity, providing an explanation for why some cancers are more sensitive to CDK inhibition than normally growing cells.
Collapse
Affiliation(s)
- Gemma A Wilson
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Karla Vuina
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Georgina Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Caroline Huard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Leticia Meneguello
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Rory J Maizels
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Josh Lauring
- Janssen Research and Development, the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Janos Kriston-Vizi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada; Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Cosetta Bertoli
- Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robertus A M de Bruin
- Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|
29
|
Weston WA, Barr AR. A cell cycle centric view of tumour dormancy. Br J Cancer 2023; 129:1535-1545. [PMID: 37608096 PMCID: PMC10645753 DOI: 10.1038/s41416-023-02401-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Tumour dormancy and recurrent metastatic cancer remain the greatest clinical challenge for cancer patients. Dormant tumour cells can evade treatment and detection, while retaining proliferative potential, often for years, before relapsing to tumour outgrowth. Cellular quiescence is one mechanism that promotes and maintains tumour dormancy due to its central role in reducing proliferation, elevating cyto-protective mechanisms, and retaining proliferative potential. Quiescence/proliferation decisions are dictated by intrinsic and extrinsic signals, which regulate the activity of cyclin-dependent kinases (CDKs) to modulate cell cycle gene expression. By clarifying the pathways regulating CDK activity and the signals which activate them, we can better understand how cancer cells enter, maintain, and escape from quiescence throughout the progression of dormancy and metastatic disease. Here we review how CDK activity is regulated to modulate cellular quiescence in the context of tumour dormancy and highlight the therapeutic challenges and opportunities it presents.
Collapse
Affiliation(s)
- William A Weston
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
| | - Alexis R Barr
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Du Cane Rd, London, W12 0NN, UK.
| |
Collapse
|
30
|
Cao Y, Cao S, Ge RL, Bao H, Mou Y, Ji W. Brain-aging related protein expression and imaging characteristics of mice exposed to chronic hypoxia at high altitude. Front Aging Neurosci 2023; 15:1268230. [PMID: 37849650 PMCID: PMC10577427 DOI: 10.3389/fnagi.2023.1268230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Objective To determine changes in protein expression related to brain aging and imaging features in mice after chronic hypoxia exposure at high altitude. Method A total of 24 healthy 4-week-old mice were randomly divided into high altitude hypoxia (HH) and plain control (PC) groups (n = 8 per group). HH mice were transported from Xi'an (450 m above sea level) to Maduo (4,300 m above sea level) while PC mice were raised in Xi'an. After 6 months, 7.0T magnetic resonance imaging (MRI) was performed. All mice completed T2-weighted imaging (T2WI), diffusion tensor imaging (DTI), resting-state functional MRI (rs-fMRI), arterial spin labeling (ASL), and magnetic resonance angiography (MRA) examinations. Next, brain slices were prepared and Nissl staining was used to observe morphological changes in neurons. Ultrastructural changes in neurons were observed by transmission electron microscopy. Expression changes of Caspase-3, klotho, P16, P21, and P53 at the gene and protein levels were detected by real-time PCR (RT-PCR) and Western blot. Results The number of neuronal Nissl bodies in the hippocampus and frontal cortex was significantly decreased in the HH group compared to the PC group. Some hippocampal and frontal cortical neurons were apoptotic, the nuclei were wrinkled, chromatin was aggregated, and most mitochondria were mildly swollen (crista lysis, fracture). Compared with the PC group, the HH group showed elevated expression of caspase-3 mRNA, P16 mRNA, P21 mRNA, and P53 mRNA in the hippocampus and frontal cortex. Expression of Klotho mRNA in the frontal cortex was also significantly decreased. Western blot results showed that caspase-3 protein expression in the hippocampus and frontal cortex of the HH group was increased compared with the PC group. Moreover, there was decreased Klotho protein expression and significantly increased P-P53 protein expression. Compared with the PC group, expression of P16 protein in the frontal cortex of the HH group was increased and the gray matter (GM) volume in the left visceral area, left caudate nucleus, and left piriform cortex was decreased. Furthermore, the amplitude of low frequency fluctuation was decreased in the left posterior nongranular insular lobe, right small cell reticular nucleus, left flocculus, left accessory flocculus, and left primary auditory area, but increased in the GM layer of the left superior colliculus. Regional homogeneity was decreased in the left and right olfactory regions, but increased in the left bed nucleus. After exposure to high altitude, functional connectivity (FC) between the bilateral caudate nucleus and thalamus, corpus callosum, cingulate gyrus, anterior limbic cortex, globus pallidus, and hippocampus was weakened. FC between the right caudate nucleus and hypothalamus and entorhinal cortex was also weakened. The fractional anisotropy value of the left hippocampus was decreased in the HH group. Compared with the PC group, the HH group showed significantly increased inner diameters of the bilateral common carotid artery and left internal carotid artery. The cerebral blood flow values of the bilateral cortex and bilateral hippocampus in the HH group did not change significantly. Conclusion Taken together, our findings show that chronic hypoxia exposure at high altitude may promote neuronal apoptosis and abnormal expression of related proteins, changing the structure and function of brain. These changes may contribute to brain aging.
