1
|
Wang M, Li M, Jiang Y, Wang S, Yang X, Naseem A, Algradi AM, Hao Z, Guan W, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. Saponins from Astragalus membranaceus (Fisch.) Bge Alleviated Neuronal Ferroptosis in Alzheimer's Disease by Regulating the NOX4/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7725-7740. [PMID: 40119801 DOI: 10.1021/acs.jafc.4c10497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system caused by loss of neuronal or myelin function, accompanied by ferroptosis. Astragalus membranaceus (Fisch.) Bge. (A. membranaceus) is one of China's homologous lists of medicines and food, and its active component saponins have neuroprotective effects. This study examines the mechanism of saponins from A. membranaceus (AS) in treating AD. UPLC-Q-TOF-MS analyzed the composition of AS. Ferroptosis models were established to evaluate the anti-AD efficacy. As a result, AS treatment inhibited ferroptosis in SAMP8 mice by restoring iron homeostasis and lipid peroxidation (LPO) balance in the brain, thereby improving cognitive impairment and pathological damage. Mechanistically, AS treatment reduced Fe2+, MDA, and ROS levels and enhanced protein levels of SLC7A11, GPX4, FTH1, and FPN1. NADPH oxidase 4 (NOX4) overexpression revealed that AS treatment inhibited NOX4, thereby reducing NOX4 stability and regulating the NOX4/Nrf2 pathway in erastin-injured HT22 cells and significantly alleviating ferroptosis. Therefore, AS inhibited ferroptosis and improved AD by rebuilding iron homeostasis and LPO balance in the brain. AS has the potential to be a promising candidate medicine for AD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yikai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Xu Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qingshan Chen
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lili Zhang
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| |
Collapse
|
2
|
Viteri JA, Bueschke N, Santin JM, Arnold WD. Age-related increase in the excitability of mouse layer V pyramidal neurons in the primary motor cortex is accompanied by an increased persistent inward current. GeroScience 2025; 47:2199-2222. [PMID: 39472350 PMCID: PMC11979039 DOI: 10.1007/s11357-024-01405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/17/2024] [Indexed: 01/11/2025] Open
Abstract
Sarcopenia, or pathological age-related loss of muscle strength and mass, contributes to physical function impairment in older adults. While current understanding of sarcopenia is centered mostly on neuromuscular mechanisms, mounting evidence supports that deficits at the level of the primary motor cortex (PMC) play a significant role. Despite the importance of the PMC to initiate movement, understanding of how age affects the excitability of layer V pyramidal neurons (LVPNs) of the PMC is limited. To address this, we used the whole-cell patch clamp technique to measure the excitability of LVPNs of the PMC in young, late adulthood, and old mice. Old LVPNs had increased firing frequency and membrane input resistance, but no differences in action potential kinetics versus young and late adulthood mice. Since changes in the persistent inward current (PIC) are known to contribute to changes in motor neuron excitability, we measured LVPN PICs as a putative contributor to LVPN excitability. The PIC amplitude was increased in old LVPN via increases in Na+ and Ca2+ PICs, in addition to being active across a wider voltage range. Given that LVPN function is integral to initiation of voluntary muscle contraction, altered LVPN excitability likely contributes to age-related impairment of physical function.
Collapse
Affiliation(s)
- Jose A Viteri
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Nikolaus Bueschke
- Division of Biological Sciences, University of Missouri-Columbia, 105 Tucker Hall, 612 Hitt Street, Columbia, MO, 65211, USA
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, 105 Tucker Hall, 612 Hitt Street, Columbia, MO, 65211, USA.
| | - W David Arnold
- Department of Physical Medicine and Rehabilitation, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Hernández-Rodríguez M, Vega López JM, Martínez-Rosas M, Nicolás-Vázquez MI, Mera Jiménez E. Murine Non-Transgenic Models of Alzheimer's Disease Pathology: Focus on Risk Factors. Brain Sci 2025; 15:322. [PMID: 40149843 PMCID: PMC11940003 DOI: 10.3390/brainsci15030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) represents a significant challenge among neurodegenerative disorders, as effective treatments and therapies remain largely undeveloped. Despite extensive research efforts employing various methodologies and diverse genetic models focused on amyloid-β (Aβ) pathology, the research for effective therapeutic strategies remains inconclusive. The key pathological features of AD include Aβ senile plaques, neurofibrillary tangles (NFTs), and the activation of neuroinflammatory pathways. Presently, investigations into AD and assessing potential treatments predominantly utilize Aβ transgenic models. Conversely, non-transgenic models may provide valuable insights into the multifaceted pathological states associated with AD. Thus, these models may serve as practical complementary tools for evaluating therapeutic and intervention strategies, since the primary AD risk factors are most frequently modeled. This review aims to critically assess the existing literature on AD non-transgenic models induced by streptozotocin, scopolamine, aging, mechanical stress, metals, and dietary patterns to enhance their application in AD research.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| | - Juan Manuel Vega López
- Departamento de Química Inórgánica, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico;
| | - Martín Martínez-Rosas
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| |
Collapse
|
4
|
Shi L, Ding Z, Chen J. Deciphering the role of IGFBP5 in delaying fibrosis and sarcopenia in aging skeletal muscle: therapeutic implications and molecular mechanisms. Front Pharmacol 2025; 16:1557703. [PMID: 40144669 PMCID: PMC11937025 DOI: 10.3389/fphar.2025.1557703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Sarcopenia is a condition characterized by the loss of muscle fibers and excessive deposition of extracellular matrix proteins. The interplay between muscle atrophy and fibrosis is a central feature of sarcopenia. While the mechanisms underlying skeletal muscle aging and fibrosis remain incompletely understood, cellular senescence has emerged as a key contributor. This study investigates the role of D-galactose (D-gal) in inducing fibroblasts senescence and skeletal muscle fibrosis, and aims to find the key regulator of the process to serve as a therapeutical target. Methods To discover the role of D-gal in inducing cellular senescence and fibrosis, the senescence markers and the expression of fibrosis-related proteins were assessed after introducing D-gal among fibroblasts, and muscle strength and mass. The severity of muscle atrophy and fibrosis were also verified by using H&E staining and Masson trichrome staining after D-gal treatment via subcutaneous injection among mice. Subsequently, mRNA sequencing (RNA-seq) was performed and the differential expressed genes were identified between under D-gal or control treatment, to discover the key regulator of D-GAL-driven fibroblasts senescence and fibrosis. The role of the key regulator IGFBP5 were then validated in D-GAL treated IGFBP5-knockdown fibroblasts in vitro by analyzing the level of senescence and fibrosis-related markers. And the results were further confirmed in vivo in IGFBP5-knockdown SAMP8 mice with histological examinations. Results D-gal treatment effectively induced cellular senescence and fibrosis in fibroblasts, as well as skeletal muscle atrophy, fibrosis and loss in muscle mass and function in mice. IGFBP5 was identified as a key regulator of D-GAL induced senescence and fibrosis among fibroblasts using RNA-seq. And further validation tests showed that IGFBP5-knockdown could alleviate D-GAL-induced fibroblast cellular senescence and fibrosis, as well as the severity of muscle atrophy and fibrosis in SAMP8 mice. Discussion IGFBP5 emerging as a key regulator of D-GAL-induced fibroblast cellular senescence and fibrosis. The findings provide new insights into the molecular mechanisms underlying age-related skeletal muscle fibrosis and highlight IGFBP5 as a potential therapeutic target. Further research is needed to validate these findings and explore related clinical applications.
Collapse
Affiliation(s)
| | - Zheci Ding
- *Correspondence: Zheci Ding, ; Jiwu Chen,
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Zhang L, Yu J, Gao X, Yan Y, Wang X, Shi H, Fang M, Liu Y, Kim YB, Zhu H, Wu X, Huang C, Fan S. Targeting farnesoid X receptor as aging intervention therapy. Acta Pharm Sin B 2025; 15:1359-1382. [PMID: 40370561 PMCID: PMC12069902 DOI: 10.1016/j.apsb.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 11/14/2024] [Indexed: 05/16/2025] Open
Abstract
Environmental toxicants have been linked to aging and age-related diseases. The emerging evidence has shown that the enhancement of detoxification gene expression is a common transcriptome marker of long-lived mice, Drosophila melanogaster, and Caenorhabditis elegans. Meanwhile, the resistance to toxicants was increased in long-lived animals. Here, we show that farnesoid X receptor (FXR) agonist obeticholic acid (OCA), a marketed drug for the treatment of cholestasis, may extend the lifespan and healthspan both in C. elegans and chemical-induced early senescent mice. Furthermore, OCA increased the resistance of worms to toxicants and activated the expression of detoxification genes in both mice and C. elegans. The longevity effects of OCA were attenuated in Fxr -/- mice and Fxr homologous nhr-8 and daf-12 mutant C. elegans. In addition, metabolome analysis revealed that OCA increased the endogenous agonist levels of the pregnane X receptor (PXR), a major nuclear receptor for detoxification regulation, in the liver of mice. Together, our findings suggest that OCA has the potential to lengthen lifespan and healthspan by activating nuclear receptor-mediated detoxification functions, thus, targeting FXR may offer to promote longevity.
