1
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
2
|
Wen Z, Conville J, Matthews P, Hootman T, Himes J, Wong S, Huang F, Ni X, Chen JS, Bramlett M. More than 10 years after commercialization, Vip3A-expressing MIR162 remains highly efficacious in controlling major Lepidopteran maize pests: laboratory resistance selection versus field reality. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105385. [PMID: 37105627 DOI: 10.1016/j.pestbp.2023.105385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
MIR162, a maize event that expresses Vip3Aa20 (Vip3A) approved for commercial cultivation around 2010, has been excellent for control of major Lepidopteran pests. However, development of fall armyworm (FAW) resistance to Vip3A is a serious concern. Resistant colonies selected in the laboratory can serve as valuable tools not only for better understanding of Vip3A's mode of action (MOA) and mechanism of resistance (MOR) but also for screening novel leads of new MOA that will help control FAW in case resistance to Vip3A in the field becomes a reality. We selected a Vip3A-resistant FAW strain, FAWVip3AR, by subjecting a FAW founder population containing field genetics to Vip3A exposure. FAWVip3AR had >9800-fold resistance to Vip3A by diet surface overlay bioassays and resistance was stable. Feeding bioassays using detached leaf tissues or whole plants indicated that FAWVip3AR larvae readily fed and completed the full life cycle on Vip3A-expressing MIR162 maize plants and leaf tissues that killed 100% of susceptible larvae. Yet, FAWVip3AR faced at least two challenges. First, FAWVip3AR suffered an apparent disadvantage (incomplete resistance) when feeding on MIR162 in comparison to FAWVip3AR feeding on Vip3A-free isoline AX5707 maize; and second, FAWVip3AR showed a fitness costs in comparison to a Vip3A-susceptible strain when both fed on AX5707. We also demonstrated that, >10 years after commercialization, MIR162 and Vip3A remain highly efficacious against field populations of three major Lepidopteran pests from different geographic locations and FAW strains resistant to other Bacillus thuringiensis (Bt) toxins that are currently on the market.
Collapse
Affiliation(s)
- Zhimou Wen
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA.
| | - Jared Conville
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Phillip Matthews
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Travis Hootman
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Jo Himes
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Sarah Wong
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Fangneng Huang
- Department of Entomology, Louisianan State University AgCenter, Baton Rouge, LA 70803, USA
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA 31793, USA
| | - Jeng Shong Chen
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Matthew Bramlett
- Syngenta Crop Protection, LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Jin L, Zhang BW, Lu JW, Liao JA, Zhu QJ, Lin Y, Yu XQ. The mechanism of Cry41-related toxin against Myzus persicae based on its interaction with Buchnera-derived ATP-dependent 6-phosphofructokinase. PEST MANAGEMENT SCIENCE 2023; 79:1684-1691. [PMID: 36602054 DOI: 10.1002/ps.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 μg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 μg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Jin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Bin-Wu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing-Wen Lu
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jun-Ao Liao
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Qi-Jun Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Feng Y, Wang X, Du T, Shu Y, Tan F, Wang J. Effects of Exogenous Salicylic Acid Application to Aboveground Part on the Defense Responses in Bt (Bacillus thuringiensis) and Non-Bt Corn (Zea mays L.) Seedlings. PLANTS 2022; 11:plants11162162. [PMID: 36015465 PMCID: PMC9416209 DOI: 10.3390/plants11162162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Bt (Bacillus thuringiensis) corn is one of the top three large-scale commercialized anti-insect transgenic crops around the world. In the present study, we tested the Bt protein content, defense chemicals contents, and defense enzyme activities in both the leaves and roots of Bt corn varieties 5422Bt1 and 5422CBCL, as well as their conventional corn 5422 seedlings, with two fully expanded leaves which had been treated with 2.5 mM exogenous salicylic acid (SA) to the aboveground part for 24 h. The result showed that the SA treatment to the aboveground part could significantly increase the polyphenol oxidase activity of conventional corn 5422, the Bt protein content, and peroxidase activities of Bt corn 5422Bt1, as well as the polyphenol oxidase and peroxidase activity of Bt corn 5422CBCL in the leaves. In the roots, the polyphenol oxidase and peroxidase activity of conventional corn 5422, the polyphenol oxidase and superoxide dismutase activities of Bt corn 5422Bt1, the DIMBOA (2,4-dihydroxy-7-methoxy-2H, 1, 4-benzoxazin-3 (4H)-one) content, and four defense enzymes activities of Bt corn 5422CBCL were systematically increased. These findings suggest that the direct effect of SA application to aboveground part on the leaf defense responses in Bt corn 5422CBCL is stronger than that in non-Bt corn. Meanwhile, the systemic effect of SA on the root defense responses in Bt corn 5422CBCL is stronger than that in conventional corn 5422 and Bt corn 5422Bt1. It can be concluded that the Bt gene introduction and endogenous chemical defense responses of corns act synergistically during the SA-induced defense processes to the aboveground part. Different transformation events affected the root defense response when the SA treatment was applied to the aboveground part.
Collapse
Affiliation(s)
- Yuanjiao Feng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyi Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Du
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Fengxiao Tan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-136-0286-3467
| |
Collapse
|
5
|
Bi H, Merchant A, Gu J, Li X, Zhou X, Zhang Q. CRISPR/Cas9-Mediated Mutagenesis of Abdominal-A and Ultrabithorax in the Asian Corn Borer, Ostrinia furnacalis. INSECTS 2022; 13:insects13040384. [PMID: 35447826 PMCID: PMC9031573 DOI: 10.3390/insects13040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/02/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Homeotic genes encode transcription factors that coordinated the anatomical structure formation during the early embryonic development of organisms. In this study, we functionally characterized two homeotic genes, Abdominal-A (Abd-A) and Ultrabithorax (Ubx), in the Asian corn borer, Ostrinia furnacalis (a maize pest that has devastated the Asia-Pacific region) by using a CRISPR/Cas9 genome editing system. Our results show that the mutagenesis of OfAbd-A and OfUbx led to severe morphological defects in O. furnacalis, which included fused segments and segmental twist during the larval stage, and hollowed and incision-like segments during the pupal stage in OfAbd-A mutants, as well as defects in the wing-pad development in pupal and adult OfUbx mutants. Overall, knocking out Abd-A and Ubx in O. furnacalis resulted in the embryonic lethality to, and pleiotropic impact on, other homeotic genes. This study not only confirms the conserved body planning functions in OfAbd-A and OfUbx, but it also strengthens the control implications of these homeotic genes for lepidopteran pests. Abstract (1) Background: Abdominal-A (Abd-A) and Ultrabithorax (Ubx) are homeotic genes that determine the identity and morphology of the thorax and abdomen in insects. The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), is a devastating maize pest throughout Asia, the Western Pacific, and Australia. Building on previous knowledge, we hypothesized that the knockout of Abd-A and Ubx would disrupt the abdominal body planning in O. furnacalis. (2) Methods: CRISPR/Cas9-targeted mutagenesis was employed to decipher the functions of these homeotic genes. (3) Results: Knockout insects demonstrated classical homeotic transformations. Specifically, the mutagenesis of OfAbd-A resulted in: (1) Fused segments and segmental twist during the larval stage; (2) Embryonic lethality; and (3) The pleiotropic upregulation of other homeotic genes, including Lab, Pd, Dfd, Antp, and Abd-B. The mutagenesis of OfUbx led to: (1) Severe defects in the wing pads, which limited the ability of the adults to fly and mate; (2) Female sterility; and (3) The pleiotropic upregulation of other homeotic genes, including Dfd, Abd-B, and Wnt1. (4) Conclusions: These combined results not only support our hypothesis, but they also strengthen the potential of using homeotic genes as molecular targets for the genetic control of this global insect pest.
