1
|
Song Y, Feng Y, Liu G, Duan Y, Zhang H. Research progress on edible mushroom polysaccharides as a novel therapeutic strategy for inflammatory bowel disease. Int J Biol Macromol 2025; 305:140994. [PMID: 39952533 DOI: 10.1016/j.ijbiomac.2025.140994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Inflammatory bowel disease (IBD) is a complex condition linked to the gut microbiota, host metabolism, and the immune system. Edible mushroom polysaccharides (EMPs) are gaining attention for their benefits, particularly as prebiotics that help balance gut microbial, a key factor in IBD. With their scalable production, diverse hydrophilic properties, and demonstrated anti-inflammatory effects in both laboratory and animal studies, EMPs show promise for easing IBD symptoms. By supporting a healthy gut microbiome through various mechanisms, EMPs can play an important role in preventing and managing IBD, ultimately benefiting overall health and opening new treatment avenues. This review examines how EMPs affect IBD, focusing on their role in shaping gut microbiota, restoring gut barriers, regulating immune function, and influencing pathways related to colitis. It also explores their impact on the microbiota-gut-multi organ axis and overall host health, as well as the relationship between EMPs preparation, structure, and bioactivity, along with their potential applications in food and medicine. This investigation provides valuable insights into the intricate connections between the gut, immune system, and systemic inflammation system, highlighting how EMPs are key players in this complex interaction.
Collapse
Affiliation(s)
- Yating Song
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Toimbayeva D, Saduakhasova S, Kamanova S, Kiykbay A, Tazhina S, Temirova I, Muratkhan M, Shaimenova B, Murat L, Khamitova D, Ospankulova G. Prospects for the Use of Amaranth Grain in the Production of Functional and Specialized Food Products. Foods 2025; 14:1603. [PMID: 40361686 PMCID: PMC12071837 DOI: 10.3390/foods14091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
This review is dedicated to exploring recent advancements in the study of amaranth grain and presents research primarily on Amaranthus species such as Amaranthus cruentus, Amaranthus hypochondriacus, and Amaranthus caudatus, and to a lesser extent Amaranthus hybridus, Amaranthus mantegazzianus, Amaranthus muricatus, Amaranthus tuberculatus, Amaranthus viridis, Amaranthus spinosus, and Amaranthus tenuifoliu. Amaranth (Amaranthus spp.) is a promising, high-yield pseudocereal crop with significant commercial potential for developing functional food products. It contains a wide range of bioactive compounds, including squalene, tocopherols, phenolic compounds, phytates, and vitamins, which possess important physiological properties. Amaranth grain is characterized by high levels of starch, proteins, minerals, and dietary fiber. Moreover, amaranth proteins are distinguished by a balanced amino acid composition and exhibit greater resistance to external factors compared to animal-derived proteins. Grains of amaranth are free of gliadin, making it a valuable nutritional source for individuals with celiac disease, an immune-mediated disorder. Unlike traditional cereals, where prolamins and glutelins dominate the protein composition, the proteins of pseudocereals like amaranth primarily consist of albumins and globulins. The processing methods of amaranth grain influence their quantitative and qualitative composition, often significantly improving their physicochemical, antioxidant, functional, and rheological properties. This work provides a detailed analysis of amaranth's chemical composition and bioactive components, along with its evaluation of therapeutic and preventive properties. Amaranth protein fractions (albumin, globulin, and glutelin) and squalene exhibit increased antioxidant activity, contributing to notable resistance to radiation and X-ray exposure. Bioactive compounds such as phytol, α-tocopherol, and a lunasin-like peptide (AhLun) with potential anticancer properties have also been identified in amaranth. Furthermore, six bioactive peptides were isolated and identified from amaranth, which, according to predictive models, demonstrate a high capacity to inhibit angiotensin-converting enzyme (ACE) activity, suggesting potential hypotensive effects. Certain amaranth peptides are considered promising functional food ingredients for the prevention and comprehensive treatment of conditions such as diabetes, inflammatory bowel diseases, hypercholesterolemia, cardiovascular diseases, and obesity. Amaranthus spp. and its processed products hold significant interest for the development of innovative food products, contributing to the expansion of their range and enhancement of nutritional value.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dina Khamitova
- Department of Food Technology and Processing Products, Technical Faculty, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue, 62, Astana 010000, Kazakhstan; (D.T.); (S.S.); (S.K.); (S.T.); (I.T.); (M.M.); (B.S.); (L.M.)
| | - Gulnazym Ospankulova
- Department of Food Technology and Processing Products, Technical Faculty, S.Seifullin Kazakh Agrotechnical Research University, Zhenis Avenue, 62, Astana 010000, Kazakhstan; (D.T.); (S.S.); (S.K.); (S.T.); (I.T.); (M.M.); (B.S.); (L.M.)
| |
Collapse
|
3
|
Xu Y, Li J, Cui M, Li X, Zhai H, Wu D, Chu X. Therapeutic effects of medicinal and food-based traditional herbal couples on type 2 diabetes mellitus based on pharmacodynamics and pharmacokinetics. Front Pharmacol 2025; 16:1560271. [PMID: 40351422 PMCID: PMC12062019 DOI: 10.3389/fphar.2025.1560271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/14/2025] [Indexed: 05/14/2025] Open
Abstract
Introduction Cinnamomi Ramulus (CR) is the dried bark of Cinnamomum cassia Presl, Lauraceae. Puerariae Lobatae Radix (PLR) is the dried root of the Pueraria lobata (Wild.) Ohwi, Leguminosae. This Chinese herb couple come from the classic formula "Gui Zhi Ge Gen Tang," which is included in the TCM classic "Treatise on Febrile Diseases." Our previous studies have found that CR related herbal compound and PLR related herbal compound are useful in improving type 2 diabetes mellitus (T2DM), which is expected to be an antidiabetic candidate with fewer side effects. However the mechanism of action of CR-PLR on T2DM has not yet been fully elucidated. Methods The decoction of CR-PLR was prepared by aqueous extraction method and the composition of it was analyzed using UPLC-Q-TOF-MS and HPLC. The T2DM model was established by intraperitoneal injection of streptozotocin, and the groups of drug administration were metformin, CR, PLR and CR-PLR groups, with continuous gastric gavage for 6 weeks, and the serological indexes were detected by ELISA. The abundance of rats' gut flora was detected by 16s rDNA sequencing, and changes in the content of short-chain fatty acids (SCFAs) in feces of rats were detected by GC-MS; and the expression of G protein-coupled receptor43 (GPR43) and glucagon-like peptide-1 (GLP-1) proteins in colonic tissues of rats were detected by Western Blot. The pharmacokinetic behavior of CR-PLR was investigated in both normal and T2DM model rats. Caco-2/HT29 co-culture cell model was established in vitro, transepithelial electrical resistance (TEER) and ALP activity of epithelial cells were measured to evaluate cell model integrity and cell polarization, Alcian blue staining was used to verify the presence of mucus production, and CCK-8 was used to screen drug safe concentration. The bidirectional transport of puerarin was studied to investigate the transport mechanism of puerarin and the effect of leuric acid on puerarin transport. Results and discussion The results indicated that CR-PLR can stimulate intestinal flora, increase the content of SCFAs, activate intestinal GPR43 protein, and promote the secretion of GLP-1 in intestinal L cells, which plays a therapeutic role in the treatment of T2DM. Additionally, cytology and pharmacokinetics experiments have proved that cinnamic acid (CA) can enhance the absorption and transport of puerarin (PUR) by inhibiting the efflux effects mediated by P-gp and MRP efflux transporters. The present study exhibites the scientific and reasonable menaning of this novel Chinese herb couple treating T2DM from the perspecives of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- Yuhang Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoliang Li
- Anhui Joyfar Pharmaceutical Research Institute Co., Ltd., Hefei, China
| | - Hongyan Zhai
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Bozhou University, Bozhou, China
- Anhui Provincial Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui, China
| |
Collapse
|
4
|
Deng D, Xu L, Liu Y, Li C, Jiang Q, Shi J, Feng S, Lin Y. HIIT versus MICT in MASLD: mechanisms mediated by gut-liver axis crosstalk, mitochondrial dynamics remodeling, and adipokine signaling attenuation. Lipids Health Dis 2025; 24:144. [PMID: 40241065 PMCID: PMC12004573 DOI: 10.1186/s12944-025-02565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE Compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on metabolic dysfunction-associated steatotic liver disease (MASLD), focusing on the mechanisms by which these two exercise modalities influence gut microbiota structure, bile acid metabolism, and intestinal barrier function, as well as their regulatory roles in hepatic lipid synthesis and oxidative dynamics. Explore the synergistic effects of exercise-mediated mitochondrial fusion remodeling and leptin signaling, elucidate the causal relationship between gut-derived factors and hepatic metabolic reprogramming, and reveal the potential multi-scale and cross-organ dominant mechanisms of exercise, providing a theoretical basis for systematically comparing the effects of different exercise modalities. METHODS Thirty-two male rats were randomly divided into NFD (n = 8) and HFD (n = 24) groups and fed normal chow and high-fat chow, respectively. After eight weeks, the HFD group was randomly divided into three groups: (1) MICT-8; (2) HIIT-8; and (3) HFD-8. At the end of the experiment, blood, liver, ileum, and skeletal muscle samples were collected for analysis of the rats' baseline conditions, mitochondrial function, hepatic lipid metabolism, bile acid pathway and gut microbiota, and synthesis of analyses. RESULTS Both modes of exercise ameliorated metabolic dysregulation and attenuated pathological progression, insulin resistance, and liver fat accumulation in rats with MASLD. Furthermore, both interventions counteracted HFD-induced intestinal barrier dysfunction and restored gut-liver axis homeostasis. HIIT and MICT also upregulated bile acid-related gene expression modulated butyrate-producing bacterial taxa, and adjusted the abundance of butyrate-generating bacteria. CONCLUSION Both HIIT and MICT improved lipid metabolism in MASLD rats and the difference between the HIIT and MICT groups was not statistically significant. It is noteworthy that HIIT was more effective in improving mitochondrial function in MASLD than MICT (P < 0.001).