Collapse
Affiliation(s)
- Yaxin Cao
- Tangdu Hospital of Air Force Military Medical University, Xi’an, China
| | - Shundao Cao
- Department of Neurology, Xi’an No. 1 Hospital, Xi’an, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Yalin Mou
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Weizhong Ji
- Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
31
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
32
|
Gao E, Sun X, Thorne RF, Zhang XD, Li J, Shao F, Ma J, Wu M. NIPSNAP1 directs dual mechanisms to restrain senescence in cancer cells. J Transl Med 2023; 21:401. [PMID: 37340421 DOI: 10.1186/s12967-023-04232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/27/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Although the executive pathways of senescence are known, the underlying control mechanisms are diverse and not fully understood, particularly how cancer cells avoid triggering senescence despite experiencing exacerbated stress conditions within the tumor microenvironment. METHODS Mass spectrometry (MS)-based proteomic screening was used to identify differentially regulated genes in serum-starved hepatocellular carcinoma cells and RNAi employed to determine knockdown phenotypes of prioritized genes. Thereafter, gene function was investigated using cell proliferation assays (colony-formation, CCK-8, Edu incorporation and cell cycle) together with cellular senescence assays (SA-β-gal, SAHF and SASP). Gene overexpression and knockdown techniques were applied to examine mRNA and protein regulation in combination with luciferase reporter and proteasome degradation assays, respectively. Flow cytometry was applied to detect changes in cellular reactive oxygen species (ROS) and in vivo gene function examined using a xenograft model. RESULTS Among the genes induced by serum deprivation, NIPSNAP1 was selected for investigation. Subsequent experiments revealed that NIPSNAP1 promotes cancer cell proliferation and inhibits P27-dependent induction of senescence via dual mechanisms. Firstly, NIPSNAP1 maintains the levels of c-Myc by sequestering the E3 ubiquitin ligase FBXL14 to prevent the proteasome-mediated turnover of c-Myc. Intriguingly, NIPSNAP1 levels are restrained by transcriptional repression mediated by c-Myc-Miz1, with repression lifted in response to serum withdrawal, thus identifying feedback regulation between NIPSNAP1 and c-Myc. Secondly, NIPSNAP1 was shown to modulate ROS levels by promoting interactions between the deacetylase SIRT3 and superoxide dismutase 2 (SOD2). Consequent activation of SOD2 serves to maintain cellular ROS levels below the critical levels required to induce cell cycle arrest and senescence. Importantly, the actions of NIPSNAP1 in promoting cancer cell proliferation and preventing senescence were recapitulated in vivo using xenograft models. CONCLUSIONS Together, these findings reveal NIPSNAP1 as an important mediator of c-Myc function and a negative regulator of cellular senescence. These findings also provide a theoretical basis for cancer therapy where targeting NIPSNAP1 invokes cellular senescence.
Collapse
Affiliation(s)
- Enyi Gao
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiaoya Sun
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Rick Francis Thorne
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Xu Dong Zhang
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Jinming Li
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China
| | - Fengmin Shao
- Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450046, China.
