1
|
Tian X, Peng F, Xiong X, Xu X, Zan Y, Wang X, Yu B, Liu Z, He X, Huang Z. Artemisinin analogues are effective in the treatment of psoriasis by targeting RORγt. Mol Immunol 2025; 180:11-22. [PMID: 39987640 DOI: 10.1016/j.molimm.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
Psoriasis is a chronic inflammatory skin autoimmune disease. Th17 cells, when pathologically activated, significantly contribute to the progression of psoriasis. The symptoms of this skin condition could be notably alleviated by targeting and suppressing the activity of these cells. Retinoic acid receptor-associated orphan nuclear hormone receptor γ-t (RORγt), a critical transcription factor in Th17 cells, emerges as a promising therapeutic target for autoimmune conditions which are mediated by the dysregulation of these cells. In this study, we designed and synthesised a series of artemisinin analogues based on the chemical structure of artemisinin, and screened 3 compounds, QHS-1, QHS-2, and QHS-3, with better inhibition efficiency of RORγt activity. We found that each of the three artemisinin analogues were demonstrated efficacy in curbing IMQ-induced skin inflammation and the abnormal proliferation of keratinocytes within the BALB/c mouse model of psoriasis. Our findings indicate that the three artemisinin analogues not only effectively mitigated skin inflammation and the abnormal proliferation of keratinocytes in the IMQ-induced psoriasis model of BALB/c mice but also curtailed the infiltration of immune cells and the production of pro-inflammatory cytokines in the dermis. Furthermore, these compounds modulated the cytokine expression profiles within Th17 cells. They exerted a suppressive effect on the activity of Th17 cells by targeting RORγt, thereby dampening the inflammatory response in the dorsal skin of the mice. This inhibition led to a reduction in the pathological proliferation of keratinocytes. In conclusion, our research underscores the promising therapeutic potential of artemisinin analogues in the treatment of psoriasis, offering a slate of candidate compounds which could pave the way for novel drug development in this field.
Collapse
Affiliation(s)
- Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yu Zan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xinran Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
2
|
Schwarzinger J, Adelsberger S, Ortmayr K, Stellnberger SL, Tahir A, Hädrich G, Pichler V, Rollinger JM, Grienke U, Dailey LA. Biopharmaceutical profiling of anti-infective sanggenons from Morus alba root bark for inhalation administration. Int J Pharm X 2024; 8:100272. [PMID: 39252692 PMCID: PMC11381475 DOI: 10.1016/j.ijpx.2024.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
Mulberry Diels-Alder-type adducts (MDAAs), isolated from Morus alba root bark, exhibit dual activity against viral and bacterial pathogens but show sobering efficacy following oral administration. Inhalation administration may overcome issues with oral bioavailability and improve efficacy for the treatment of respiratory infections. To assess the suitability of MDAAs for inhalation administration, physicochemical (e.g. pH, pKa, logP, pH-dependent solubility) and biopharmaceutical (epithelial cytotoxicity, permeability, and uptake) properties of two bioactive MDAA stereoisomers sanggenon C (SGC) and sanggenon D (SGD) were evaluated as isolated natural compounds and within parent extracts (MA21, MA60). Despite their structural similarity, SGD exhibited a 10-fold higher solubility than SGC across pH 1.2-7.4, with slight increases at neutral pH. Both compounds were more soluble in isolated form than in the parent extracts. The more lipophilic SGC was found to be more cytotoxic when compared to SGD, indicating a better cellular penetration, which was confirmed by uptake studies. Nonetheless, SGC and SGD exhibited no measurable permeability across intact Calu-3 monolayers, highlighting their potential for increased lung retention and improved local anti-infective activity following inhalation administration. Results suggest that SGC and SGD in isolated form, rather than as extracts, are promising candidates for pulmonary drug delivery to treat lung infections.
Collapse
Affiliation(s)
- Jacqueline Schwarzinger
- Division of Pharmaceutical Technology and Biopharmaceutics, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sigrid Adelsberger
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Karin Ortmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Sarah Luise Stellnberger
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ammar Tahir
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Gabriela Hädrich
- Division of Pharmaceutical Technology and Biopharmaceutics, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Verena Pichler
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Judith M. Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
Favero FDF, Basting RT, de Freitas AS, Dias Rabelo LDS, Nonato FR, Zafred RRT, Sousa IMDO, Queiroz NDCA, Napimoga JTC, de Carvalho JE, Foglio MA. Artemisinin and deoxyartemisinin isolated from Artemisia annua L. promote distinct antinociceptive and anti-inflammatory effects in an animal model. Biomed Pharmacother 2024; 178:117299. [PMID: 39142249 DOI: 10.1016/j.biopha.2024.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024] Open
Abstract
Artemisia annua L., known for antimalarial activity, has demonstrated evidence of anti-inflammatory potential. Previously our research group reported the anti-inflammatory and antinociceptive effect of a sesquiterpene lactone-enriched fraction (Lac-FR) obtained from plant, containing artemisinin and deoxyartemisinin. Both the isolated compounds and Lac-FR evaluated on experimental animal models, in the formalin test showed that deoxyartemisinin reduced both neurogenic pain (56.55 %) and inflammatory pain (45.43 %). These findings were superior to the effect of artemisinin (reduction of 28.66 % and 33.35 %, respectively). In the tail flick test, the antinociceptive effect reported as a percentage of the maximum possible effect (%MPE), deoxyartemisinin showed a lower antinociceptive effect (41.57 %) compared to morphine (75.94 %) in 0.5 h. After 1.5 h, the MPE of deoxyartemisinin (87.99 %) exceeded the effect of morphine (47.55 %), without reversal with naloxone. The MPE of artemisinin (23.3 %) observed after 2 h was lower than deoxiartemisinin, without reversal with the opioid antagonist. Lac-FR and artemisinin demonstrated reductions in ear edema of 43.37 % and 48.19 %, respectively, higher than the effect of deoxyartemisinin (33.64 %). Artemisinin reduced tumor necrosis factor alpha (TNF-α) (76.96 %) more selectively when compared to interleukin-1beta (IL-1β) (48.23 %) and interleukin-6 (IL-6) (44.49 %). Lac-FR showed greater selectivity in IL-6 reduction (56.49 %) in relationship to TNF-α (46.71 %) and IL-1β (45.12 %), whereas deoxyartemisinin selectively reduced TNF-α (37.37 %). The results of our study indicate that the lactones isolated did not have relationship with the opioid system. Deoxyartemisinin showed a higher antinociceptive potential than artemisinin. Whereas, artemisinin showed a higher reduction of inflammation and mediators, with a better anti-inflammatory activity outcome.
Collapse
Affiliation(s)
- Fabrício de Faveri Favero
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rosanna Tarkany Basting
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Sao Leopoldo Mandic Institute, Campinas, SP, Brazil
| | - Ailane Souza de Freitas
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luan da Silva Dias Rabelo
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabiana Regina Nonato
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | - João Ernesto de Carvalho
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mary Ann Foglio
- School of Pharmaceutical Sciences (FCF), Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
4
|
Khan RA, Kumar A, Abbas N. A bHLH transcription factor AaMYC2-type positively regulates glandular trichome density and artemisinin biosynthesis in Artemisia annua. PHYSIOLOGIA PLANTARUM 2024; 176:e14581. [PMID: 39440419 DOI: 10.1111/ppl.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024]
Abstract
Artemisinin-based combinational therapies (ACTs) constitute the first line of malaria treatment. However, due to its trichome-specific biosynthesis, low concentration, and poor understanding of regulatory mechanisms involved in artemisinin biosynthesis and trichome development, it becomes very difficult to meet the increased demand for ACTs. Here, we have reported that a bHLH transcription factor, AaMYC2-type, plays an important role in regulating GST development and artemisinin biosynthesis in Artemisia annua. AaMYC2-type encodes a protein that is transcriptionally active and localised to the nucleus. It is prominently expressed in aerial parts like leaves, stems, inflorescence and least expressed in roots. AaMYC2-type expression is significantly increased under different hormonal treatments. In transgenic overexpression lines, AaMYC2-type OE, a significant increase in the expression of trichome development and artemisinin biosynthesis genes was observed. While in knockdown lines, Aamyc2-type, expression of trichome development and artemisinin biosynthesis genes were significantly reduced. Yeast one-hybrid assay clearly shows that the AaMYC2-type directly binds to the E-boxes in the promoter regions of ADS and CYP71AVI. The SEM microscopy depicted the number of trichomes elevated from 11 mm-2 in AaMYC2-type OE lines to 6.1 mm-2 in Aamyc2-type. The final effect of the alteration in biosynthetic and trichome developmental genes was observed in the accumulation of artemisinin. In the AaMYC2-type OE, the artemisinin content was 12 mg g-1DW, which was reduced to 3.2 mg g-1DW in the Aamyc2-type. Altogether, the above findings suggest that the AaMYC2-type play a dual regulating role in controlling both trichome developmental and artemisinin biosynthetic genes.