Collapse
Affiliation(s)
- Dongkun Deng
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Lin Xu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China.
| | - Yufei Liu
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China.
| | - Chang Li
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Qingfeng Jiang
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Jiaming Shi
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Shuo Feng
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| | - Yunhua Lin
- College of Sports and Human Sciences, Graduate School, Harbin Sport University, Harbin, 150008, P.R. China
| |
Collapse
|
5
|
Hu J, Wang X, Guo X, Wen W, Xue J, Liao Z, Chen L. Network analysis and experimental validation to investigate chenpi against functional dyspepsia through TLR4/MyD88 by regulating the gut microbial structure. Front Pharmacol 2025; 16:1495799. [PMID: 40017602 PMCID: PMC11865038 DOI: 10.3389/fphar.2025.1495799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025] Open
Abstract
Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder characterized by the absence of organic lesions; it affects nearly one-fifth of the global population. There is currently no specific drug for treating it. Citri reticulatae Pericarpium (CRP) has been utilized in China for millennia as a therapeutic agent for alleviating bloating and spleen-stomach disharmony. Nonetheless, the curative efficacy and precise molecular mechanisms implicated in FD warrant further investigation. This study aims to address this gap by investigating the potential mechanisms of CRP against FD using HPLC-ESI-QTOF-MS, network analysis prediction, and experimental validation. In this study, 90 CRP metabolites were identified by HPLC-ESI-QTOF-MS; 70 common targets of CRP and FD were extracted, and the top ten overlapped targets included MAPK1, MAPK2, and MAPK3. KEGG enrichment analysis revealed that the MAPK pathways were predominant and involved the TLR4 signaling pathway. In vivo experiments demonstrated that after 14 days of treatment, CRP improved body weight, gastric emptying rate, intestinal transit rate, and the pathological structure of the gastric tissue. Serum IL-6, TNF-α, and IL-1β were downregulated, and the expressions of TLR4, MyD88, p-NF-κB, and MAPKs were suppressed in gastric tissue. Furthermore, CRP increased the relative abundance of Patescibateria and Bacteroidota, accompanied by a reduction in the relative abundance of Verrucomicrobota and Proteobacteria. In brief, CRP could attenuate dyspepsia by reducing the activation of inflammation-related TLR4/MyD88 and MAPK signaling pathways and by mediating gut microbial structure and composition. This study provides a unique perspective for further research on drugs for treating FD.
Collapse
Affiliation(s)
- Jinfang Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xu Wang
- Center for Experimental Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqiu Guo
- Department of Pharmacy, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wen Wen
- Jiangxi Center for Drug Certification and Evaluation, Nanchang, Jiangxi, China
| | - Jin Xue
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengzheng Liao
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
6
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
7
|
Xu H, Zhang T, Zhou Z, Gao T, Zhao R, Chen L. Polysaccharides from Lactarius volemus Fr. ameliorate high-fat and high-fructose diet induced metabolic disorders and intestinal barrier dysfunction. Int J Biol Macromol 2025; 287:138341. [PMID: 39638176 DOI: 10.1016/j.ijbiomac.2024.138341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Our research was conducted to investigate the effects of Lactarius volemus Fr. polysaccharides (LVP) on metabolic disorders and intestinal barrier dysfunction in HFFD-induced obese mice. Our findings demonstrated that LVP supplementation significantly ameliorated hyperlipoidemia and hyperglycemia, insulin resistance and hepatic inflammation. Additionally, LVP alleviated hepatic steatosis and histological lesions, as well as hepatic function dysbiosis. The underlying mechanism may involve the regulation of hepatic insulin signaling transduction pathway such as IRS1/AKT pathway and the suppression of MAPKs signaling pathway. Furthermore, LVP intervention improved intestinal barrier function and reduced intestinal permeability by enhancing the expression of tight junction proteins and restoring intestinal microbiota composition. In summary, our results provided evidence that LVP exerted beneficial effects on HFFD-induced metabolic disorders along with restoration of intestinal barrier function and reduction in endotoxin levels. These outcomes are associated with maintenance of gut microbiota homeostasis and up-regulation of Short-Chain Fatty Acids (SCFAs). Furthermore, butyric acid was found to restrict lipid accumulation in OA-induced HepG2 hepatocytes while strengthening intestinal barrier integrity in LPS-induced Caco-2 cells. Thus, polysaccharides LVP may serve as a potential prebiotic or health supplement in the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hui Xu
- Bengbu First People's Hospital, Bengbu 233000, China
| | - Tianyu Zhang
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Ziming Zhou
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Tian Gao
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Ranran Zhao
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Lei Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China.
| |
Collapse
|
8
|
Ma C, Xu C, Zheng M, Zhang S, Liu Q, Lyu J, Pang X, Wang Y. Utilizing Lactic Acid Bacteria to Improve Hyperlipidemia: A Comprehensive Analysis from Gut Microbiota to Metabolic Pathways. Foods 2024; 13:4058. [PMID: 39767000 PMCID: PMC11675396 DOI: 10.3390/foods13244058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Hyperlipidemia poses significant risks for cardiovascular diseases, with emerging evidence underscoring the critical role of gut microbiota in metabolic regulation. This study explores Lactobacillus casei CAAS36, a probiotic strain with promising cholesterol-lowering capabilities, assessing its impact on hyperlipidemic hamsters. Utilizing 1H NMR-based metabolomics and 16S rRNA gene sequencing, we observed that L. casei CAAS36 treatment not only altered metabolic pathways but also reshaped gut microbiota composition. Notably, the treatment restored the balance between Firmicutes and Bacteroidetes and significantly increased the abundance of propionate-producing Muribaculaceae. Metabolically, L. casei CAAS36 administration led to the normalization of key lipid markers, including reductions in total cholesterol, LDL-C, and triglycerides (29.9%, 29.4% and 32.6%), while enhancing the protective HDL-C levels. These effects were accompanied by significant increases in beneficial metabolites such as propionate and succinate, which are known for their roles in preventing metabolic disorders. These findings highlight the dual regulatory effects of L. casei CAAS36 on the metabolic profile and gut microbiota, suggesting a substantial potential for this probiotic in the management of hyperlipidemia and possibly other metabolic diseases. Future applications may include its use as a natural therapeutic agent in clinical settings, aiming to reduce reliance on conventional pharmaceuticals and their associated side effects.
Collapse
Affiliation(s)
- Changlu Ma
- Department of Food and Bio-Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China;
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Chen Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Mumin Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Qifeng Liu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| | - Jiaping Lyu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (C.X.); (M.Z.); (S.Z.); (J.L.)
| | - Yinghong Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China;
| |
Collapse
|
9
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
10
|
Chen K, Wang H, Yang X, Tang C, Hu G, Gao Z. Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier. Pharmacol Res 2024; 210:107483. [PMID: 39521027 DOI: 10.1016/j.phrs.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The global epidemic of type 2 diabetes mellitus (T2DM) imposes a substantial burden on public health and healthcare expenditures, thereby driving the pursuit of cost-effective preventive and therapeutic strategies. Emerging evidence suggests a potential association between dysbiosis of gut microbiota and its metabolites with T2DM, indicating that targeted interventions aimed at modulating gut microbiota may represent a promising therapeutic approach for the management of T2DM. In this review, we concentrated on the multifaceted interactions between the gut microbiota and the intestinal barrier in the context of T2DM. We systematically summarized that the imbalance of beneficial gut microbiota and its metabolites may constitute a viable therapeutic approach for the management of T2DM. Meanwhile, the mechanisms by which gut microbiota interventions, such as probiotics, prebiotics, postbiotics, and synbiotics, synergistically improve insulin resistance in T2DM are summarized. These mechanisms include the restoration of gut microbiota structure, upregulation of intestinal epithelial cell proliferation and differentiation, enhancement of tight junction protein expression, promotion of mucin secretion by goblet cells, and the immunosuppressive functions of regulatory T cells (Treg) and M2 macrophages. Collectively, these actions contribute to the amelioration of the body's metabolic inflammatory status. Our objective is to furnish evidence that supports the clinical application of probiotics, prebiotics, and postbiotics in the management of T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Department of Endocrinology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cheng Tang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Guojie Hu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Zezheng Gao
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
11
|
Özdemir A, Buyuktuncer Z. Dietary legumes and gut microbiome: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39607793 DOI: 10.1080/10408398.2024.2434725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The gut microbiome plays a crucial role in human health, affecting metabolic, immune, and cognitive functions. While the impact of various dietary components on the microbiome is well-studied, the effect of legumes remains less explored. This review examines the influence of legume consumption on gut microbiome composition, diversity, and metabolite production, based on 10 human and 21 animal studies. Human studies showed mixed results, with some showing increased microbial diversity and others finding no significant changes. However, legume consumption was linked to increases in beneficial bacteria like Bifidobacterium and Faecalibacterium. Animal studies generally indicated enhanced microbial diversity and composition changes, though these varied by legume type and the host's health. Some studies highlighted legume-induced shifts in bacteria associated with better metabolic health. Overall, the review emphasizes the complexity of legume-microbiome interactions and the need for standardized methodologies and longitudinal studies. While legumes have the potential to positively affect the gut microbiome, the effects are nuanced and depend on context. Future research should investigate the long-term impacts of legume consumption on microbiome stability and its broader health implications, particularly for disease prevention and dietary strategies.
Collapse
Affiliation(s)
- Aslıhan Özdemir
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| | - Zehra Buyuktuncer
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
12
|
Yao G, Zhang X, Zhang T, Jin J, Qin Z, Ren X, Wang X, Zhang S, Yin X, Tian Z, Zhang Y, Zhang J, Wang Z, Zhang Q. The role of dysbiotic gut mycobiota in modulating risk for abdominal aortic aneurysm. Microbiol Spectr 2024; 12:e0177624. [PMID: 39315850 PMCID: PMC11537029 DOI: 10.1128/spectrum.01776-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a large-vessel disease with high mortality, characterized by complex pathogenic mechanisms. Current therapeutic approaches remain insufficient to halt its progression. Fungi are important members of the gut microbiota. However, their characteristic alterations and roles in AAA remain unclear. This study investigated the role of gut fungal communities in the development of AAA through metagenomic sequencing of fecal samples from 31 healthy individuals and 33 AAA patients. We observed significant dysbiosis in the gut mycobiomes of AAA patients compared to healthy individuals, characterized by an increase in pathogenic fungi like Candida species and a decrease in beneficial yeasts such as Saccharomyces cerevisiae. The changes in fungal populations correlated strongly with clinical indicators of AAA, highlighting their potential for diagnosing and predicting AAA progression. Furthermore, our animal experiments demonstrated that Saccharomyces cerevisiae significantly ameliorated pathological alterations in AAA mice, suggesting a protective role for specific yeast strains against AAA development. These findings underscore the significant impact of gut mycobiomes on AAA and suggest that modulating these fungal communities could offer a novel therapeutic approach. Our research advances the understanding of the influence of gut microbiome on vascular diseases and suggests potential non-surgical approaches for managing AAA. By elucidating the diagnostic and therapeutic potential of gut fungi in AAA, this study provided important clues for future clinical strategies and therapeutic developments in the field of vascular medicine. IMPORTANCE Our research highlights the crucial role of gut fungi in abdominal aortic aneurysm (AAA) development. By analyzing fecal samples from AAA patients and healthy controls, we discovered significant dysbiosis in gut fungal communities, characterized by an increase in harmful Candida species and a decrease in beneficial yeasts like Saccharomyces cerevisiae. This dysbiosis was correlated with the severity of AAA. Importantly, in animal experiments, supplementing with Saccharomyces cerevisiae significantly slowed AAA progression. These findings suggest that modulating gut fungi may offer a novel, non-surgical approach to the diagnosis and treatment of AAA, potentially reducing the need for invasive procedures.