Collapse
Affiliation(s)
- Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hang Shi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Lai B, Wu D, Xiao Q, Wang Z, Niu Q, Chen Q, Long Q, He L. Qiangji decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119424. [PMID: 39884484 DOI: 10.1016/j.jep.2025.119424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research. AIM OF THE STUDY This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics. MATERIALS AND METHODS UPLC-Q-TOF-MS/MS was used to identify active components in QJD extract. The study used SAMP8 mice for AD modeling and SAMR1 mice as controls. Cognitive function in SAMP8 mice was assessed with the Morris Water Maze after following treatment with QJD and the mitochondrial fission inhibitor Mdivi-1. Nissl and FJB staining evaluated QJD's effect on hippocampal injury. Synaptic integrity was examined with Golgi-Cox staining, transmission electron microscopy, and immunofluorescence. Mitochondrial function in hippocampal neurons was assessed using electron microscopy, JC-1 staining, and reagent kits. Western blot analyzed expression of proteins related to mitochondrial fission (ROCK2, Drp1, Fis1, Mff) and fusion (Mfn1, Mfn2, OPA1). RESULTS The analysis of QJD extract via UPLC-Q-TOF-MS/MS led to the identification of 46 active compounds. In SAMP8 mice, administration of QJD resulted in decreased escape latency, increased platform crossings, and extended duration in the target quadrant. Additionally, QJD exhibited neuroprotective effects on the hippocampus of SAMP8 mice, effectively preventing neuronal loss and damage. QJD also facilitated the extension and thickening of dendritic spines, enhanced the ultrastructure of hippocampal synapses, and upregulated synaptic function-related proteins, including PSD95 and SYN1. Furthermore, QJD ameliorated mitochondrial damage, improved mitochondrial membrane potential and ATP content, and reduced ROS expression in hippocampal neurons of SAMP8 mice. These effects were mediated through the downregulation of ROCK2, phosphorylated Drp1 (Ser616), Fis1, and Mff, as well as the upregulation of Mfn1, Mfn2, and OPA1. CONCLUSIONS QJD may reduce neuronal damage, synaptic dysfunction, and mitochondrial impairment in SAMP8 mice by regulating mitochondrial dynamics through the ROCK2/Drp1 pathway.
Collapse
Affiliation(s)
- Bixuan Lai
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Dan Wu
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Qidan Xiao
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Zhengyu Wang
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Qixuan Niu
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China
| | - Qingjie Chen
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, 437100, PR China.
| | - Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China.
| | - Liling He
- Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China.
| |
Collapse
|
7
|
Félix J, Díaz-Del Cerro E, Garrido A, De La Fuente M. Characterization of a natural model of adult mice with different rate of aging. Mech Ageing Dev 2024; 222:111991. [PMID: 39278278 DOI: 10.1016/j.mad.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Aging is a heterogeneous process, so individuals of the same age may be aging at a different rate. A natural model of premature aging in mice have been proposed based on the poor response to the T-maze. Those that take longer to cross the intersection are known as Prematurely Aging Mice (PAM), while those that show an exceptional response are known as Exceptional non-PAM (E-NPAM), being the rest non-PAM (NPAM). Although many aspects of PAM and E-NPAM have been described, some aspects of their brain aging have not been studied. Similarly, it is known that PAM, NPAM and E-NPAM show a different rate of aging and longevity, but the differences between these three groups in behavior, immune function and oxidative-inflammatory state are unknown. The present study aims to deepen the study of brain aging in PAM and E-NPAM, and to study the differences in behavior, immunity, and oxidative-inflammatory state of peritoneal leukocytes between PAM, NPAM and E-NPAM. Results show deteriorated brains in PAM. Moreover, NPAM show an oxidative state similar to E-NPAM, an anxiety similar to PAM, and an intermediate immunity and lifespan between PAM and E-NPAM. In conclusion, immune function seems to be more associated with the longevity achieved.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Antonio Garrido
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain; Department of Biosciences, School of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, Madrid, Spain.
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
8
|
Ding C, Yimiti D, Sanada Y, Matsubara Y, Nakasa T, Matsubara K, Adachi N, Miyaki S. High-fat diet-induced obesity accelerates the progression of spontaneous osteoarthritis in senescence-accelerated mouse prone 8. Mod Rheumatol 2024; 34:831-840. [PMID: 37522619 DOI: 10.1093/mr/road069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVES Ageing and obesity are major risk factors for osteoarthritis (OA), a widespread disease currently lacking efficient treatments. Senescence-accelerated mouse prone 8 (SAMP8) display early onset ageing phenotypes, including OA. This study investigates the impacts of high-fat diet (HFD)-induced obesity on OA development in SAMP8. METHODS SAMP8 at 5 weeks were fed either a normal chow diet or an HFD for 10 weeks to induce obesity. Parameters related to obesity, liver function, and lipid and glucose metabolism were analysed. At 14 weeks of age, knee joint pathology, bone mineral density, and muscle strength were assessed. Immunohistochemistry and TUNEL staining were performed to evaluate markers for cartilage degeneration and chondrocyte apoptosis. RESULTS At 14 weeks of age, HFD-induced obesity increased liver and adipose tissue inflammation in SAMP8 without further exacerbating diabetes. Histological scoring revealed aggravated cartilage, menisci deterioration, and synovitis, while no further loss of bone mineral density or muscle strength was observed. Increased chondrocyte apoptosis was detected in knee joints following HFD feeding. CONCLUSIONS Ten weeks of HFD feeding promotes spontaneous OA progression in 14-week-old SAMP8, potentially via liver damage that subsequently leads to chondrocyte apoptosis. This ageing-obese mouse model may prove valuable for further exploration of spontaneous OA pathophysiology.
Collapse
Affiliation(s)
- Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Matsubara
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
9
|
Carr LM, Mustafa S, Care A, Collins-Praino LE. More than a number: Incorporating the aged phenotype to improve in vitro and in vivo modeling of neurodegenerative disease. Brain Behav Immun 2024; 119:554-571. [PMID: 38663775 DOI: 10.1016/j.bbi.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Age is the number one risk factor for developing a neurodegenerative disease (ND), such as Alzheimer's disease (AD) or Parkinson's disease (PD). With our rapidly ageing world population, there will be an increased burden of ND and need for disease-modifying treatments. Currently, however, translation of research from bench to bedside in NDs is poor. This may be due, at least in part, to the failure to account for the potential effect of ageing in preclinical modelling of NDs. While ageing can impact upon physiological response in multiple ways, only a limited number of preclinical studies of ND have incorporated ageing as a factor of interest. Here, we evaluate the aged phenotype and highlight the critical, but unmet, need to incorporate aspects of this phenotype into both the in vitro and in vivo models used in ND research. Given technological advances in the field over the past several years, we discuss how these could be harnessed to create novel models of ND that more readily incorporate aspects of the aged phenotype. This includes a recently described in vitro panel of ageing markers, which could help lead to more standardised models and improve reproducibility across studies. Importantly, we cannot assume that young cells or animals yield the same responses as seen in the context of ageing; thus, an improved understanding of the biology of ageing, and how to appropriately incorporate this into the modelling of ND, will ensure the best chance for successful translation of new therapies to the aged patient.
Collapse
Affiliation(s)
- Laura M Carr
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Sanam Mustafa
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey E Collins-Praino
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
10
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Wang K, Pu Y, Chen L, Hoshino M, Uesugi K, Yagi N, Chen X, Usui Y, Hanashima A, Hashimoto K, Mohri S, Pierscionek BK. Optical development in the murine eye lens of accelerated senescence-prone SAMP8 and senescence-resistant SAMR1 strains. Exp Eye Res 2024; 241:109858. [PMID: 38467176 DOI: 10.1016/j.exer.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).
Collapse
Affiliation(s)
- Kehao Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yutian Pu
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Leran Chen
- Peking University First Hospital, Beijing, China.
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
| | - Xiaoyong Chen
- Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, China.
| | - Yuu Usui
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Akira Hanashima
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Ken Hashimoto
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Satoshi Mohri
- First Department of Physiology, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Barbara K Pierscionek
- Faculty of Health, Education, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Bishops Hall Lane, Chelmsford, United Kingdom.
| |
Collapse
|
12
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
13
|
Unno K, Taguchi K, Hase T, Meguro S, Nakamura Y. DNA Mutagenicity of Hydroxyhydroquinone in Roasted Coffee Products and Its Suppression by Chlorogenic Acid, a Coffee Polyphenol, in Oxidative-Damage-Sensitive SAMP8 Mice. Int J Mol Sci 2024; 25:720. [PMID: 38255794 PMCID: PMC10815437 DOI: 10.3390/ijms25020720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Tadashi Hase
- Research and Development, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan;
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun 321-3497, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
14
|
Nekomoto A, Nakasa T, Ikuta Y, Ding C, Miyaki S, Adachi N. Feasibility of administration of calcitonin gene-related peptide receptor antagonist on attenuation of pain and progression in osteoarthritis. Sci Rep 2023; 13:15354. [PMID: 37717108 PMCID: PMC10505157 DOI: 10.1038/s41598-023-42673-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Suppressing inflammation and abnormal subchondral bone turnover is essential for reducing osteoarthritis (OA) progression and pain relief. This study focused on calcitonin gene-related peptide (CGRP), which is involved in inflammation and bone metabolism, and investigated whether a CGRP receptor antagonist (rimegepant) could suppress OA progression and relieve pain in two OA models. C57BL/6 mice (10-week-old) underwent surgical destabilization of the medial meniscus, and Rimegepant (1.0 mg/kg/100 μL) or phosphate-buffered saline (100 μL) was administered weekly intraperitoneally after OA surgery and evaluated at 4, 8, and 12 weeks. In the senescence-accelerated mice (SAM)-prone 8 (SAMP8), rimegepant was administered weekly before and after subchondral bone sclerosis and sacrificed at 9 and 23 weeks, respectively. Behavioral assessment and immunohistochemical staining (CGRP) of the dorsal root ganglion (DRG) were conducted to assess pain. In DMM mice, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed in the rimegepant group. In SAMP8, synovitis, cartilage degeneration, and osteosclerosis were significantly suppressed by rimegepant at 9 weeks; however, not at 23 weeks. Behavioral assessment shows the traveled distance and the number of standings in the rimegepant group were significantly longer and higher. In addition, CGRP expression of the DRG was significantly lower in the rimegepant group at 8 and 12 weeks of DMM and 9 weeks of SAMP8 treatment. No adverse effects were observed in either of the mouse models. Inhibition of CGRP signaling has the potential to be a therapeutic target to prevent OA progression and suppress pain through the attenuation of subchondral bone sclerosis and synovitis.