Collapse
Affiliation(s)
- Rameez Ahmad Khan
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
5
|
He Y, Zhang Y, Li J, Ren Z, Zhang W, Zuo X, Zhao W, Xing M, You J, Chen X. Transcriptome dynamics in Artemisia annua provides new insights into cold adaptation and de-adaptation. FRONTIERS IN PLANT SCIENCE 2024; 15:1412416. [PMID: 39268001 PMCID: PMC11390472 DOI: 10.3389/fpls.2024.1412416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/25/2024] [Indexed: 09/15/2024]
Abstract
Plants adapt to cold stress through a tightly regulated process involving metabolic reprogramming and tissue remodeling to enhance tolerance within a short timeframe. However, the precise differences and interconnections among various organs during cold adaptation remain poorly understood. This study employed dynamic transcriptomic and metabolite quantitative analyses to investigate cold adaptation and subsequent de-adaptation in Artemisia annua, a species known for its robust resistance to abiotic stress. Our findings revealed distinct expression patterns in most differentially expressed genes (DEGs) encoding transcription factors and components of the calcium signal transduction pathway within the two organs under cold stress. Notably, the long-distance transport of carbon sources from source organs (leaves) to sink organs (roots) experienced disruption followed by resumption, while nitrogen transport from roots to leaves, primarily in the form of amino acids, exhibited acceleration. These contrasting transport patterns likely contribute to the observed differences in cold response between the two organs. The transcriptomic analysis further indicated that leaves exhibited increased respiration, accumulated anti-stress compounds, and initiated the ICE-CBF-COR signaling pathway earlier than roots. Differential expression of genes associated with cell wall biosynthesis suggests that leaves may undergo cell wall thickening while roots may experience thinning. Moreover, a marked difference was observed in phenylalanine metabolism between the two organs, with leaves favoring lignin production and roots favoring flavonoid synthesis. Additionally, our findings suggest that the circadian rhythm is crucial in integrating temperature fluctuations with the plant's internal rhythms during cold stress and subsequent recovery. Collectively, these results shed light on the coordinated response of different plant organs during cold adaptation, highlighting the importance of inter-organ communication for successful stress tolerance.
Collapse
Affiliation(s)
- Yunxiao He
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yujiao Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
- Yanbian Korean Autonomous Prefecture Academy of Agricultural Sciences, Yanbian, Jilin, China
| | - Jiangnan Li
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Zhiyi Ren
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenjing Zhang
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xianghua Zuo
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Zhao
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Ming Xing
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jian You
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- National and Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Bessa IA, D’Amato DL, C. Souza AB, Levita DP, Mello CC, da Silva AFM, dos Santos TC, Ronconi CM. Innovating Leishmaniasis Treatment: A Critical Chemist's Review of Inorganic Nanomaterials. ACS Infect Dis 2024; 10:2485-2506. [PMID: 39001837 PMCID: PMC11320585 DOI: 10.1021/acsinfecdis.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Leishmaniasis, a critical Neglected Tropical Disease caused by Leishmania protozoa, represents a significant global health risk, particularly in resource-limited regions. Conventional treatments are effective but suffer from serious limitations, such as toxicity, prolonged treatment courses, and rising drug resistance. Herein, we highlight the potential of inorganic nanomaterials as an innovative approach to enhance Leishmaniasis therapy, aligning with the One Health concept by considering these treatments' environmental, veterinary, and public health impacts. By leveraging the adjustable properties of these nanomaterials─including size, shape, and surface charge, tailored treatments for various diseases can be developed that are less harmful to the environment and nontarget species. We review recent advances in metal-, oxide-, and carbon-based nanomaterials for combating Leishmaniasis, examining their mechanisms of action and their dual use as standalone treatments or drug delivery systems. Our analysis highlights a promising yet underexplored frontier in employing these materials for more holistic and effective disease management.
Collapse
Affiliation(s)
- Isabela
A. A. Bessa
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Dayenny L. D’Amato
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Ana Beatriz C. Souza
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Daniel P. Levita
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Camille C. Mello
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Aline F. M. da Silva
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| | - Thiago C. dos Santos
- Instituto
de Química, Universidade Federal
do Rio de Janeiro. Av. Athos da Silveira Ramos 149, CT, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Célia M. Ronconi
- Departamento
de Química Inorgânica, Universidade
Federal Fluminense, Campus do Valonguinho, Niterói, RJ 24020-150, Brazil
| |
Collapse
|
7
|
Chen M, Li Z, He X, Zhang Z, Wang D, Cui L, Xie M, Zhao Z, Sun Q, Wang D, Dai J, Gong D. Comparative transcriptome analysis reveals genes involved in trichome development and metabolism in tobacco. BMC PLANT BIOLOGY 2024; 24:541. [PMID: 38872084 DOI: 10.1186/s12870-024-05265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The glandular trichomes of tobacco (Nicotiana tabacum) can efficiently produce secondary metabolites. They act as natural bioreactors, and their natural products function to protect plants against insect-pests and pathogens and are also components of industrial chemicals. To clarify the molecular mechanisms of tobacco glandular trichome development and secondary metabolic regulation, glandular trichomes and glandless trichomes, as well as other different developmental tissues, were used for RNA sequencing and analysis. RESULTS By comparing glandless and glandular trichomes with other tissues, we obtained differentially expressed genes. They were obviously enriched in KEGG pathways, such as cutin, suberine, and wax biosynthesis, flavonoid and isoflavonoid biosynthesis, terpenoid biosynthesis, and plant-pathogen interaction. In particular, the expression levels of genes related to the terpenoid, flavonoid, and wax biosynthesis pathway mainly showed down-regulation in glandless trichomes, implying that they lack the capability to synthesize certain exudate compounds. Among the differentially expressed genes, 234 transcription factors were found, including AP2-ERFs, MYBs, bHLHs, WRKYs, Homeoboxes (HD-ZIP), and C2H2-ZFs. These transcription factor and genes that highly expressed in trichomes or specially expressed in GT or GLT. Following the overexpression of R2R3-MYB transcription factor Nitab4.5_0011760g0030.1 in tobacco, an increase in the number of branched glandular trichomes was observed. CONCLUSIONS Our data provide comprehensive gene expression information at the transcriptional level and an understanding of the regulatory pathways involved in glandular trichome development and secondary metabolism.
Collapse
Affiliation(s)
- Mingli Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xinxi He
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Zhe Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dong Wang
- China Tobacco Hunan Industry Co., Ltd, Changsha, China
| | - Luying Cui
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Minmin Xie
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zeyu Zhao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dahai Wang
- Shandong Weifang Tobacco Co., Ltd, Weifang, China
| | - Jiameng Dai
- Yunnan Key Laboratory of Tobacco Chemistry, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, China.
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|
8
|
Huang X, Chen W, Zhao Y, Chen J, Ouyang Y, Li M, Gu Y, Wu Q, Cai S, Guo F, Zhu P, Ao D, You S, Vasseur L, Liu Y. Deep learning-based quantification and transcriptomic profiling reveal a methyl jasmonate-mediated glandular trichome formation pathway in Cannabis sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1155-1173. [PMID: 38332528 DOI: 10.1111/tpj.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuqing Zhao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingjing Chen
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzeng Ouyang
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Minxuan Li
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yu Gu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinqin Wu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sen Cai
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Foqin Guo
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Panpan Zhu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deyong Ao
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shijun You
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Yuanyuan Liu
- Haixia Institute of Science and Technology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
9
|
Cai TY, Ji JB, Wang X, Xing J. Targeted screening of the synergistic components in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin based on a "top down" PD-PK approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117612. [PMID: 38135228 DOI: 10.1016/j.jep.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisinin (ART) showed enhanced antimalarial potency in the herb Artemisia annua L. (A. annua), from which ART is isolated. Increased absorption of ART with inhibited metabolism in the plant matrix is an underlying mechanism. Several synergistic components have been reported based on a "bottom-up" approach, i.e., traditional isolation followed by pharmacokinetic and/or pharmacodynamic evaluation. AIM OF THE STUDY In this study, we employed a "top-down" approach based on in vivo antimalarial and pharmacokinetic studies to identify synergistic components in A. annua. MATERIALS AND METHODS Two A. annua extracts in different chemical composition were obtained by extraction using ethyl acetate (EA) and petroleum ether (PE). The synergistic antimalarial activity of ART in two extracts was compared both in vitro (Plasmodium falciparum) and in vivo (murine Plasmodium yoelii). For the PD-PK correlation analysis, the pharmacokinetic profiles of ART and its major metabolite (ART-M) were investigated in healthy rats after a single oral administration of pure ART (20 mg/kg) or equivalent ART in each A. annua extract. A liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS)-based analytical strategy was then applied for efficient component classification and structural characterization of the differential components in the targeted extract with a higher antimalarial potency. Major components isolated from the targeted extract were then evaluated for their synergistic effect in the same proportion. RESULTS Compared with pure ART (ED50, 5.6 mg/kg), ART showed enhanced antimalarial potency in two extracts in vivo (ED50 of EA, 2.9 mg/kg; ED50 of PE, 1.6 mg/kg), but not in vitro (IC50, 15.0-20.0 nM). A significant increase (1.7-fold) in ART absorption (AUC0-t) was found in rats after a single oral dose of equivalent ART in PE but not in EA; however, no significant change in the metabolic capability (AUCART-M/AUCART) was found for ART in either extract. The differential component analysis of the two extracts showed a higher composition of sesquiterpene compounds, especially component AB (3.0% in PE vs. 0.9% in EA) and component AA (14.1% in PE vs. 5.1% in EA). Two target sesquiterpenes were isolated and identified as arteannuin B (AB) and artemisinic acid (AA). The synergism between ART and AB/AA in the same proportion with PE extract (20:1.6:7.6, mg/kg) was verified by a pharmacokinetic study in rats. CONCLUSIONS A "top-down" strategy based on PD-PK studies was successfully employed to identify synergistic components for ART in A. annua. Two sesquiterpene compounds (arteannuin B and artemisinic acid) could enhance the antimalarial potency of ART by increasing its absorption.