Collapse
Affiliation(s)
- Honglun Bi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Junwen Gu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
| | - Xiaowei Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (A.M.); (X.Z.)
| | - Qi Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (H.B.); (J.G.)
- Correspondence: ; Tel.: +86-13609876667
| |
Collapse
|
6
|
Shwe SM, Prabu S, Chen Y, Li Q, Jing D, Bai S, He K, Wang Z. Baseline Susceptibility and Laboratory Selection of Resistance to Bt Cry1Ab Protein of Chinese Populations of Yellow Peach Moth, Conogethes punctiferalis (Guenée). Toxins (Basel) 2021; 13:335. [PMID: 34066367 PMCID: PMC8148182 DOI: 10.3390/toxins13050335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/17/2022] Open
Abstract
Yellow Peach Moth (YPM), Conogethes punctiferalis (Guenée), is one of the most destructive maize pests in the Huang-Huai-Hai summer maize region of China. Transgenic Bacillus thuringiensis (Bt) maize provides an effective means to control this insect pest in field trials. However, the establishment of Bt resistance to target pests is endangering the continued success of Bt crops. To use Bt maize against YPM, the baseline susceptibility of the local populations in the targeted areas needs to be verified. Diet-overlay bioassay results showed that all the fourteen YPM populations in China are highly susceptible to Cry1Ab. The LC50 values ranged from 0.35 to 2.38 ng/cm2 over the two years of the collection, and the difference between the most susceptible and most tolerant populations was sevenfold. The upper limit of the LC99 estimates of six pooled populations produced >99% larval mortality for representative eight populations collected in 2020 and was designated as diagnostic concentrations for monitoring susceptibility in YPM populations in China. Hence, we evaluated the laboratory selection of resistance in YPM to Cry1Ab using the diet-overlay bioassay method. Although the resistant ratio was generally low, YPM potentially could evolve resistance to Cry1Ab. The potential developmentof resistance by target pests points out the necessity to implement resistance management strategies for delaying the establishment of pest resistance to Bt crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (S.M.S.); (S.P.); (Y.C.); (Q.L.); (D.J.); (S.B.); (K.H.)
| |
Collapse
|
7
|
Shwe SM, Wang Y, Gao Z, Li X, Liu S, Bai S, Zhang T, He K, Wang Z. Toxicity of Cry1-Class, Cry2Aa, and Vip3Aa19 Bt proteins and their interactions against yellow peach Moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Crambidae). J Invertebr Pathol 2020; 178:107507. [PMID: 33249063 DOI: 10.1016/j.jip.2020.107507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022]
Abstract
Transgenic plants expressing insecticidal proteins from the Bacillus thuringiensis (Bt) have provided an effective way to control target pests. However, the toxicity of Bt proteins against yellow peach moth (YPM), Conogethes punctiferalis (Guenée), one of the most serious maize pests in China, has not received much study. Therefore, we performed diet-overlay bioassays to evaluate the insecticidal activities of Cry1Ab, Cry1Ac, Cry1Fa, Cry1Ah, Cry1Ie, Cry2Aa, and Vip3Aa19, as well as the interaction between Cry1-Class, Cry2Aa, and Vip3Aa19 against YPM. Results showed that the LC50 values ranged from 1.08 to 178.12 ng/cm2 (protein/diet). Among these proteins, Cry1Ab and Cry1Ac had lower LC50 values and LC90 values. In YPM bioassays, the combinations of Cry2Aa with Cry1Ac, Cry1Ie, and Cry1Ab showed antagonism while a mixture of Cry2Aa with Cry1Fa and Cry1Ah exhibited synergism. When Vip3Aa19 was combined with Cry proteins, all combinations interacted positively, with variation in synergistic factors (SF). Three ratios 1:1, 1:2, and 2:1 of Cry1Ah and Vip3Aa19 protein combination showed SF values of 5.20, 5.63, and 8.98, respectively. These findings can be applied in the establishment of new pyramided transgenic crops with suitable candidates as well as in resistance management strategies.
Collapse
Affiliation(s)
- Su Mon Shwe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Zupeng Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; Plant Protection College, Hebei Agricultural University, Baoding 071000, China
| | - Shen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China.
| |
Collapse
|
8
|
Patarroyo-Vargas AM, Cordeiro G, Silva CRDA, Silva CRDA, Mendonça EG, Visôtto LE, Zanuncio JC, Campos WG, Oliveira MGA. Inhibition kinetics of digestive proteases for Anticarsia gemmatalis. AN ACAD BRAS CIENC 2020; 92 Suppl 1:e20180477. [PMID: 32491140 DOI: 10.1590/0001-3765202020180477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/26/2019] [Indexed: 11/22/2022] Open
Abstract
Anticarsia gemmatalis Hübner, 1818 (Lepidoptera) is a major pest of soybean in the Brazil. It is known that the reduction of proteolytic activity by the ingestion of protease inhibitors reduces digestion and larval development of the insects. Control via inhibition of the digestive enzymes necessitates deeper knowledge of the enzyme kinetics and the characterization of the inhibition kinetics of these proteases, for better understanding of the active centers and action mechanisms of this enzyme. Trypsin-like proteases found in the gut of Anticarsia gemmatalis were purified in a p-aminobenzamidine agarose column. Kinetic characterization showed KM 0.503 mM for the L-BApNA substrate; Vmax= 46.650 nM s-1; Vmax/[E]= 9.256 nM s-1 mg L-1 and Vmax/[E]/KM= 18.402 nM s-1 mg L-1 mM. The Ki values for the inhibitors benzamidine, berenil, SKTI and SBBI were 11.2 µM, 32.4 µM, 0.25 nM and 1.4 nM, respectively, and all revealed linear competitive inhibition. The SKTI showed the greatest inhibition, which makes it a promising subject for future research to manufacture peptide mimetic inhibitors.
Collapse
Affiliation(s)
- Adriana M Patarroyo-Vargas
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária/BIOAGRO, Viçosa, MG, Brazil
| | - Gláucia Cordeiro
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária/BIOAGRO, Viçosa, MG, Brazil
| | - Carolina R DA Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária/BIOAGRO, Viçosa, MG, Brazil
| | - Camila R DA Silva
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, Rio Paranaíba, MG, Brazil
| | - Eduardo G Mendonça
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária/BIOAGRO, Viçosa, MG, Brazil
| | - Liliane E Visôtto
- Instituto de Ciências Biológicas, Universidade Federal de Viçosa, Rio Paranaíba, MG, Brazil
| | - José C Zanuncio
- Departamento de Entomologia, Instituto de Biotecnologia Aplicada a Agropecuária/ BIOAGRO, Viçosa, MG, Brazil
| | - Welligton G Campos
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del-Rei, São João Del-Rei, MG, Brazil
| | - Maria Goreti A Oliveira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária/BIOAGRO, Viçosa, MG, Brazil
| |
Collapse
|
9
|
|
10
|
Development and evaluation of double gene transgenic cotton lines expressing Cry toxins for protection against chewing insect pests. Sci Rep 2019; 9:11774. [PMID: 31409859 PMCID: PMC6692333 DOI: 10.1038/s41598-019-48188-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
Cotton is the main fiber producing crop globally, with a significant impact on the economy of Pakistan. Bt cotton expressing a Cry1Ac gene is grown over a large area in Pakistan, however, there is a major concern that bollworms may develop resistance. Here we have used a durable resistance strategy against bollworms by developing a double gene construct containing Cry1Ac and Cry2Ab (pGA482-12R) for cotton transformation. Both Cry toxin genes have been cloned in the same T-DNA borders and transferred successfully into cotton via Agrobacterium-mediated transformation. Both genes are expressed in transgenic cotton plants and is likely to help breeders in developing new cotton cultivars by incorporating these genes in cotton lines having no Bt genes or expressing Cry1Ac gene (Mon 531). Positive transgenic cotton was identified by PCR using specific primers for the amplification of both Cry1Ac and Cry2Ab genes. Cry1Ac and Cry2Ab expression was confirmed with an immunostrip test and quantified using ELISA that showed significant spatio-temporal expression of Cry2Ab ranging from 3.28 to 7.72 µg/g of the tissue leaf. Insect bioassay with army worm (Spodoptera litura) was performed to check the efficacy of NIBGE (National Institute for Biotechnology and Genetic Engineering) double gene transgenic cotton plants and up to 93% insect mortality was observed.