Collapse
Affiliation(s)
- Akinori Nekomoto
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan.
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minamiku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
15
|
Ravanelli F, Musazzi L, Barbieri SS, Rovati G, Popoli M, Barbon A, Ieraci A. Differential Epigenetic Changes in the Dorsal Hippocampus of Male and Female SAMP8 Mice: A Preliminary Study. Int J Mol Sci 2023; 24:13084. [PMID: 37685895 PMCID: PMC10488283 DOI: 10.3390/ijms241713084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The causes of the disease are not well understood, as it involves a complex interaction between genetic, environmental, and epigenetic factors. SAMP8 mice have been proposed as a model for studying late-onset AD, since they show age-related learning and memory deficits as well as several features of AD pathogenesis. Epigenetic changes have been described in SAMP8 mice, although sex differences have never been evaluated. Here we used western blot and qPCR analyses to investigate whether epigenetic markers are differentially altered in the dorsal hippocampus, a region important for the regulation of learning and memory, of 9-month-old male and female SAMP8 mice. We found that H3Ac was selectively reduced in male SAMP8 mice compared to male SAMR1 control mice, but not in female mice, whereas H3K27me3 was reduced overall in SAMP8 mice. Moreover, the levels of HDAC2 and JmjD3 were increased, whereas the levels of HDAC4 and Dnmt3a were reduced in SAMP8 mice compared to SAMR1. In addition, levels of HDAC1 were reduced, whereas Utx and Jmjd3 were selectively increased in females compared to males. Although our results are preliminary, they suggest that epigenetic mechanisms in the dorsal hippocampus are differentially regulated in male and female SAMP8 mice.
Collapse
Affiliation(s)
- Federico Ravanelli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (F.R.); (G.R.); (M.P.)
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (F.R.); (G.R.); (M.P.)
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (F.R.); (G.R.); (M.P.)
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
16
|
Fan S, Yan Y, Xia Y, Zhou Z, Luo L, Zhu M, Han Y, Yao D, Zhang L, Fang M, Peng L, Yu J, Liu Y, Gao X, Guan H, Li H, Wang C, Wu X, Zhu H, Cao Y, Huang C. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat Commun 2023; 14:3368. [PMID: 37291126 PMCID: PMC10250385 DOI: 10.1038/s41467-023-39118-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xia
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
17
|
Chick CN, Sasaki Y, Kawaguchi M, Tanaka E, Niikura T, Usuki T. LC-MS/MS quantitation of elastin crosslinker desmosines and histological analysis of skin aging characteristics in mice. Bioorg Med Chem 2023; 90:117351. [PMID: 37247585 DOI: 10.1016/j.bmc.2023.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Elastic fibers consist of an insoluble inner core of elastin, which confers elasticity and resilience to vertebral organs and tissues. Desmosine (DES) and isodesmosine (IDES) are potential biomarkers of pathologies that lead to decreased elastin turnover. Mice are commonly used in research to mimic humans because of their similar genetics, physiology, and organ systems. The present study thus used senescent accelerated prone (SAMP10) and senescent accelerated resistant (SAMR1) mice to examine the connection between aging and histological or biomolecular changes. Mice were divided into three groups: SAMP10 fed a control diet (CD), SAMP10 fed a high-fat diet (HFD), and SAMR1 fed a CD. The percent liver to total body weight ratio (%LW/BW), desmosines (DESs or DES/IDES) content, and histological alterations in skin samples were evaluated. DESs were quantified using an isotope-dilution liquid chromatography-tandem mass spectrometry method with isodesmosine-13C3,15N1 as the internal standard (ISTD). The assays were repeatable, reproducible, and accurate, with %CV values ≤ (1.90, 1.77, and 3.03), ISTD area %RSD of (1.54, 0.92, and 1.13), and %AC of (99.02 ± 1.86, 101.00 ± 2.30, and 101.30 ± 2.90) for the calibrations (equimolar DES/IDES, DES, and IDES, respectively). The average DESs content per dry-weight abdominal skin and %LW/BW were similar between the three groups. Histological analyses revealed elastin fibers in five randomly selected samples. The epidermis and dermal white adipose tissue layers were thicker in SAMP10 mice than SAMR1 mice. Thus, characteristic signs of aging in SAMP10 and SAMR1 mice could not be differentiated based on measurement of DESs content of the skin or %LW/BW, but aging could be differentiated based on microscopic analysis of histological changes in the skin components of SAMP10 and SAMR1 mice.
Collapse
Affiliation(s)
- Christian Nanga Chick
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yusuke Sasaki
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Eri Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
18
|
Polonio AM, Medrano M, Chico-Sordo L, Córdova-Oriz I, Cozzolino M, Montans J, Herraiz S, Seli E, Pellicer A, García-Velasco JA, Varela E. Impaired telomere pathway and fertility in Senescence-Accelerated Mice Prone 8 females with reproductive senescence. Aging (Albany NY) 2023; 15:4600-4624. [PMID: 37338562 DOI: 10.18632/aging.204731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023]
Abstract
Ovarian aging is the main cause of infertility and telomere attrition is common to both aging and fertility disorders. Senescence-Accelerated Mouse Prone 8 (SAMP8) model has shortened lifespan and premature infertility, reflecting signs of reproductive senescence described in middle-aged women. Thus, our objective was to study SAMP8 female fertility and the telomere pathway at the point of reproductive senescence. The lifespan of SAMP8 and control mice was monitored. Telomere length (TL) was measured by in situ hybridization in blood and ovary. Telomerase activity (TA) was analyzed by telomere-repeat amplification protocol, and telomerase expression, by real-time quantitative PCR in ovaries from 7-month-old SAMP8 and controls. Ovarian follicles at different stages of maturation were evaluated by immunohistochemistry. Reproductive outcomes were analyzed after ovarian stimulation. Unpaired t-test or Mann-Whitney test were used to calculate p-values, depending on the variable distribution. Long-rank test was used to compare survival curves and Fisher's exact test was used in contingency tables. Median lifespan of SAMP8 females was reduced compared to SAMP8 males (p = 0.0138) and control females (p < 0.0001). In blood, 7-month-old SAMP8 females presented lower mean TL compared to age-matched controls (p = 0.041). Accordingly, the accumulation of short telomeres was higher in 7-month-old SAMP8 females (p = 0.0202). Ovarian TA was lower in 7-month-old SAMP8 females compared to controls. Similarly, telomerase expression was lower in the ovaries of 7-month-old SAMP8 females (p = 0.04). Globally, mean TL in ovaries and granulosa cells (GCs) were similar. However, the percentage of long telomeres in ovaries (p = 0.004) and GCs (p = 0.004) from 7-month-old SAMP8 females was lower compared to controls. In early-antral and antral follicles, mean TL of SAMP8 GCs was lower than in age-matched controls (p = 0.0156 for early-antral and p = 0.0037 for antral follicles). Middle-aged SAMP8 showed similar numbers of follicles than controls, although recovered oocytes after ovarian stimulation were lower (p = 0.0068). Fertilization rate in oocytes from SAMP8 was not impaired, but SAMP8 mice produced significantly more morphologically abnormal embryos than controls (27.03% in SAMP8 vs. 1.22% in controls; p < 0.001). Our findings suggest telomere dysfunction in SAMP8 females, at the time of reproductive senescence.
Collapse
Affiliation(s)
- Alba M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Sonia Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Heaven, CT 06510, USA
| | - Antonio Pellicer
- IVIRMA Rome, Rome, Italy
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Juan A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Elisa Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
19
|
Unno K, Taguchi K, Takagi Y, Hase T, Meguro S, Nakamura Y. Mouse Models with SGLT2 Mutations: Toward Understanding the Role of SGLT2 beyond Glucose Reabsorption. Int J Mol Sci 2023; 24:ijms24076278. [PMID: 37047250 PMCID: PMC10094282 DOI: 10.3390/ijms24076278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The sodium–glucose cotransporter 2 (SGLT2) mainly carries out glucose reabsorption in the kidney. Familial renal glycosuria, which is a mutation of SGLT2, is known to excrete glucose in the urine, but blood glucose levels are almost normal. Therefore, SGLT2 inhibitors are attracting attention as a new therapeutic drug for diabetes, which is increasing worldwide. In fact, SGLT2 inhibitors not only suppress hyperglycemia but also reduce renal, heart, and cardiovascular diseases. However, whether long-term SGLT2 inhibition is completely harmless requires further investigation. In this context, mice with mutations in SGLT2 have been generated and detailed studies are being conducted, e.g., the SGLT2−/− mouse, Sweet Pee mouse, Jimbee mouse, and SAMP10-ΔSglt2 mouse. Biological changes associated with SGLT2 mutations have been reported in these model mice, suggesting that SGLT2 is not only responsible for sugar reabsorption but is also related to other functions, such as bone metabolism, longevity, and cognitive functions. In this review, we present the characteristics of these mutant mice. Moreover, because the relationship between diabetes and Alzheimer’s disease has been discussed, we examined the relationship between changes in glucose homeostasis and the amyloid precursor protein in SGLT2 mutant mice.