Collapse
Affiliation(s)
- Tian-Yu Cai
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian-Bo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Phan TN, Lee H, Baek KH, No JH. Identification of Novel Flavonoids and Ansa-Macrolides with Activities against Leishmania donovani through Natural Product Library Screening. Pathogens 2024; 13:213. [PMID: 38535556 PMCID: PMC10974828 DOI: 10.3390/pathogens13030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 02/11/2025] Open
Abstract
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 μM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 μM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 μM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| |
Collapse
|
11
|
Naeem A, Yu C, Wang X, Peng M, Liu Y, Liu Y. Hydroxyethyl Cellulose-Based Hydrogels as Controlled Release Carriers for Amorphous Solid Dispersion of Bioactive Components of Radix Paeonia Alba. Molecules 2023; 28:7320. [PMID: 37959739 PMCID: PMC10648136 DOI: 10.3390/molecules28217320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Radix Paeoniae Alba (RPA) has been used extensively in Chinese traditional medicine to treat gastrointestinal disorders, immune-modulating diseases, cancers, and numerous other conditions. A few of its active components include paeoniflorin, albiflorin, lactiflorin, and catechin. However, their therapeutic effectiveness is compromised by poor pharmacokinetic profiles, low oral bioavailability, short half-lives, and poor aqueous solubility. In this study, hydroxyethyl cellulose-grafted-2-acrylamido-2-methylpropane sulfonic acid (HEC-g-AMPS) hydrogels were successfully prepared for the controlled release of Radix Paeonia Alba-solid dispersion (RPA-SD). A total of 43 compounds were identified in RPA-SD using UHPLC-Q-TOF-MS analysis. The hydrogel network formation was confirmed by FTIR, TGA, DSC, XRD, and SEM. Hydrogels' swelling and drug release were slightly higher at pH 1.2 (43.31% swelling, 81.70% drug release) than at pH 7.4 (27.73% swelling, 72.46% drug release) after 48 h. The gel fraction, drug release time and mechanical strength of the hydrogels increased with increased polymer and monomer concentration. Furthermore, the hydrogels were porous (84.15% porosity) and biodegradable (8.9% weight loss per week). Moreover, the synthesized hydrogels exhibited excellent antimicrobial and antioxidative properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Chengqun Yu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Mingyan Peng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yi Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (C.Y.); (M.P.)
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang 330006, China
| |
Collapse
|
12
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Weathers PJ. Artemisinin as a therapeutic vs. its more complex Artemisia source material. Nat Prod Rep 2023; 40:1158-1169. [PMID: 36541391 DOI: 10.1039/d2np00072e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Covering: up to 2017-2022Many small molecule drugs are first discovered in nature, commonly the result of long ethnopharmacological use by people, and then characterized and purified from their biological sources. Traditional medicines are often more sustainable, but issues related to source consistency and efficacy present challenges. Modern medicine has focused solely on purified molecules, but evidence is mounting to support some of the more traditional uses of medicinal biologics. When is a more traditional delivery of a therapeutic appropriate and warranted? What studies are required to establish validity of a traditional medicine approach? Artemisia annua and A. afra are two related but unique medicinal plant species with long histories of ethnopharmacological use. A. annua produces the sesquiterpene lactone antimalarial drug, artemisinin, while A. afra produces at most, trace amounts of the compound. Both species also have an increasing repertoire of modern scientific and pharmacological data that make them ideal candidates for a case study. Here accumulated recent data on A. annua and A. afra are reviewed as a basis for establishing a decision tree for querying their therapeutic use, as well as that of other medicinal plant species.
Collapse
Affiliation(s)
- Pamela J Weathers
- Department of Biology and Biotechnology, 100 Institute Rd, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
14
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
15
|
Zhong M, Sun C, Zhou B. Anti-Mitochondrial and Insecticidal Effects of Artemisinin against Drosophila melanogaster. Int J Mol Sci 2023; 24:ijms24086912. [PMID: 37108079 PMCID: PMC10138759 DOI: 10.3390/ijms24086912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Artemisinin (ART) is an endoperoxide molecule derived from the medicinal plant Artemisia annua L. and is clinically used as an antimalarial drug. As a secondary metabolite, the benefit of ART production to the host plant and the possible associated mechanism are not understood. It has previously been reported that Artemisia annua L. extract or ART can inhibit both insect feeding behaviors and growth; however, it is not known whether these effects are independent of each other, i.e., if growth inhibition is a direct outcome of the drug's antifeeding activity. Using the lab model organism Drosophila melanogaster, we demonstrated that ART repels the feeding of larvae. Nevertheless, feeding inhibition was insufficient to explain its toxicity on fly larval growth. We revealed that ART provoked a strong and instant depolarization when applied to isolated mitochondria from Drosophila while exerting little effect on mitochondria isolated from mice tissues. Thus, ART benefits its host plant through two distinct activities on the insect: a feeding-repelling action and a potent anti-mitochondrial action which may underlie its insect inhibitory activities.
Collapse
Affiliation(s)
- Mengjiao Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chen Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bing Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
16
|
Coroian M, Pop LM, Popa V, Friss Z, Oprea O, Kalmár Z, Pintea A, Borșan SD, Mircean V, Lobonțiu I, Militaru D, Vârban R, Györke A. Efficacy of Artemisia annua against Coccidiosis in Broiler Chickens: A Field Trial. Microorganisms 2022; 10:microorganisms10112277. [PMID: 36422347 PMCID: PMC9697319 DOI: 10.3390/microorganisms10112277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
(1) Background: Various studies on artemisinin and its derivatives have shown that Artemisia annua may be of therapeutic interest for different diseases, including chicken coccidiosis. This study aimed to evaluate the effects of Artemisia annua on farm-reared broiler chickens by analyzing both the anticoccidial efficacy and its effect on the intestinal microbiota of poultry. (2) Methods: The experiment was performed within three houses on a broiler chicken farm located in Romania. House 1 was the experimental group and received a diet with an addition of A. annua. Houses 2 and 4 were the control groups and received anticoccidials. The prophylactic efficacy of A. annua against coccidiosis was evaluated by recording the weight gain, feed conversion rate, number of oocysts per gram of feces, lesion score, and mortality rate. (3) Results: The chickens fed with A. annua showed a decreasing trend in the number of oocysts per gram of faeces, and their lesion score was 80% lower than in the control group. The weight gains of the chickens treated with A. annua was lower, whilst the feed conversion rate was better than in controls. (4) Conclusions: Artemisia annua showed promising results in the prophylaxis of coccidiosis. Overall, the broiler chickens that received A. annua presented promising zootechnical performances and medical data related to coccidiosis and gut microbiota.
Collapse
Affiliation(s)
- Mircea Coroian
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (M.C.); (A.G.)
| | - Loredana Maria Pop
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Virgilia Popa
- Pasteur Institute, Giulesti, 060269 Bucharest, Romania
| | - Zsuzsa Friss
- The Research and Development Station for Cattle Breeding Târgu Mures, 547530 Sîngeorgiu de Mures, Romania
| | | | - Zsuzsa Kalmár
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Department of Microbiology, Immunology and Epidemiology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, 1078 Budapest, Hungary
| | - Adela Pintea
- Department of Chemistry, Biochemistry and Molecular Biology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Silvia-Diana Borșan
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Viorica Mircean
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Iustina Lobonțiu
- The Research and Development Station for Cattle Breeding Târgu Mures, 547530 Sîngeorgiu de Mures, Romania
| | - Dumitru Militaru
- Pasteur Institute, Giulesti, 060269 Bucharest, Romania
- Department of Parasitology, Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Academy of Agricultural and Forestry Sciences Gheorghe Ionescu-Sisești, 011464 Bucharest, Romania
| | - Rodica Vârban
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Adriana Györke
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (M.C.); (A.G.)
| |
Collapse
|
17
|
Kane NF, Kiani BH, Desrosiers MR, Towler MJ, Weathers PJ. Artemisia extracts differ from artemisinin effects on human hepatic CYP450s 2B6 and 3A4 in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115587. [PMID: 35934190 DOI: 10.1016/j.jep.2022.115587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. AIM OF THE STUDY Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin. MATERIALS AND METHODS HepaRG cells were treated with 10 μM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/g DW artemisinin in the leaves, respectively; qPCR and Western blots were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using human liver microsomes and P450-Glo assays. RESULTS All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas. CONCLUSIONS This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology.
