1
|
Furlan JM, Centenaro GS, Bittencourt Fagundes M, Borges Filho C, Batista I, Bandarra N. Thraustochytrium sp. and Aurantiochytrium sp.: Sustainable Alternatives for Squalene Production. Mar Drugs 2025; 23:132. [PMID: 40137318 PMCID: PMC11944157 DOI: 10.3390/md23030132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
This study investigated a sustainable alternative to squalene production utilizing Thraustochytrium sp. and Aurantiochytrium sp., thereby reducing dependence on critically endangered sharks exploited for this compound. By optimizing fed-batch cultivation, a technique prevalent in industrial biotechnology, we have enhanced squalene yields and have demonstrated, through sensitivity analysis, the significance of this shift in preserving species at risk of extinction. Optimization of culture conditions led to the highest biomass concentrations for Thraustochytrium sp. being achieved at lower C-N ratios (<5.0), while the optimal biomass production for Aurantiochytrium sp. occurred in culture media with a high C-N ratio of 54:50. Regarding squalene production, Thraustochytrium sp. produced 26.13 mg/L in the fed-batch system after 72 h, and Aurantiochytrium sp. produced 54.97 mg/L in a batch system with 30 g/L glucose and 0.22 g/L nitrogen after 96 h, showcasing their potential for industrial applications. Moreover, the sensitivity analysis revealed that, on an industrial scale, both strains could produce up to 59.50 t of squalene annually in large-scale facilities, presenting a valuable and sustainable alternative for the biotechnological industry and significantly reducing the reliance on non-renewable and endangered sources such as shark liver oil and preventing the annual capture of over 156,661 sharks.
Collapse
Affiliation(s)
- Júnior Mendes Furlan
- Chromatography and Food Analysis Research Group, Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (G.S.C.); (C.B.F.)
| | - Graciela Salete Centenaro
- Chromatography and Food Analysis Research Group, Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (G.S.C.); (C.B.F.)
| | | | - Carlos Borges Filho
- Chromatography and Food Analysis Research Group, Federal University of Pampa, Itaqui 97650-000, RS, Brazil; (G.S.C.); (C.B.F.)
| | - Irineu Batista
- Portuguese Institute for Sea and Atmosphere, 1495-006 Lisbon, Portugal; (I.B.); (N.B.)
| | - Narcisa Bandarra
- Portuguese Institute for Sea and Atmosphere, 1495-006 Lisbon, Portugal; (I.B.); (N.B.)
| |
Collapse
|
2
|
Shalu S, Karthikanath PKR, Vaidyanathan VK, Blank LM, Germer A, Balakumaran PA. Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry - A Review. Eng Life Sci 2024; 24:e202400003. [PMID: 39391272 PMCID: PMC11464149 DOI: 10.1002/elsc.202400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/04/2024] [Indexed: 10/12/2024] Open
Abstract
Squalene is a natural triterpenoid and a biosynthetic precursor of steroids and hopanoids in microorganisms, plants, humans, and other animals. Squalene has exceptional properties, such as its antioxidant activity, a high penetrability of the skin, and the ability to trigger the immune system, promoting its application in the cosmetic, sustenance, and pharmaceutical industries. Because sharks are the primary source of squalene, there is a need to identify low-cost, environment friendly, and sustainable alternatives for producing squalene commercially. This shift has prompted scientists to apply biotechnological advances to research microorganisms for synthesizing squalene. This review summarizes recent metabolic and bioprocess engineering strategies in various microorganisms for the biotechnological production of this valuable molecule.