Collapse
Affiliation(s)
- Guixiang Yao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinjie Zhang
- Department of Biology, University College London, London, United Kingdom
| | - Tongxue Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiajia Jin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zihan Qin
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyu Ren
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaowei Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shucui Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xianlun Yin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhenyu Tian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyong Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhe Wang
- Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qunye Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
13
|
Vičič V, Pandel Mikuš R, Ferjančič B. Review of history and mechanisms of action of lactulose (4-O-β-D-Galactopyranosyl-β-D-fructofuranose): present and future applications in food. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2036-2045. [PMID: 39397831 PMCID: PMC11464675 DOI: 10.1007/s13197-024-05997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 10/15/2024]
Abstract
Lactulose is a synthetic disaccharide composed of galactose and fructose. Literature review of history, legal status and possible food applications of lactulose in functional foods, such as confectionery and beverages. In the colon, lactulose is fermented by the microbiota and acts as a selective modulator of bacterial growth, promoting the growth of Lactobacilli and Bifidobacteria. It generates organic acids, such as short-chain fatty acids and lactic acid, which lower the pH of the colon and act as an osmotic laxative. Lactulose was first used in 1957 as an ingredient in an infant formula. Later it was registered as a prescription drug and banned for food use in many countries. In 2012, lactulose received an EU (European union) health claim "contributes to acceleration of intestinal transit". It can be used in food and food supplements across all age groups, from infants to the elderly. Lactulose has favourable technological properties, such as sweetness of 48-62% sucrose without an aftertaste, high solubility, low cariogenic potential and stability. Lactulose gummy candy, without added sweeteners, has an overall likability comparable to classic sucrose/glucose-based candy. With more than 60 years of safe use in infant, child, adult and elderly population, lactulose is an ideal ingredient for prebiotic functional food. Its technological properties allow for development of functional candy and beverages almost indistinguishable from those made from sucrose.
Collapse
Affiliation(s)
- Vid Vičič
- Chair of Biomedicine in Healthcare, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
- Jata Emona d.o.o, Agrokombinatska Cesta 84, 1000 Ljubljana, Slovenia
| | - Ruža Pandel Mikuš
- Chair of Biomedicine in Healthcare, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Blaž Ferjančič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ul. 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Nekrasov E, Vita AA, Bradley R, Contractor N, Gunaratne NM, Kuehn M, Kitisin R, Patel D, Woods E, Zhou B. Changes in Digestive Health, Satiety and Overall Well-Being after 14 Days of a Multi-Functional GI Primer Supplement. Nutrients 2024; 16:3173. [PMID: 39339773 PMCID: PMC11434699 DOI: 10.3390/nu16183173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A recent review proposed a role for multi-functional food or supplement products in priming the gut to support both digestive and systemic health. Accordingly, we designed and eva-luated the effect of a multi-functional gastrointestinal (GI) primer supplement on participant-reported measures for digestive health, quality-of-life (e.g., energy/vitality and general health), and reasons for satiation (e.g., attitudes towards food and eating). In this single-arm clinical trial, 68 participants with mild digestive symptoms consumed the GI primer supplement daily for 14 days. Digestive symptoms were evaluated daily from baseline (Day 0) through Day 14. At baseline and Day 14, participants reported their stool consistency, reasons for satiation, and quality-of-life measures using validated questionnaires. At Day 14, participants reported significant improvements in all (13/13) digestive symptom parameters (p-values < 0.05) and an increase in % of stools with normal consistencies. There were significant improvements (p-values < 0.05) in energy/vitality and general health, and in specific attitudes towards food and eating (e.g., physical satisfaction, planned amount, decreased eating priority, decreased food appeal, and self-consciousness). Results suggest the GI primer supplement promotes digestive health, improves quality of life, and impacts attitudes towards food/eating. This study provides preliminary support for the gut priming hypothesis through which multi-functional digestive products may improve GI health.
Collapse
Affiliation(s)
| | - Alexandra Adorno Vita
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
| | - Ryan Bradley
- Amway Innovation and Science, Buena Park, CA 90621, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, La Jolla, CA 92093, USA
| | | | | | - Marissa Kuehn
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Rick Kitisin
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Deval Patel
- Amway Innovation and Science, Ada, MI 49355, USA
| | - Erin Woods
- Amway Innovation and Science, Buena Park, CA 90621, USA
| | - Bo Zhou
- Amway Innovation and Science, Buena Park, CA 90621, USA
| |
Collapse
|
15
|
Alonso-Allende J, Milagro FI, Aranaz P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024; 16:2935. [PMID: 39275251 PMCID: PMC11397174 DOI: 10.3390/nu16172935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Inulin is a plant polysaccharide which, due to its chemical structure, is not digestible by human gut enzymes but by some bacteria of the human microbiota, acting as a prebiotic. Consequently, inulin consumption has been associated with changes in the composition of the intestinal microbiota related to an improvement of the metabolic state, counteracting different obesity-related disturbances. However, the specific mechanisms of action, including bacterial changes, are not exactly known. Here, a bibliographic review was carried out to study the main effects of inulin on human metabolic health, with a special focus on the mechanisms of action of this prebiotic. Inulin supplementation contributes to body weight and BMI control, reduces blood glucose levels, improves insulin sensitivity, and reduces inflammation markers, mainly through the selective favoring of short-chain fatty acid (SCFA)-producer species from the genera Bifidobacterium and Anaerostipes. These SCFAs have been shown to ameliorate glucose metabolism and decrease hepatic lipogenesis, reduce inflammation, modulate immune activity, and improve anthropometric parameters such as body weight or BMI. In conclusion, the studies collected suggest that inulin intake produces positive metabolic effects through the improvement of the intestinal microbiota and through the metabolites produced by its fermentation.
Collapse
Affiliation(s)
- Jaime Alonso-Allende
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Paula Aranaz
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
16
|
Ma J, Wang XR, Zhou YX, Zhou WJ, Zhang JN, Sun CY. Navigating the gut-bone axis: The pivotal role of Coprococcus3 in osteoporosis prevention through Mendelian randomization. Medicine (Baltimore) 2024; 103:e38861. [PMID: 39029026 PMCID: PMC11398822 DOI: 10.1097/md.0000000000038861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
Osteoporosis (OP) constitutes a notable public health concern that significantly impacts the skeletal health of the global aging population. Its prevalence is steadily escalating, yet the intricacies of its diagnosis and treatment remain challenging. Recent investigations have illuminated a profound interlink between gut microbiota (GM) and bone metabolism, thereby opening new avenues for probing the causal relationship between GM and OP. Employing Mendelian randomization (MR) as the investigative tool, this study delves into the causal rapport between 211 varieties of GM and OP. The data are culled from genome-wide association studies (GWAS) conducted by the MiBioGen consortium, in tandem with OP genetic data gleaned from the UK Biobank, BioBank Japan Project, and the FinnGen database. A comprehensive repertoire of statistical methodologies, encompassing inverse-variance weighting, weighted median, Simple mode, Weighted mode, and MR-Egger regression techniques, was adroitly harnessed for meticulous analysis. The discernment emerged that the genus Coprococcus3 is inversely associated with OP, potentially serving as a deterrent against its onset. Additionally, 21 other gut microbial species exhibited a positive correlation with OP, potentially accentuating its proclivity and progression. Subsequent to rigorous scrutiny via heterogeneity and sensitivity analyses, these findings corroborate the causal nexus between GM and OP. Facilitated by MR, this study successfully elucidates the causal underpinning binding GM and OP, thereby endowing invaluable insights for deeper exploration into the pivotal role of GM in the pathogenesis of OP.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedics, 2nd Hospital of Mudanjiang People, Heilongjiang Province, China
| | - Xin-Ran Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China
| | - Yu-Xin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China
| | - Wei-Jin Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China
| | - Jian-Nan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China
| | - Chong-Yi Sun
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China
| |
Collapse
|
17
|
Hoskinson C, Medeleanu MV, Reyna ME, Dai DLY, Chowdhury B, Moraes TJ, Mandhane PJ, Simons E, Kozyrskyj AL, Azad MB, Petersen C, Turvey SE, Subbarao P. Antibiotics taken within the first year of life are linked to infant gut microbiome disruption and elevated atopic dermatitis risk. J Allergy Clin Immunol 2024; 154:131-142. [PMID: 38670232 DOI: 10.1016/j.jaci.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in both pediatric and adult populations. The development of AD has been linked to antibiotic usage, which causes perturbation of the microbiome and has been associated with abnormal immune system function. However, imbalances in the gut microbiome itself associated with antibiotic usage have been inconsistently linked to AD. OBJECTIVES This study aimed to elucidate the timing and specific factors mediating the relationship between systemic (oral or intravenous) antibiotic usage and AD. METHODS We used statistical modeling and differential analysis to link CHILD Cohort Study participants' history of antibiotic usage and early-life gut microbiome alterations to AD. RESULTS Here we report that systemic antibiotics during the first year of life, as compared to later, are associated with AD risk (adjusted odds ratio [aOR] = 1.81; 95% CI: 1.28-2.57; P < .001), with an increased number of antibiotic courses corresponding to a dose response-like increased risk of AD risk (1 course: aOR: 1.67; 95% CI: 1.17-2.38; 2 or more courses: aOR: 2.16; 95% CI: 1.30-3.59). Further, we demonstrate that microbiome alterations associated with both AD and systemic antibiotic usage fully mediate the effect of antibiotic usage on the development of AD (βindirect = 0.072; P < .001). Alterations in the 1-year infant gut microbiome of participants who would later develop AD included increased Tyzzerella nexilis, increased monosaccharide utilization, and parallel decreased Bifidobacterium and Eubacterium spp, and fermentative pathways. CONCLUSIONS These findings indicate that early-life antibiotic usage, especially in the first year of life, modulates key gut microbiome components that may be used as markers to predict and possibly prevent the development of AD.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria V Medeleanu
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Myrtha E Reyna
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Darlene L Y Dai
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Biswajit Chowdhury
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Theo J Moraes
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | | | - Elinor Simons
- Section of Allergy and Immunology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Meghan B Azad
- Section of Allergy and Immunology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
| |
Collapse
|
18
|
Basuray N, Deehan EC, Vieira FT, Avedzi HM, Duke RL, Colín-Ramírez E, Tun HM, Zhang Z, Wine E, Madsen KL, Field CJ, Haqq AM. Dichotomous effect of dietary fiber in pediatrics: a narrative review of the health benefits and tolerance of fiber. Eur J Clin Nutr 2024; 78:557-568. [PMID: 38480843 DOI: 10.1038/s41430-024-01429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Dietary fibers are associated with favorable gastrointestinal, immune, and metabolic health outcomes when consumed at sufficient levels. Despite the well-described benefits of dietary fibers, children and adolescents continue to fall short of daily recommended levels. This gap in fiber intake (i.e., "fiber gap") might increase the risk of developing early-onset pediatric obesity and obesity-related comorbidities such as type 2 diabetes mellitus into adulthood. The structure-dependent physicochemical properties of dietary fiber are diverse. Differences in solubility, viscosity, water-holding capacity, binding capability, bulking effect, and fermentability influence the physiological effects of dietary fibers that aid in regulating appetite, glycemic and lipidemic responses, and inflammation. Of growing interest is the fermentation of fibers by the gut microbiota, which yields both beneficial and less favorable end-products such as short-chain fatty acids (e.g., acetate, propionate, and butyrate) that impart metabolic and immunomodulatory properties, and gases (e.g., hydrogen, carbon dioxide, and methane) that cause gastrointestinal symptoms, respectively. This narrative review summarizes (1) the implications of fibers on the gut microbiota and the pathophysiology of pediatric obesity, (2) some factors that potentially contribute to the fiber gap with an emphasis on undesirable gastrointestinal symptoms, (3) some methods to alleviate fiber-induced symptoms, and (4) the therapeutic potential of whole foods and commonly marketed fiber supplements for improved health in pediatric obesity.