Collapse
|
20
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
21
|
Korcari A, Przybelski SJ, Gingery A, Loiselle AE. Impact of aging on tendon homeostasis, tendinopathy development, and impaired healing. Connect Tissue Res 2023; 64:1-13. [PMID: 35903886 PMCID: PMC9851966 DOI: 10.1080/03008207.2022.2102004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Aging is a complex and progressive process where the tissues of the body demonstrate a decreased ability to maintain homeostasis. During aging, there are substantial cellular and molecular changes, with a subsequent increase in susceptibility to pathological degeneration of normal tissue function. In tendon, aging results in well characterized alterations in extracellular matrix (ECM) structure and composition. In addition, the cellular environment of aged tendons is altered, including a marked decrease in cell density and metabolic activity, as well as an increase in cellular senescence. Collectively, these degenerative changes make aging a key risk factor for the development of tendinopathies and can increase the frequency of tendon injuries. However, inconsistencies in the extent of age-related degenerative impairments in tendons have been reported, likely due to differences in how "old" and "young" age-groups have been defined, differences between anatomically distinct tendons, and differences between animal models that have been utilized to study the impact of aging on tendon homeostasis. In this review, we address these issues by summarizing data by well-defined age categories (young adults, middle-aged, and aged) and from anatomically distinct tendon types. We then summarize in detail how aging affects tendon mechanics, structure, composition, and the cellular environment based on current data and underscore what is currently not known. Finally, we discuss gaps in the current understanding of tendon aging and propose key avenues for future research that can shed light on the specific mechanisms of tendon pathogenesis due to aging.
Collapse
Affiliation(s)
- Antonion Korcari
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | | - Anne Gingery
- Division of Orthopedic Surgery Research, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Alayna E Loiselle
- Department of Orthopaedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
22
|
Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. Int J Mol Sci 2022; 23:ijms232315097. [PMID: 36499421 PMCID: PMC9740614 DOI: 10.3390/ijms232315097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Aging is a complex process often accompanied by cognitive decline that represents a risk factor for many neurodegenerative disorders including Alzheimer's and Parkinson's disease. The molecular mechanisms involved in age-related cognitive decline are not yet fully understood, although increased neuroinflammation is considered to play a significant role. In this study, we characterized a proteomic view of the hippocampus of the senescence-accelerated mouse prone-8 (SAMP8), a model of enhanced senescence, in comparison with the senescence-accelerated-resistant mouse (SAMR1), a model of normal aging. We additionally investigated inflammatory cytokines and cholinergic components gene expression during aging in the mouse brain tissues. Proteomic data defined the expression of key proteins involved in metabolic and cellular processes in neuronal and glial cells of the hippocampus. Gene Ontology revealed that most of the differentially expressed proteins are involved in the cytoskeleton and cell motility regulation. Molecular analysis results showed that both inflammatory cytokines and cholinergic components are differentially expressed during aging, with a downward trend of cholinergic receptors and esterase enzymes expression, in contrast to an upward trend of inflammatory cytokines in the hippocampus of SAMP8. Together, our results support the important role of the cholinergic and cytokine systems in the aging of the murine brain.
Collapse
|
23
|
Yang S, Pei T, Wang L, Zeng Y, Li W, Yan S, Xiao W, Cheng W. Salidroside Alleviates Renal Fibrosis in SAMP8 Mice by Inhibiting Ferroptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228039. [PMID: 36432138 PMCID: PMC9698989 DOI: 10.3390/molecules27228039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Renal fibrosis progression is closely associated with aging, which ultimately leads to renal dysfunction. Salidroside (SAL) is considered to have broad anti-aging effects. However, the roles and mechanisms of SAL in aging-related renal fibrosis remain unclear. The study aimed to evaluate the protective effects and mechanisms of SAL in SAMP8 mice. SAMP8 mice were administered with SAL and Ferrostatin-1 (Fer-1) for 12 weeks. Renal function, renal fibrosis, and ferroptosis in renal tissue were detected. The results showed that elevated blood urea nitrogen (BUN) and serum creatinine (SCr) levels significantly decreased, serum albumin (ALB) levels increased, and mesangial hyperplasia significantly reduced in the SAL group. SAL significantly reduced transforming growth factor-β (TGF-β) and α-smooth muscle actin (α-sma) levels in SAMP8 mice. SAL treatment significantly decreased lipid peroxidation in the kidneys, and regulated iron transport-related proteins and ferroptosis-related proteins. These results suggested that SAL delays renal aging and inhibits aging-related glomerular fibrosis by inhibiting ferroptosis in SAMP8 mice.
Collapse
Affiliation(s)
- Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wenxu Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shihua Yan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (W.X.); (W.C.)
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Correspondence: (W.X.); (W.C.)
| |
Collapse
|
24
|
Sanada Y, Ikuta Y, Ding C, Shinohara M, Yimiti D, Ishitobi H, Nagira K, Lee M, Akimoto T, Shibata S, Ishikawa M, Nakasa T, Matsubara K, Lotz MK, Adachi N, Miyaki S. Senescence-accelerated mice prone 8 (SAMP8) in male as a spontaneous osteoarthritis model. Arthritis Res Ther 2022; 24:235. [PMID: 36258202 PMCID: PMC9578281 DOI: 10.1186/s13075-022-02916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Animal models of spontaneous osteoarthritis (OA) are sparse and not well characterized. The purpose of the present study is to examine OA-related changes and mechanisms in senescence-accelerated mouse prone 8 (SAMP8) that displays a phenotype of accelerated aging. METHODS: Knees of male SAMP8 and SAM-resistant 1 (SAMR1) mice as control from 6 to 33 weeks of age were evaluated by histological grading systems for joint tissues (cartilage, meniscus, synovium, and subchondral bone), and µCT analysis. Gene expression patterns in articular cartilage were analyzed by real-time PCR. Immunohistochemistry was performed for OA-related factors, senescence markers, and apoptosis. RESULTS Starting at 14 weeks of age, SAMP8 exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. From 18 to 33 weeks of age, SAMP8 progressed to partial or full-thickness defects with exposure of subchondral bone on the medial tibia and exhibited synovitis. Histological scoring indicated significantly more severe OA in SAMP8 compared with SAMR1 from 14 weeks [median (interquartile range): SAMR1: 0.89 (0.56-1.81) vs SAMP8: 1.78 (1.35-4.62)] to 33 weeks of age [SAMR1: 1.67 (1.61-1.04) vs SAMP8: 13.03 (12.26-13.57)]. Subchondral bone sclerosis in the medial tibia, bone mineral density (BMD) loss of femoral metaphysis, and meniscus degeneration occurred much earlier than the onset of cartilage degeneration in SAMP8 at 14 weeks of age. CONCLUSIONS SAMP8 are a spontaneous OA model that is useful for investigating the pathogenesis of primary OA and evaluating therapeutic interventions.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, National Rehabilitation Center for Persons With Disabilities, Saitama, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Ishitobi
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Keita Nagira
- Department of Orthopaedic Surgery, Tottori University, Tottori, Japan
| | - Minjung Lee
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | | | - Sachi Shibata
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiminori Matsubara
- Department of Human Life Science Education, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, San Diego, CA, USA
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
25
|
Zhou R, Xiao L, Xiao W, Yi Y, Wen H, Wang H. Bibliometric review of 1992–2022 publications on acupuncture for cognitive impairment. Front Neurol 2022; 13:1006830. [PMID: 36226080 PMCID: PMC9549373 DOI: 10.3389/fneur.2022.1006830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the development context, research hotspots, and frontiers of acupuncture therapy for cognitive impairment (CI) from 1992 to 2022 by visualization analysis. Methods Articles about acupuncture therapy for cognitive impairment were retrieved from the Web of Science Core Collection (WoSCC) until 1 March 2022. Basic information was collected by Excel 2007, and VOSviewer 1.6.17 was used to analyze the co-occurrence of countries, institutes, and authors. Co-citation maps of authors and references were analyzed by CiteSpace V.5.8.R3. In addition, CiteSpace was used to analyze keyword clusters and forecast research frontiers. Results A total of 279 articles were retrieved, including articles from 19 countries, 334 research institutes, and 101 academic journals. The most published country and institutes were the People's Republic of China (217) and the Fujian University of Traditional Chinese Medicine (40). Ronald C Petersen owned the highest co-citations (56). Keywords and co-cited references cluster showed the main research directions in this area, including “ischemic stroke,” “cerebral ischemia/reperfusion,” “mild cognitive impairment,” “Alzheimer's disease,” “vascular dementia,” “vascular cognitive impairment with no dementia,” “multi-infarct dementia,” “synaptic injury,” “functional MRI,” “glucose metabolism,” “NMDA,” “nuclear factor-kappa b pathway,” “neurotrophic factor,” “matrix metalloproteinase-2 (MMP-2),” “tumor necrosis factor-alpha,” “Bax,” “Caspase-3,” and “Noxa”. Trending keywords may indicate frontier topics, such as “randomized controlled trial,” “rat model,” and “meta-analysis.” Conclusion This research provides valuable information for the study of acupuncture. Diseases focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and vascular dementia (VaD). Tauopathies with hyperphosphorylation of Tau protein as the main lesions also need to be paid attention to. The development of functional magnetic resonance imaging (fMRI) will better explain the therapeutic effect of acupuncture treatment. The effect of acupuncture on a single point is more convincing, and acupuncture on Baihui (GV20) may be needed in the future. Finally, the implementation of high-quality multicenter randomized controlled trials (RCTs) requires increased collaboration among experts from multiple fields and countries.