Collapse
Affiliation(s)
- Saseendran Shalu
- Department of Molecular Biology and BiotechnologyCollege of AgricultureKerala Agricultural UniversityVellayaniKeralaIndia
| | - Panam Kunnel Raveendranathan Karthikanath
- Chemical Sciences and Technology DivisionCSIR ‐ National Institute for Interdisciplinary Science and Technology (CSIR‐NIIST)ThiruvananthapuramKeralaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing LaboratoryDepartment of BiotechnologySchool of BioengineeringSRM Institute of Science and Technology (SRMIST)KattankulathurIndia
| | - Lars M. Blank
- iAMB ‐ Institute of Applied MicrobiologyABBt ‐ Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Andrea Germer
- iAMB ‐ Institute of Applied MicrobiologyABBt ‐ Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Palanisamy Athiyaman Balakumaran
- Chemical Sciences and Technology DivisionCSIR ‐ National Institute for Interdisciplinary Science and Technology (CSIR‐NIIST)ThiruvananthapuramKeralaIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
3
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
4
|
Schütte L, Hausmann K, Schwarz C, Ersoy F, Berger RG. The Nitrogen Content in the Fruiting Body and Mycelium of Pleurotus Ostreatus and Its Utilization as a Medium Component in Thraustochytrid Fermentation. Bioengineering (Basel) 2024; 11:284. [PMID: 38534558 DOI: 10.3390/bioengineering11030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Following the idea of a circular bioeconomy, the use of side streams as substitutes for cultivation media (components) in bioprocesses would mean an enormous economic and ecological advantage. Costly compounds in conventional media for the production of the triterpene squalene in thraustochytrids are the main carbon source and complex nitrogen sources. Among other side streams examined, extracts from the spent mycelium of the basidiomycete Pleurotus ostreatus were best-suited to acting as alternative nitrogen sources in cultivation media for thraustochytrids. The total nitrogen (3.76 ± 0.01 and 4.24 ± 0.04%, respectively) and protein (16.47 ± 0.06 and 18.57 ± 0.18%, respectively) contents of the fruiting body and mycelium were determined. The fungal cells were hydrolyzed and extracted to generate accessible nitrogen sources. Under preferred conditions, the extracts from the fruiting body and mycelium contained 73.63 ± 1.19 and 89.93 ± 7.54 mM of free amino groups, respectively. Cultivations of Schizochytrium sp. S31 on a medium using a mycelium extract as a complex nitrogen source showed decelerated growth but a similar squalene yield (123.79 ± 14.11 mg/L after 216 h) compared to a conventional medium (111.29 ± 19.96 mg/L, although improvable by additional complex nitrogen source).
Collapse
Affiliation(s)
- Lina Schütte
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Katharina Hausmann
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | | | - Franziska Ersoy
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| | - Ralf G Berger
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
5
|
Schütte L, Hanisch PG, Scheler N, Haböck KC, Huber R, Ersoy F, Berger RG. Squalene production under oxygen limitation by Schizochytrium sp. S31 in different cultivation systems. Appl Microbiol Biotechnol 2024; 108:201. [PMID: 38349390 PMCID: PMC10864429 DOI: 10.1007/s00253-024-13051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
The triterpene squalene is widely used in the food, cosmetics and pharmaceutical industries due to its antioxidant, antistatic and anti-carcinogenic properties. It is usually obtained from the liver of deep sea sharks, which are facing extinction. Alternative production organisms are marine protists from the family Thraustochytriaceae, which produce and store large quantities of various lipids. Squalene accumulation in thraustochytrids is complex, as it is an intermediate in sterol biosynthesis. Its conversion to squalene 2,3-epoxide is the first step in sterol synthesis and is heavily oxygen dependent. Hence, the oxygen supply during cultivation was investigated in our study. In shake flask cultivations, a reduced oxygen supply led to increased squalene and decreased sterol contents and yields. Oxygen-limited conditions were applied to bioreactor scale, where squalene accumulation and growth of Schizochytrium sp. S31 was determined in batch, fed-batch and continuous cultivation. The highest dry matter (32.03 g/L) was obtained during fed-batch cultivation, whereas batch cultivation yielded the highest biomass productivity (0.2 g/L*h-1). Squalene accumulation benefited from keeping the microorganisms in the growth phase. Therefore, the highest squalene content of 39.67 ± 1.34 mg/g was achieved by continuous cultivation (D = 0.025 h-1) and the highest squalene yield of 1131 mg/L during fed-batch cultivation. Volumetric and specific squalene productivity both reached maxima in the continuous cultivation at D = 0.025 h-1 (6.94 ± 0.27 mg/L*h-1 and 1.00 ± 0.03 mg/g*h-1, respectively). Thus, the choice of a suitable cultivation method under oxygen-limiting conditions depends heavily on the process requirements. KEY POINTS: • Measurements of respiratory activity and backscatter light of thraustochytrids • Oxygen limitation increased squalene accumulation in Schizochytrium sp. S31 • Comparison of different cultivation methods under oxygen-limiting conditions.