Collapse
Affiliation(s)
- Nandini Basuray
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Flávio T Vieira
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hayford M Avedzi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Reena L Duke
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Hein M Tun
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Andrea M Haqq
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Enye LA, Edem EE, Onyeogaziri LI, Yusuf A, Ikpade BO, Ikuelogbon DA, Kunlere OE, Adedokun MA. Tiger nut/coconut dietary intervention as antidotal nutritional remediation strategy against neurobehavioural deficits following organophosphate-induced gut-brain axis dysregulation in mice. Toxicol Rep 2024; 12:23-40. [PMID: 38193024 PMCID: PMC10772296 DOI: 10.1016/j.toxrep.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.
Collapse
Affiliation(s)
- Linus Anderson Enye
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Lydia Ijeoma Onyeogaziri
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Augustine Yusuf
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Bliss Oluwafunmi Ikpade
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | | | - Oladunni Eunice Kunlere
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Mujeeb Adekunle Adedokun
- Stress & Neuroimmunology Group, Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
20
|
Hasanian-Langroudi F, Ghasemi A, Hedayati M, Siadat SD, Tohidi M. Novel Insight into the Effect of Probiotics in the Regulation of the Most Important Pathways Involved in the Pathogenesis of Type 2 Diabetes Mellitus. Probiotics Antimicrob Proteins 2024; 16:829-844. [PMID: 37162668 DOI: 10.1007/s12602-023-10056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 05/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is considered one of the most common disorders worldwide. Although several treatment modalities have been developed, the existing interventions have not yielded the desired results. Therefore, researchers have focused on finding treatment choices with low toxicity and few adverse effects that could control T2DM efficiently. Various types of research on the role of gut microbiota in developing T2DM and its related complications have led to the growing interest in probiotic supplementation. Several properties make these organisms unique in terms of human health, including their low cost, high reliability, and good safety profile. Emerging evidence has demonstrated that three of the most important signaling pathways, including nuclear factor kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and nuclear factor erythroid 2-related factor 2 (Nrf2), which involved in the pathogenesis of T2DM, play key functions in the effects of probiotics on this disease. Hence, we will focus on the clinical applications of probiotics in the management of T2DM. Then, we will also discuss the roles of the involvement of various probiotics in the regulation of the most important signaling pathways (NF-κB, PI3K/Akt, and Nrf2) involved in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Farzaneh Hasanian-Langroudi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box, Tehran, 19395-4763, Iran.
| |
Collapse
|
21
|
Kim HJ, Kim YH. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. Int J Mol Sci 2024; 25:5302. [PMID: 38791344 PMCID: PMC11121268 DOI: 10.3390/ijms25105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Acne vulgaris is a common dermatological condition that can present across different ages but predominantly affects adolescents and young adults. Characterized by various lesion types, the pathogenesis of acne is complex, involving genetic, hormonal, microbial, and inflammatory factors. This review comprehensively addresses current and emerging acne management strategies, emphasizing both topical and systemic treatments, procedural therapies, and dietary modifications. Key topical agents include retinoids, benzoyl peroxide, antibiotics, and other specialized compounds. Systemic options like antibiotics, hormonal therapies, and retinoids offer significant therapeutic benefits, particularly for moderate to severe cases. Procedural treatments such as laser devices, photodynamic therapy, chemical peels, and intralesional injections present viable alternatives for reducing acne symptoms and scarring. Emerging therapies focus on novel biologics, bacteriophages, probiotics, and peptides, providing promising future options. This review underscores the importance of personalized approaches to treatment due to the multifaceted nature of acne, highlighting the potential of innovative therapies for improving patient outcomes.
Collapse
Affiliation(s)
- Hyun Jee Kim
- Department of Dermatology, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea;
| | - Yeong Ho Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
22
|
Xiong Y, He Y, Chen Z, Wu T, Xiong Y, Peng Y, Yang X, Liu Y, Zhou J, Zhou H, Zhang W, Shu Y, Li X, Li Q. Lactobacillus induced by irbesartan on spontaneously hypertensive rat contribute to its antihypertensive effect. J Hypertens 2024; 42:460-470. [PMID: 38009301 DOI: 10.1097/hjh.0000000000003613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
OBJECTIVE Hypertension is linked to gut dysbiosis. Here, the impact of the angiotensin receptor antagonist irbesartan on the gut microbiota of spontaneously hypertensive rats (SHR) were investigated. In addition, we assessed their contribution to its antihypertensive effect. METHODS Eight-week-old Wistar-Kyoto (WKY) rats and SHR were administered irbesartan for 8 weeks. Fecal microbiota transplantation (FMT) was performed from SHR treated with irbesartan or untreated SHR to recipient untreated SHR. The preventive effect of Lactobacillus on hypertension in SHR was evaluated. Blood pressure (BP) was calculated using a tail-sleeve sphygmomanometer. To better assess the composition of the gut microbiota, the V3-V4 region of the 16S rRNA gene was amplified while short-chain fatty acids (SCFAs) in feces were tested by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS Irbesartan restored gut dysbiosis, increased the abundance of Lactobacillus , and improved anti-inflammatory ability, antioxidative ability, intestinal integrity, and intestinal inflammation in SHR. The microbiota in SHR-treated irbesartan could reduce BP and improve antioxidative ability and gut integrity in SHR. Lactobacillus johnsonii ( L. johnsonii ) and Lactobacillus reuteri ( L. reuteri ) reduced BP, restored gut dysbiosis and improved anti-inflammatory ability, antioxidative ability, intestinal integrity in SHR. Most notably, irbesartan, L. johnsonii , and L. reuteri can significantly increase SCFA content in SHR feces. CONCLUSION The current study demonstrated that irbesartan treatment ameliorated gut dysbiosis in SHR. Irbesartan induced alterations in gut microbiota, with increased prevalence of Lactobacillus .
Collapse
Affiliation(s)
- Yanling Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Department of Pharmacy, First hospital of Nanchang, Nanchang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yanping He
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Zhi Chen
- Department of Hypertension, Xingsha Hospital, Changsha, China
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yalan Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yilei Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Maryland, USA
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education
- National Clinical Research Center for Geriatric Disorders, Changsha
| |
Collapse
|
23
|
Zhang T, Chen Y, Li X, Zhang J, Duan L. Genetic associations and potential mediators between psychiatric disorders and irritable bowel syndrome: a Mendelian randomization study with mediation analysis. Front Psychiatry 2024; 15:1279266. [PMID: 38352653 PMCID: PMC10861787 DOI: 10.3389/fpsyt.2024.1279266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Objective Potential causal associations between psychiatric disorders and irritable bowel syndrome have been demonstrated in observational studies; however, these studies are susceptible to underlying confounding and reverse causation biases. We aimed to assess the causal effects of psychiatric disorders on irritable bowel syndrome (IBS) and the potential mediators from a genetic perspective by conducting a Mendelian randomization (MR) study with mediation analysis. Method Genetic instruments associated with psychiatric disorders, potential mediators, and IBS were obtained from large-scale genome-wide association studies (GWAS). Three MR methods - the inverse-variance weighted (IVW) method, MR-Egger method, and weighted median method, were used to investigate causal association estimates. Heterogeneity among different genetic instrumental variables (IVs) was assessed using Q tests. Additionally, the MR-PRESSO and MR-Pleiotropy methods were used to verify horizontal pleiotropy and detect outliers that might bias the results, which were removed from further analysis. Consequently, we used MR mediation analysis to investigate potential mediators in the causal associations between psychiatric disorders and IBS. Results MR provided evidence of the causal effects of genetically predicted broad depression, major depressive disorder (MDD), anxiety disorder, post-traumatic stress disorder (PTSD), and schizophrenia on IBS. The results of MR mediation analysis demonstrated that the reduction in acetate levels mediated 12.6% of the effects of broad depression on IBS; insomnia mediated 16.00%, 16.20%, and 27.14% of the effects of broad depression, MDD, and PTSD on IBS, respectively; and the increase in blood β-hydroxybutyrate levels mediated 50.76% of the effects of schizophrenia on IBS. Conclusion Our study confirmed the brain-gut axis involvement and potential modulators in the pathophysiology of psychiatric disorder-induced IBS from a genetic perspective, and suggests potential therapeutic targets for the disrupted brain-gut axis.
Collapse
Affiliation(s)
| | | | | | | | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
24
|
Zeng X, Wang M, Chen L, Zheng B. Impact of using whole chestnut flour as a substitute for cake flour on digestion, functional and storage properties of chiffon cake: A potential application study. Food Chem 2024; 432:137016. [PMID: 37647706 DOI: 10.1016/j.foodchem.2023.137016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Developing fresh cake product with rich nutrition and high quality has become a hot spot in food industry. In this study, whole chestnut flour as a high-quality dietary source was successfully substituted for cake flour in the production of chestnut chiffon cake with 40-55% substitution rate, and its application prospects were further evaluated through studying nutritional and storage properties. The results showed that chestnut chiffon cake with 45% and 50% substitution rate could significantly increase the resistant component, scavenging activity and ferric reducing antioxidant power, surprisingly decrease predicted glycemic index to 54.05-57.28, and reduce the acetate/propionate ratio and Firmicutes/Bacteroidetes value for human gut microbiota as well. Comparatively, chestnut chiffon cake with 45% substitution rate had more application potential due to its higher free water retention at day 7 and higher resilience throughout the storage time. Overall, this study could provide valuable information for the development of modern nutritional cake industry.