Collapse
Affiliation(s)
- Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
- *Correspondence: Lu Xiao
| | - Wei Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
| | - Yanfei Yi
- Ganzhou Cancer Hospital, Ganzhou, China
| | | | | |
Collapse
|
26
|
Shimada M, Maeda H, Nanashima N, Yamada K, Nakajima A. Anthocyanin‐rich blackcurrant extract improves long‐term memory impairment and emotional abnormality in senescence‐accelerated mice. J Food Biochem 2022; 46:e14295. [DOI: 10.1111/jfbc.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Minori Shimada
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
| | - Hayato Maeda
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
| | - Naoki Nanashima
- Department of Biomedical Science and Laboratory Medicine Hirosaki University Graduate School of Health Sciences Hirosaki Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy Nagoya University Graduate School of Medicine Nagoya Japan
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science Hirosaki University Hirosaki Japan
- Department of Industry Development Sciences Hirosaki University Graduate School of Sustainable Community Studies Hirosaki Japan
| |
Collapse
|
27
|
Katayama S, Okahata C, Onozato M, Minami T, Maeshima M, Ogihara K, Yamazaki S, Takahashi Y, Nakamura S. Buckwheat Flour and Its Starch Prevent Age-Related Cognitive Decline by Increasing Hippocampal BDNF Production in Senescence-Accelerated Mouse Prone 8 Mice. Nutrients 2022; 14:nu14132708. [PMID: 35807886 PMCID: PMC9269199 DOI: 10.3390/nu14132708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Buckwheat is an important pseudo-cereal crop worldwide. This study investigated whether long-term administration of buckwheat can suppress age-related cognitive decline in senescence-accelerated mouse prone 8 (SAMP8) mice. For 26 weeks, 18-week-old male SAMP8 mice were fed a standard diet containing 5% (w/w) buckwheat, Tartary buckwheat, wheat, or rice flour. In the Barnes maze and passive avoidance tests, mice fed buckwheat whole flour (BWF) showed improved cognitive performance compared to those fed a control diet, while no improvement was noticed in case of the other diets. Analysis of the gut microbiota showed that BWF and buckwheat outer flour administration increased the abundance of Lactococcus and Ruminiclostridium, respectively, at the genus level. The expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic Arc and PSD95, and the mature neuronal marker NeuN in the hippocampus were increased after BWF administration, which was induced by the activation of the ERK/CREB signaling pathway and histone H3 acetylation. A similar increase in cognitive performance-related hippocampal BDNF expression in SAMP8 mice was observed after the oral administration of starch prepared from BWF. Therefore, the long-term administration of BWF suppresses cognitive decline by increasing hippocampal BDNF production in SAMP8 mice.
Collapse
Affiliation(s)
- Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1603
| | - Chizuru Okahata
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
| | - Masashi Onozato
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Takaaki Minami
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Masanaga Maeshima
- Nikkoku Seifun Co., Ltd., 1-16-2 Minamichitose, Nagano 380-0823, Japan; (M.O.); (T.M.); (M.M.)
| | - Kazuaki Ogihara
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Shinya Yamazaki
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Yuta Takahashi
- Nagano Prefecture General Industrial Technology Center, 205-1 Kurita, Nagano 380-0921, Japan; (K.O.); (S.Y.); (Y.T.)
| | - Soichiro Nakamura
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan; (C.O.); (S.N.)
| |
Collapse
|
28
|
Coffee Polyphenol, Chlorogenic Acid, Suppresses Brain Aging and Its Effects Are Enhanced by Milk Fat Globule Membrane Components. Int J Mol Sci 2022; 23:ijms23105832. [PMID: 35628642 PMCID: PMC9145055 DOI: 10.3390/ijms23105832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mice feed with coffee polyphenols (CPP, chlorogenic acid) and milk fat globule membrane (MFGM) has increased survival rates and helps retain long-term memory. In the cerebral cortex of aged mice, CPP intake decreased the expression of the proinflammatory cytokine TNF-α, and lysosomal enzyme cathepsin B. The suppression of inflammation in the brain during aging was thought to result in the suppression of the repressor element 1-silencing transcription factor (REST) and prevention of brain aging. In contrast, CPP increased the expression of REST, cAMP-responsive element binding (CREB) and transforming growth factor β1 (TGF-β1) in the young hippocampus. The increased expression of these factors may contribute to the induction of neuronal differentiation and the suppression of memory decline with aging. Taken together, these results suggest that CPP increases CREB in the young hippocampus and suppresses inflammation in the old brain, resulting in a preventive effect on brain aging. The endotoxin levels were not elevated in the serum of aged mice. Although the mechanism of action of MFGM has not yet been elucidated, the increase in survival rate with both CPP and MFGM intake suggests that adding milk to coffee may improve not only the taste, but also the function.
Collapse
|
29
|
Codony S, Pont C, Griñán-Ferré C, Di Pede-Mattatelli A, Calvó-Tusell C, Feixas F, Osuna S, Jarné-Ferrer J, Naldi M, Bartolini M, Loza MI, Brea J, Pérez B, Bartra C, Sanfeliu C, Juárez-Jiménez J, Morisseau C, Hammock BD, Pallàs M, Vázquez S, Muñoz-Torrero D. Discovery and In Vivo Proof of Concept of a Highly Potent Dual Inhibitor of Soluble Epoxide Hydrolase and Acetylcholinesterase for the Treatment of Alzheimer's Disease. J Med Chem 2022; 65:4909-4925. [PMID: 35271276 PMCID: PMC8958510 DOI: 10.1021/acs.jmedchem.1c02150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Caterina Pont
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Ania Di Pede-Mattatelli
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Carla Calvó-Tusell
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain
| | - Ferran Feixas
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain
| | - Sílvia Osuna
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, E-17003 Girona, Spain,Institució
Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
| | - Júlia Jarné-Ferrer
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marina Naldi
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy
| | - María Isabel Loza
- BioFarma
Research Group, Centro Singular de Investigación en Medicina
Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma
Research Group, Centro Singular de Investigación en Medicina
Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Belén Pérez
- Department
of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Clara Bartra
- Institute
of Biomedical Research of Barcelona, CSIC and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149, E-08036 Barcelona, Spain
| | - Coral Sanfeliu
- Institute
of Biomedical Research of Barcelona, CSIC and Institut d’Investigacions
Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló, 149, E-08036 Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Department
of Pharmacy and Pharmaceutical Technology and Physical Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Theoretical
and Computational Chemistry (IQTCUB), University
of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Christophe Morisseau
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Mercè Pallàs
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Santiago Vázquez
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain,. Phone: (+34) 934024533
| | - Diego Muñoz-Torrero
- Laboratory
of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy
and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), Av. Joan XXIII 27-31, E-08028 Barcelona, Spain,. Phone: (+34) 934024533
| |
Collapse
|
30
|
Oto T, Urata K, Hayashi Y, Hitomi S, Shibuta I, Iwata K, Iinuma T, Shinoda M. Age-Related Differences in Transient Receptor Potential Vanilloid 1 and 2 Expression Patterns in the Trigeminal Ganglion Neurons Contribute to Changes in the Palatal Mucosal Heat Pain Sensitivity. TOHOKU J EXP MED 2022; 256:283-290. [PMID: 35296569 DOI: 10.1620/tjem.2022.j004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tatsuki Oto
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | | | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | | |
Collapse
|
31
|
Ahn K, Lee SJ, Mook-Jung I. White matter-associated microglia: New players in brain aging and neurodegenerative diseases. Ageing Res Rev 2022; 75:101574. [PMID: 35093614 DOI: 10.1016/j.arr.2022.101574] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
There has been growing interest in brain aging and rejuvenation. It is well known that brain aging is one of the leading causes of neurodegenerative diseases, such as Alzheimer's disease, but brain aging alone can cause cognitive decline. Microglia are thought to act as 'conductors' of white matter aging by modulating diverse glial cells and phagocytosing white matter-derived myelin debris. A recent study identified a specific subpopulation of microglia in the white matter of aged mice, termed white matter-associated microglia (WAM). Additionally, senescent microglia show impaired phagocytic function and altered lipid metabolism, which cause accumulation of lipid metabolites and eventually lead to myelin sheath degeneration. These results suggest that senescent WAM could be pivotal players in axonal loss during brain aging. The aim of this review is to assess the current state of knowledge on brain aging, with an emphasis on the roles of the white matter and microglia, and suggest potential approaches for rejuvenating the aged brain.
Collapse
Affiliation(s)
- Kyusik Ahn
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Inhee Mook-Jung
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; SNU Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
32
|
Kepchia D, Huang L, Currais A, Liang Z, Fischer W, Maher P. The Alzheimer's disease drug candidate J147 decreases blood plasma fatty acid levels via modulation of AMPK/ACC1 signaling in the liver. Biomed Pharmacother 2022; 147:112648. [PMID: 35051863 PMCID: PMC8854339 DOI: 10.1016/j.biopha.2022.112648] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
J147 is a novel drug candidate developed to treat neurological dysfunction. Numerous studies have demonstrated the beneficial effects of J147 in cellular and animal models of disease which has led to the transitioning of the compound into human clinical trials. However, no biomarkers for its target engagement have been identified. Here, we determined if specific metabolites in the plasma could be indicative of J147's activity in vivo. Plasma lipidomics data from three independent rodent studies were assessed along with liver lipidomics data from one of the studies. J147 consistently reduced plasma free fatty acid (FFA) levels across the independent studies. Decreased FFA levels were also found in the livers of J147-treated mice that correlated well with those in the plasma. These changes in the liver were associated with activation of the AMP-activated protein kinase/acetyl-CoA carboxylase 1 signaling pathway. A reduction in FFA levels by J147 was confirmed in HepG2 cells, where activation of the AMPK/ACC1 pathway was seen along with increases in acetyl-CoA and ATP levels which correlated with enhanced cellular bioenergetics. Our data show that J147 targets liver cells to activate the AMPK/ACC1 signaling pathway and preserve energy at the expense of inhibiting FFA synthesis.