- School of Basic Medical Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
33
|
Duisenbek A, Lopez-Armas GC, Pérez M, Avilés Pérez MD, Aguilar Benitez JM, Pereira Pérez VR, Gorts Ortega J, Yessenbekova A, Ablaikhanova N, Escames G, Acuña-Castroviejo D, Rusanova I. Insights into the Role of Plasmatic and Exosomal microRNAs in Oxidative Stress-Related Metabolic Diseases. Antioxidants (Basel) 2023; 12:1290. [PMID: 37372020 DOI: 10.3390/antiox12061290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
A common denominator of metabolic diseases, including type 2 diabetes Mellitus, dyslipidemia, and atherosclerosis, are elevated oxidative stress and chronic inflammation. These complex, multi-factorial diseases are caused by the detrimental interaction between the individual genetic background and multiple environmental stimuli. The cells, including the endothelial ones, acquire a preactivated phenotype and metabolic memory, exhibiting increased oxidative stress, inflammatory gene expression, endothelial vascular activation, and prothrombotic events, leading to vascular complications. There are different pathways involved in the pathogenesis of metabolic diseases, and increased knowledge suggests a role of the activation of the NF-kB pathway and NLRP3 inflammasome as key mediators of metabolic inflammation. Epigenetic-wide associated studies provide new insight into the role of microRNAs in the phenomenon of metabolic memory and the development consequences of vessel damage. In this review, we will focus on the microRNAs related to the control of anti-oxidative enzymes, as well as microRNAs related to the control of mitochondrial functions and inflammation. The objective is the search for new therapeutic targets to improve the functioning of mitochondria and reduce oxidative stress and inflammation, despite the acquired metabolic memory.
Collapse
Affiliation(s)
- Ayauly Duisenbek
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Gabriela C Lopez-Armas
- Departamento de Investigación y Extensión, Centro de Enseñanza Técnica Industrial, C. Nueva Escocia 1885, Guadalajara 44638, Mexico
| | - Miguel Pérez
- Hospital de Alta Resolución de Alcalá la Real, 23680 Jaén, Spain
| | - María D Avilés Pérez
- Endocrinology and Nutrition Unit, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), University Hospital Clínico San Cecilio, 18016 Granada, Spain
| | | | - Víctor Roger Pereira Pérez
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Juan Gorts Ortega
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Arailym Yessenbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
| | - Nurzhanyat Ablaikhanova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - Germaine Escames
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, 18019 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), San Cecilio University Hospital Clínico, 18016 Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
34
|
Wiecek AJ, Cutty SJ, Kornai D, Parreno-Centeno M, Gourmet LE, Tagliazucchi GM, Jacobson DH, Zhang P, Xiong L, Bond GL, Barr AR, Secrier M. Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer. Genome Biol 2023; 24:128. [PMID: 37221612 PMCID: PMC10204193 DOI: 10.1186/s13059-023-02963-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/07/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state.
Collapse
Affiliation(s)
- Anna J. Wiecek
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Stephen J. Cutty
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Daniel Kornai
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Mario Parreno-Centeno
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Lucie E. Gourmet
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Daniel H. Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
- UCL Cancer Institute, Paul O’Gorman Building, University College London, London, UK
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lingyun Xiong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gareth L. Bond
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Cell Cycle Control Team, MRC London Institute of Medical Sciences (LMS), London, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
35
|
Kandhaya-Pillai R, Miro-Mur F, Alijotas-Reig J, Tchkonia T, Schwartz S, Kirkland JL, Oshima J. Key elements of cellular senescence involve transcriptional repression of mitotic and DNA repair genes through the p53-p16/RB-E2F-DREAM complex. Aging (Albany NY) 2023; 15:4012-4034. [PMID: 37219418 PMCID: PMC10258023 DOI: 10.18632/aging.204743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Cellular senescence is a dynamic stress response process that contributes to aging. From initiation to maintenance, senescent cells continuously undergo complex molecular changes and develop an altered transcriptome. Understanding how the molecular architecture of these cells evolve to sustain their non-proliferative state will open new therapeutic avenues to alleviate or delay the consequences of aging. Seeking to understand these molecular changes, we studied the transcriptomic profiles of endothelial replication-induced senescence and senescence induced by the inflammatory cytokine, TNF-α. We previously reported gene expressional pattern, pathways, and the mechanisms associated with upregulated genes during TNF-α induced senescence. Here, we extend our work and find downregulated gene signatures of both replicative and TNF-α senescence were highly overlapped, involving the decreased expression of several genes associated with cell cycle regulation, DNA replication, recombination, repair, chromatin structure, cellular assembly, and organization. We identified multiple targets of p53/p16-RB-E2F-DREAM that are essential for proliferation, mitotic progression, resolving DNA damage, maintaining chromatin integrity, and DNA synthesis that were repressed in senescent cells. We show that repression of multiple target genes in the p53/p16-RB-E2F-DREAM pathway collectively contributes to the stability of the senescent arrest. Our findings show that the regulatory connection between DREAM and cellular senescence may play a potential role in the aging process.