Collapse
Affiliation(s)
- Xixi Zeng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Menghui Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Bo Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Ye X, Chen W, Yan FJ, Zheng XD, Tu PC, Shan PF. Exploring the Effects of Cyanidin-3- O-Glucoside on Type 2 Diabetes Mellitus: Insights into Gut Microbiome Modulation and Potential Antidiabetic Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20047-20061. [PMID: 38085678 DOI: 10.1021/acs.jafc.3c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Berries and their functional components have been put forward as an alternative to pharmacological treatments of type 2 diabetes mellitus (T2DM), and more attention has been paid to the gut microbiome in the pathophysiology of T2DM. Thus, we tried to examine the metabolic impact of red bayberry-derived cyanidin-3-O-glucoside (C3G) and investigate whether the antidiabetic effects of C3G were associated with the gut microbiome. As a result, C3G administration was found to reduce blood glucose levels of diabetic db/db mice, accompanied by increased levels of glucagon-like peptide (GLP-1) and insulin. Moreover, 16S rRNA analysis showed that the dominant microbiota modulated by C3G were pivotal in the glucose metabolism. Furthermore, the modulation of C3G on metabolic activities of gut bacteria leads to an increase in intestinal levels of key metabolites, particularly short-chain fatty acids. This contribution helps in promoting the secretion of GLP-1, which in turn increases insulin release with the purpose of reducing blood glucose levels. Overall, these findings may offer new thoughts concerning C3G against metabolic disorders in T2DM.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of ZheJiang University School of Medicine, Hangzhou 310058, China
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310058, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wen Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fu-Jie Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Peng-Cheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310058, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Peng-Fei Shan
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of ZheJiang University School of Medicine, Hangzhou 310058, China
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Zeng W, Yang B, Wang Y, Sun M, Yang W, Cui H, Jin J, Zhao Z. Rotundic acid alleviates hyperlipidemia in rats by regulating lipid metabolism and gut microbiota. Phytother Res 2023; 37:5958-5973. [PMID: 37776121 DOI: 10.1002/ptr.8008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/01/2023]
Abstract
Disturbances in lipid metabolism and dysbiosis of the gut microbiota play an important role in the progression of hyperlipidemia. Previous study indicated that Ilicis Rotundae Cortex possesses anti-hyperlipidemic activity, and rotundic acid (RA) identified as a key active compound to be incorporated into the body. The study aimed to evaluate the anti-hyperlipidemia effects of RA and explored its impact on gut microbiota and lipid metabolism, as well as its possible mechanisms for improving hyperlipidemia. The study methodology included a comprehensive evaluation of the effects of RA on steatosis markers of hyperlipidemia, lipid metabolism, and gut microbiota by assessing biochemical parameters and histopathology, lipidomics, 16S rRNA gene sequencing, and short-chain fatty acid (SCFA) assays. The results showed that RA effectively reduced body weight and the steatosis markers in serum and liver. Moreover, the lipidomic analysis revealed significant changes in plasmatic and hepatic lipid levels, and these were restored by RA. According to the results of 16S rRNA gene sequencing, RA supplementation raised the relative abundance of Bacteroidetes and Proteobacteria while decreasing the relative abundance of Firmicutes. RA significantly boosted the relative abundance of SCFAs by increasing SCFAs-producing bacteria such as Bacteroides, Alloprevotella, Desulfovibrio, etc. In summary, RA could regulate triglyceride metabolism and glycerophospholipid metabolism, restore gut microbiota structure, and increase the relative abundance of SCFAs-producing bacteria to exert its hypolipidemic effects. These findings suggest RA to be a promising therapeutic agent for hyperlipidemia.
Collapse
Affiliation(s)
- Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bao Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Hubei Minzu University, Enshi, China
| | - Yuanyuan Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengjia Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Okuda A, Kintaka Y, Tanabe K, Nakayama T, Shimouchi A, Oku T, Nakamura S. Fructooligosaccharide feeding during gestation to pregnant mice provided excessive folic acid decreases maternal and female fetal oxidative stress by increasing intestinal microbe-derived hydrogen gas. Nutr Res 2023; 120:72-87. [PMID: 37948786 DOI: 10.1016/j.nutres.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Fructooligosaccharide (FOS) is fermented by intestinal microbes to generate intestinal microbe-derived hydrogen gas (IMDH). Oxidative stress increases during gestation, whereas hydrogen gas has antioxidant effects with therapeutic benefits. We have previously reported that the offspring from a pregnant, excessive folic acid mouse model (PEFAM) had abnormal glucose metabolism after growth. We hypothesized that IMDH by FOS feeding during gestation in PEFAM would suppress maternal and fetal oxidative stress. C57BL/6J mice on day 1 of gestation were divided into 3 groups and dissected at gestational day 18. The control (CONT) diet was AIN-93G containing folic acid 2 mg/kg diet; PEFAM was fed with an excessive folic acid (EFA) diet containing folic acid 40 mg/kg diet, and the EFA-FOS diet was replaced half of the sucrose in the EFA diet. Hydrogen gas concentrations in maternal livers and whole fetuses in EFA-FOS were significantly higher than those in CONT and EFA, respectively (P < .05). Maternal and fetal 8-hydroxy-2'-deoxyguanosine in EFA-FOS were not significantly different from those in the CONT group, whereas those in the EFA group were significantly increased compared with CONT and EFA-FOS (P < .05). In EFA-FOS, expression of protein and mRNA of superoxide dismutase and heme oxygenase 1 in mothers and superoxide dismutase in fetuses were not significantly different from those in CONT, whereas those in EFA were significantly increased (P < .05). The protein expression of Nrf2 in mothers and fetuses were not significantly different between EFA-FOS and CONT. Therefore, FOS feeding to PEFAM during gestation decreases maternal and fetal oxidative stress through IMDH.
Collapse
Affiliation(s)
- Asuka Okuda
- Graduate School of Human Life Sciences, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan.
| | - Yuri Kintaka
- Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan; Faculty of School of Health Sciences, Sapporo University of Health Sciences, 2-1-15 Nakanumanishi 4-jo, Higashi-ku, Sapporo, Hokkaido 007-0894, Japan
| | - Kenichi Tanabe
- Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan; Department of Nutritional Sciences, Nakamura Gakuen University, 5-7-1 Befu, Jonan-ku, Fukuoka 814-0198, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Akito Shimouchi
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Tsuneyuki Oku
- Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| | - Sadako Nakamura
- Graduate School of Human Life Sciences, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan; Institute of International Nutrition and Health, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama 352-8510, Japan
| |
Collapse
|
28
|
Carboni J, Basalely A, Singer P, Castellanos L, Sethna CB. Association Between Dietary Fiber Intake and Cardiometabolic Risk Factors in Adolescents in the United States. J Pediatr 2023; 262:113616. [PMID: 37473987 DOI: 10.1016/j.jpeds.2023.113616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To determine the association between dietary fiber intake and markers of cardiometabolic risk in adolescents, with blood pressure (BP) as the primary outcome of interest and secondary outcome measures including other established markers of childhood cardiometabolic risk, such as obesity, lipids, albuminuria, estimated glomerular filtration rate (eGFR), and uric acid. STUDY DESIGN Dietary fiber intake was assessed by two 24-hour dietary recall interviews, which were averaged and corrected for body weight. Logistic and linear regression models were used to analyze the cross-sectional association between dietary fiber and cardiometabolic markers. Participants aged 13-17 years in the National Health and Nutritional Examination Survey 2009-2018 who completed a 24-hour dietary recall survey were included. Exclusion criteria included pregnancy, small for gestational age status, and history of major health comorbidities. RESULTS In fully adjusted regression models, low dietary fiber intake was significantly associated with greater diastolic blood pressure (β = -13.29; 95% CI, -20.66 to -5.93), body mass index z-score (β = -0.91; 95% CI, -1.47 to -0.34), and uric acid (β = -0.80; 95% CI, -1.44 to -0.16). CONCLUSIONS The association found between low dietary fiber intake and poor childhood cardiometabolic risk markers indicate a need for prospective studies using fiber intake as a dietary intervention in childhood and as a tool for prevention of many chronic conditions.
Collapse
Affiliation(s)
| | - Abby Basalely
- Zucker School of Medicine at Northwell/Hofstra, Uniondale, NY; Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, NY; Feinstein Institutes for Medical Research, Manhasset, NY
| | - Pamela Singer
- Zucker School of Medicine at Northwell/Hofstra, Uniondale, NY; Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, NY
| | - Laura Castellanos
- Zucker School of Medicine at Northwell/Hofstra, Uniondale, NY; Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, NY
| | - Christine B Sethna
- Zucker School of Medicine at Northwell/Hofstra, Uniondale, NY; Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, NY; Feinstein Institutes for Medical Research, Manhasset, NY.
| |
Collapse
|
29
|
Yin Z, Liu X, Guo L, Ren M, Kang W, Ma C, Waterhouse GIN, Sun-Waterhouse D. The potential of dietary fiber in building immunity against gastrointestinal and respiratory disorders. Crit Rev Food Sci Nutr 2023; 64:13318-13336. [PMID: 37837407 DOI: 10.1080/10408398.2023.2266462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
The numerous health benefits of dietary fibers (DFs) justify their inclusion in human diets and biomedical products. Given the short- and long-term human impacts of the COVID-19 virus on human health, the potential of DFs in building immunity against gastrointestinal and respiratory disorders is currently receiving high attention. This paper reviews the physicochemical properties of DFs, together with their immune functions and effects on the gastrointestinal tract and respiratory system mainly based on research in the last ten years. Possible modes of action of DFs in promoting health, especially building immunity, are explored. We seek to highlight the importance of understanding the exact physical and chemical characteristics and molecular behaviors of DFs in providing specific immune function. This review provides a perspective beyond the existing recognition of DFs' positive effects on human health, and offers a theoretical framework for the development of special DFs components and their application in functional foods and other therapeutic products against gastrointestinal and respiratory disorders. DFs enhance immunity from gastrointestinal and respiratory diseases to promote host health.
Collapse
Affiliation(s)
- Zhenhua Yin
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Xiaopeng Liu
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Lin Guo
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Mengjie Ren
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Wenyi Kang
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R &D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Function Food Engineering Technology Research Center, Kaifeng, China
| | | | | |
Collapse
|
30
|
Detopoulou P, Damigou E, Antonopoulou S, Fragopoulou E, Chysohoou C, Pitsavos C, Panagiotakos D. Food Compass Score and its association with inflammatory markers and homocysteine in cardiovascular disease-free adults: a cross-sectional analysis of the ATTICA epidemiological study. Eur J Clin Nutr 2023; 77:998-1004. [PMID: 37400562 DOI: 10.1038/s41430-023-01300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND/OBJECTIVES Several nutrient profiling systems have been developed to assist in food choices and policy. Food Compass Score (FCS) is a novel holistic food score assessing 54 parameters. The aim was to assess the relation of FCS with inflammatory and lipid markers in cardiovascular disease-free volunteers. SUBJECTS/METHODS Information from the ATTICA epidemiological study participants, with complete data on lipid, inflammatory markers and dietary intake were studied (n = 1018). C-reactive protein (CRP) and amyloid A were determined by immunonephelometry, fibrinogen by nephelometry, homocysteine by fluorometry, while tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), adiponectin and leptin were determined by ELISA in fasting blood samples. Dietary intake was assessed through a semi-quantitative validated food frequency questionnaire. Each food was assigned a FCS value from the published values and then individual's FCS values were calculated. RESULTS Mean FCS was 56 (standard deviation: 5.7) and it was similar in men and women. FCS was inversely correlated with age (r = -0.06, p = 0.03). In multiple linear regression models, FCS was inversely associated with CRP (-0.03, 0.01), TNF-a (-0.04, 0.01), amyloid A (-0.10, 0.04) and homocysteine (-0.09, 0.04) (b coefficients, standard errors, all p < 0.05) and was not associated with IL-6, fibrinogen, adiponectin, leptin, or lipids levels (all p > 0.05). CONCLUSIONS The inverse correlations of the FCS with inflammatory markers suggest that a diet containing foods with high FCS might be protective against inflammation process. Our results support the usefulness of the FCS, but future studies should evaluate its relation to cardiovascular and other inflammation-related chronic diseases.