Collapse
Affiliation(s)
- Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics
Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd. La Jolla,
CA 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for
Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for
Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Wolfgang Fischer
- Cellular Neurobiology Laboratory, The Salk Institute for
Biological Studies, 10010 N. Torrey Pines Rd. La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Haga M, Okada M. Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 2022; 479:161-183. [PMID: 35098992 PMCID: PMC8883486 DOI: 10.1042/bcj20210547] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the most well-studied pathways related to inflammation, and its involvement in aging has attracted considerable attention. As aging is a complex phenomenon and is the result of a multi-step process, the involvement of the NF-κB pathway in aging remains unclear. To elucidate the role of NF-κB in the regulation of aging, different systems biology approaches have been employed. A multi-omics data-driven approach can be used to interpret and clarify unknown mechanisms but cannot generate mechanistic regulatory structures alone. In contrast, combining this approach with a mathematical modeling approach can identify the mechanistics of the phenomena of interest. The development of single-cell technologies has also helped clarify the heterogeneity of the NF-κB response and underlying mechanisms. Here, we review advances in the understanding of the regulation of aging by NF-κB by focusing on omics approaches, single-cell analysis, and mathematical modeling of the NF-κB network.
Collapse
Affiliation(s)
- Masatoshi Haga
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical Co., Ltd., Ikuno-ku, Osaka 544-8666, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
34
|
Gao Z, Zhang R, Jiang L, Zhou H, Wang Q, Ma Y, Zhang D, Qin Y, Tian P, Zhang N, Shi Z, Xu S. Administration of miR-195 Inhibitor Enhances Memory Function Through Improving Synaptic Degradation and Mitochondrial Dysfunction of the Hippocampal Neurons in SAMP8 Mice. J Alzheimers Dis 2021; 85:1495-1509. [PMID: 34924391 DOI: 10.3233/jad-215301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mitochondrial dysfunction is an early feature of Alzheimer's disease (AD) and miR-195 is involved in mitochondrial disorder through targeting MFN-2 protein in hippocampal neurons of AD. OBJECTIVE To clarify if administration of miR-195 inhibitor could enhance the memory deficits through improving hippocampal neuron mitochondrial dysfunction in SAMP8 mice. METHODS The expression of miR-195 was detected by RT-qPCR in primary hippocampal neurons and HT-22 cells treated with Aβ 1-42. Morris water maze (MWM) was used to assess the learning and memory function in SAMP8 mice administrated with antagomir-195. Transmission electron microscopy was employed to determine the morphological changes of synapses and mitochondria of hippocampus in SAMP8 mice. Mitochondrial respiration was measured using a high-resolution oxygraph. RESULTS The expression of miR-195 were upregulated in the primary hippocampal neurons and HT-22 cells induced by Aβ 1-42. Inhibition of miR-195 ameliorated the mitochondrial dysfunction in HT-22 cells induced by Aβ 1-42, including mitochondrial morphologic damages, mitochondrial membrane potential, respiration function, and ATP production. Administration of antagomir-195 by the third ventricle injection markedly ameliorated the cognitive function, postsynaptic density thickness, length of synaptic active area, mitochondrial aspect ratio, and area in hippocampus of SAMP8 mice. Finally, antagomir-195 was able to promote an increase in the activity of respiratory chain complex CI and II in SAMP8 mice. CONCLUSION This study demonstrated that miR-195 inhibitor ameliorated the cognitive impairment of AD mice by improving mitochondrial structure damages and dysfunction in the hippocampal neurons, which provide an experimental basis for further exploring the treatment strategy of AD.
Collapse
Affiliation(s)
- Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Huimin Zhou
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China.,Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qian Wang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Yingxin Ma
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Di Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Yushi Qin
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Pei Tian
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Nan Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Zhongli Shi
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China.,Hebei International Joint Research Center for Brain Science, Shijiazhuang, P. R. China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
35
|
From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects. Eur J Med Chem 2021; 225:113779. [PMID: 34418785 DOI: 10.1016/j.ejmech.2021.113779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022]
Abstract
Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aβ42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.
Collapse
|
36
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
37
|
Matzkin ME, Calandra RS, Rossi SP, Bartke A, Frungieri MB. Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells 2021; 10:cells10113114. [PMID: 34831334 PMCID: PMC8619877 DOI: 10.3390/cells10113114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The evolutionary theory of aging supports a trade-off relationship between reproduction and aging. Aging of the male reproductive system primarily affects the testes, leading to a decrease in the levels of sexual hormones, alterations in sperm quality and production, and a decline in fertility that does not necessarily involve a complete cessation of spermatogenesis. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases that are frequently observed in aged testes. Although the molecular mechanisms are still poorly understood, accumulating evidence points toward pro-inflammatory molecules and reactive oxygen species as primary contributing factors for testicular aging. However, the real impact of aging-related testicular alterations on fertility, reproductive health, and life span is far from being fully revealed. This work discusses the current knowledge on the impact of aging in the testis, particularly of aging-related dysregulated inflammation and oxidative damage on the functioning of its different cell populations. More interestingly, this review covers the potential benefits of anti-aging interventions and therapies using either pharmacological compounds (such as non-selective non-steroidal anti-inflammatory medication) or more natural alternatives (such as various nutraceuticals or even probiotics) that exhibit anti-inflammatory, antioxidant, and anti-apoptotic properties. Some of these are currently being investigated or are already in clinical use to delay or prevent testicular aging.
Collapse
Affiliation(s)
- María Eugenia Matzkin
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
- Correspondence: ; Tel.: +54-114783-2869 (ext. 1209)
| | - Ricardo Saúl Calandra
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
| | - Soledad Paola Rossi
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Departamento de Bioquímica Humana, Cátedra I, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Department of Internal Medicine, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA;
| | - Mónica Beatriz Frungieri
- Instituto de Biología y Medicina Experimental, CONICET, Ciudad de Buenos Aires C1428ADN, Argentina; (R.S.C.); (S.P.R.); (M.B.F.)
- Cátedra de Química, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad de Buenos Aires C1405CAE, Argentina
| |
Collapse
|
38
|
Synergistic Neuroprotective Effects of a Natural Product Mixture against AD Hallmarks and Cognitive Decline in Caenorhabditis elegans and an SAMP8 Mice Model. Nutrients 2021; 13:nu13072411. [PMID: 34371921 PMCID: PMC8308558 DOI: 10.3390/nu13072411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
The study of different natural products can provide a wealth of bioactive compounds, and more interestingly, their combination can exert a new strategy for several neurodegenerative diseases with major public health importance, such as Alzheimer’s disease (AD). Here, we investigated the synergistic neuroprotective effects of a mixed extract composed of docosahexaenoic acid, Ginkgo biloba, D-pinitol, and ursolic acid in several transgenic Caenorhabditis elegans (C. elegans) and a senescence-accelerated prone mice 8 (SAMP8) model. First, we found a significantly higher survival percentage in the C. elegans group treated with the natural product mixture compared to the single extract-treated groups. Likewise, we found a significantly increased lifespan in group of C. elegans treated with the natural product mixture compared to the other groups, suggesting synergistic effects. Remarkably, we determined a significant reduction in Aβ plaque accumulation in the group of C. elegans treated with the natural product mixture compared to the other groups, confirming synergy. Finally, we demonstrated better cognitive performance in the group treated with the natural product mixture in both AD models (neuronal Aβ C. elegans strain CL2355 and the SAMP8 mice model), confirming the molecular results and unraveling the synergist effects of this combination. Therefore, our results proved the potential of this new natural product mixture for AD therapeutic strategies.
Collapse
|
39
|
Soriano-Castell D, Liang Z, Maher P, Currais A. The search for anti-oxytotic/ferroptotic compounds in the plant world. Br J Pharmacol 2021; 178:3611-3626. [PMID: 33931859 DOI: 10.1111/bph.15517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Oxytosis/ferroptosis is a form of non-apoptotic regulated cell death characterized by glutathione (GSH) depletion and dysregulated production of mitochondrial ROS that results in lethal lipid peroxidation. As the significance of oxytosis/ferroptosis to age-associated human diseases is now beginning to be appreciated, the development of innovative approaches to identify novel therapeutics that target the oxytosis/ferroptosis pathway could not be more timely. Due to their sessile nature, plants are exposed to a variety of stresses that trigger physiological changes similar to those found in oxytosis/ferroptosis. As such, they have evolved a rich array of chemical strategies to deal with those challenging conditions. This review details a drug discovery approach for identifying potent inhibitors of oxytosis/ferroptosis from plants for the treatment of Alzheimer's disease and related dementias, thereby highlighting the tremendous potential of plant-based research for developing new medicines while simultaneously being a catalyst for sustainability.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
40
|
Fernández A, Quintana E, Velasco P, Moreno-Jimenez B, de Andrés B, Gaspar ML, Liste I, Vilar M, Mira H, Cano E. Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation. J Neuroinflammation 2021; 18:75. [PMID: 33736657 PMCID: PMC7977588 DOI: 10.1186/s12974-021-02104-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aging and age-related diseases are strong risk factors for the development of neurodegenerative diseases. Neuroinflammation (NIF), as the brain's immune response, plays an important role in aged associated degeneration of central nervous system (CNS). There is a need for well characterized animal models that will allow the scientific community to understand and modulate this process. METHODS We have analyzed aging-phenotypical and inflammatory changes of brain myeloid cells (bMyC) in a senescent accelerated prone aged (SAMP8) mouse model, and compared with their senescence resistant control mice (SAMR1). We have performed morphometric methods to evaluate the architecture of cellular prolongations and determined the appearance of Iba1+ clustered cells with aging. To analyze specific constant brain areas, we have performed stereology measurements of Iba1+ cells in the hippocampal formation. We have isolated bMyC from brain parenchyma (BP) and choroid plexus plus meningeal membranes (m/Ch), and analyzed their response to systemic lipopolysaccharide (LPS)-driven inflammation. RESULTS Aged 10 months old SAMP8 mice present many of the hallmarks of aging-dependent neuroinflammation when compared with their SAMR1 control, i.e., increase of protein aggregates, presence of Iba1+ clusters, but not an increase in the number of Iba1+ cells. We have further observed an increase of main inflammatory mediator IL-1β, and an augment of border MHCII+Iba1+ cells. Isolated CD45+ bMyC from brain parenchyma (BP) and choroid plexus plus meningeal membranes (m/Ch) have been analyzed, showing that there is not a significant increase of CD45+ cells from the periphery. Our data support that aged-driven pro-inflammatory cytokine interleukin 1 beta (IL-1β) transcription is enhanced in CD45+BP cells. Furthermore, LPS-driven systemic inflammation produces inflammatory cytokines mainly in border bMyC, sensed to a lesser extent by the BP bMyC, showing that IL-1β expression is further augmented in aged SAMP8 compared to control SAMR1. CONCLUSION Our data validate the SAMP8 model to study age-associated neuroinflammatory events, but careful controls for age and strain are required. These animals show morphological changes in their bMyC cell repertoires associated to age, corresponding to an increase in the production of pro-inflammatory cytokines such as IL-1β, which predispose the brain to an enhanced inflammatory response after LPS-systemic challenge.