Collapse
Affiliation(s)
- Renuka Kandhaya-Pillai
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesc Miro-Mur
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
| | - Jaume Alijotas-Reig
- Systemic Autoimmune Diseases Research Unit, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Simo Schwartz
- Drug Delivery and Targeting Group, Clinical Biochemistry Department, Vall d’Hebron Hospital, Barcelona 08035, Spain
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Varghese SS, Dhawan S. Senescence: a double-edged sword in beta-cell health and failure? Front Endocrinol (Lausanne) 2023; 14:1196460. [PMID: 37229454 PMCID: PMC10203573 DOI: 10.3389/fendo.2023.1196460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Cellular senescence is a complex process marked by permanent cell-cycle arrest in response to a variety of stressors, and acts as a safeguard against the proliferation of damaged cells. Senescence is not only a key process underlying aging and development of many diseases, but has also been shown to play a vital role in embryogenesis as well as tissue regeneration and repair. In context of the pancreatic beta-cells, that are essential for maintaining glucose homeostasis, replicative senescence is responsible for the age-related decline in regenerative capacity. Stress induced premature senescence is also a key early event underlying beta-cell failure in both type 1 and type 2 diabetes. Targeting senescence has therefore emerged as a promising therapeutic avenue for diabetes. However, the molecular mechanisms that mediate the induction of beta-cell senescence in response to various stressors remain unclear. Nor do we know if senescence plays any role during beta-cell growth and development. In this perspective, we discuss the significance of senescence in beta-cell homeostasis and pathology and highlight emerging directions in this area that warrant our attention.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
37
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
38
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol 2023; 19:200-211. [PMID: 36750681 DOI: 10.1038/s41584-022-00905-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammation is a biological response involving immune cells, blood vessels and mediators induced by endogenous and exogenous stimuli, such as pathogens, damaged cells or chemicals. Unresolved (chronic) inflammation is characterized by the secretion of cytokines that maintain inflammation and redox stress. Mitochondrial or nuclear redox imbalance induces DNA damage, which triggers the DNA damage response (DDR) that is orchestrated by ATM and ATR kinases, which modify gene expression and metabolism and, eventually, establish the senescent phenotype. DDR-mediated senescence is induced by the signalling proteins p53, p16 and p21, which arrest the cell cycle in G1 or G2 and promote cytokine secretion, producing the senescence-associated secretory phenotype. Senescence and inflammation phenotypes are intimately associated, but highly heterogeneous because they vary according to the cell type that is involved. The vicious cycle of inflammation, DNA damage and DDR-mediated senescence, along with the constitutive activation of the immune system, is the core of an evolutionarily conserved circuitry, which arrests the cell cycle to reduce the accumulation of mutations generated by DNA replication during redox stress caused by infection or inflammation. Evidence suggests that specific organ dysfunctions in apparently unrelated diseases of autoimmune, rheumatic, degenerative and vascular origins are caused by inflammation resulting from DNA damage-induced senescence.
Collapse
Affiliation(s)
- Antonio Pezone
- Dipartimento di Biologia, Università Federico II, Napoli, Italy.
| | - Fabiola Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Maria Vittoria Napoli
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Procopio
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Clinica di Medicina di Laboratorio e di Precisione, IRCCS INRCA, Ancona, Italy
| | - Enrico Vittorio Avvedimento
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Istituto di Endocrinologia ed Oncologia Sperimentale del C.N.R., Università Federico II, Napoli, Italy.
| | - Armando Gabrielli
- Fondazione di Medicina Molecolare e Terapia Cellulare, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
39
|
Short CA, Hahn DA. Fat enough for the winter? Does nutritional status affect diapause? JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104488. [PMID: 36717056 DOI: 10.1016/j.jinsphys.2023.104488] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Many insects enter a dormant state termed diapause in anticipation of seasonal inhospitable conditions. Insects drastically reduce their feeding during diapause. Their reduced nutrient intake is paired with substantial nutrient costs: maintaining basal metabolism during diapause, repairing tissues damaged by adverse conditions, and resuming development after diapause. Many investigators have asked "Does nutrition affect diapause?" In this review, we survey the studies that have attempted to address this question. We propose the term nutritional status, a holistic view of nutrition that explicitly includes the perception, intake, and storage of the great breadth of nutrients. We examine the studies that have sought to test if nutrition affects diapause, trying to identify specific facets of nutritional status that affect diapause phenotypes. Curiously, low quality host plants during the diapause induction phase generally induce diapause, but food deprivation during the same phase generally averts diapause. Using the geometric framework of nutrition to identify specific dietary components that affect diapause may reconcile these contrasting findings. This framework can establish nutritionally permissive space, distinguishing nutrient changes that affect diapause from changes that induce other dormancies. Refeeding is another important experimental technique that distinguishes between diapause and quiescence, a non-diapause dormancy. We also find insufficient evidence for the hypothesis that nutrient stores regulate diapause length and suggest manipulations to investigate the role of nutrient stores in diapause termination. Finally, we propose mechanisms that could interface nutritional status with the diapause program, focusing on combined action of the nutritional axis between the gut, fat body, and brain.