Collapse
|
11
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
12
|
Chen D, Shao M, Sun S, Liu T, Zhang H, Qin N, Zeng R, Song Y. Enhancement of Jasmonate-Mediated Antiherbivore Defense Responses in Tomato by Acetic Acid, a Potent Inducer for Plant Protection. FRONTIERS IN PLANT SCIENCE 2019; 10:764. [PMID: 31231416 PMCID: PMC6566139 DOI: 10.3389/fpls.2019.00764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/24/2019] [Indexed: 05/13/2023]
Abstract
Acetic acid (AA) has been proved as a chemical that could prime the jasmonic acid (JA) signaling pathway for plant drought tolerance. In this study, the capability of AA for priming of tomato defense against a chewing caterpillar Spodoptera litura and its underlying molecular mechanism were evaluated. AA pretreatment significantly increased tomato resistance against S. litura larvae. Upon larval attack, tomato plants pretreated with AA exhibited increased transcript levels of defense-related genes and elevated activities of polyphenol oxidase (PPO) and peroxidase (POD), and accumulation of protease inhibitor. Moreover, AA pretreatment resulted in upregulated transcription of JA biosynthesis genes and elevated JA accumulation in tomato seedlings upon insect attack. Furthermore, an apparent loss of AA-induced resistance was observed in a JA pathway-impaired mutant suppressor of prosystemin-mediated responses8 (spr8). These results indicate that AA enhances jasmonate-mediated antiherbivore defense responses in tomato. This raises the possibility of use of AA, a basic and simple biochemical compound, as a promising inducer for management of agricultural pests.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaozhi Sun
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Liu
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ningning Qin
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Crop Resistance and Chemical Ecology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuanyuan Song,
| |
Collapse
|
13
|
Ning K, Ding C, Zhu W, Zhang W, Dong Y, Shen Y, Su X. Comparative Metabolomic Analysis of the Cambium Tissue of Non-transgenic and Multi-Gene Transgenic Poplar ( Populus × euramericana 'Guariento'). FRONTIERS IN PLANT SCIENCE 2018; 9:1201. [PMID: 30174679 PMCID: PMC6108131 DOI: 10.3389/fpls.2018.01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/26/2018] [Indexed: 05/09/2023]
Abstract
Poplar, a model for woody plant research, is the most widely distributed tree species in the world. Metabolites are the basis of phenotypes, allowing an intuitive and effective understanding of biological processes and their mechanisms. However, metabolites in non-transgenic and multi-gene transgenic poplar remains poorly characterized, especially in regards of the influences on quantity and in the analysis of the relative abundance of metabolites after the introduction of multi stress-related genes. In this study, we investigated the cambium metabolomes of one non-transgenic (D5-0) and two multi-gene (vgb, SacB, ERF36, BtCry3A, and OC-I) transgenic lines (D5-20 and D5-21) of hybrid poplar (Populus × euramericana 'Guariento') using both gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We aimed to explore the effects of the exogenous genes on metabolite composition and to screen out metabolites with important biological functions. Finally, we identified 239 named metabolites and determined their relative abundance. Among these, 197 metabolites had a different abundance across the three lines. These methabolites spanned nine primary and 44 secondary metabolism pathways. Arginine and glutamate, as substrates and intermediates in nitrogen metabolism, and important in growth and stress-related processes, as well as sucrose, uridine diphosphate glucose, and their derivatives, precursors in cell wall pathways, and catechol, relevant to insect resistance, differed greatly between the genetically modified and non-transgenic poplar. These findings may provide a basis for further study of cambium metabolism, and fully understand metabolites associated with stress response.
Collapse
Affiliation(s)
- Kun Ning
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Xiaohua Su,
| |
Collapse
|
14
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Reprint of "Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants". J Biotechnol 2017; 257:22-34. [PMID: 28755910 DOI: 10.1016/j.jbiotec.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 10/19/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
15
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants. J Biotechnol 2017; 243:48-60. [PMID: 28011129 DOI: 10.1016/j.jbiotec.2016.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
16
|
Fang J, Zhu X, Wang C, Shangguan L. Applications of DNA Technologies in Agriculture. Curr Genomics 2016; 17:379-86. [PMID: 27499686 PMCID: PMC4955036 DOI: 10.2174/1389202917666160331203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 11/22/2022] Open
Abstract
With the development of molecular biology, some DNA-based technologies have showed great potentiality in promoting the efficiency of crop breeding program, protecting germplasm resources, improving the quality and outputs of agricultural products, and protecting the eco-environment etc., making their roles in modern agriculture more and more important. To better understand the application of DNA technologies in agriculture, and achieve the goals to promote their utilities in modern agriculture, this paper describes, in some different way, the applications of molecular markers, transgenic engineering and gene's information in agriculture. Some corresponding anticipations for their development prospects are also made.
Collapse
Affiliation(s)
- Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing,P.R. China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing,P.R. China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing,P.R. China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing,P.R. China
| |
Collapse
|
17
|
Nouha A, Sameh S, Fakher F, Slim T, Souad R. Impact of Q139R substitution of MEB4-Cry2Aa toxin on its stability, accessibility and toxicity against Ephestia kuehniella. Int J Biol Macromol 2015; 81:701-9. [PMID: 26321422 DOI: 10.1016/j.ijbiomac.2015.08.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
The Bacillus thuringiensis subsp. kurstaki strain MEB4 was previously found to be highly toxic to Ephestia kuehniella. SDS-PAGE analysis of the recombinant strain DH5α (pBS-cry2Aa-MEB4) showed that Cry2Aa-MEB4 delta-endotoxins were forming inclusion bodies, and were 2.75 fold more toxic towards E. kuehniella than those of Cry2Aa-BNS3. Besides to the 65kDa active toxin, proteolysis activation of Cry2Aa-BNS3 protein with E. kuehniella midgut juice generated an extra proteolysis form of 49kDa, which was the result of another chymotrypsin cleavage located in Leu144. The amino acid sequences alignment of Cry2Aa-MEB4 and Cry2Aa-BNS3 showed that among the different 15 amino acids, the Q139R substitution was found to be interesting. In fact, due to its presence within the loop α3-α4, the chymotrypsin-like protease was unable to access to its site in Cry2Aa-MEB4, resulting to the production of only the 65kDa form. The accessible surface and the stability studies of the structure model of the Cry2Aa-BNS3-49 form showed a lower hydrophobicity surface due to the omission of 144 amino acids from the N-terminal comparing with the active Cry2Aa-MEB4 protein. All these features caused the diminishing of Cry2Aa-BNS3 toxicity towards E. kuehniella.
Collapse
Affiliation(s)
- Abdelmalek Nouha
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sellami Sameh
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Frikha Fakher
- Faculté des Sciences de Sfax, B.P. n̊ 1171, 3000 Sfax, Tunisia
| | - Tounsi Slim
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Rouis Souad
- Laboratory of Plant Protection and Improvement (Biopesticides Team), Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
18
|
Lemes ARN, Davolos CC, Legori PCBC, Fernandes OA, Ferré J, Lemos MVF, Desiderio JA. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. PLoS One 2014; 9:e107196. [PMID: 25275646 PMCID: PMC4183464 DOI: 10.1371/journal.pone.0107196] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/13/2014] [Indexed: 01/09/2023] Open
Abstract
Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested.