Collapse
Affiliation(s)
- Paraskevi Detopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Evangelia Damigou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Christina Chysohoou
- First Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Christos Pitsavos
- First Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece.
| |
Collapse
|
31
|
Han X, Ma Y, Ding S, Fang J, Liu G. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:356-369. [PMID: 37635930 PMCID: PMC10448034 DOI: 10.1016/j.aninu.2023.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
The animal gut harbors diverse microbes that play an essential role in the well-being of their host. Specific diets, such as those rich in dietary fiber, are vital in disease prevention and treatment because they affect intestinal flora and have a positive impact on the metabolism, immunity, and intestinal function of the host. Dietary fiber can provide energy to colonic epithelial cells, regulate the structure and metabolism of intestinal flora, promote the production of intestinal mucosa, stimulate intestinal motility, improve glycemic and lipid responses, and regulate the digestion and absorption of nutrients, which is mainly attributed to short-chain fatty acids (SCFA), which is the metabolite of dietary fiber. By binding with G protein-coupled receptors (including GPR41, GPR43 and GPR109A) and inhibiting the activity of histone deacetylases, SCFA regulate appetite and glucolipid metabolism, promote the function of the intestinal barrier, alleviate oxidative stress, suppress inflammation, and maintain immune system homeostasis. This paper reviews the physicochemical properties of dietary fiber, the interaction between dietary fiber and intestinal microorganisms, the role of dietary fiber in maintaining intestinal health, and the function of SCFA, the metabolite of dietary fiber, in inhibiting inflammation. Furthermore, we consider the effects of dietary fiber on the intestinal health of pigs, the reproduction and lactation performance of sows, and the growth performance and meat quality of pigs.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
32
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
33
|
Ding L, Guan H, Yang W, Guo H, Zang C, Liu Y, Ren S, Liu J. Modulatory Effects of Co-Fermented Pu-erh Tea with Aqueous Corn Silk Extract on Gut Microbes and Fecal Metabolites in Mice Fed High-Fat Diet. Nutrients 2023; 15:3642. [PMID: 37630832 PMCID: PMC10458734 DOI: 10.3390/nu15163642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Pu-erh tea is recognized for its weight loss effects, but its potential association with gut microbiota and metabolites remains unclear. This research explored the alterations in gut flora and metabolite composition upon treatment with a co-fermented Pu-erh tea with an aqueous corn silk extract (CPC) in obese mice by employing integrated 16S ribosomal RNA gene sequencing and untargeted metabolomics processes. For 8 weeks, mice were fed control, high-fat, and high-fat diets which included a 46 mg/mL CPC extract. The CPC extract the alleviated high-fat diet (HFD), it stimulated systemic chronic inflammation, and it reduced the body weight, daily energy consumption, and adipose tissue weight of the mice. It also modified the gut microbiota composition and modulated the Lactobacillus, Bifidobacterium, Allobaculum, Turicibacter, and Rikenella genera. Fecal metabolomics analysis revealed that the CPC extract influenced the caffeine, cysteine, methionine, tryptophan, biotin metabolism pathways, primary bile acid, and steroid biosynthesis. This research revealed that the CPC extract could inhibit HFD-stimulated abnormal weight gain and adipose tissue accumulation in mice, and modulate mice gut microbiota composition and multiple metabolic pathways.
Collapse
Affiliation(s)
- Lin Ding
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Hong Guan
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Wenqing Yang
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Hao Guo
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Chuangang Zang
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Yuchao Liu
- Research Center of Microecological Engineering Technology, Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China; (L.D.); (H.G.); (W.Y.); (H.G.); (C.Z.); (Y.L.)
| | - Shan Ren
- Basic Medical Science College, Qiqihar Medical University, Qiqihar 161006, China;
| | - Jicheng Liu
- Heilongjiang Provincial Key Laboratory of Natural Medicines for Anticancer, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
34
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Zaguła G, Pawlos M. Bioavailability of Macroelements from Synbiotic Sheep's Milk Ice Cream. Nutrients 2023; 15:3230. [PMID: 37513648 PMCID: PMC10383885 DOI: 10.3390/nu15143230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
To determine the potential bioavailability of macroelements (Ca, Mg, P, K), probiotic ice cream samples (Lactaseibacillus paracasei L-26, Lactobacillus casei 431, Lactobacillus acidophilus LA-5, Lactaseibacillus rhamnosus and Bifidobacterium animalis ssp. lactis BB-12) from sheep's milk with inulin, apple fiber and inulin, or apple fiber and control samples were submitted to in vitro digestion in the mouth, stomach and small intestine. The bioavailability of calcium in the ice cream samples ranged from 40.63% to 54.40%, whereas that of magnesium was 55.64% to 44.42%. The highest bioavailability of calcium and magnesium was shown for the control samples. However, adding 4% inulin reduced the bioavailability of calcium by about 3-5% and magnesium only by about 5-6%. Adding 4% apple fiber reduced the bioavailability of calcium by as much as 6-12% and magnesium by 7-8%. The highest bioavailability of calcium was determined in ice cream with L. paracasei, and the highest bioavailability of magnesium was determined in ice cream with L. casei. The bioavailability of phosphorus in ice cream ranged from 47.82% to 50.94%. The highest bioavailability of phosphorus (>50%) was in sheep ice cream fermented by B. animalis. In the control ice cream, the bioavailability of potassium was about 60%. In ice cream with inulin, the bioavailability of potassium was lower by 3-4%, and in ice cream with apple fiber, the bioavailability of potassium was lower by up to 6-9%. The bioavailability of potassium was significantly influenced only by the addition of dietary fiber. The results of the study confirmed the beneficial effect of bacteria on the bioavailability of Ca, Mg and P.
Collapse
Affiliation(s)
- Magdalena Kowalczyk
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Agata Znamirowska-Piotrowska
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Magdalena Buniowska-Olejnik
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Grzegorz Zaguła
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food and Nutrition Technology, College of Natural Science, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| | - Małgorzata Pawlos
- Department of Dairy Technology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Ćwiklińskiej 2D, 35-601 Rzeszów, Poland
| |
Collapse
|
36
|
Chen X, Ran J, Mazhar M, Zhu Y, Lin Y, Qin L, Miao S. The balanced unsaturated fatty acid supplement constituted by woody edible oils improved lipid metabolism and gut microbiota in high-fat diet mice. Front Nutr 2023; 10:1203932. [PMID: 37545586 PMCID: PMC10399753 DOI: 10.3389/fnut.2023.1203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
The dietary intervention has demonstrated effectiveness in improving hyperlipidemia and obesity. Woody edible oils are rich in unsaturated fatty acids (UFAs) that could positively affect lipid metabolism. In this study, the blended oil (BLO), a balanced UFA supplement, constituted by Zanthoxylum bungeanum (Chinese Red Pepper) seed oil, walnut (Juglans regia) oil, camellia (Camema oleifera) seed oil and perilla (Perilla frutescens) seed oil was established referring to the Chinese dietary reference intakes, in which the ratios of monounsaturated/polyunsaturated fatty acids and ω-6/ω-3 polyunsaturated fatty acids were 1:1 and 4:1, respectively. The BLO was administrated to KM mice fed a high-fat diet (HFD) by gavage every day at a dose of 3.0 mL/kg·bw for 10 weeks to assess its effects on serum lipid levels, liver antioxidant activities and gut microbial composition. The results showed that the BLO improved hepatic steatosis, liver oxidative stress, and serum lipid levels. Additionally, there was an increased abundance of Lactobacillus, Allobaculum, and Blautia, along with a decreased abundance of Staphylococcus in cecal contents. These changes were found to be positively correlated with the metabolic improvements, as indicated by Spearman's correlation analysis. These findings implied the practicality of the balanced unsaturated fatty acid consumption in preventing hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Department of Laboratory Medicine, Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| | - Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Muhammad Mazhar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
37
|
Wang X, Niu L, Wang Y, Zhan S, Wang L, Dai D, Cao J, Guo J, Li L, Zhang H, Zhong T. Combining 16S rRNA Sequencing and Metabolomics Data to Decipher the Interactions between Gut Microbiota, Host Immunity, and Metabolites in Diarrheic Young Small Ruminants. Int J Mol Sci 2023; 24:11423. [PMID: 37511183 PMCID: PMC10380214 DOI: 10.3390/ijms241411423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1β were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1β, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.
Collapse
Affiliation(s)
- Xinlu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yaxuan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
38
|
Cui X, Wang X, Chang X, Bao L, Wu J, Tan Z, Chen J, Li J, Gao X, Ke P, Chen C. A new capacity of gut microbiota: Fermentation of engineered inorganic carbon nanomaterials into endogenous organic metabolites. Proc Natl Acad Sci U S A 2023; 120:e2218739120. [PMID: 37155879 PMCID: PMC10193999 DOI: 10.1073/pnas.2218739120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/10/2023] Open
Abstract
Carbon-based nanomaterials (CNMs) have recently been found in humans raising a great concern over their adverse roles in the hosts. However, our knowledge of the in vivo behavior and fate of CNMs, especially their biological processes elicited by the gut microbiota, remains poor. Here, we uncovered the integration of CNMs (single-walled carbon nanotubes and graphene oxide) into the endogenous carbon flow through degradation and fermentation, mediated by the gut microbiota of mice using isotope tracing and gene sequencing. As a newly available carbon source for the gut microbiota, microbial fermentation leads to the incorporation of inorganic carbon from the CNMs into organic butyrate through the pyruvate pathway. Furthermore, the butyrate-producing bacteria are identified to show a preference for the CNMs as their favorable source, and excessive butyrate derived from microbial CNMs fermentation further impacts on the function (proliferation and differentiation) of intestinal stem cells in mouse and intestinal organoid models. Collectively, our results unlock the unknown fermentation processes of CNMs in the gut of hosts and underscore an urgent need for assessing the transformation of CNMs and their health risk via the gut-centric physiological and anatomical pathways.