Collapse
Affiliation(s)
- Clancy A Short
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL, United States.
| | - Daniel A Hahn
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL, United States
| |
Collapse
|
40
|
Bergeron A, Hertig V, Villeneuve L, Sirois MG, Demers P, El-Hamamsy I, Calderone A. Structural dysregulation of the pulmonary autograft was associated with a greater density of p16 INK4A-vascular smooth muscle cells. Cardiovasc Pathol 2023; 63:107512. [PMID: 36529416 DOI: 10.1016/j.carpath.2022.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The present study tested the hypothesis that a senescent phenotype of vascular smooth muscle cells (VSMCs) may represent the seminal event linked to maladaptive pulmonary autograft remodeling of a small number of patients that underwent the Ross procedure. The diameter of the pulmonary autograft (47±4 mm) of three male patients was significantly greater compared to the pulmonary artery (26±1 mm) excised from bicuspid aortic valve (BAV) patients. The pulmonary autograft was associated with a neointimal region and the adjacent medial region was significantly thinner compared to the pulmonary artery of BAV patients. Structural dysregulation was evident as elastin content of the medial region was significantly reduced in the pulmonary autograft compared to the pulmonary artery of BAV patients. By contrast, collagen content of the medial region of the pulmonary autograft and the pulmonary artery of BAV patients was not significantly different. Reduced medial elastin content of the pulmonary autograft was associated with increased protein levels of matrix metalloproteinase-9. The latter phenotype was not attributed to a robust inflammatory response as the percentage of Mac-2(+)-infiltrating monocytes/macrophages was similar between groups. A senescent phenotype was identified as protein levels of the cell cycle inhibitor p27kip1 were upregulated and the density of p16INK4A/non-muscle myosin IIB(+)-VSMCs was significantly greater in the pulmonary autograft compared to the pulmonary artery of BAV patients. Thus, senescent VSMCs may represent the predominant cellular source of increased matrix metalloproteinase-9 protein expression translating to maladaptive pulmonary autograft remodeling characterized by elastin degradation, medial thinning and neointimal formation.
Collapse
Affiliation(s)
- Alexandre Bergeron
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Vanessa Hertig
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Quebec, Montreal, Canada
| | - Philippe Demers
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Cardiac Surgery, Université de Montréal, Montreal, Quebec Canada
| | - Ismail El-Hamamsy
- Department of Cardiovascular Surgery, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angelino Calderone
- Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Quebec, Montreal, Canada.
| |
Collapse
|
41
|
Lindell E, Zhong L, Zhang X. Quiescent Cancer Cells-A Potential Therapeutic Target to Overcome Tumor Resistance and Relapse. Int J Mol Sci 2023; 24:ijms24043762. [PMID: 36835173 PMCID: PMC9959385 DOI: 10.3390/ijms24043762] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Quiescent cancer cells (QCCs) are nonproliferating cells arrested in the G0 phase, characterized by ki67low and p27high. QCCs avoid most chemotherapies, and some treatments could further lead to a higher proportion of QCCs in tumors. QCCs are also associated with cancer recurrence since they can re-enter a proliferative state when conditions are favorable. As QCCs lead to drug resistance and tumor recurrence, there is a great need to understand the characteristics of QCCs, decipher the mechanisms that regulate the proliferative-quiescent transition in cancer cells, and develop new strategies to eliminate QCCs residing in solid tumors. In this review, we discussed the mechanisms of QCC-induced drug resistance and tumor recurrence. We also discussed therapeutic strategies to overcome resistance and relapse by targeting QCCs, including (i) identifying reactive quiescent cancer cells and removing them via cell-cycle-dependent anticancer reagents; (ii) modulating the quiescence-to-proliferation switch; and (iii) eliminating QCCs by targeting their unique features. It is believed that the simultaneous co-targeting of proliferating and quiescent cancer cells may ultimately lead to the development of more effective therapeutic strategies for the treatment of solid tumors.