Collapse
Affiliation(s)
- Ndeye F Kane
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Bushra H Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Matthew R Desrosiers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Melissa J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Pamela J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
18
|
Chitosan/xanthan gum-based (Hydroxypropyl methylcellulose-co-2-Acrylamido-2-methylpropane sulfonic acid) interpenetrating hydrogels for controlled release of amorphous solid dispersion of bioactive constituents of Pueraria lobatae. Int J Biol Macromol 2022; 224:380-395. [DOI: 10.1016/j.ijbiomac.2022.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
19
|
Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, Klin P, Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules 2022; 27:6427. [PMID: 36234965 PMCID: PMC9571683 DOI: 10.3390/molecules27196427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/19/2023] Open
Abstract
Artemisia species play a vital role in traditional and contemporary medicine. Among them, Artemisia abrotanum, Artemisia absinthium, Artemisia annua, Artemisia dracunculus, and Artemisia vulgaris are the most popular. The chemical composition and bioactivity of these species have been extensively studied. Studies on these species have confirmed their traditional applications and documented new pharmacological directions and their valuable and potential applications in cosmetology. Artemisia ssp. primarily contain sesquiterpenoid lactones, coumarins, flavonoids, and phenolic acids. Essential oils obtained from these species are of great biological importance. Extracts from Artemisia ssp. have been scientifically proven to exhibit, among others, hepatoprotective, neuroprotective, antidepressant, cytotoxic, and digestion-stimulating activities. In addition, their application in cosmetic products is currently the subject of several studies. Essential oils or extracts from different parts of Artemisia ssp. have been characterized by antibacterial, antifungal, and antioxidant activities. Products with Artemisia extracts, essential oils, or individual compounds can be used on skin, hair, and nails. Artemisia products are also used as ingredients in skincare cosmetics, such as creams, shampoos, essences, serums, masks, lotions, and tonics. This review focuses especially on elucidating the importance of the most popular/important species of the Artemisia genus in the cosmetic industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, IX Wieków Kielc 19a, 25-516 Kielce, Poland
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Medical College, Jagiellonian University, Floriańska 25, 31-019 Kraków, Poland
| | - Paweł Klin
- US Army Health Clinic, Urlas Kaserne, Building 8156, 91522 Ansbach, Germany
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
20
|
Wei P, Zhang C, Bian X, Lu W. Metabolic Engineering of Saccharomyces cerevisiae for Heterologous Carnosic Acid Production. Front Bioeng Biotechnol 2022; 10:916605. [PMID: 35721856 PMCID: PMC9201568 DOI: 10.3389/fbioe.2022.916605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carnosic acid (CA), a phenolic tricyclic diterpene, has many biological effects, including anti-inflammatory, anticancer, antiobesity, and antidiabetic activities. In this study, an efficient biosynthetic pathway was constructed to produce CA in Saccharomyces cerevisiae. First, the CA precursor miltiradiene was synthesized, after which the CA production strain was constructed by integrating the genes encoding cytochrome P450 enzymes (P450s) and cytochrome P450 reductase (CPR) SmCPR. The CA titer was further increased by the coexpression of CYP76AH1 and SmCPR ∼t28SpCytb5 fusion proteins and the overexpression of different catalases to detoxify the hydrogen peroxide (H2O2). Finally, engineering of the endoplasmic reticulum and cofactor supply increased the CA titer to 24.65 mg/L in shake flasks and 75.18 mg/L in 5 L fed-batch fermentation. This study demonstrates that the ability of engineered yeast cells to synthesize CA can be improved through metabolic engineering and synthetic biology strategies, providing a theoretical basis for microbial synthesis of other diterpenoids.
Collapse
Affiliation(s)
- Panpan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueke Bian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- *Correspondence: Wenyu Lu,
| |
Collapse
|
21
|
Biotechnological Approaches for Production of Artemisinin, an Anti-Malarial Drug from Artemisia annua L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093040. [PMID: 35566390 PMCID: PMC9103073 DOI: 10.3390/molecules27093040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Artemisinin is an anti-malarial sesquiterpene lactone derived from Artemisia annua L. (Asteraceae family). One of the most widely used modes of treatment for malaria is an artemisinin-based combination therapy. Artemisinin and its associated compounds have a variety of pharmacological qualities that have helped achieve economic prominence in recent years. So far, research on the biosynthesis of this bioactive metabolite has revealed that it is produced in glandular trichomes and that the genes responsible for its production must be overexpressed in order to meet demand. Using biotechnological applications such as tissue culture, genetic engineering, and bioreactor-based approaches would aid in the upregulation of artemisinin yield, which is needed for the future. The current review focuses on the tissue culture aspects of propagation of A. annua and production of artemisinin from A. annua L. cell and organ cultures. The review also focuses on elicitation strategies in cell and organ cultures, as well as artemisinin biosynthesis and metabolic engineering of biosynthetic genes in Artemisia and plant model systems.
Collapse
|
22
|
Aćimović M, Jeremić JS, Todosijević M, Kiprovski B, Vidović S, Vladić J, Pezo L. Comparative Study of the Essential Oil and Hydrosol Composition of Sweet Wormwood (Artemisia annua L.) from Serbia. Chem Biodivers 2022; 19:e202100954. [PMID: 35170197 DOI: 10.1002/cbdv.202100954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/27/2022] [Indexed: 01/13/2023]
Abstract
The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and β-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture.
Collapse
Affiliation(s)
- Milica Aćimović
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Jovana Stanković Jeremić
- University of Belgrade, Institute of Chemistry Technology and Metallurgy, Njegoševa 12, 11000, Belgrade, Serbia
| | - Marina Todosijević
- University of Belgrade, Faculty of Chemistry, Studentski trg 16, 11000, Belgrade, Serbia
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops Novi Sad, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Senka Vidović
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Jelena Vladić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000, Novi Sad, Serbia
| | - Lato Pezo
- University of Belgrade, Institute of General and Physical Chemistry, Studentski trg 12, 11000, Belgrade, Serbia
| |
Collapse
|
23
|
Dou J, Weathers P. Specialty molecules from plants and in vitro cultures as new drugs: regulatory considerations from flask to patient. PLANT CELL, TISSUE AND ORGAN CULTURE 2022; 149:105-111. [PMID: 35345535 PMCID: PMC8942155 DOI: 10.1007/s11240-022-02287-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 05/13/2023]
Abstract
Few therapeutic specialty molecules from in vitro cultures beyond paclitaxel have come to market and although other more complex products like ginseng have also appeared, success has been limited. Often it is not the science that is limiting, but rather regulatory issues that limit considerations of potential products mainly because of costs in getting the product to market. Here we discuss broader thinking of such specialty molecules in the form of dietary supplements, nutraceuticals, herbal medicines, botanical drugs, and pure molecules along with potential complex products from a regulatory standpoint and especially within the realm of approved botanical drugs, e.g., Veregen and Fulyzaq, that have new drug applications (NDAs). The United States food and drug administration (US FDA) regulatory categories are used to provide examples of alternative product options that could prove useful for taking specialty molecules to market.
Collapse
Affiliation(s)
- Jinhui Dou
- Jiangsu Tripod Preclinical Research Laboratories Co. LTD, Nanjing, China
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 USA
| |
Collapse
|
24
|
Artemisia annua Growing Wild in Romania—A Metabolite Profile Approach to Target a Drug Delivery System Based on Magnetite Nanoparticles. PLANTS 2021; 10:plants10112245. [PMID: 34834609 PMCID: PMC8623694 DOI: 10.3390/plants10112245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/27/2023]
Abstract
The metabolites profile of a plant is greatly influenced by geographical factors and the ecological environment. Various studies focused on artemisinin and its derivates for their antiparasitic and antitumoral effects. However, after the isolation and purification stage, their pharmaceutical potential is limited due to their low bioavailability, permeability and lifetime. The antibacterial activity of essential oils has been another topic of interest for many studies on this plant. Nevertheless, only a few studies investigate other metabolites in Artemisia annua. Considering that secondary metabolites act synergistically in a plant, the existence of other metabolites with antitumor and high immunomodulating activity is even more important. Novel nano-carrier systems obtained by loading herbs into magnetic nanoparticles ensures the increase in the antitumor effect, but also, overcoming the barriers related to permeability, localization. This study reported the first complete metabolic profile from wild grown Romanian Artemisia annua. A total of 103 metabolites were identified under mass spectra (MS) positive mode from 13 secondary metabolite categories: amino acids, terpenoids, steroids, coumarins, flavonoids, organic acids, fatty acids, phenolic acids, carbohydrates, glycosides, aldehydes, hydrocarbons, etc. In addition, the biological activity of each class of metabolites was discussed. We further developed a simple and inexpensive nano-carrier system with the intention to capitalize on the beneficial properties of both components. Evaluation of the nano-carrier system’s morpho-structural and magnetic properties was performed.
Collapse
|
25
|
Babos MB, Heinan M, Redmond L, Moiz F, Souza-Peres JV, Samuels V, Masimukku T, Hamilton D, Khalid M, Herscu P. Herb-Drug Interactions: Worlds Intersect with the Patient at the Center. MEDICINES (BASEL, SWITZERLAND) 2021; 8:44. [PMID: 34436223 PMCID: PMC8401017 DOI: 10.3390/medicines8080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
This review examines three bodies of literature related to herb-drug interactions: case reports, clinical studies, evaluations found in six drug interaction checking resources. The aim of the study is to examine the congruity of resources and to assess the degree to which case reports signal for further study. A qualitative review of case reports seeks to determine needs and perspectives of case report authors. Methods: Systematic search of Medline identified clinical studies and case reports of interacting herb-drug combinations. Interacting herb-drug pairs were searched in six drug interaction resources. Case reports were analyzed qualitatively for completeness and to identify underlying themes. Results: Ninety-nine case-report documents detailed 107 cases. Sixty-five clinical studies evaluated 93 mechanisms of interaction relevant to herbs reported in case studies, involving 30 different herbal products; 52.7% of these investigations offered evidence supporting reported reactions. Cohen's kappa found no agreement between any interaction checker and case report corpus. Case reports often lacked full information. Need for further information, attitudes about herbs and herb use, and strategies to reduce risk from interaction were three primary themes in the case report corpus. Conclusions: Reliable herb-drug information is needed, including open and respectful discussion with patients.