Collapse
Affiliation(s)
- Xuejing Cui
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou510700, Guangdong, China
| | - Xiaoyu Wang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| | - Xueling Chang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing100049, China
| | - Lin Bao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| | - Junguang Wu
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | | | - Jiayang Li
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Xingfa Gao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
| | - Pu Chun Ke
- The GBA National Institute for Nanotechnology Innovation, Guangzhou510700, Guangdong, China
| | - Chunying Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing100190, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou510700, Guangdong, China
- School of Nano Science and Technology, University of Chinese Academy of Sciences, Beijing101400, China
| |
Collapse
|
39
|
Ďásková N, Modos I, Krbcová M, Kuzma M, Pelantová H, Hradecký J, Heczková M, Bratová M, Videňská P, Šplíchalová P, Králová M, Heniková M, Potočková J, Ouřadová A, Landberg R, Kühn T, Cahová M, Gojda J. Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings from an observational study followed by an interventional trial. Nutr Diabetes 2023; 13:7. [PMID: 37085526 PMCID: PMC10121613 DOI: 10.1038/s41387-023-00235-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
AIM The metabolic performance of the gut microbiota contributes to the onset of type 2 diabetes. However, targeted dietary interventions are limited by the highly variable inter-individual response. We hypothesized (1) that the composition of the complex gut microbiome and metabolome (MIME) differ across metabolic spectra (lean-obese-diabetes); (2) that specific MIME patterns could explain the differential responses to dietary inulin; and (3) that the response can be predicted based on baseline MIME signature and clinical characteristics. METHOD Forty-nine patients with newly diagnosed pre/diabetes (DM), 66 metabolically healthy overweight/obese (OB), and 32 healthy lean (LH) volunteers were compared in a cross-sectional case-control study integrating clinical variables, dietary intake, gut microbiome, and fecal/serum metabolomes (16 S rRNA sequencing, metabolomics profiling). Subsequently, 27 DM were recruited for a predictive study: 3 months of dietary inulin (10 g/day) intervention. RESULTS MIME composition was different between groups. While the DM and LH groups represented opposite poles of the abundance spectrum, OB was closer to DM. Inulin supplementation was associated with an overall improvement in glycemic indices, though the response was very variable, with a shift in microbiome composition toward a more favorable profile and increased serum butyric and propionic acid concentrations. The improved glycemic outcomes of inulin treatment were dependent on better baseline glycemic status and variables related to the gut microbiota, including the abundance of certain bacterial taxa (i.e., Blautia, Eubacterium halii group, Lachnoclostridium, Ruminiclostridium, Dialister, or Phascolarctobacterium), serum concentrations of branched-chain amino acid derivatives and asparagine, and fecal concentrations of indole and several other volatile organic compounds. CONCLUSION We demonstrated that obesity is a stronger determinant of different MIME patterns than impaired glucose metabolism. The large inter-individual variability in the metabolic effects of dietary inulin was explained by differences in baseline glycemic status and MIME signatures. These could be further validated to personalize nutritional interventions in patients with newly diagnosed diabetes.
Collapse
Affiliation(s)
- N Ďásková
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - I Modos
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Krbcová
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Kuzma
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - H Pelantová
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - J Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - M Heczková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Bratová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - P Videňská
- Mendel University, Department of Chemistry and Biochemistry, Brno, Czech Republic
| | - P Šplíchalová
- RECETOX, Faculty of Science Masaryk University, Brno, Czech Republic
| | - M Králová
- Ambis University, Department of Economics and Management, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Heniková
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Potočková
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Ouřadová
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - R Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Goteborg, Sweden
| | - T Kühn
- Institute of Global Food Security, Queen's University Belfast, Belfast, UK
- Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany
| | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - J Gojda
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
40
|
Collins SM, Gibson GR, Stainton GN, Bertocco A, Kennedy OB, Walton GE, Commane DM. Chronic consumption of a blend of inulin and arabinoxylan reduces energy intake in an ad libitum meal but does not influence perceptions of appetite and satiety: a randomised control-controlled crossover trial. Eur J Nutr 2023:10.1007/s00394-023-03136-6. [PMID: 37046122 DOI: 10.1007/s00394-023-03136-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Prebiotic foods can be used to increase production of short-chain fatty acids (SCFA) in the gut. Of the SCFA, propionate is credited with the strongest anorectic activity. In previous work, a 50/50 blend of inulin and arabinoxylan was produced (I + AX) that significantly increased propionate production in an in vitro gut model. This study sought to establish whether chronic consumption of a prebiotic blend of I + AX decreases appetite and energy intake and increases intestinal propionate production in human participants. METHODS MIXSAT (clinicaltrials.gov id: NCT02846454, August 2016) was a double-blind randomised acute-within-chronic crossover feeding trial in healthy adult men (n = 20). Treatments were 8 g per day I + AX for 21 days or weight-matched maltodextrin control. The primary outcome measure was perceived satiety and appetite during an acute study visit. Secondary outcomes were energy intake in an ad libitum meal, faecal SCFA concentration, and faecal microbiota composition. RESULTS Perceived satiety and appetite were not affected by the intervention. I + AX was associated with a reduction in energy intake in an ad libitum meal, increased faecal SCFA concentration, and an increase in cell counts of Bifidobacteria, Lactobacilli, and other microbial genera associated with health. IMPLICATIONS Chronic consumption of this blend of prebiotics decreased energy intake in a single sitting. Further studies are needed to confirm mechanism of action and to determine whether this might be useful in weight control.
Collapse
Affiliation(s)
- Sineaid M Collins
- Food and Nutritional Sciences, University of Reading, Berkshire, UK.
| | - Glenn R Gibson
- Food and Nutritional Sciences, University of Reading, Berkshire, UK
| | - Gavin N Stainton
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Andrea Bertocco
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Orla B Kennedy
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Gemma E Walton
- Herbalife Nutrition, The Atrium, 1 Harefield Road, Uxbridge, Middlesex, UK
| | - Daniel M Commane
- Applied and Health Sciences, Northumbria University, Tyne and Wear, UK
| |
Collapse
|
41
|
Tiangpook S, Nhim S, Prangthip P, Pason P, Tachaapaikoon C, Ratanakhanokchai K, Waeonukul R. Production of a Series of Long-Chain Isomaltooligosaccharides from Maltose by Bacillus subtilis AP-1 and Associated Prebiotic Properties. Foods 2023; 12:foods12071499. [PMID: 37048320 PMCID: PMC10094464 DOI: 10.3390/foods12071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Bacillus subtilis strain AP-1, which produces α-glucosidase with transglucosidase activity, was used to produce a series of long-chain isomaltooligosaccharides (IMOs) with degree of polymerization (DP) ranging from 2 to 14 by direct fermentation of maltose. A total IMOs yield of 36.33 g/L without contabacillusmination from glucose and maltose was achieved at 36 h of cultivation using 50 g/L of maltose, with a yield of 72.7%. IMOs were purified by size exclusion chromatography with a Superdex 30 Increase column. The molecular mass and DP of IMOs were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Subsequently, linkages in produced oligosaccharides were verified by enzymatic hydrolysis with α-amylase and oligo-α-1,6-glucosidase. These IMOs showed prebiotic properties, namely tolerance to acidic conditions and digestive enzymes of the gastrointestinal tract, stimulation of probiotic bacteria growth to produce short-chain fatty acids and no stimulating effect on pathogenic bacteria growth. Moreover, these IMOs were not toxic to mammalian cells at up to 5 mg/mL, indicating their biocompatibility. Therefore, this research demonstrated a simple and economical method for producing IMOs with DP2–14 without additional operations; moreover, the excellent prebiotic properties of the IMOs offer great prospects for their application in functional foods.
Collapse
Affiliation(s)
- Suratsawadee Tiangpook
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Sreyneang Nhim
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Pattaneeya Prangthip
- Department of Tropical Nutrition & Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Patthra Pason
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Chakrit Tachaapaikoon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| | - Rattiya Waeonukul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10150, Thailand
| |
Collapse
|
42
|
Kozik AJ, Begley LA, Lugogo N, Baptist A, Erb-Downward J, Opron K, Huang YJ. Airway microbiota and immune mediator relationships differ in obesity and asthma. J Allergy Clin Immunol 2023; 151:931-942. [PMID: 36572355 PMCID: PMC10566565 DOI: 10.1016/j.jaci.2022.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Asthma and obesity are both complex conditions characterized by chronic inflammation, and obesity-related severe asthma has been associated with differences in the microbiome. However, whether the airway microbiome and microbiota-immune response relationships differ between obese persons with or without nonsevere asthma is unestablished. OBJECTIVE We compared the airway microbiome and microbiota-immune mediator relationships between obese and nonobese subjects, with and without mild-moderate asthma. METHODS We performed cross-sectional analyses of the airway (induced sputum) microbiome and cytokine profiles from blood and sputum using 16S ribosomal RNA gene and internal transcribed spacer region sequencing to profile bacteria and fungi, and multiplex immunoassays. Analysis tools included QIIME 2, linear discriminant analysis effect size (aka LEfSe), Piphillin, and Sparse inverse covariance estimation for ecological association inference (aka SPIEC-EASI). RESULTS Obesity, irrespective of asthma status, was associated with significant differences in sputum bacterial community structure and composition (unweighted UniFrac permutational analysis of variance, P = .02), including a higher relative abundance of Prevotella, Gemella, and Streptococcus species. Among subjects with asthma, additional differences in sputum bacterial composition and fungal richness were identified between obese and nonobese individuals. Correlation network analyses demonstrated differences between obese and nonobese asthma in relationships between cytokine mediators, and these together with specific airway bacteria involving blood PAI-1, sputum IL-1β, GM-CSF, IL-8, TNF-α, and several Prevotella species. CONCLUSION Obesity itself is associated with an altered sputum microbiome, which further differs in those with mild-moderate asthma. The distinct differences in airway microbiota and immune marker relationships in obese asthma suggest potential involvement of airway microbes that may affect mechanisms or outcomes of obese asthma.