Collapse
Affiliation(s)
- Lina Schütte
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany.
| | - Patrick G Hanisch
- Department of Engineering and Management, Munich University of Applied Sciences HM, Munich, Germany
| | - Nina Scheler
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Katharina C Haböck
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Robert Huber
- Department of Engineering and Management, Munich University of Applied Sciences HM, Munich, Germany
| | - Franziska Ersoy
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Ralf G Berger
- Institute of Food Chemistry, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
6
|
Liu Z, Huang M, Chen H, Lu X, Tian Y, Hu P, Zhao Q, Li P, Li C, Ji X, Liu H. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. BIORESOURCE TECHNOLOGY 2024; 394:130233. [PMID: 38141883 DOI: 10.1016/j.biortech.2023.130233] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Squalene is an important triterpene with a wide range of applications. Given the growing market demand for squalene, the development of microbial cell factories capable of squalene production is considered a sustainable method. This study aimed to investigate the squalene production potential of Yarrowia lipolytica. First, HMG-CoA reductase from Saccharomyces cerevisiae and squalene synthase from Y. lipolytica was co-overexpressed in Y. lipolytica. Second, by enhancing the supply of NADPH in the squalene synthesis pathway, the production of squalene in Y. lipolytica was effectively increased. Furthermore, by constructing an isoprenol utilization pathway and overexpressing YlDGA1, the strain YLSQ9, capable of producing 868.1 mg/L squalene, was obtained. Finally, by optimizing the fermentation conditions, the highest squalene concentration of 1628.2 mg/L (81.0 mg/g DCW) in Y. lipolytica to date was achieved. This study demonstrated the potential for achieving high squalene production using Y. lipolytica.
Collapse
Affiliation(s)
- Ziying Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mingkang Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hong Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Pengcheng Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qiaoqin Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
7
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
8
|
Fracchia-Durán AG, Ramos-Zambrano E, Márquez-Rocha FJ, Martínez-Ayala AL. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids. World J Microbiol Biotechnol 2023; 39:251. [PMID: 37442840 DOI: 10.1007/s11274-023-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.
Collapse
Affiliation(s)
- Ana Guadalupe Fracchia-Durán
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Emilia Ramos-Zambrano
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Facundo Joaquín Márquez-Rocha
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Unidad Tabasco, 86691, Cunduacán, Tabasco, Mexico
| | - Alma Leticia Martínez-Ayala
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico.
| |
Collapse
|
9
|
Ali MK, Liu X, Li J, Zhu X, Sen B, Wang G. Alpha-Tocopherol Significantly Improved Squalene Production Yield of Aurantiochytrium sp. TWZ-97 through Lowering ROS levels and Up-Regulating Key Genes of Central Carbon Metabolism Pathways. Antioxidants (Basel) 2023; 12:antiox12051034. [PMID: 37237900 DOI: 10.3390/antiox12051034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Media supplementation has proven to be an effective technique for improving byproduct yield during microbial fermentation. This study explored the impact of different concentrations of bioactive compounds, namely alpha-tocopherol, mannitol, melatonin, sesamol, ascorbic acid, and biotin, on the Aurantiochytrium sp. TWZ-97 culture. Our investigation revealed that alpha-tocopherol was the most effective compound in reducing the reactive oxygen species (ROS) burden, both directly and indirectly. Adding 0.7 g/L of alpha-tocopherol led to an 18% improvement in biomass, from 6.29 g/L to 7.42 g/L. Moreover, the squalene concentration increased from 129.8 mg/L to 240.2 mg/L, indicating an 85% improvement, while the squalene yield increased by 63.2%, from 19.82 mg/g to 32.4 mg/g. Additionally, our comparative transcriptomics analysis suggested that several genes involved in glycolysis, pentose phosphate pathway, TCA cycle, and MVA pathway were overexpressed following alpha-tocopherol supplementation. The alpha-tocopherol supplementation also lowered ROS levels by binding directly to ROS generated in the fermentation medium and indirectly by stimulating genes that encode antioxidative enzymes, thereby decreasing the ROS burden. Our findings suggest that alpha-tocopherol supplementation can be an effective method for improving squalene production in Aurantiochytrium sp. TWZ-97 culture.
Collapse
Affiliation(s)
- Memon Kashif Ali
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiuping Liu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xingyu Zhu
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Qingdao Institute for Ocean Technology of Tianjin University Co., Ltd., Qingdao 266237, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Xu YS, Ma W, Li J, Huang PW, Sun XM, Huang H. Metal cofactor regulation combined with rational genetic engineering of Schizochytrium sp. for high-yield production of squalene. Biotechnol Bioeng 2023; 120:1026-1037. [PMID: 36522292 DOI: 10.1002/bit.28311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.