Collapse
Affiliation(s)
- Mary Beth Babos
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Michelle Heinan
- School of Medical Sciences, Lincoln Memoria University, Harrogate, TN 37752, USA;
| | - Linda Redmond
- Medical Center Long Term Care, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Fareeha Moiz
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Joao Victor Souza-Peres
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Valerie Samuels
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Tarun Masimukku
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | | | - Myra Khalid
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (F.M.); (J.V.S.-P.); (V.S.); (T.M.); (M.K.)
| | - Paul Herscu
- Research Division, Herscu Laboratory, Amherst, MA 01002, USA;
| |
Collapse
|
26
|
Naeem M, Aftab T, Ansari AA, Khan MMA. Carrageenan oligomers and salicylic acid act in tandem to escalate artemisinin production by suppressing arsenic uptake and oxidative stress in Artemisia annua (sweet wormwood) cultivated in high arsenic soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42706-42721. [PMID: 33818725 DOI: 10.1007/s11356-021-13241-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The present study is aimed to elucidate the effects of concomitant application of irradiated carrageenan (IC) oligomers and salicylic acid (SA) on Artemisia annua L. varieties, viz. "CIM-Arogya" (tolerant) and "Jeevan Raksha" (sensitive) exposed to arsenic (As) stress. Artemisia annua has been known for its sesqui-terpene molecule artemisinin, which is useful in curing malaria. The two compounds, IC and SA, have been established as effective plant growth-promoting molecules for several agricultural and horticultural crops. To test the stress tolerance providing efficacy of IC and SA, the characterization of various physiological and biochemical parameters, growth as well as yield attributes was done in the present experiment. A. annua plants were given various treatments viz. (i) Control (0) (ii) 45 mg As kg-1 of soil (iii) 80 mg L-1 IC+45 mg As kg-1 of soil (iv) 10-6 M SA+45 mg As kg-1 of soil (vi) 45 mg As kg-1 soil+80 mg L-1 IC+10-6 M SA. Plants of A. annua suffered from prominent injuries due to oxidative stress generated by As. At 90 and 120 days after planting (DAP), As toxicity was manifested in reduction of most of the studied growth parameters. However, antioxidant activities such as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were enhanced in As-stressed conditions and their activities were further enhanced in IC+SA-treated plants. Application of As significantly produced the highest artemisinin content and yield in "CIM-Arogya" over "Jeevan Raksha." Noticeably, the selected plant growth regulators (PGRs) (IC and SA) applied individually through foliage were found efficient, though, the concomitant effect of PGRs was much pronounced compared to their alone application in countering the toxicity of As. The interactive action of PGRs escalated the overall production (yield) of artemisinin (58.7% and 53.8%) in tolerant and sensitive varieties of A. annua in the presence of soil As. Conclusively, the concomitant application of IC and SA proved much effective and successful over their individual use in exploring the overall development of A. annua subjected to As stress.
Collapse
Affiliation(s)
- Muhammad Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abid Ali Ansari
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | |
Collapse
|
27
|
Structure, Distribution, Chemical Composition, and Gene Expression Pattern of Glandular Trichomes on the Leaves of Rhus potaninii Maxim. Int J Mol Sci 2021; 22:ijms22147312. [PMID: 34298931 PMCID: PMC8303848 DOI: 10.3390/ijms22147312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Rhus potaninii Maxim is an economically and medicinally important tree species in China. It produces galls (induced by aphids) with a high abundance of tannins. Here, we discuss the histology, cellular structures and their distribution, and the macromolecular components of secretive glandular trichomes on the leaves of R. potaninii. A variation in the density of glandular trichomes and tomenta was found between the adaxial and abaxial sides of a leaf in different regions and stages of the leaf. The glandular trichomes on R. potaninii trees comprise a stalk with no cellular structure and a head with 8-15 cells. Based on staining, we found that the secretion of glandular trichomes has many polysaccharides, phenolic compounds, and acidic lipids but very few neutral lipids. The dense glandular trichomes provide mechanical protection for young tissues; additionally, their secretion protects the young tissues from pathogens by a special chemical component. According to transcriptome analysis, we found enhanced biosynthetic and metabolism pathways of glycan, lipids, toxic amino acids, and phenylpropanoids. This shows a similar tendency to the staining. The numbers of differentially expressed genes were large or small; the averaged range of upregulated genes was greater than that of the downregulated genes in most subpathways. Some selectively expressed genes were found in glandular trichomes, responsible for the chitinase activity and pathogenesis-related proteins, which all have antibacterial activity and serve for plant defense. To our knowledge, this is the first study showing the components of the secretion from glandular trichomes on the leaf surface of R. potaninii.
Collapse
|
28
|
In Vivo Antimalarial Activity and Toxicity Study of Extracts of Tagetes erecta L. and Synedrella nodiflora (L.) Gaertn. from the Asteraceae Family. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1270902. [PMID: 34306134 PMCID: PMC8270710 DOI: 10.1155/2021/1270902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the antimalarial effects and toxicity of the extracts of the flowers of Tagetes erecta L. and the leaves of Synedrella nodiflora (L.) Gaertn. in a mouse model. Methods To determine the in vivo antimalarial activity of the extracts, mice were intraperitoneally injected with the Plasmodium berghei ANKA strain and then administered T. erecta or S. nodiflora extract daily for 4 days. Parasitemia was observed by light microscopy. For the detection of acute toxicity, the mice received a single dose of T. erecta or S. nodiflora extract and were observed for 14 days. Biochemical parameters of liver and kidney function and the histopathology of liver and kidney tissues of the acute toxicity group were then examined. Results T. erecta and S. nodiflora crude extracts at a dose of 600 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 65.65% and 62.65%, respectively. Mice treated with 400 mg/kg T. erecta and S. nodiflora crude extracts showed 50.82% and 57.67% suppression, and mice treated with 200 mg/kg displayed 26.33% and 38.57% suppression, respectively. Additionally, no symptoms of acute toxicity were observed in the T. erecta- and S. nodiflora-treated groups. Moreover, no significant alterations in the biochemical parameters of liver and kidney function and no histological changes in the liver or kidney tissues were observed. Conclusions This study revealed that both T. erecta and S. nodiflora extracts have antimalarial properties in vivo with less toxic effects. Further studies are needed to elucidate the mechanisms of the active compounds from both plants.
Collapse
|
29
|
Ekiert H, Świątkowska J, Klin P, Rzepiela A, Szopa A. Artemisia annua - Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications. PLANTA MEDICA 2021; 87:584-599. [PMID: 33482666 DOI: 10.1055/a-1345-9528] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Artemisia annua (annual mugwort) is a species that has long been used in traditional Asian medicine, mainly Chinese and Hindu. The species is widespread and known as a medicinal plant not only in Asia but also in Europe, in both Americas, and Australia. The species has become a subject of particular interest due to the 2015 Nobel Prize awarded for detecting the sesquiterpene lactone artemisinin in it and proving its antimalarial activities. The raw materials obtained from this species are Artemisiae annuae folium and Artemisiae annuae herba. The leaves are a raw material in the Chinese Pharmacopoeia and Vietnamese Pharmacopoeia. Both raw materials are in the International Pharmacopoeia published by the WHO. The main components of these raw materials are mainly specific sesquiterpene lactones, essential oil, flavonoids, coumarins, and phenolic acids. In traditional Asian medicine, the species is used, for example, in the treatment of jaundice and bacterial dysentery, as an antipyretic agent in malaria and tuberculosis, in the treatment of wounds and haemorrhoids, and in viral, bacterial, and autoimmune diseases. Professional pharmacological studies conducted today have confirmed its known traditional applications and explain previously unknown mechanisms of its biological action and have also found evidence of new directions of biological activity, including, among others, anti-inflammatory, analgesic, antioxidant, antitumour, and nephroprotective activities. The species is of growing importance in the cosmetics industry.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Joanna Świątkowska
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| | - Paweł Klin
- Family Medicine Clinic, Medizinisches Versorgungszentrum (MVZ) Burgbernheim GmbH, Burgbernheim, Germany
| | - Agnieszka Rzepiela
- Museum of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Kraków, Poland
| |
Collapse
|
30
|
Nair MS, Huang Y, Fidock DA, Polyak SJ, Wagoner J, Towler MJ, Weathers PJ. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114016. [PMID: 33716085 PMCID: PMC7952131 DOI: 10.1016/j.jep.2021.114016] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. has been used for millennia in Southeast Asia to treat "fever". Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. AIM OF THE STUDY SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. MATERIALS AND METHODS Using Vero E6 and Calu-3 cells, we measured anti SARS-CoV-2 activity against fully infectious virus of dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as the concentrations that inhibited viral replication by 50%; CC50s were also calculated and defined as the concentrations that kill 50% of cells. RESULTS Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μM, 0.01-0.14 μg, and 23.4-57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet its hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. CONCLUSIONS A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- M S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Y Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - D A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - S J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - J Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - M J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - P J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
31
|
Elfawal MA, Gray O, Dickson-Burke C, Weathers PJ, Rich SM. Artemisia annua and artemisinins are ineffective against human Babesia microti and six Candida sp. LONGHUA CHINESE MEDICINE 2021; 4:12. [PMID: 34316676 PMCID: PMC8312716 DOI: 10.21037/lcm-21-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Artemisia annua L.is a well-established medicinal herb used for millennia to treat parasites and fever-related ailments caused by various microbes. Although effective against many infectious agents, the plant is not a miracle cure and there are infections where it has proved ineffective or limited. It is important to report those failures. METHODS Here artemisinin, artesunate and dried leaf slurries of A. annua were used daily for 6 days in vivo against Babesia microti in mice 2 days post infection at 100 µg artemisinin/kg body weight. Parasitemia was measure before and 15 days days post treatment. Artemisinin and extracts of A. annua also were tested in vitro against six Candida sp. at artemisinin concentrations up to 180 µM and growth measured after cultures were fed drugs once at different stages of growth and also after repeated dosing. RESULTS A. annua, artesunate, and artemisinin were ineffective in reducing or eliminating parasitemia in B. microti-infected mice treated at 100 µg artemisinin/kg body weight. Although the growth of exponential cultures of many of the tested Candida sp. was inhibited, the response was not sustained and both artemisinin and Artemisia were essentially ineffective at concentrations of artemisinin at up to 180 µM of artemisinin. CONCLUSIONS Together these results show that artemisinin, its derivatives, and A. annua are ineffective against B. microti and at least six species of Candida.