Collapse
|
42
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
Alhaddad L, Chuprov-Netochin R, Pustovalova M, Osipov AN, Leonov S. Polyploid/Multinucleated Giant and Slow-Cycling Cancer Cell Enrichment in Response to X-ray Irradiation of Human Glioblastoma Multiforme Cells Differing in Radioresistance and TP53/PTEN Status. Int J Mol Sci 2023; 24:ijms24021228. [PMID: 36674747 PMCID: PMC9865596 DOI: 10.3390/ijms24021228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Radioresistance compromises the efficacy of radiotherapy for glioblastoma multiforme (GBM), the most devastating and common brain tumor. The present study investigated the relationship between radiation tolerance and formation of polyploid/multinucleated giant (PGCC/MGCC) and quiescent/senescent slow-cycling cancer cells in human U-87, LN-229, and U-251 cell lines differing in TP53/PTEN status and radioresistance. We found significant enrichment in MGCC populations of U-87 and LN-229 cell lines, and generation of numerous small mononuclear (called Raju cells, or RJ cells) U-87-derived cells that eventually form cell colonies, in a process termed neosis, in response to X-ray irradiation (IR) at single acute therapeutic doses of 2-6 Gy. For the first time, single-cell high-content imaging and analysis of Ki-67- and EdU-coupled fluorescence demonstrated that the IR exposure dose-dependently augments two distinct GBM cell populations. Bifurcation of Ki-67 staining suggests fast-cycling and slow-cycling populations with a normal-sized nuclear area, and with an enlarged nuclear area, including one resembling the size of PGCC/MGCCs, that likely underlie the highest radioresistance and propensity for repopulation of U-87 cells. Proliferative activity and anchorage-independent survival of GBM cell lines seem to be related to neosis, low level of apoptosis, fraction of prematurely stress-induced senescent MGCCs, and the expression of p63 and p73, members of p53 family transcription factors, but not to the mutant p53. Collectively, our data support the importance of the TP53wt/PTENmut genotype for the maintenance of cycling radioresistant U-87 cells to produce a significant amount of senescent MGCCs as an IR stress-induced adaptation response to therapeutic irradiation doses.
Collapse
Affiliation(s)
- Lina Alhaddad
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Roman Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Margarita Pustovalova
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
| | - Andreyan N. Osipov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), 123098 Moscow, Russia
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
44
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
46
|
Chrienova Z, Rysanek D, Oleksak P, Stary D, Bajda M, Reinis M, Mikyskova R, Novotny O, Andrys R, Skarka A, Vasicova P, Novak J, Valis M, Kuca K, Hodny Z, Nepovimova E. Discovery of small molecule mechanistic target of rapamycin inhibitors as anti-aging and anti-cancer therapeutics. Front Aging Neurosci 2022; 14:1048260. [PMID: 36561137 PMCID: PMC9767416 DOI: 10.3389/fnagi.2022.1048260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland,Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Milan Reinis
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Romana Mikyskova
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ondrej Novotny
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Novak
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Valis
- Department of Neurology, University Hospital Hradec Kralove, Hradec Králové, Czechia,Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia,Zdenek Hodny,
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia,*Correspondence: Eugenie Nepovimova,
| |
Collapse
|
47
|
Keroack CD, Duraisingh MT. Molecular mechanisms of cellular quiescence in apicomplexan parasites. Curr Opin Microbiol 2022; 70:102223. [PMID: 36274498 DOI: 10.1016/j.mib.2022.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Quiescence is a reversible nonproliferative cellular state that allows organisms to persist through unfavorable conditions. Quiescence can be stimulated by a wide range of external or intrinsic factors. Cells undergo a coordinated molecular program to enter and exit from the quiescent state, which is governed by signaling, transcriptional and translational changes, epigenetic mechanisms, metabolic switches, and changes in cellular architecture. These mechanisms have been extensively studied in model organisms, and a growing number of studies have identified conserved mechanisms in apicomplexan parasites. Quiescence in the context of a parasitic infection has significant clinical impact: quiescent forms may underlie treatment failures, relapsing infections, and stress tolerance. Here, we review the latest understanding of quiescence in apicomplexa, synthesizing these studies to highlight conserved mechanisms, and identifying technologies to assist in further characterization of quiescence. Understanding conserved mechanisms of quiescence in apicomplexans will provide avenues for transmission prevention and radical cure of infections.