Collapse
Affiliation(s)
- Ariangela J Kozik
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich.
| | - Lesa A Begley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Njira Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Alan Baptist
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Ann Arbor, Mich
| | - John Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Kristopher Opron
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich
| | - Yvonne J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ann Arbor, Mich; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
43
|
Cardilli A, Hamad I, Dyczko A, Thijs S, Vangronsveld J, Müller DN, Rosshart SP, Kleinewietfeld M. Impact of High Salt-Intake on a Natural Gut Ecosystem in Wildling Mice. Nutrients 2023; 15:nu15071565. [PMID: 37049406 PMCID: PMC10096756 DOI: 10.3390/nu15071565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023] Open
Abstract
The mammalian holobiont harbors a complex and interdependent mutualistic gut bacterial community. Shifts in the composition of this bacterial consortium are known to be a key element in host health, immunity and disease. Among many others, dietary habits are impactful drivers for a potential disruption of the bacteria–host mutualistic interaction. In this context, we previously demonstrated that a high-salt diet (HSD) leads to a dysbiotic condition of murine gut microbiota, characterized by a decrease or depletion of well-known health-promoting gut bacteria. However, due to a controlled and sanitized environment, conventional laboratory mice (CLM) possess a less diverse gut microbiota compared to wild mice, leading to poor translational outcome for gut microbiome studies, since a reduced gut microbiota diversity could fail to depict the complex interdependent networks of the microbiome. Here, we evaluated the HSD effect on gut microbiota in CLM in comparison to wildling mice, which harbor a natural gut ecosystem more closely mimicking the situation in humans. Mice were treated with either control food or HSD and gut microbiota were profiled using amplicon-based methods targeting the 16S ribosomal gene. In line with previous findings, our results revealed that HSD induced significant loss of alpha diversity and extensive modulation of gut microbiota composition in CLM, characterized by the decrease in potentially beneficial bacteria from Firmicutes phylum such as the genera Lactobacillus, Roseburia, Tuzzerella, Anaerovorax and increase in Akkermansia and Parasutterella. However, HSD-treated wildling mice did not show the same changes in terms of alpha diversity and loss of Firmicutes bacteria as CLM, and more generally, wildlings exhibited only minor shifts in the gut microbiota composition upon HSD. In line with this, 16S-based functional analysis suggested only major shifts of gut microbiota ecological functions in CLM compared to wildling mice upon HSD. Our findings indicate that richer and wild-derived gut microbiota is more resistant to dietary interventions such as HSD, compared to gut microbiota of CLM, which may have important implications for future translational microbiome research.
Collapse
|
44
|
Karim MR, Iqbal S, Mohammad S, Lee JH, Jung D, Mathiyalagan R, Yang DC, Yang DU, Kang SC. A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiol Res 2023; 271:127346. [PMID: 36921399 DOI: 10.1016/j.micres.2023.127346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
The gut microbiome is the community of healthy, and infectious organisms in the gut and its interaction in the host gut intestine (GI) environment. The balance of microbial richness with beneficial microbes is very important to perform healthy body functions like digesting food, controlling metabolism, and precise immune function. Alternately, this microbial dysbiosis occurs due to changes in the physiochemical condition, substrate avidity, and drugs. Moreover, various categories of diet such as "plant-based", "animal-based", "western", "mediterranean", and various drugs (antibiotic and common drugs) also contribute to maintaining microbial flora inside the gut. The imbalance (dysbiosis) in the microbiota of the GI tract can cause several disorders (such as diabetes, obesity, cancer, inflammation, and so on). Recently, the major interest is to use prebiotic, probiotic, postbiotic, and herbal supplements to balance such microbial community in the GI tract. But, there has still a large gap in understanding the microbiome function, and its relation to the host diet, drugs, and herbal supplements to maintain the healthy life of the host. So, the present review is about the updates on the microbiome concerns related to diet, drug, and herbal supplements, and also gives research evidence to improve our daily habits regarding diet, drugs, and herbal supplements. Because our regular dietary plan and traditional herbal supplements can improve our health by balancing the bacteria in our gut.
Collapse
Affiliation(s)
- Md Rezaul Karim
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Safia Iqbal
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Department of Microbiology, Varendra Institute of Biosciences, Affiliated by Rajshahi University, Natore, Rajshahi, Bangladesh; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Shahnawaz Mohammad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Jung Hyeok Lee
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Daehyo Jung
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Deok-Chun Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Dong Uk Yang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea; Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
45
|
Kalkan H, Pagano E, Paris D, Panza E, Cuozzo M, Moriello C, Piscitelli F, Abolghasemi A, Gazzerro E, Silvestri C, Capasso R, Motta A, Russo R, Di Marzo V, Iannotti FA. Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy. EMBO Mol Med 2023; 15:e16225. [PMID: 36594243 PMCID: PMC9994484 DOI: 10.15252/emmm.202216225] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.
Collapse
Affiliation(s)
- Hilal Kalkan
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Ester Pagano
- Department of Pharmacy, University Federico II of Naples, Italy
| | - Debora Paris
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | | | | | - Claudia Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Armita Abolghasemi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Elisabetta Gazzerro
- Unit of Muscle Research, Experimental and Clinical Research Center Charité Universitätsmedizin and Max Delbrück Research Center, Berlin, Germany
| | - Cristoforo Silvestri
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Andrea Motta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Roberto Russo
- Department of Pharmacy, University Federico II of Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
46
|
Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 2023; 13:230014. [PMID: 36977462 PMCID: PMC10049789 DOI: 10.1098/rsob.230014] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The human intestinal microbiome substantially affects human health and resistance to infections in its dynamic composition and varying release of microbial-derived metabolites. Short-chain fatty acids (SCFA) produced by commensal bacteria through fermentation of indigestible fibres are considered key regulators in orchestrating the host immune response to microbial colonization by regulating phagocytosis, chemokine and central signalling pathways of cell growth and apoptosis, thereby shaping the composition and functionality of the intestinal epithelial barrier. Although research of the last decades provided valuable insight into the pleiotropic functions of SCFAs and their capability to maintain human health, mechanistic details on how SCFAs act across different cell types and other organs are not fully understood. In this review, we provide an overview of the various functions of SCFAs in regulating cellular metabolism, emphasizing the orchestration of the immune response along the gut-brain, the gut-lung and the gut-liver axes. We discuss their potential pharmacological use in inflammatory diseases and infections and highlight new options of relevant human three-dimensional organ models to investigate and validate their biological functions in more detail.
Collapse
Affiliation(s)
- Lisa-Marie Ney
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Maximilian Wipplinger
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Martha Grossmann
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Nicole Engert
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
47
|
Krause M, Sørensen JC, Petersen IL, Duque-Estrada P, Cappello C, Tlais AZA, Di Cagno R, Ispiryan L, Sahin AW, Arendt EK, Zannini E. Associating Compositional, Nutritional and Techno-Functional Characteristics of Faba Bean ( Vicia faba L.) Protein Isolates and Their Production Side-Streams with Potential Food Applications. Foods 2023; 12:919. [PMID: 36900436 PMCID: PMC10001187 DOI: 10.3390/foods12050919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Faba beans (Vicia faba L.) show exciting prospects as a sustainable source of protein and fibre, with the potential to transition to a more sustainable food production. This study reveals the compositional, nutritional and techno-functional characteristics of two protein isolates from faba beans (Vicia faba L.), a high-starch fraction and a high-fibre side-stream. During the analysis of those four ingredients, particular attention was paid to the isolates' protein profile and the side-streams' carbohydrate composition. The isoelectric precipitated protein isolate 1 showed a protein content of 72.64 ± 0.31% DM. It exhibited low solubility but superior digestibility and high foam stability. High foaming capacity and low protein digestibility were observed for protein isolate 2, with a protein content of 71.37 ± 0.93% DM. This fraction was highly soluble and consisted primarily of low molecular weight proteins. The high-starch fraction contained 83.87 ± 3.07% DM starch, of which about 66% was resistant starch. Over 65% of the high-fibre fraction was insoluble dietary fibre. The findings of this study provide a detailed understanding of different production fractions of faba beans, which is of great value for future product development.
Collapse
Affiliation(s)
- Magdalena Krause
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
| | | | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark
| | | | - Claudia Cappello
- Facoltà di Scienze e Tecnologie, Piazza Università 5, 39100 Bolzano, Italy
| | | | - Raffaella Di Cagno
- Facoltà di Scienze e Tecnologie, Piazza Università 5, 39100 Bolzano, Italy
| | - Lilit Ispiryan
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 YN60 Cork, Ireland
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
48
|
Tannock GW. Gnotobiotic experimentation helps define symbiogenesis in vertebrate evolution. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2169943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
49
|
Mohamed Elfadil O, Mundi MS, Abdelmagid MG, Patel A, Patel N, Martindale R. Butyrate: More Than a Short Chain Fatty Acid. Curr Nutr Rep 2023:10.1007/s13668-023-00461-4. [PMID: 36763294 DOI: 10.1007/s13668-023-00461-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW The mechanistic understanding of the importance and the potential benefits of the gut microbiome has exploded in potential roles in human health and disease. Short chain fatty acids (SCFAs), including butyrate, are one of the key metabolic end products that has been a major focus of microbiome understanding. This brief review aims to describe butyrate's relation to certain biological concepts and their clinical application. RECENT FINDINGS Butyrate has reportedly been described as a potent pro-resolution molecule that has a significant role in maintaining gut immunity, supporting gut barrier function, regulation of histone deacetylase (HDAC), and numerous systemic roles. Further research is needed to explore potential benefits of adding SCFAs for patients receiving total parenteral nutrition. Butyrate plays several biological roles in intestinal epithelium anti-inflammatory pathways with clear benefits in numerous acute and chronic disease states and overall human health helping to maintain homeostasis.
Collapse
Affiliation(s)
- Osman Mohamed Elfadil
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA.
| | - Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Marwa G Abdelmagid
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Ankitaben Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Nishant Patel
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Robert Martindale
- Division of Gastrointestinal and General Surgery, School of Medicine, Oregon Health and Sciences University, Portland, OR, USA
| |
Collapse
|
50
|
Parrón-Ballesteros J, Gordo RG, López-Rodríguez JC, Olmo N, Villalba M, Batanero E, Turnay J. Beyond allergic progression: From molecules to microbes as barrier modulators in the gut-lung axis functionality. FRONTIERS IN ALLERGY 2023; 4:1093800. [PMID: 36793545 PMCID: PMC9923236 DOI: 10.3389/falgy.2023.1093800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The "epithelial barrier hypothesis" states that a barrier dysfunction can result in allergy development due to tolerance breakdown. This barrier alteration may come from the direct contact of epithelial and immune cells with the allergens, and indirectly, through deleterious effects caused by environmental changes triggered by industrialization, pollution, and changes in the lifestyle. Apart from their protective role, epithelial cells can respond to external factors secreting IL-25 IL-33, and TSLP, provoking the activation of ILC2 cells and a Th2-biased response. Several environmental agents that influence epithelial barrier function, such as allergenic proteases, food additives or certain xenobiotics are reviewed in this paper. In addition, dietary factors that influence the allergenic response in a positive or negative way will be also described here. Finally, we discuss how the gut microbiota, its composition, and microbe-derived metabolites, such as short-chain fatty acids, alter not only the gut but also the integrity of distant epithelial barriers, focusing this review on the gut-lung axis.
Collapse
Affiliation(s)
- Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rubén García Gordo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom,The Francis Crick Institute, London, United Kingdom
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, Madrid, Spain,Correspondence: Javier Turnay
| |
Collapse
|