Collapse
Affiliation(s)
- Mostafa A. Elfawal
- Laboratory of Medical Zoology, Department of Microbiology, University Massachusetts, Amherst, MA, USA
| | - Olivia Gray
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Claire Dickson-Burke
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Pamela J. Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Stephen M. Rich
- Laboratory of Medical Zoology, Department of Microbiology, University Massachusetts, Amherst, MA, USA
| |
Collapse
|
32
|
Guan R, Van Le Q, Yang H, Zhang D, Gu H, Yang Y, Sonne C, Lam SS, Zhong J, Jianguang Z, Liu R, Peng W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. CHEMOSPHERE 2021; 271:129499. [PMID: 33445014 DOI: 10.1016/j.chemosphere.2020.129499] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Phytochemicals refer to active substances in plant-based diets. Phytochemicals found in for example fruits, vegetables, grains and seed oils are considered relatively safe for consumption due to mammal-plant co-evolution and adaptation. A number of human diseases are related to oxidative stress caused by for example chemical environmental contaminants in air, water and food; while also lifestyle including smoking and lack of exercise and dietary preferences are important factors for disease development in humans. Here we explore the dietary sources of antioxidant phytochemicals that have beneficial effects on oxidative stress, cardiovascular and neurological diseases as well as cancer. Plant-based diets usually contain phenolic acids, flavonoids and carotenoids, which have strong antioxidant properties, and therefore remove the excess of active oxygen in the body, and protect cells from damage, reducing the risk of cardiovascular and Alzheimer's disease. In most cases, obesity is related to diet and inactivity and plant-based diets change lipid composition and metabolism, which reduce obesity related hazards. Cruciferous and Allium vegetables are rich in organic sulphides that can act on the metabolism of carcinogens and therefore used as anti-cancer and suppressing agents while dietary fibres and plant sterols may improve intestinal health and prevent intestinal diseases. Thus, we recommend a diet rich in fruits, vegetables, and grains as its content of phytochemicals may have the potential to prevent or improve a broad sweep of various diseases.
Collapse
Affiliation(s)
- Ruirui Guan
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiateng Zhong
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zhu Jianguang
- Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, China
| | - Runqiang Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
33
|
Vigneshwari A, Erdenebileg S, Fujkin K, Csupor D, Hohmann J, Papp T, Vágvölgyi C, Szekeres A. Revealing of biodiversity and antimicrobial effects of Artemisia asiatica endophytes. ACTA BIOLOGICA SZEGEDIENSIS 2021; 64:111-119. [DOI: 10.14232/abs.2020.2.111-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endophytic fungi produce a plethora of secondary metabolites, which may open new avenues to study their applicability in pharmaceuticals. Therefore, the present study focuses on the fungal endophytic community of Artemisia asiatica. During our work, fungal endophytes were isolated from a medicinal plant, A. asiatica. The culturable endophytic fungi were identified using molecular techniques and biodiversity, richness and tissue specificity were examined. As these microorganisms have been generally identified as an abundant reservoir of novel antimicrobial compounds, the antimicrobial (i.e. antibacterial and antifungal) activities of the metabolites produced by the isolated fungi were studied. Numerous extracts containing the endophytic metabolites proved to be active against the applied test microorganisms including Gram-positive and Gram-negative bacteria, as well as yeasts and filamentous fungi, which can be examined in detail in the future and, based on the the chemical nature of these active metabolites, allow to discover novel bioactive metabolites.
Collapse
Affiliation(s)
- Aruna Vigneshwari
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
| | - Saruul Erdenebileg
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
| | - Kata Fujkin
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
| | - Dezső Csupor
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged
| | - Judit Hohmann
- Department of Pharmacognosy, Faculty of Pharmacy, University of Szeged
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
- MTA-SZTE Fungal Pathogenicity Mechanisms Research Group, Hungarian Academy of Sciences - University of Szeged
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
| |
Collapse
|
34
|
Nair M, Huang Y, Fidock D, Polyak S, Wagoner J, Towler M, Weathers P. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.08.425825. [PMID: 33442683 PMCID: PMC7805440 DOI: 10.1101/2021.01.08.425825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. has been used for millennia in Southeast Asia to treat "fever". Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. AIM OF THE STUDY SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. MATERIALS AND METHODS Using Vero E6 and Calu-3 cells, we measured anti viral activity SARS-CoV-2 activity against fully infectious virusof dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as (the concentrations that inhibited viral replication by 50%.) and CC50s (the concentrations that kill 50% of cells) were calculated. RESULTS Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μM, 0.01-0.14 μg, and 23.4-57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet the hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. CONCLUSIONS A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- M.S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Y. Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - D.A. Fidock
- Department of Microbiology and Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - S.J. Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104
| | - J. Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104
| | - M.J. Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - P.J. Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
35
|
Dolivo D, Weathers P, Dominko T. Artemisinin and artemisinin derivatives as anti-fibrotic therapeutics. Acta Pharm Sin B 2021; 11:322-339. [PMID: 33643815 PMCID: PMC7893118 DOI: 10.1016/j.apsb.2020.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a pathological reparative process that can occur in most organs and is responsible for nearly half of deaths in the developed world. Despite considerable research, few therapies have proven effective and been approved clinically for treatment of fibrosis. Artemisinin compounds are best known as antimalarial therapeutics, but they also demonstrate antiparasitic, antibacterial, anticancer, and anti-fibrotic effects. Here we summarize literature describing anti-fibrotic effects of artemisinin compounds in in vivo and in vitro models of tissue fibrosis, and we describe the likely mechanisms by which artemisinin compounds appear to inhibit cellular and tissue processes that lead to fibrosis. To consider alternative routes of administration of artemisinin for treatment of internal organ fibrosis, we also discuss the potential for more direct oral delivery of Artemisia plant material to enhance bioavailability and efficacy of artemisinin compared to administration of purified artemisinin drugs at comparable doses. It is our hope that greater understanding of the broad anti-fibrotic effects of artemisinin drugs will enable and promote their use as therapeutics for treatment of fibrotic diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AMPK, AMP-activated protein kinase
- ASP, aspartate aminotransferase
- Artemisia
- Artemisinin
- Artesunate
- BAD, BCL-2-associated agonist of cell death
- BDL, bile duct ligation
- BSA, bovine serum albumin
- BUN, blood urea nitrogen
- CCl4, carbon tetrachloride
- CTGF, connective tissue growth factor
- Col I, type I collagen
- DHA, dihydroartemisinin
- DLA, dried leaf Artemisia
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- FLS, fibroblast-like synoviocyte
- Fibroblast
- Fibrosis
- HA, hyaluronic acid
- HSC, hepatic stellate cell
- HUVEC, human umbilical vein endothelial cell
- LAP, latency-associated peptide
- LDH, lactate dehydrogenase
- MAPK, mitogen-activated protein kinase
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- Myofibroblast
- NAG, N-acetyl-β-d-glucosaminidase
- NICD, Notch intracellular domain
- PCNA, proliferating cell nuclear antigen
- PHN, passive heymann nephritis
- ROS, reactive oxygen species
- STZ, streptozotocin
- Scar
- TGF, β-transforming growth factor-β
- TGF-β
- TIMP, tissue inhibitor of metalloproteinase
- UUO, unilateral ureteral obstruction
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- sCr, serum creatinine
- α-SMA, smooth muscle α-actin
Collapse
Affiliation(s)
- David Dolivo
- Department of Surgery, Northwestern University-Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pamela Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
36
|
Navale GR, Dharne MS, Shinde SS. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:457-475. [PMID: 33394155 DOI: 10.1007/s00253-020-11040-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Isoprenoids, often called terpenoids, are the most abundant and highly diverse family of natural organic compounds. In plants, they play a distinct role in the form of photosynthetic pigments, hormones, electron carrier, structural components of membrane, and defence. Many isoprenoids have useful applications in the pharmaceutical, nutraceutical, and chemical industries. They are synthesized by various isoprenoid synthase enzymes by several consecutive steps. Recent advancement in metabolic engineering and synthetic biology has enabled the production of these isoprenoids in the heterologous host systems like Escherichia coli and Saccharomyces cerevisiae. Both heterologous systems have been engineered for large-scale production of value-added isoprenoids. This review article will provide the detailed description of various approaches used for engineering of methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) pathway for synthesizing isoprene units (C5) and ultimate production of diverse isoprenoids. The review particularly highlighted the efforts taken for the production of C5-C20 isoprenoids by metabolic engineering techniques in E. coli and S. cerevisiae over a decade. The challenges and strategies are also discussed in detail for scale-up and engineering of isoprenoids in the heterologous host systems.Key points• Isoprenoids are beneficial and valuable natural products.• E. coli and S. cerevisiae are the promising host for isoprenoid biosynthesis.• Emerging techniques in synthetic biology enabled the improved production.• Need to expand the catalogue and scale-up of un-engineered isoprenoids. Metabolic engineering and synthetic biology for isoprenoid production in Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Govinda R Navale
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 001, India.
| | - Sandip S Shinde
- NCIM Resource Centre, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India. .,Department Industrial and Chemical Engineering, Institute of Chemical Technology Mumbai Marathwada Campus, Jalna, 431213, India.
| |
Collapse
|
37
|
Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res 2021; 44:439-474. [PMID: 33893998 PMCID: PMC8067791 DOI: 10.1007/s12272-021-01328-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023]
Abstract
Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.