Collapse
|
48
|
Al-Dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, Gadi I, Zimmermann S, Rana R, Krishnan S, Gupta D, Manoharan J, Fatima S, Nazir S, Schwab C, Baber R, Scholz M, Geffers R, Mertens PR, Nawroth PP, Griffin JH, Keller M, Dockendorff C, Kohli S, Isermann B. Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression. Nat Commun 2022; 13:5062. [PMID: 36030260 PMCID: PMC9420151 DOI: 10.1038/s41467-022-32477-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted. Persistent diabetic complications despite controlled blood glucose levels, known as hyperglycemic memory, remain a poorly understood phenomenon in diabetic kidney disease. Here the authors identify senescence-associated gene p21 as a regulator of hyperglycemic memory, the suppression of which improves hyperglycemic memory and renal function.
Collapse
Affiliation(s)
- Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman, Jordan
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Alba Sulaj
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - Fabian Bock
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Shruthi Krishnan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.,Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, Leipzig University, Leipzig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Rene Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter P Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), University of Heidelberg, Heidelberg, Germany
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.,Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Universitätsklinikum Leipzig, Leipzig University, Leipzig, Germany.
| |
Collapse
|
49
|
Tomasin R, Bruni-Cardoso A. The role of cellular quiescence in cancer - beyond a quiet passenger. J Cell Sci 2022; 135:276213. [PMID: 35929545 DOI: 10.1242/jcs.259676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quiescence, the ability to temporarily halt proliferation, is a conserved process that initially allowed survival of unicellular organisms during inhospitable times and later contributed to the rise of multicellular organisms, becoming key for cell differentiation, size control and tissue homeostasis. In this Review, we explore the concept of cancer as a disease that involves abnormal regulation of cellular quiescence at every step, from malignant transformation to metastatic outgrowth. Indeed, disrupted quiescence regulation can be linked to each of the so-called 'hallmarks of cancer'. As we argue here, quiescence induction contributes to immune evasion and resistance against cell death. In contrast, loss of quiescence underlies sustained proliferative signalling, evasion of growth suppressors, pro-tumorigenic inflammation, angiogenesis and genomic instability. Finally, both acquisition and loss of quiescence are involved in replicative immortality, metastasis and deregulated cellular energetics. We believe that a viewpoint that considers quiescence abnormalities that occur during oncogenesis might change the way we ask fundamental questions and the experimental approaches we take, potentially contributing to novel discoveries that might help to alter the course of cancer therapy.
Collapse
Affiliation(s)
- Rebeka Tomasin
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- e-signal Lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Ave Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
50
|
Giant Multinucleated Cells in Aging and Senescence-An Abridgement. BIOLOGY 2022; 11:biology11081121. [PMID: 35892977 PMCID: PMC9332840 DOI: 10.3390/biology11081121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Aging is a progressive decline of an organism over time. In contrast, senescence occurs throughout an organism’s lifespan. It is a cell-cycle arrest preventing the proliferation of damaged cells. Cellular and molecular senescence timing is crucial for the pace of aging and disease development and progression. The accumulation of senescent cells during a lifespan leads to organismal senescence. Senescent multinucleated giant cells are present in many age-related diseases and cancer. Although senescence was assumed to be irreversible, studies now show that senescent multinucleated giant cells overcome senescence in various cancers, becoming the source of highly aggressive mononucleated stem-like cells, which divide and initiate tumor development and progression. Abstract This review introduces the subject of senescence, aging, and the formation of senescent multinucleated giant cells. We define senescence and aging and describe how molecular and cellular senescence leads to organismal senescence. We review the latest information on senescent cells’ cellular and molecular phenotypes. We describe molecular and cellular features of aging and senescence and the role of multinucleated giant cells in aging-related conditions and cancer. We explain how multinucleated giant cells form and their role in aging arteries and gonads. We also describe how multinucleated giant cells and the reversibility of senescence initiate cancer and lead to cancer progression and metastasis. We also describe molecules and pathways regulating aging and senescence in model systems and their applicability to clinical therapies in age-related diseases.
Collapse
|