Collapse
Affiliation(s)
- Andrés Fernández
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Elena Quintana
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Patricia Velasco
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Belén Moreno-Jimenez
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Belén de Andrés
- Unidad de Inmunobiología, Instituto de Salud Carlos II, Madrid, Spain
| | | | - Isabel Liste
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva Cano
- Chronic Disease Programme, Neuroinflammation Unit, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Km.2,2, Majadahonda, 28220, Madrid, Spain.
| |
Collapse
|
41
|
Hoshino K, Uchinami Y, Uchida Y, Saito H, Morimoto Y. Interleukin-1β Modulates Synaptic Transmission and Synaptic Plasticity During the Acute Phase of Sepsis in the Senescence-Accelerated Mouse Hippocampus. Front Aging Neurosci 2021; 13:637703. [PMID: 33643027 PMCID: PMC7902794 DOI: 10.3389/fnagi.2021.637703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Aging and pre-existing cognitive impairment are considered to be independent risk factors for sepsis-associated encephalopathy. This study aimed to investigate the manner in which aging and pre-existing cognitive dysfunction modified neuroinflammation, synaptic plasticity, and basal synaptic transmission during the acute phase of sepsis using Senescence-Accelerated Mice Prone 8 (SAMP8) and Senescence-Accelerated Resistant Mice 1 (SAMR1). Methods We used 6-month-old SAMP8 and SAMR1. Sepsis was induced using cecal ligation and puncture (CLP). The animal's hippocampi and blood were collected for subsequent investigations 24 h after surgery. Results Long-term potentiation (LTP) was impaired in the Shaffer-collateral (SC)-CA1 pathway of the hippocampus in SAMP8 without surgery compared to the age-matched SAMR1, which was reflective of cognitive dysfunction in SAMP8. CLP impaired the SC-CA1 LTP in SAMR1 compared to the sham-operated controls, but not in SAMP8. Moreover, CLP decreased the input-output curve and increased the paired-pulse ratio in SAMP8, suggesting the reduced probability of basal synaptic transmission due to sepsis. Immunohistochemical analysis revealed that CLP elevated IL-1β levels, especially in the hippocampi of SAMP8 with microglial activation. In vivo peripheral IL-1 receptor antagonist (IL-1ra) administration in the septic SAMP8 revealed that the neuroinflammation was not correlated with the peripheral elevation of IL-1β. Ex vivo IL-1ra administration to the hippocampus ameliorated LTP impairment in SAMR1 and the reduction in basal transmission in SAMP8 after sepsis. Conclusions The mechanism of the modulation of synaptic transmission and synaptic plasticity by the acute stage of sepsis differed between SAMR1 and SAMP8. These changes were related to centrally derived IL-1 receptor-mediated signaling and were accompanied by microglial activation, especially in SAMP8.
Collapse
Affiliation(s)
- Koji Hoshino
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuka Uchinami
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yosuke Uchida
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Hitoshi Saito
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuji Morimoto
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
42
|
Kepchia D, Currais A, Dargusch R, Finley K, Schubert D, Maher P. Geroprotective effects of Alzheimer's disease drug candidates. Aging (Albany NY) 2021; 13:3269-3289. [PMID: 33550278 PMCID: PMC7906177 DOI: 10.18632/aging.202631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/14/2021] [Indexed: 04/18/2023]
Abstract
Geroprotectors are compounds that slow the biological aging process in model organisms and may therefore extend healthy lifespan in humans. It is hypothesized that they do so by preserving the more youthful function of multiple organ systems. However, this hypothesis has rarely been tested in any organisms besides C. elegans and D. melanogaster. To determine if two life-extending compounds for Drosophila maintain a more youthful phenotype in old mice, we asked if they had anti-aging effects in both the brain and kidney. We utilized rapidly aging senescence-accelerated SAMP8 mice to investigate age-associated protein level alterations in these organs. The test compounds were two cognition-enhancing Alzheimer's disease drug candidates, J147 and CMS121. Mice were fed the compounds in the last quadrant of their lifespan, when they have cognitive deficits and are beginning to develop CKD. Both compounds improved physiological markers for brain and kidney function. However, these two organs had distinct, tissue-specific protein level alterations that occurred with age, but in both cases, drug treatments restored a more youthful level. These data show that geroprotective AD drug candidates J147 and CMS121 prevent age-associated disease in both brain and kidney, and that their apparent mode of action in each tissue is distinct.
Collapse
Affiliation(s)
- Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard Dargusch
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kim Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92115, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
43
|
Tsumagari R, Maruo K, Nakao T, Ueda S, Yamanoue M, Shirai Y. Motor Dyscoordination and Alteration of Functional Correlation Between DGKγ and PKCγ in Senescence-Accelerated Mouse Prone 8 (SAMP8). Front Aging Neurosci 2021; 13:573966. [PMID: 33584249 PMCID: PMC7876064 DOI: 10.3389/fnagi.2021.573966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Senescence-accelerated mouse prone 8 (SAMP8) is an animal model of age-related central nervous system (CNS) disorders. Although SAMP8 shows deficits in learning, memory, and emotion, its motor coordination has not been clarified. We have recently reported that DGKγ-regulated PKCγ activity is important for cerebellar motor coordination. However, involvement of the functional correlation between the kinases in age-related motor dyscoordination still remains unknown. Therefore, we have investigated the motor coordination in SAMP8 and involvement of the functional correlation between DGKγ and PKCγ in the age-related motor dyscoordination. Although 6 weeks old SAMP8 showed equivalent motor coordination with control mice (SAMR1) in the rotarod test, 24 weeks old SAMP8 exhibited significantly less latency in the rotarod test and more frequent slips in the beam test compared to the age-matched SAMR1. Furthermore, 24 weeks old SAMP8 showed the higher locomotor activity in open field test and Y-maze test. Western blotting revealed that DGKγ expression decreased in the cerebellum of 24 weeks old SAMP8, while PKCγ was upregulated. These results suggest that SAMP8 is a useful model of age-related motor dysfunction and that the DGKγ-regulated PKCγ activity is involved in the age-related motor dyscoordination.
Collapse
Affiliation(s)
- Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Takaaki Nakao
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| |
Collapse
|
44
|
Garrido A, De La Serna M, De La Fuente M, Marco EM, López-Gallardo M. Neuronal and glial region dependent changes in female mice from a model of premature aging. Exp Gerontol 2020; 146:111224. [PMID: 33388380 DOI: 10.1016/j.exger.2020.111224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Adult Premature Aging Mice (PAM) show premature immunosenescence, oxidative and inflammatory stress and consequently a shorter lifespan than Exceptional Non-Prematurely Aging Mice (E-NPAM) at the same age. Indeed, adult female PAM exhibit behavioral age-related declines and abnormalities in its brain neurochemistry. Nevertheless, it is not clear whether these impairments might be accompanied by previous changes related to the neuroinflammation process in their central nervous system (CNS). Therefore, the aim of the present work was to determine if adult female PAM may show brain neuroinflammation processes comparable to those observed in chronologically old female mice. Accordingly, ICR-CD1 female mice were classified in PAM, Regular Non-Prematurely Aging Mice (R-NPAM) and E-NPAM and compared to a group of chronologically old female mice (OLD) (24±1 months). Through the application of immunohistochemical techniques we evaluated changes in the expression of NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) in brain areas related to the behavioral alterations previously detected in both PAM and chronologically old mice. In general, PAM showed a lower NeuN expression and a higher GFAP and Iba1 expression mainly in the Anterior Frontal Cortex and in the Medial Hippocampal Formation, when compared to E-NPAM; similar changes were observed in OLD. Other brain areas, such as the Hypothalamic Nuclei and Motor Cortex were less affected. In conclusion, adult PAM and OLD female mice share some region-dependent neuronal and glial changes that may underlie, at least in part, some of the behavioral abnormalities previously reported in these animals.
Collapse
Affiliation(s)
- Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Mariano De La Serna
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Eva María Marco
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | | |
Collapse
|
45
|
Sun CP, Zhang XY, Morisseau C, Hwang SH, Zhang ZJ, Hammock BD, Ma XC. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J Med Chem 2020; 64:184-215. [PMID: 33369424 DOI: 10.1021/acs.jmedchem.0c01507] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soluble epoxide hydrolase (sEH) is an α/β hydrolase fold protein and widely distributed in numerous organs including the liver, kidney, and brain. The inhibition of sEH can effectively maintain endogenous epoxyeicosatrienoic acids (EETs) levels and reduce dihydroxyeicosatrienoic acids (DHETs) levels, resulting in therapeutic potentials for cardiovascular, central nervous system, and metabolic diseases. Therefore, since the beginning of this century, the development of sEH inhibitors is a hot research topic. A variety of potent sEH inhibitors have been developed by chemical synthesis or isolated from natural sources. In this review, we mainly summarized the interconnected aspects of sEH with cardiovascular, central nervous system, and metabolic diseases and then focus on representative inhibitors, which would provide some useful guidance for the future development of potential sEH inhibitors.