Collapse
|
38
|
Boncan DAT, Tsang SS, Li C, Lee IH, Lam HM, Chan TF, Hui JH. Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. Int J Mol Sci 2020; 21:E7382. [PMID: 33036280 PMCID: PMC7583029 DOI: 10.3390/ijms21197382] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
The interactions of plants with environment and insects are bi-directional and dynamic. Consequently, a myriad of mechanisms has evolved to engage organisms in different types of interactions. These interactions can be mediated by allelochemicals known as volatile organic compounds (VOCs) which include volatile terpenes (VTs). The emission of VTs provides a way for plants to communicate with the environment, including neighboring plants, beneficiaries (e.g., pollinators, seed dispersers), predators, parasitoids, and herbivores, by sending enticing or deterring signals. Understanding terpenoid distribution, biogenesis, and function provides an opportunity for the design and implementation of effective and efficient environmental calamity and pest management strategies. This review provides an overview of plant-environment and plant-insect interactions in the context of terpenes and terpenoids as important chemical mediators of these abiotic and biotic interactions.
Collapse
Affiliation(s)
- Delbert Almerick T. Boncan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Stacey S.K. Tsang
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| | - Ivy H.T. Lee
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| | - Hon-Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jerome H.L. Hui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Simon F.S. Li Marine Science Laboratory, The Chinese University of Hong Kong, Shatin, Hong Kong; (S.S.K.T.); (C.L.); (I.H.T.L.)
| |
Collapse
|
39
|
Drug Delivery Systems of Natural Products in Oncology. Molecules 2020; 25:molecules25194560. [PMID: 33036240 PMCID: PMC7582809 DOI: 10.3390/molecules25194560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, increasing interest in the use of natural products in anticancer therapy field has been observed, mainly due to unsolved drug-resistance problems. The antitumoral effect of natural compounds involving different signaling pathways and cellular mechanisms has been largely demonstrated in in vitro and in vivo studies. The encapsulation of natural products into different delivery systems may lead to a significant enhancement of their anticancer efficacy by increasing in vivo stability and bioavailability, reducing side adverse effects and improving target-specific activity. This review will focus on research studies related to nanostructured systems containing natural compounds for new drug delivery tools in anticancer therapies.
Collapse
|
40
|
Naeem M, Sadiq Y, Jahan A, Nabi A, Aftab T, Khan MMA. Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110851. [PMID: 32673966 DOI: 10.1016/j.ecoenv.2020.110851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a harmful and toxic substance to the growth and development of plants. Salicylic acid (SA) acts as a signaling molecule, plays pivotal roles in the overall growth and development of plants under various environmental stresses. Artemisinin extracted from the leaves of A. annua helps in malarial treatment. The present investigation is aimed to find out the possible ameliorative role of exogenously-applied salicylic acid (SA) on two varieties of Artemisia annua L., namely 'CIM-Arogya' and 'Jeevan Raksha' under arsenic (As) stress conditions. For this, growth, physiological and biochemical characterization, and artemisinin production was assessed. The various treatments applied on the plants were Control, 10-6 M SA, 10-5 M SA, 45 mg kg-1As, 45 mg kg-1 As + 10-6 M SA, and 45 mg kg-1 As + 10-5 M SA. Arsenic at 45 mg kg-1 of soil, reducing the overall performance of both varieties at 90 and 120 DAP. However, the levels of antioxidants were enhanced in As-stressed plants, and the supplementation of SA further increased these antioxidants in SA-treated plants. It has been observed that minimum reduction in growth and yield occurs with enhanced production of artemisinin in the case of 'CIM-Arogya' compared to 'Jeevan Raksha' under As stress (45 mg kg-1 of soil). Leaf-applied SA significantly increased the content (49.0% & 43.4%) and yield (53.3% & 46.3%) of artemisinin in both tolerant and sensitive varieties as compared to their respective controls. Thus, the variety 'CIM-Arogya' showed tolerant behavior over 'Jeevan Raksha' and is much adapted to higher As stress.
Collapse
Affiliation(s)
- M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| | - Yawar Sadiq
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Ajmat Jahan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| |
Collapse
|
41
|
Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. CRYSTALS 2020. [DOI: 10.3390/cryst10090800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, a plethora of extraction processes have been performed by a novel class of green solvents known as deep eutectic solvents (DESs), possessing several environmental, operational, and economic advantages proven by experience when compared to organic solvents and ionic liquids. The present review provides an organized overview of the use of DESs as extraction agents for the recovery of valuable substances and compounds from the original plant biomass, waste from its processing, and waste from the production and consumption of plant-based food. For the sake of simplicity and speed of orientation, the data are, as far as possible, arranged in a table in alphabetical order of the extracted substances. However, in some cases, the isolation of several substances is described in one paper and they are, therefore, listed together. The table further contains a description of the extracted phytomass, DES composition, extraction conditions, and literature sources. With regard to extracted value-added substances, this review addresses their pharmacological, therapeutic, and nutritional aspects. The review also includes an evaluation of the possibilities and limitations of using DESs to obtain value-added substances from phytomass.
Collapse
|
42
|
Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, Hoarau L, Savriama S, Strasberg D, Guiraud P, Selambarom J, Gasque P. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci 2020; 21:E4986. [PMID: 32679734 PMCID: PMC7404215 DOI: 10.3390/ijms21144986] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Mahary Lalarizo Rakoto
- Faculté de Médecine, Université d’Antananarivo, Campus Universitaire Ambohitsaina, BP 375, Antananarivo 101, Madagascar;
| | - Claude Marodon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Yosra Bedoui
- INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint Denis de La Réunion, France;
| | - Jessica Nakab
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Elisabeth Simon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Ludovic Hoarau
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Stephane Savriama
- EA929 Archéologie Industrielle, Histoire, Patrimoine/Géographie-Développement Environnement de la Caraïbe (AIHP-GEODE), Université des Antilles, Campus Schoelcher, BP7207, 97275 Schoelcher Cedex Martinique, France;
| | - Dominique Strasberg
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (PVBMT), Pôle de Protection des Plantes, Université de La Réunion, 7 Chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France;
| | - Pascale Guiraud
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Jimmy Selambarom
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Philippe Gasque
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
43
|
Domokos E, Bíró-Janka B, Bálint J, Molnár K, Fazakas C, Jakab-Farkas L, Domokos J, Albert C, Mara G, Balog A. Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Influences Artemisia annua Plant Parameters and Artemisinin Content under Different Soil Types and Cultivation Methods. Microorganisms 2020; 8:E899. [PMID: 32549234 PMCID: PMC7356791 DOI: 10.3390/microorganisms8060899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Artemisinin extracted from Artemisia annua has been used efficiently in malaria treatment since 2005. In this study, the variations in plant parameters (plant biomass, glandular trichome density, essential oil total chemical content, artemisinin production, and polyphenol oxidase (PPO) activity) were tested under different soil types (Luvisol, Gleysol, Anthrosol and sterile peat) and cultivation conditions (potted plants in semi-open field, and open field experiments) for plants inoculated with arbuscular mycorrhizal fungus (AMF) Rizophagus irregularis. Under semi-open field conditions, the AMF colonization of A. annua plant roots varied, and presented the highest percentage in Luvisol and sterile peat. The increase in the root colonization rate positively influenced some plant parameters (biomass, glandular trichome density, artemisinin concentration, essential oil quantity and composition), but no effects on PPO enzyme activity were detected. AMF fungus R. irregularis significantly increased the artemisinin content and essential oil yield of plants cultivated in Luvisol, Gleysol, Anthrosol and in peat. These soil types can offer appropriate conditions for A. annua cultivation and artemisinin production even on a smaller scale. Under open field conditions, low (about 5%) AMF colonization was observed. No differences in artemisin contents were detected, but essential oil yield significantly increased compared to control plants. AMF treatment increased beta-farnesene and germacrene D concentrations in Artemisia plants in the open field experiment.
Collapse
Affiliation(s)
- Erzsébet Domokos
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - Béla Bíró-Janka
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - János Bálint
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - Katalin Molnár
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - Csaba Fazakas
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| | - László Jakab-Farkas
- Department of Mechanical Engineering, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania;
| | - József Domokos
- Department of Electrical Engineering, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania;
| | - Csilla Albert
- Department of Food Science, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Gyöngyvér Mara
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania;
| | - Adalbert Balog
- Department of Horticulture, Sapientia Hungarian University of Transylvania, Sighisoarei Street 1/C, 540485 Târgu Mureș, Romania; (B.B.-J.); (J.B.); (K.M.); (C.F.)
| |
Collapse
|
44
|
Hassani D, Fu X, Shen Q, Khalid M, Rose JKC, Tang K. Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:466-476. [PMID: 32304658 DOI: 10.1016/j.tplants.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Plants regulate the synthesis of specialized compounds through the actions of individual transcription factors (TFs) or sets of TFs. One such compound, artemisinin from Artemisia annua, is widely used as a pharmacological product in the first-line treatment of malaria. However, the emergence of resistance to artemisinin in Plasmodium species, as well as its low production rates, have required innovative treatments such as exploiting the synergistic effects of flavonoids with artemisinin. We overview current knowledge about flavonoid and artemisinin transcriptional regulation in A. annua, and review the dual action of TFs and structural genes that can regulate both pathways simultaneously. Understanding the concerted action of these TFs and their associated structural genes can guide the development of strategies to further improve flavonoid and artemisinin production.