Collapse
Affiliation(s)
- Ana Rita Nunes Lemes
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, São Paulo, Brazil
| | - Camila Chiaradia Davolos
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, São Paulo, Brazil
| | - Paula Cristina Brunini Crialesi Legori
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, São Paulo, Brazil
| | | | - Juan Ferré
- Department of Genetics, University of Valencia, Burjassot (Valencia), Spain
| | - Manoel Victor Franco Lemos
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, São Paulo, Brazil
| | - Janete Apparecida Desiderio
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Departamento de Biologia Aplicada à Agropecuária, Jaboticabal, São Paulo, Brazil
| |
Collapse
|
19
|
Johnson ET, Dowd PF, Hughes SR. Expression of a wolf spider toxin in tobacco inhibits the growth of microbes and insects. Biotechnol Lett 2014; 36:1735-42. [PMID: 24770871 DOI: 10.1007/s10529-014-1536-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022]
Abstract
Lycotoxin I, from the wolf spider (Lycosa carolinensis), is an amphipathic pore-forming peptide that has antimicrobial and anti-insect activity. Constitutive expression of a lycotoxin I modified for oral toxicity to insects in tobacco (Nicotiana tabacum) conferred significantly enhanced resistance to larvae of the corn earworm (Helicoverpa zea) and cigarette beetle (Lasioderma serricorne). Gene expression levels of modified lycotoxin I were negatively correlated to the survival of corn earworm larvae. In addition, pathogenic symptoms caused by Pseudomonas syringae pathovar tabaci and Alternaria alternata on the modified lycotoxin I-expressing leaves were significantly less severe than on wild type leaves. These results indicate that modified lycotoxin I expression in tobacco can potentially protect leaf tissue from a broad spectrum of pests and pathogens.
Collapse
Affiliation(s)
- Eric T Johnson
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, USDA ARS, 1815 N. University St., Peoria, IL, 61604, USA,
| | | | | |
Collapse
|
20
|
Li J, Coates BS, Kim KS, Bourguet D, Ponsard S, He K, Wang Z. The genetic structure of Asian corn borer, Ostrinia furnacalis, populations in China: haplotype variance in northern populations and potential impact on management of resistance to transgenic maize. J Hered 2014; 105:642-55. [PMID: 25024271 DOI: 10.1093/jhered/esu036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Asian corn borer, Ostrinia furnacalis (Guenée), is a severe pest that infests cultivated maize in the major production regions of China. Populations show genotype-by-environment variation in voltinism, such that populations with a single generation (univoltine) are fixed in Northern China where growing seasons are short. Low genetic differentiation was found among samples from 33 collection sites across China and one site from North Korea (n=1673) using variation at 6 nuclear microsatellite loci (ENA corrected global FST=0.020; P value<0.05). Analysis of molecular variance indicated that geographic region, number of generations or voltinism accounted for <0.38% of the total genetic variation at nuclear loci and was corroborated by clustering of co-ancestries among genotypes using the program STRUCTURE. In contrast, a mitochondrial haplotype network identified 4 distinct clusters, where 70.5% of samples from univoltine populations were within a single group. Univoltine populations were also placed into a unique cluster using Population Graph and Principal component analyses, which showed significant differentiation with multivoltine populations (φST=0.400; P value<0.01). This study suggests that gene flow among O. furnacalis in China may be high among regions, with the exception of northeastern localities. Haplotype variation may be due to random genetic drift resulting from partial reproductive isolation between univoltine and multivoltine O. furnacalis populations. Such reproductive isolation might impact the potential spread of alleles that confer resistance to transgenic maize in China.
Collapse
Affiliation(s)
- Jing Li
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard)
| | - Brad S Coates
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard)
| | - Kyung Seok Kim
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard)
| | - Denis Bourguet
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard)
| | - Sergine Ponsard
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard)
| | - Kanglai He
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard)
| | - Zhenying Wang
- From the State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China (Li, He, and Wang); the School of Biological Technology, Xi'an University of Arts and Science, Xi'an, Shaanxi Province, China (Li); the United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA (Coates and Kim); the Centre de Biologie pour la Gestion des Populations (CBGP) UMR INRA-IRD-CIRAD-Montpellier SupAgro, Campus International de Baillarguet, Montferrier-sur-Lez Cedex, France (Bourguet); the Université Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, ENFA, UMR5174 EDB (Laboratoire Evolution and Diversité Biologique), Toulouse, France (Ponsard); and the Centre National de la Recherche Scientifique, Université Paul Sabatier, UMR5174 EDB, Toulouse, France (Ponsard).
| |
Collapse
|
21
|
Zhang W, Chu Y, Ding C, Zhang B, Huang Q, Hu Z, Huang R, Tian Y, Su X. Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes. BMC Genet 2014; 15 Suppl 1:S7. [PMID: 25079970 PMCID: PMC4118631 DOI: 10.1186/1471-2156-15-s1-s7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Transgenic poplar (Populus × euramericana 'Guariento') plants harboring five exogenous, stress-related genes exhibit increased tolerance to multiple stresses including drought, salt, waterlogging, and insect feeding, but the complex mechanisms underlying stress tolerance in these plants have not been elucidated. Here, we analyzed the differences in the transcriptomes of the transgenic poplar line D5-20 and the non-transgenic line D5-0 using high-throughput transcriptome sequencing techniques and elucidated the functions of the differentially expressed genes using various functional annotation methods. Results We generated 11.80 Gb of sequencing data containing 63, 430, 901 sequences, with an average length of 200 bp. The processed sequences were mapped to reference genome sequences of Populus trichocarpa. An average of 62.30% and 61.48% sequences could be aligned with the reference genomes for D5-20 and D5-0, respectively. We detected 11,352 (D5-20) and 11,372 expressed genes (D5-0), 7,624 (56.61%; D5-20) and 7,453 (65.54%; D5-0) of which could be functionally annotated. A total of 782 differentially expressed genes in D5-20 were identified compared with D5-0, including 628 up-regulated and 154 down-regulated genes. In addition, 196 genes with putative functions related to stress responses were also annotated. Gene Ontology (GO) analysis revealed that 346 differentially expressed genes are mainly involved in 67 biological functions, such as DNA binding and nucleus. KEGG annotation revealed that 36 genes (21 up-regulated and 15 down-regulated) were enriched in 51 biological pathways, 9 of which are linked to glucose metabolism. KOG functional classification revealed that 475 genes were enriched in 23 types of KOG functions. Conclusion These results suggest that the transferred exogenous genes altered the expression of stress (biotic and abiotic) response genes, which were distributed in different metabolic pathways and were linked to some extent. Our results provide a theoretic basis for investigating the functional mechanisms of exogenous genes in transgenic plants.
Collapse
|
22
|
Lv Y, Cai H, Yu J, Liu J, Liu Q, Guo C. Biosafety assessment of GFP transplastomic tobacco to rhizosphere microbial community. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:718-25. [PMID: 24429672 DOI: 10.1007/s10646-014-1185-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 05/26/2023]
Abstract
Green fluorescent protein (GFP) is one of the most widely studied and exploited proteins in biochemistry, and has many applications as a marker, especially in plant transformation system. Although a number of studies have been conducted to assess the toxify of this protein to specific organisms, little is known about GFP on rhizosphere microbial community, which is regarded as good indicator for environmental risk assessment. Chloroplast genetic engineering has shown superiority over traditional nuclear genetic engineering, and has been used in many aspects of plant genetic engineering. High levels of chloroplast-based protein accumulation make this technology as an ideal strategy to evaluate biosafety of transgenes. In the present study, the effects of field-released GFP transplastomic tobacco (Nicotiana tabacum) on rhizosphere microbes over a whole growth cycle were investigated by using both culture-dependent and culture-independent methods. Compared to wild-type control, transplastomic tobacco had no significant influence on the microbial population at the seedling, vegetative, flowering and senescing stages. However, developmental stages had more influence than ecotypes (GFP-transformed and wild-type). This was confirmed by colony forming unit, Biolog Eco(TM) and PCR-DGGE analysis. Thus, these results suggest chloroplast transformation with a GFP reporter gene has no significant influence on rhizosphere microbial community, and will be potential platform for plant biotechnology in future.