Collapse
Affiliation(s)
- Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xin-Yue Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College (Institute) of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
46
|
Gil-Hernández A, Silva-Palacios A. Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases. Ageing Res Rev 2020; 64:101193. [PMID: 33069818 DOI: 10.1016/j.arr.2020.101193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Although the elixir of youth remains in the darkness, medical and scientific advances have succeeded in increasing human longevity; however, the predisposition to disease and its high economic cost are raising. Different strategies (e.g., antioxidants) and signaling pathways (e.g., Nrf2) have been identified to help regulate disease progression, nevertheless, there are still missing links that we need to understand. Contact sites called mitochondria-associated membranes (MAM) allow bi-directional communication between organelles as part of the essential functions in the cell to maintain its homeostasis. Different groups have deeply studied the role of MAM in aging; however, it's necessary to analyze their involvement in the progression of age-related diseases. In this review, we highlight the role of contact sites in these conditions, as well as the morphological and functional changes of mitochondria and ER in aging. We emphasize the intimate relationship between both organelles as a reflection of the biological processes that take place in the cell to try to regulate the deterioration characteristic of the aging process; proposing MAM as a potential target to help limit the disease progression with age.
Collapse
|
47
|
Vasilopoulou F, Griñán-Ferré C, Rodríguez-Arévalo S, Bagán A, Abás S, Escolano C, Pallàs M. I 2 imidazoline receptor modulation protects aged SAMP8 mice against cognitive decline by suppressing the calcineurin pathway. GeroScience 2020; 43:965-983. [PMID: 33128688 PMCID: PMC8110656 DOI: 10.1007/s11357-020-00281-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Brain aging and dementia are current problems that must be solved. The levels of imidazoline 2 receptors (I2-IRs) are increased in the brain in Alzheimer's disease (AD) and other neurodegenerative diseases. We tested the action of the specific and selective I2-IR ligand B06 in a mouse model of accelerated aging and AD, the senescence-accelerated mouse prone 8 (SAMP8) model. Oral administration of B06 for 4 weeks improved SAMP8 mouse behavior and cognition and reduced AD hallmarks, oxidative stress, and apoptotic and neuroinflammation markers. Likewise, B06 regulated glial excitatory amino acid transporter 2 and N-methyl-D aspartate 2A and 2B receptor subunit protein levels. Calcineurin (CaN) is a phosphatase that controls the phosphorylation levels of cAMP response element-binding (CREB), apoptotic mediator BCL-2-associated agonist of cell death (BAD) and GSK3β, among other molecules. Interestingly, B06 was able to reduce the levels of the CaN active form (CaN A). Likewise, CREB phosphorylation, BAD gene expression, and other factors were modified after B06 treatment. Moreover, phosphorylation of a target of CaN, nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1), was increased in B06-treated mice, impeding the transcription of genes related to neuroinflammation and neural plasticity. In summary, this I2 imidazoline ligand can exert its beneficial effects on age-related conditions by modulating CaN pathway action and affecting several molecular pathways, playing a neuroprotective role in SAMP8 mice.
Collapse
Affiliation(s)
- Foteini Vasilopoulou
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurociencies, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurociencies, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Sergio Rodríguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Sònia Abás
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurociencies, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
48
|
Iwata K, Wu Q, Ferdousi F, Sasaki K, Tominaga K, Uchida H, Arai Y, Szele FG, Isoda H. Sugarcane ( Saccharum officinarum L.) Top Extract Ameliorates Cognitive Decline in Senescence Model SAMP8 Mice: Modulation of Neural Development and Energy Metabolism. Front Cell Dev Biol 2020; 8:573487. [PMID: 33123536 PMCID: PMC7573230 DOI: 10.3389/fcell.2020.573487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related biological alterations in brain function increase the risk of mild cognitive impairment and dementia, a global problem exacerbated by aging populations in developed nations. Limited pharmacological therapies have resulted in attention turning to the promising role of medicinal plants and dietary supplements in the treatment and prevention of dementia. Sugarcane (Saccharum officinarum L.) top, largely considered as a by-product because of its low sugar content, in fact contains the most abundant amounts of antioxidant polyphenols relative to the rest of the plant. Given the numerous epidemiological studies on the effects of polyphenols on cognitive function, in this study, we analyzed polyphenolic constituents of sugarcane top and examined the effect of sugarcane top ethanolic extract (STEE) on a range of central nervous system functions in vitro and in vivo. Orally administrated STEE rescued spatial learning and memory deficit in the senescence-accelerated mouse prone 8 (SAMP8) mice, a non-transgenic strain that spontaneously develops a multisystemic aging phenotype including pathological features of Alzheimer's disease. This could be correlated with an increased number of hippocampal newborn neurons and restoration of cortical monoamine levels in STEE-fed SAMP8 mice. Global genomic analysis by microarray in cerebral cortices showed multiple potential mechanisms for the cognitive improvement. Gene set enrichment analysis (GSEA) revealed biological processes such as neurogenesis, neuron differentiation, and neuron development were significantly enriched in STEE-fed mice brain compared to non-treated SAMP8 mice. Furthermore, STEE treatment significantly regulated genes involved in neurotrophin signaling, glucose metabolism, and neural development in mice brain. Our in vitro results suggest that STEE treatment enhances the metabolic activity of neuronal cells promoting glucose metabolism with significant upregulation of genes, namely PGK1, PGAM1, PKM, and PC. STEE also stimulated proliferation of human neural stem cells (hNSCs), regulated bHLH factor expression and induced neuronal differentiation and astrocytic process lengthening. Altogether, our findings suggest the potential of STEE as a dietary intervention, with promising implications as a novel nutraceutical for cognitive health.
Collapse
Affiliation(s)
- Kengo Iwata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.,Nippo Co., Ltd., Daito, Japan
| | - Qingqing Wu
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | | | | | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Hiroko Isoda
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
49
|
Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. Int J Mol Sci 2020; 21:ijms21217871. [PMID: 33114176 PMCID: PMC7660637 DOI: 10.3390/ijms21217871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Activated microglia involved in the development of orofacial pain hypersensitivity have two major polarization states. The aim of this study was to assess the involvement of the aging-related phenotypic conversion of medullary microglia in the enhancement of intraoral pain sensitivity using senescence-accelerated mice (SAM)-prone/8 (SAMP8) and SAM-resistant/1 (SAMR1) mice. Mechanical head-withdrawal threshold (MHWT) was measured for 21 days post palatal mucosal incision. The number of CD11c-immunoreactive (IR) cells [affective microglia (M1)] and CD163-IR cells [protective microglia (M2)], and tumor-necrosis-factor-α (TNF-α)-IR M1 and interleukin (IL)-10-IR M2 were analyzed via immunohistochemistry on days 3 and 11 following incision. The decrease in MHWT observed following incision was enhanced in SAMP8 mice. M1 levels and the number of TNF-α-IR M1 were increased on day 3 in SAMP8 mice compared with those in SAMR1 mice. On day 11, M1 and M2 activation was observed in both groups, whereas IL-10-IR M2 levels were attenuated in SAMP8 mice, and the number of TNF-α-IR M1 cells increased, compared to those in SAMR1 mice. These results suggest that the mechanical allodynia observed following intraoral injury is potentiated and sustained in SAMP8 mice due to enhancement of TNF-α signaling, M1 activation, and an attenuation of M2 activation accompanying IL-10 release.
Collapse
|
50
|
Griñán-Ferré C, Codony S, Pujol E, Yang J, Leiva R, Escolano C, Puigoriol-Illamola D, Companys-Alemany J, Corpas R, Sanfeliu C, Pérez B, Loza MI, Brea J, Morisseau C, Hammock BD, Vázquez S, Pallàs M, Galdeano C. Pharmacological Inhibition of Soluble Epoxide Hydrolase as a New Therapy for Alzheimer's Disease. Neurotherapeutics 2020; 17:1825-1835. [PMID: 32488482 PMCID: PMC7851240 DOI: 10.1007/s13311-020-00854-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The inhibition of the enzyme soluble epoxide hydrolase (sEH) has demonstrated clinical therapeutic effects in several peripheral inflammatory-related diseases, with 3 compounds in clinical trials. However, the role of this enzyme in the neuroinflammation process has been largely neglected. Herein, we disclose the pharmacological validation of sEH as a novel target for the treatment of Alzheimer's disease (AD). Evaluation of cognitive impairment and pathological hallmarks were used in 2 models of age-related cognitive decline and AD using 3 structurally different and potent sEH inhibitors as chemical probes. sEH is upregulated in brains from AD patients. Our findings supported the beneficial effects of central sEH inhibition, regarding reducing cognitive impairment, neuroinflammation, tau hyperphosphorylation pathology, and the number of amyloid plaques. This study suggests that inhibition of inflammation in the brain by targeting sEH is a relevant therapeutic strategy for AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| | - Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Eugènia Pujol
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Jun Yang
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Carmen Escolano
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Rubén Corpas
- Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló, 149, E-08036, Barcelona, Spain
- Centros de Investigacion Biomedica en red Epidemiology and Public Health, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, E-28029, Madrid, Spain
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona, Consejo Superior de Investigaciones Científicas and Institut d'Investigacions Biomèdiques August Pi i Sunyer, Rosselló, 149, E-08036, Barcelona, Spain
- Centros de Investigacion Biomedica en red Epidemiology and Public Health, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, E-28029, Madrid, Spain
| | - Belen Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, E-08193, Barcelona, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E-15706, Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E-15706, Santiago de Compostela, Spain
| | - Christophe Morisseau
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al Consejo Superior de Investigaciones Científicas), Department de Farmacologia, Toxicologia i Química Farmacèutica, Facultat de Farmàcia i Ciències de de l'Alimentació y Institut de Biomedicina, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| | - Carles Galdeano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine, University of Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|