Collapse
Affiliation(s)
- Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China
| | - Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China.
| |
Collapse
|
45
|
Naeem M, Nabi A, Aftab T, Khan MMA. Oligomers of carrageenan regulate functional activities and artemisinin production in Artemisia annua L. exposed to arsenic stress. PROTOPLASMA 2020; 257:871-887. [PMID: 31873815 DOI: 10.1007/s00709-019-01475-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Recently, a promising technique has come forward in field of radiation-agriculture in which the natural polysaccharides are modified into useful oligomers after depolymerization. Ionizing radiation technology is a simple, pioneering, eco-friendly, and single step degradation process which is used in exploiting the efficiency of the natural polysaccharides as plant growth promoters. Arsenic (As) is a noxious and toxic to growth and development of medicinal plants. Artemisinin is obtained from the leaves of Artemisia annua L., which is effective in the treatment of malaria. The present study was undertaken to find out possible role of oligomers of irradiated carrageenan (IC) on two varieties viz. 'CIM-Arogya' (As-tolerant) and 'Jeevan Raksha' (As-sensitive) of A. annua exposed to As. The treatments applied were 0 (control), 40 IC (40 mg L-1 IC), 80 IC (80 mg L-1 IC), 45 As (45 mg kg-1 soil As), 40 IC + 45 As (40 mg L-1 IC + 45 mg kg-1 soil As), and 80 IC + 45 As (80 mg L-1 IC + 45 mg kg-1 soil As). The present study was based on various parameters namely plant fresh weight (FW), dry weight (DW), leaf area index (LAI), leaf yield (LY), chlorophyll and carotenoid content, net photosynthetic rate (PN), stomatal conductance (Gs), carbonic anhydrase activity (CA), proline content (PRO), lipid peroxidation (TBARS), endogenous ROS production (H2O2 content), catalase activity (CAT), peroxidase activity (POX), superoxide dismutase activity (SOD), ascorbate peroxidase activity (APX), As content, and artemisinin content in leaves. Plant growth and other physiological and biochemical parameters including enzymatic activities, photosynthetic activity, and its related pigments were negatively affected under As stress. Leaf-applied IC overcame oxidative stress generated due to As in plants by activating antioxidant machinery. Interestingly, leaf-applied IC enhanced the production (content and yield) of artemisinin under high As stress regardless of varieties. The oligomers of IC and As were found to be responsible for the production of endogenous H2O2 which has a pivotal role in the biosynthesis of artemisinin in A. annua.
Collapse
Affiliation(s)
- M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
46
|
Desrosiers MR, Mittleman A, Weathers PJ. Dried Leaf Artemisia Annua Improves Bioavailability of Artemisinin via Cytochrome P450 Inhibition and Enhances Artemisinin Efficacy Downstream. Biomolecules 2020; 10:E254. [PMID: 32046156 PMCID: PMC7072484 DOI: 10.3390/biom10020254] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Artemisia annua L. and artemisinin, have been used for millennia to treat malaria. We used human liver microsomes (HLM) and rats to compare hepatic metabolism, tissue distribution, and inflammation attenuation by dried leaves of A. annua (DLA) and pure artemisinin. For HLM assays, extracts, teas, and phytochemicals from DLA were tested and IC50 values for CYP2B6 and CYP3A4 were measured. For tissue distribution studies, artemisinin or DLA was orally delivered to rats, tissues harvested at 1 h, and blood, urine and feces over 8 h; all were analyzed for artemisinin and deoxyartemisinin by GC-MS. For inflammation, rats received an intraperitoneal injection of water or lipopolysaccharide (LPS) and 70 mg/kg oral artemisinin as pure drug or DLA. Serum was collected over 8 h and analyzed by ELISA for TNF-α, IL-6, and IL-10. DLA-delivered artemisinin distributed to tissues in higher concentrations in vivo, but elimination remained mostly unchanged. This seemed to be due to inhibition of first-pass metabolism by DLA phytochemicals, as demonstrated by HLM assays of DLA extracts, teas and phytochemicals. DLA was more effective than artemisinin in males at attenuating proinflammatory cytokine production; the data were less conclusive in females. These results suggest that the oral consumption of artemisinin as DLA enhances the bioavailability and anti-inflammatory potency of artemisinin.
Collapse
Affiliation(s)
- Matthew R. Desrosiers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA;
| | - Alexis Mittleman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA;
| | - Pamela J. Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA;
| |
Collapse
|
47
|
Synergistic Mechanisms of Constituents in Herbal Extracts during Intestinal Absorption: Focus on Natural Occurring Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020128. [PMID: 32028739 PMCID: PMC7076514 DOI: 10.3390/pharmaceutics12020128] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
The systematic separation strategy has long and widely been applied in the research and development of herbal medicines. However, the pharmacological effects of many bioactive constituents are much weaker than those of the corresponding herbal extracts. Thus, there is a consensus that purer herbal extracts are sometimes less effective. Pharmacological loss of purified constituents is closely associated with their significantly reduced intestinal absorption after oral administration. In this review, pharmacokinetic synergies among constituents in herbal extracts during intestinal absorption were systematically summarized to broaden the general understanding of the pharmaceutical nature of herbal medicines. Briefly, some coexisting constituents including plant-produced primary and secondary metabolites, promote the intestinal absorption of active constituents by improving solubility, inhibiting first-pass elimination mediated by drug-metabolizing enzymes or drug transporters, increasing the membrane permeability of enterocytes, and reversibly opening the paracellular tight junction between enterocytes. Moreover, some coexisting constituents change the forms of bioactive constituents via mechanisms including the formation of natural nanoparticles. This review will focus on explaining this new synergistic mechanism. Thus, herbal extracts can be considered mixtures of bioactive compounds and pharmacokinetic synergists. This review may provide ideas and strategies for further research and development of herbal medicines.
Collapse
|
48
|
Gruessner BM, Cornet-Vernet L, Desrosiers MR, Lutgen P, Towler MJ, Weathers PJ. It is not just artemisinin: Artemisia sp. for treating diseases including malaria and schistosomiasis. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2019; 18:1509-1527. [PMID: 33911989 PMCID: PMC8078015 DOI: 10.1007/s11101-019-09645-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/11/2019] [Indexed: 05/13/2023]
Abstract
Artemisia sp., especially A. annua and A. afra, have been used for centuries to treat many ailments. While artemisinin is the main therapeutically active component, emerging evidence demonstrates that the other phytochemicals in this genus are also therapeutically active. Those compounds include flavonoids, other terpenes, coumarins, and phenolic acids. Artemisia sp. phytochemicals also improve bioavailability of artemisinin and synergistically improve artemisinin therapeutic efficacy, especially when delivered as dried leaf Artemisia as a tea infusion or as powdered dry leaves in a capsule or compressed into a tablet. Here results from in vitro, and in vivo animal and human studies are summarized and critically discussed for mainly malaria, but also other diseases susceptible to artemisinin and Artemisia sp. including schistosomiasis, leishmaniasis, and trypanosomiasis.
Collapse
Affiliation(s)
- B M Gruessner
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | | | - M R Desrosiers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - P Lutgen
- IFVB-BELHERB, Niederanven, Luxembourg
| | - M J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - P J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
49
|
Identification of a potent and selective gametocytocidal antimalarial agent from the stem barks of Lophira lanceolata. Bioorg Chem 2019; 93:103321. [PMID: 31585261 DOI: 10.1016/j.bioorg.2019.103321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
Abstract
Bioassay-guided fractionation of the organic extract obtained from stem barks of the African plant Lophira lanceolata has led to the isolation of seven biflavonoids, including the new α'-chlorolophirone E (5) and 5'-chlorolophirone D (6). Among the isolated compounds, the bichalcone lophirone E was identified as a potent gametocytocidal agent with an IC50 value in the nanomolar range and negligible cytotoxicity (selectivity index = 570). Lophirone E proved to be about 100 times more active against P. falciparum stage V gametocytes than on asexual blood stages, thus exhibiting a unique stage-specific activity profile. The isolation of structural analogues allowed to draw preliminary structure-activity relationships, identifying the critical positions on the chemical scaffold of lophirone E.
Collapse
|
50
|
Wang S, Cai T, Liu H, Yang A, Xing J. Liquid chromatography-tandem mass spectrometry assay for the simultaneous determination of three major flavonoids and their glucuronidated metabolites in rats after oral administration of Artemisia annua L. extract at a therapeutic ultra-low dose. J Sep Sci 2019; 42:3330-3339. [PMID: 31483950 DOI: 10.1002/jssc.201900668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/07/2019] [Accepted: 09/02/2019] [Indexed: 01/25/2023]
Abstract
The traditional antimalarial herb Artemisia annua L., from which artemisinin is isolated, is widely used in endemic regions. It has been suggested that artemisinin activity can be enhanced by flavonoids in A. annua; however, how fast and how long the flavonoids are present in the body remains unknown. In the present study, a rapid and sensitive liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of three major flavonoids components, i.e. chrysosplenol D, chrysoplenetin, and artemetin and their glucuronidated metabolites in rats after oral administrations of A. annua extracts at a therapeutic ultra-low dose. The concentration of the intact form was determined directly, and the concentration of the glucuronidated form was assayed in the form of flavonoids aglycones, after treatment with β-glucuronidase/sulfatase. The method was linear in the range of 0.5-300.0 ng/mL for chrysoplenetin and artemetin, and 2-600 ng/mL for chrysosplenol D. All the validation data conformed to the acceptance requirements. The study revealed a significantly higher exposure of the flavonoid constituents in conjugated forms in rats, with only trace intact from. Multiple oral doses of A. annua extracts led to a decreased plasma concentration levels for three flavonoids.
Collapse
Affiliation(s)
- Shuqi Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Tianyu Cai
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Aijuan Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| |
Collapse
|