Collapse
Affiliation(s)
- Yueping Lv
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
23
|
Wu H, Zhang Y, Liu P, Xie J, He Y, Deng C, De Clercq P, Pang H. Effects of transgenic Cry1Ac + CpTI cotton on non-target mealybug pest Ferrisia virgata and its predator Cryptolaemus montrouzieri. PLoS One 2014; 9:e95537. [PMID: 24751821 PMCID: PMC3994093 DOI: 10.1371/journal.pone.0095537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/28/2014] [Indexed: 11/23/2022] Open
Abstract
Recently, several invasive mealybugs (Hemiptera: Pseudococcidae) have rapidly spread to Asia and have become a serious threat to the production of cotton including transgenic cotton. Thus far, studies have mainly focused on the effects of mealybugs on non-transgenic cotton, without fully considering their effects on transgenic cotton and trophic interactions. Therefore, investigating the potential effects of mealybugs on transgenic cotton and their key natural enemies is vitally important. A first study on the effects of transgenic cotton on a non-target mealybug, Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae) was performed by comparing its development, survival and body weight on transgenic cotton leaves expressing Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) with those on its near-isogenic non-transgenic line. Furthermore, the development, survival, body weight, fecundity, adult longevity and feeding preference of the mealybug predator Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) was assessed when fed F. virgata maintained on transgenic cotton. In order to investigate potential transfer of Cry1Ac and CpTI proteins via the food chain, protein levels in cotton leaves, mealybugs and ladybirds were quantified. Experimental results showed that F. virgata could infest this bivalent transgenic cotton. No significant differences were observed in the physiological parameters of the predator C. montrouzieri offered F. virgata reared on transgenic cotton or its near-isogenic line. Cry1Ac and CpTI proteins were detected in transgenic cotton leaves, but no detectable levels of both proteins were present in the mealybug or its predator when reared on transgenic cotton leaves. Our bioassays indicated that transgenic cotton poses a negligible risk to the predatory coccinellid C. montrouzieri via its prey, the mealybug F. virgata.
Collapse
Affiliation(s)
- Hongsheng Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yuhong Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ping Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaqin Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yunyu He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Congshuang Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Patrick De Clercq
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- * E-mail: (HP); (PDC)
| | - Hong Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HP); (PDC)
| |
Collapse
|
24
|
Saurabh S, Vidyarthi AS, Prasad D. RNA interference: concept to reality in crop improvement. PLANTA 2014; 239:543-64. [PMID: 24402564 DOI: 10.1007/s00425-013-2019-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 12/21/2013] [Indexed: 05/18/2023]
Abstract
The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement.
Collapse
Affiliation(s)
- Satyajit Saurabh
- Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835125, India
| | | | | |
Collapse
|
25
|
Talaei-Hassanloui R, Bakhshaei R, Hosseininaveh V, Khorramnezhad A. Effect of midgut proteolytic activity on susceptibility of lepidopteran larvae to Bacillus thuringiensis subsp. Kurstaki. Front Physiol 2014; 4:406. [PMID: 24474937 PMCID: PMC3893595 DOI: 10.3389/fphys.2013.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/23/2013] [Indexed: 11/13/2022] Open
Abstract
Bacillus thuringiensis (Bt) is the most effective microbial control agent for controlling numerous species from different insect orders. All subspecies and strains of B. thuringiensis can produce a spore and a crystalline parasporal body. This crystal which contains proteinaceous protoxins is dissolved in the alkaline midgut, the resulting molecule is then cleaved and activated by proteolytic enzymes and acts as a toxin. An interesting aspect of this activation process is that variations in midgut pH and protease activity have been shown to account for the spectrum of some Bt proteins activity. Thus, an important factor that could be a determinant of toxin activity is the presence of proteases in the midgut microenvironment of susceptible insects. Reciprocally, any alteration in the midgut protease composition of the host can result in resistance to Bt. Here in this paper, we reviewed this processes in general and presented our assays to reveal whether resistance mechanism to Bt in Diamondback Moth (DbM) larvae could be due to the function of the midgut proteases? We estimated LC50 for both probable susceptible and resistant populations in laboratory and greenhouse tests. Then, the midgut protease activities of the B. thuringiensis induced-resistant and susceptible populations of the DbM were assayed on Hemoglubin and on N-alpha-benzoyl-DL-arginine-p-nitroanilide (BapNA) for total and tryptic activities, respectively. Six hours after feeding on Bt treated and untreated canola leaves, the midguts of instar larvae of both populations were isolated. Following related protocols, peptides released through the activity of proteinases on Hemoglubin and BApNA were recorded using microplate reader. Control (Blank) was also considered with adding TCA to reaction mix before adding enzymatic extract. Data analysis indicated that there are significant differences for tryptic activity on BApNA and also for total proteolytic activity on Hemoglubin between susceptible and resistant populations fed on Bt treated leaves. But these differences were not significant for larvae fed on healthy canola leaves between these two populations. These results which supported the role of DbM's proteolytic system in development of resistance to Bt, will be discussed in details.
Collapse
Affiliation(s)
- Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran Karaj, Iran
| | - Raziyeh Bakhshaei
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran Karaj, Iran
| | - Vahid Hosseininaveh
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran Karaj, Iran
| | - Ayda Khorramnezhad
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran Karaj, Iran
| |
Collapse
|
26
|
Chaudhary B. Plant domestication and resistance to herbivory. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2013; 2013:572784. [PMID: 23589713 PMCID: PMC3621290 DOI: 10.1155/2013/572784] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/06/2013] [Accepted: 02/24/2013] [Indexed: 05/05/2023]
Abstract
Transformation of wild species into elite cultivars through "domestication" entails evolutionary responses in which plant populations adapt to selection. Domestication is a process characterized by the occurrence of key mutations in morphological, phenological, or utility genes, which leads to the increased adaptation and use of the plant; however, this process followed by modern plant breeding practices has presumably narrowed the genetic diversity in crop plants. The reduction of genetic diversity could result in "broad susceptibility" to newly emerging herbivores and pathogens, thereby threatening long-term crop retention. Different QTLs influencing herbivore resistance have also been identified, which overlap with other genes of small effect regulating resistance indicating the presence of pleiotropism or linkage between such genes. However, this reduction in genetic variability could be remunerated by introgression of novel traits from wild perhaps with antifeedant and antinutritional toxic components. Thus it is strongly believed that transgenic technologies may provide a radical and promising solution to combat herbivory as these avoid linkage drag and also the antifeedant angle. Here, important questions related to the temporal dynamics of resistance to herbivory and intricate genetic phenomenon with their impact on crop evolution are addressed and at times hypothesized for future validation.
Collapse
Affiliation(s)
- Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida 201 308, India
| |
Collapse
|
27
|
Aphid-proof plants: biotechnology-based approaches for aphid control. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 136:179-203. [PMID: 23728163 DOI: 10.1007/10_2013_211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aphids are economically significant agricultural pests that are responsible for large yield losses in many different crops. Because the use of insecticides is restricted in the context of integrated pest management and aphids develop resistance against them rapidly, new biotechnology-based approaches are required for aphid control. These approaches focus on the development of genetically modified aphid-resistant plants that express protease inhibitors, dsRNA, antimicrobial peptides, or repellents, thus addressing different levels of aphid-plant interactions. However, a common goal is to disturb host plant acceptance by aphids and to disrupt their ability to take nutrition from plants. The defense agents negatively affect different fitness-associated parameters such as growth, reproduction, and survival, which therefore reduce the impact of infestations. The results from several different studies suggest that biotechnology-based approaches offer a promising strategy for aphid control.
Collapse
|
28
|
Ramos VDS, Cabrera OG, Camargo ELO, Ambrósio AB, Vidal RO, da Silva DS, Guimarães LC, Marangoni S, Parra JRP, Pereira GAG, Macedo MLR. Molecular cloning and insecticidal effect of Inga laurina trypsin inhibitor on Diatraea saccharalis and Heliothis virescens. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:148-58. [PMID: 22885277 DOI: 10.1016/j.cbpc.2012.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants.
Collapse
Affiliation(s)
- Vanessa da S Ramos
- Departamento de Bioquímica/Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buiatti M, Christou P, Pastore G. The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. GENES AND NUTRITION 2012; 8:255-70. [PMID: 23076994 PMCID: PMC3639326 DOI: 10.1007/s12263-012-0316-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/03/2012] [Indexed: 12/21/2022]
Abstract
This commentary is a face-to-face debate between two almost opposite positions regarding the application of genetic engineering in agriculture and food production. Seven questions on the potential benefits of the application of genetic engineering in agriculture and on the potentially adverse impacts on the environment and human health were posed to two scientists: one who is sceptical about the use of GMOs in Agriculture, and one who views GMOs as an important tool for quantitatively and qualitatively improving food production.
Collapse
Affiliation(s)
- M Buiatti
- University of Florence, Florence, Italy,
| | | | | |
Collapse
|
30
|
Schwartz EF, Mourão CBF, Moreira KG, Camargos TS, Mortari MR. Arthropod venoms: A vast arsenal of insecticidal neuropeptides. Biopolymers 2012. [DOI: 10.1002/bip.22100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Zhang J, Liu F, Yao L, Luo C, Yin Y, Wang G, Huang Y. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. BREEDING SCIENCE 2012; 62:105-12. [PMID: 23136521 PMCID: PMC3405964 DOI: 10.1270/jsbbs.62.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 01/25/2012] [Indexed: 05/26/2023]
Abstract
Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line.
Collapse
Affiliation(s)
- Junjie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Life Science, Sichuan Agriculture University, Ya’an Sichuan 625014, China
| | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lei Yao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chen Luo
- Plant Protection and Environment Protection Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yue Yin
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guixiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agriculture University, Ya’an Sichuan 625014, China
| |
Collapse
|
32
|
da Silva W, Freire MDGM, Parra JRP, Marangoni S, Macedo MLR. Evaluation of the Adenanthera pavonina seed proteinase inhibitor (ApTI) as a bioinsecticidal tool with potential for the control of Diatraea saccharalis. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Su X, Chu Y, Li H, Hou Y, Zhang B, Huang Q, Hu Z, Huang R, Tian Y. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'). PLoS One 2011; 6:e24614. [PMID: 21931776 PMCID: PMC3170361 DOI: 10.1371/journal.pone.0024614] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 08/16/2011] [Indexed: 11/18/2022] Open
Abstract
Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento') harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional research is needed to fully understand the relationships between the altered phenotypes and the function of each transgene in multigene transformants.
Collapse
Affiliation(s)
- Xiaohua Su
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kroemer JA, Nusawardani T, Rausch MA, Moser SE, Hellmich RL. Transcript analysis and comparative evaluation of shaker and slowmo gene homologues from the European corn borer, Ostrinia nubilalis. INSECT MOLECULAR BIOLOGY 2011; 20:493-506. [PMID: 21672063 DOI: 10.1111/j.1365-2583.2011.01080.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The movement and dispersal of larval Lepidoptera impact their survival and distribution within the natural landscape. Homologues of the Drosophila behaviour-linked genes shaker (shkr) and slowmo (slmo) were identified from Ostrinia nubilalis (Lepidoptera: Crambidae). Onshkr was isolated as a 1610-nucleotide (nt) constitutively expressed transcript encoding a membrane-localized 469-amino-acid (aa) protein with a conserved tetramerization domain and the six-domain architecture necessary for the molecule to fold into an active K(+) channel. Three expressed splice variants of 682, 970 and 1604 nt were identified for the Onslmo gene, and encode predicted 141 and 228 aa proteins with a conserved protein of relevant evolutionary and lymphoid interest (PRELI) domain that may function in mitochondrial protein sorting and perinuclear protein localization. Onshkr and Onslmo protein sequences aligned within monophyletic lepidopteran groups.
Collapse
Affiliation(s)
- J A Kroemer
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011-3140, USA.
| | | | | | | | | |
Collapse
|
35
|
Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY. Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 2011; 20:665-73. [PMID: 20953975 PMCID: PMC3090577 DOI: 10.1007/s11248-010-9450-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/29/2010] [Indexed: 12/30/2022]
Abstract
RNA interference (RNAi) plays an important role in regulating gene expression in eukaryotes. Previously, we generated Arabidopsis and tobacco plants expressing double-stranded RNA (dsRNA) targeting a cotton bollworm (Helicoverpa armigera) P450 gene, CYP6AE14. Bollworms fed on transgenic dsCYP6AE14 plants showed suppressed CYP6AE14 expression and reduced growth on gossypol-containing diet (Mao et al., in Nat Biotechnol 25: 1307-1313, 2007). Here we report generation and analysis of dsRNA-expressing cotton (Gossypium hirsutum) plants. Bollworm larvae reared on T2 plants of the ds6-3 line exhibited drastically retarded growth, and the transgenic plants were less damaged by bollworms than the control. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) showed that the CYP6AE14 expression level was reduced in the larvae as early as 4 h after feeding on the transgenic plants; accordingly, the CYP6AE14 protein level dropped. These results demonstrated that transgenic cotton plants expressing dsCYP6AE14 acquired enhanced resistance to cotton bollworms, and that RNAi technology can be used for engineering insect-proof cotton cultivar.
Collapse
Affiliation(s)
- Ying-Bo Mao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | | | | | | | | |
Collapse
|
36
|
Alvarez-Alfageme F, Maharramov J, Carrillo L, Vandenabeele S, Vercammen D, Van Breusegem F, Smagghe G. Potential use of a serpin from Arabidopsis for pest control. PLoS One 2011; 6:e20278. [PMID: 21655276 PMCID: PMC3104999 DOI: 10.1371/journal.pone.0020278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Although genetically modified (GM) plants expressing toxins from Bacillus thuringiensis (Bt) protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L). Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris) were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC50 = 637 µg ml−1). The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.
Collapse
Affiliation(s)
- Fernando Alvarez-Alfageme
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- * E-mail: (F-AA); (GS)
| | - Jafar Maharramov
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Laura Carrillo
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Steven Vandenabeele
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | - Dominique Vercammen
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | - Frank Van Breusegem
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- * E-mail: (F-AA); (GS)
| |
Collapse
|
37
|
Transgenic tetraploid Isatis indigotica expressing Bt Cry1Ac and Pinellia ternata agglutinin showed enhanced resistance to moths and aphids. Mol Biol Rep 2011; 39:485-91. [PMID: 21559837 DOI: 10.1007/s11033-011-0762-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Co-expression of multiple genes encoding different kinds of insect resistant proteins has been developed to confer a broader spectrum of pest control. Tetraploid Isatis indigotica Fort was transformed with a plasmid, p3300BP, containing Bacillus thuringiensis Cry1Ac gene (Bt) and Pinellia ternata agglutinin gene (Pta) and the selectable marker herbicide resistance gene (Bar) driven by the CaMV35S promoter via Agrobacterium tumefaciens-mediated transformation. The integration and expression of introduced genes in regenerated transgenic plants were confirmed by PCR and Western blot assays. Insect bioassay test demonstrated transgenic lines had significant inhibition to diamondback moths (Plutella xylostella L.) and peach potato aphids (Myzus persicae Sulzer) simultaneously. Our study reported here would be a great motivation for field culture of tetraploid I. indigotica, also providing an efficient molecular breeding strategy to provide insect tolerant plants.
Collapse
|
38
|
Temporal allocation of metabolic tolerance to transgenic Bt cotton in beet armyworm, Spodoptera exigua (Hübner). SCIENCE CHINA-LIFE SCIENCES 2011; 54:152-8. [DOI: 10.1007/s11427-010-4133-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 07/31/2009] [Indexed: 10/18/2022]
|
39
|
Allahyari M, Bandani AR, Habibi-Rezaei M. Subcellular fractionation of midgut cells of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae): enzyme markers of microvillar and perimicrovillar membranes. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:710-717. [PMID: 20035764 DOI: 10.1016/j.jinsphys.2009.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/10/2009] [Accepted: 12/16/2009] [Indexed: 05/28/2023]
Abstract
The subcellular distributions of six digestive and non-digestive enzymes (alpha-glucosidase, beta-glucosidase, alkaline phosphatase, acid phosphatase, aminopeptidase and lactate dehydrogenase) of Eurygaster integriceps have been studied. The subcellular distributions of acid phosphatase and alpha-glucosidase are similar and the gradient ultracentrifugation profiles of these two enzymes overlap. Two partially membrane-bound enzymes, alkaline phosphatase and beta-glucosidase have similar distributions in differential centrifugation fractions, which are different from that of alpha-glucosidase. Sucrose gradient ultracentrifugation of membranes from luminal contents showed that beta-glucosidase carrying membranes are heavier. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the profile of proteins extracted from beta-glucosidase carrying membranes is different from that of alpha-glucosidase carrying membranes. We conclude that beta-glucosidase and aminopeptidase are markers of microvillar membrane (MM) and perimicrovillar space, respectively, while alpha-glucosidase and acid phosphatase are perimicrovillar markers. In E. integriceps V1 luminal content is a rich source of PMM and MM and that is used to resolve these membranes.
Collapse
Affiliation(s)
- M Allahyari
- Department of Plant pests and Diseases, Fars Agriculture and Natural Resources Research Center, Shiraz, Iran
| | | | | |
Collapse
|
40
|
Liu W. Do genetically modified plants impact arbuscular mycorrhizal fungi? ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:229-238. [PMID: 19806453 DOI: 10.1007/s10646-009-0423-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2009] [Indexed: 05/27/2023]
Abstract
The development and use of genetically modified plants (GMPs), as well as their ecological risks have been a topic of considerable public debate since they were first released in 1996. To date, no consistent conclusions have been drawn dealing with ecological risks on soil microorganisms of GMPs for the present incompatible empirical data. Arbuscular mycorrhizal fungi (AMF), important in regulating aboveground and underground processes in ecosystems, are the most crucial soil microbial community worthy of being monitored in ecological risks assessment of GMPs for their sensitivity to environmental alterations (plant, soil, climatic factor etc.). Based on current data, we suggest that there is a temporal-spatial relevance between expression and rhizosphere secretion of anti-disease and insecticidal proteins (e.g., Bt-Bacillus thuringiensis toxins) in and outer roots, and AMF intraradical and extraradical growth and development. Therefore, taking Bt transgenic plants (BTPs) for example, Bt insecticidal proteins constitutive expression and rhizosphere release during cultivation of BTPs may damage some critical steps of the AMF symbiotic development. More important, these processes of BTPs coincide with the entire life cycle of AMF annually, which may impact the diversity of AMF after long-term cultivation period. It is proposed that interactions between GMPs and AMF should be preferentially studied as an indicator for ecological impacts of GMPs on soil microbial communities. In this review, advances in impacts of GMPs on AMF and the effect mechanisms were summarized, highlighting the possible ecological implications of interactions between GMPs and AMF in soil ecosystems.
Collapse
Affiliation(s)
- Wenke Liu
- Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
41
|
Cao CW, Liu GF, Wang ZY, Yan SC, Ma L, Yang CP. Response of the gypsy moth, Lymantria dispar to transgenic poplar, Populus simonii x P. nigra, expressing fusion protein gene of the spider insecticidal peptide and Bt-toxin C-peptide. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:200. [PMID: 21268699 PMCID: PMC3029309 DOI: 10.1673/031.010.20001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 09/13/2010] [Indexed: 05/03/2023]
Abstract
The response of the Asian gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) to a fusion gene consisting of the spider, Atrax robustus Simon (Araneae: Hexanthelidae) ω-ACTX-Ar1 sequence coding for an ω-atracotoxin and a sequence coding for the Bt-toxin C-peptide, expressed in transgenic poplar Populus simonii x P. nigra L. (Malphigiales: Salicaceae) was investigated. Individual performance, feeding selection, midgut proteinase activity and nutrition utilization were monitored. The growth and development of L. dispar were significantly affected by continually feeding on the transgenic poplar, with the larval instars displaying significantly shorter developmental times than those fed on nontransgenic poplar, but pupation was delayed. Mortality was higher in populations fed transgenic poplar leaves, than for larvae fed nontransgenic poplar leaves. The cumulative mortality during all stages of larvae fed transgenic leaves was 92% compared to 16.7% of larvae on nontransgenic leaves. The highest mortality observed was 71.7% in the last larval instar stage. A two-choice test showed that fifth-instar larvae preferred to feed on nontransgenic leaves at a ratio of 1:1.4. Feeding on transgenic leaves had highly significant negative effects on relative growth of larvae, and the efficiency of conversion of ingested and digested food. Activity of major midgut proteinases was measured using substrates TAME and BTEE showed significant increases in tryptase and chymotrypsinlike activity (9.2- and 9.0-fold, respectively) in fifth-instar larvae fed on transgenic leaves over control. These results suggest transgenic poplar is resistant to L. dispar, and the mature L. dispar may be weakened by the transgenic plants due to Bt protoxins activated by elevated major midgut proteinase activity. The new transgenic poplar expressing fusion protein genes of Bt and a new spider insecticidal peptide are good candidates for managing gypsy moth.
Collapse
Affiliation(s)
- Chuan-Wang Cao
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- Department of Forestry Protection, Northeast Forestry University 150040, China
| | - Gui-Feng Liu
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Zhi-Ying Wang
- Department of Forestry Protection, Northeast Forestry University 150040, China
| | - Shan-Chun Yan
- Department of Forestry Protection, Northeast Forestry University 150040, China
| | - Ling Ma
- Department of Forestry Protection, Northeast Forestry University 150040, China
| | - Chuan-Ping Yang
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| |
Collapse
|
42
|
Temporal allocation of metabolic tolerance in the body of beet armyworm in response to three gossypol-cotton cultivars. ACTA ACUST UNITED AC 2009; 52:1140-7. [DOI: 10.1007/s11427-009-0157-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
|
43
|
Sujatha M, Lakshminarayana M, Tarakeswari M, Singh PK, Tuli R. Expression of the cry1EC gene in castor (Ricinus communis L.) confers field resistance to tobacco caterpillar (Spodoptera litura Fabr) and castor semilooper (Achoea janata L.). PLANT CELL REPORTS 2009; 28:935-46. [PMID: 19337736 DOI: 10.1007/s00299-009-0699-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/01/2009] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
Castor (cv. DCS-9) has been transformed through Agrobacterium-mediated and particle gun bombardment methods using appropriate vectors containing the Bt chimeric gene cry1EC driven by enhanced 35S promoter. About 81 and 12 putative transformants were regenerated following selection on hygromycin and kanamycin, respectively. Southern analysis of DNA extracted from T(0) plants confirmed integration of the introduced gene in castor genome. The integration and inheritance of the introduced genes was demonstrated up to T(4) generation by PCR and Southern analysis. Southern analysis of two events having single and two copies showed the same pattern of integration in the subsequent generations. Insect feeding experiments conducted in the laboratory by releasing neonate larvae of castor semilooper and S. litura on leaf tissues excised from transgenic and control plants showed varying degrees of larval mortality and slow growth in larvae fed on transgenic leaf tissue. Field bioassays against Spodoptera litura and castor semilooper conducted for eight events in T(1)-T(4) generations under net confinement were more informative and events conferring resistance to the two major defoliators were identified.
Collapse
Affiliation(s)
- M Sujatha
- Directorate of Oilseeds Research, Rajendranagar, Hyderabad, 500 030, India.
| | | | | | | | | |
Collapse
|
44
|
Liu W. Effects of Bt transgenic crops on soil ecosystems: a review of a ten-year research in China. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11703-009-0027-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Ramos VDS, Freire MGM, Parra JRP, Macedo MLR. Regulatory effects of an inhibitor from Plathymenia foliolosa seeds on the larval development of Anagasta kuehniella (Lepidoptera). Comp Biochem Physiol A Mol Integr Physiol 2009; 152:255-61. [PMID: 19007900 DOI: 10.1016/j.cbpa.2008.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 11/15/2022]
Affiliation(s)
- Vanessa da Silveira Ramos
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
46
|
Hernández-Campuzano B, Suárez R, Lina L, Hernández V, Villegas E, Corzo G, Iturriaga G. Expression of a spider venom peptide in transgenic tobacco confers insect resistance. Toxicon 2009; 53:122-8. [PMID: 19000914 DOI: 10.1016/j.toxicon.2008.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 11/27/2022]
Abstract
Spider venom contains a mixture of peptide toxins, some able to kill insects specifically to those considered as important pest. In this study, a peptide toxin produced by the Macrothele gigas spider, Magi 6, was cloned and expressed in tobacco plants, as this toxin has been shown to constitute an effective insecticide. For this purpose, a genetic construction for the cDNA that codifies for Magi 6 was subcloned in a plant expression vector using the 35S promoter and the 5'-end leader from tobacco mosaic virus, in order to transform tobacco leaf disks. The resulting plants demonstrated the presence of Magi 6 gene in the tobacco genome using PCR, and transcription of the cDNA was verified by means of RT-PCR. The expression of the Magi 6 peptide in tobacco was demonstrated by Western blot, which exhibited the expected size, thus suggesting a correct processing of the signal peptide. No morphological alterations in the different transgenic lines were observed, nor any change in plant growth. Subsequently, experiments were carried out challenging detached leaves or whole plants with the herbivorous insect Spodoptera frugiperda. The bioassays indicated that the transgenic lines were significantly more resistant than the wild type plants. This work demonstrated that the expression of Magi 6 peptide in transgenic plants conferred resistance to insect attack and opens the possibility of employing this peptide to improve the resistance of diverse plants.
Collapse
|
47
|
Zhang Y, Ma F, Wang Y, Yang B, Chen S. Expression of v-cath gene from HearNPV in tobacco confers an antifeedant effect against Helicoverpa armigera. J Biotechnol 2008; 138:52-5. [PMID: 18722486 DOI: 10.1016/j.jbiotec.2008.07.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/15/2022]
Abstract
Biotechnology solutions for insect control on crops largely depend on the expression of Bacillus thuringiensis insecticidal proteins to kill pests. V-CATH, a cathepsin L-like cysteine protease from baculoviruses, has been shown to play an essential role in host insect liquefaction. In this study, the v-cath gene from Helicoverpa armigera single nucleopolyhedrovirus (HearNPV) was cloned into the pBI121 binary vector under the control of CaMV35S promoter, and was expressed in tobacco via Agrobacterium-mediated transformation. PCR and RT-PCR analyses of T(1) kanamycin-resistant tobacco progeny plants confirmed the integration and transcription of the v-cath gene. Using a leaf-disk bioassay, antifeedant activity toward H. armigera was tested. Our result showed that, when feeding the first-instar larvae of H. armigera with leaves of transgenic plants, the v-cath transgene expression has a profound antifeedant effect. Most importantly, the growth and development of the insect were inhibited when transferred from leaf-feeding to artificial diet. Our result demonstrated that v-cath gene from baculovirus induced antifeedant effect against H. armigera, resulted in larval stunting and retarded insect development, and has the potential to be used as an alternative way to generate transgenic plants for insect pest control.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, The Chinese Academy of Sciences, Xiaohongshan #44, Wuhan 430071, Hubei Province, PR China
| | | | | | | | | |
Collapse
|
48
|
Yarasi B, Sadumpati V, Immanni CP, Vudem DR, Khareedu VR. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC PLANT BIOLOGY 2008; 8:102. [PMID: 18854007 PMCID: PMC2579298 DOI: 10.1186/1471-2229-8-102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/14/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. RESULTS Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. CONCLUSION In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding.
Collapse
Affiliation(s)
- Bharathi Yarasi
- Centre for Plant Molecular Biology, Osmania University, Hyderabad, 500 007, India
| | | | | | | | | |
Collapse
|
49
|
Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC, Lorito M, Giordana B, Pennacchio F, Rao R. The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res 2008; 17:557-71. [PMID: 17851776 DOI: 10.1007/s11248-007-9129-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 08/02/2007] [Indexed: 01/12/2023]
Abstract
Biotechnology has allowed the development of novel strategies to obtain plants that are more resistant to pests, fungal pathogens and other agents of biotic stress. The obvious advantages of having genotypes with multiple beneficial traits have recently fostered the development of gene pyramiding strategies, but less attention has been given to the study of genes that can increase resistance to different types of harmful organisms. Here we report that a recombinant Chitinase A protein of the Autographa californica nuclear polyhedrosis virus (AcMNPV) has both antifungal and insecticide properties in vitro. Transgenic tobacco plants expressing an active ChiA protein showed reduced damages caused by fungal pathogens and lepidopteran larvae, while did not have an effect on aphid populations. To our knowledge, this is the first report on the characterisation and expression in plants of a single gene that increases resistance against herbivorous pests and fungal pathogens and not affecting non-target insects. The implications and the potential of the ChiA gene for plant molecular breeding and biotechnology are discussed.
Collapse
Affiliation(s)
- Giandomenico Corrado
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Via Università 100, Portici, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Konrad R, Ferry N, Gatehouse AMR, Babendreier D. Potential effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS One 2008; 3:e2664. [PMID: 18628826 PMCID: PMC2441441 DOI: 10.1371/journal.pone.0002664] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/10/2008] [Indexed: 11/21/2022] Open
Abstract
Despite their importance as pollinators in crops and wild plants, solitary bees have not previously been included in non-target testing of insect-resistant transgenic crop plants. Larvae of many solitary bees feed almost exclusively on pollen and thus could be highly exposed to transgene products expressed in the pollen. The potential effects of pollen from oilseed rape expressing the cysteine protease inhibitor oryzacystatin-1 (OC-1) were investigated on larvae of the solitary bee Osmia bicornis ( = O. rufa). Furthermore, recombinant OC-1 (rOC-1), the Bt toxin Cry1Ab and the snowdrop lectin Galanthus nivalis agglutinin (GNA) were evaluated for effects on the life history parameters of this important pollinator. Pollen provisions from transgenic OC-1 oilseed rape did not affect overall development. Similarly, high doses of rOC-1 and Cry1Ab as well as a low dose of GNA failed to cause any significant effects. However, a high dose of GNA (0.1%) in the larval diet resulted in significantly increased development time and reduced efficiency in conversion of pollen food into larval body weight. Our results suggest that OC-1 and Cry1Ab expressing transgenic crops would pose a negligible risk for O. bicornis larvae, whereas GNA expressing plants could cause detrimental effects, but only if bees were exposed to high levels of the protein. The described bioassay with bee brood is not only suitable for early tier non-target tests of transgenic plants, but also has broader applicability to other crop protection products.
Collapse
Affiliation(s)
- Roger Konrad
- Agroscope Reckenholz-Tänikon Research Station ART, Zürich, Switzerland.
| | | | | | | |
Collapse
|