Collapse
Affiliation(s)
- Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Koopmann IK, Müller BA, Labes A. Screening of a Thraustochytrid Strain Collection for Carotenoid and Squalene Production Characterized by Cluster Analysis, Comparison of 18S rRNA Gene Sequences, Growth Behavior, and Morphology. Mar Drugs 2023; 21:204. [PMID: 37103341 PMCID: PMC10140983 DOI: 10.3390/md21040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
Carotenoids and squalene are important terpenes that are applied in a wide range of products in foods and cosmetics. Thraustochytrids might be used as alternative production organisms to improve production processes, but the taxon is rarely studied. A screening of 62 strains of thraustochytrids sensu lato for their potential to produce carotenoids and squalene was performed. A phylogenetic tree was built based on 18S rRNA gene sequences for taxonomic classification, revealing eight different clades of thraustochytrids. Design of experiments (DoE) and growth models identified high amounts of glucose (up to 60 g/L) and yeast extract (up to 15 g/L) as important factors for most of the strains. Squalene and carotenoid production was studied by UHPLC-PDA-MS measurements. Cluster analysis of the carotenoid composition partially mirrored the phylogenetic results, indicating a possible use for chemotaxonomy. Strains in five clades produced carotenoids. Squalene was found in all analyzed strains. Carotenoid and squalene synthesis was dependent on the strain, medium composition and solidity. Strains related to Thraustochytrium aureum and Thraustochytriidae sp. are promising candidates for carotenoid synthesis. Strains closely related to Schizochytrium aggregatum might be suitable for squalene production. Thraustochytrium striatum might be a good compromise for the production of both molecule groups.
Collapse
Affiliation(s)
- Inga K Koopmann
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| | - Bettina A Müller
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| | - Antje Labes
- ZAiT, Center for Analytics in Technology Transfer of Bio and Food Technology Innovations, Flensburg University of Applied Sciences, 24943 Flensburg, Schleswig-Holstein, Germany
| |
Collapse
|
12
|
Bi Y, Guo P, Liu L, Chen L, Zhang W. Elucidation of sterol biosynthesis pathway and its co-regulation with fatty acid biosynthesis in the oleaginous marine protist Schizochytrium sp. Front Bioeng Biotechnol 2023; 11:1188461. [PMID: 37180050 PMCID: PMC10174431 DOI: 10.3389/fbioe.2023.1188461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Sterols constitute vital structural and regulatory components of eukaryotic cells. In the oleaginous microorganism Schizochytrium sp. S31, the sterol biosynthetic pathway primarily produces cholesterol, stigmasterol, lanosterol, and cycloartenol. However, the sterol biosynthesis pathway and its functional roles in Schizochytrium remain unidentified. Through Schizochytrium genomic data mining and a chemical biology approach, we first in silico elucidated the mevalonate and sterol biosynthesis pathways of Schizochytrium. The results showed that owing to the lack of plastids in Schizochytrium, it is likely to use the mevalonate pathway as the terpenoid backbone pathway to supply isopentenyl diphosphate for the synthesis of sterols, similar to that in fungi and animals. In addition, our analysis revealed a chimeric organization of the Schizochytrium sterol biosynthesis pathway, which possesses features of both algae and animal pathways. Temporal tracking of sterol profiles reveals that sterols play important roles in Schizochytrium growth, carotenoid synthesis, and fatty acid synthesis. Furthermore, the dynamics of fatty acid and transcription levels of genes involved in fatty acid upon chemical inhibitor-induced sterol inhibition reveal possible co-regulation of sterol synthesis and fatty acid synthesis, as the inhibition of sterol synthesis could promote the accumulation of fatty acid in Schizochytrium. Sterol and carotenoid metabolisms are also found possibly co-regulated, as the inhibition of sterols led to decreased carotenoid synthesis through down-regulating the gene HMGR and crtIBY in Schizochytrium. Together, elucidation of the Schizochytrium sterol biosynthesis pathway and its co-regulation with fatty acid synthesis lay the essential foundation for engineering Schizochytrium for the sustainable production of lipids and high-value chemicals.
Collapse
Affiliation(s)
- Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
- *Correspondence: Weiwen Zhang,
| |
Collapse
|
13
|
Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Michaud P, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol 2022; 221:1238-1250. [PMID: 36067848 DOI: 10.1016/j.ijbiomac.2022.08.206] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Due to the increase in industrial demand for new biosourced molecules (notably bioactive exopolysaccharides (EPS)), microalgae are gaining popularity because of their nutraceutical potential and benefits health. Such health effects are delivered by specific secondary metabolites, e.g., pigments, exopolysaccharides, polyunsaturated fatty acids, proteins, and glycolipids. These are suitable for the subsequent uses in cosmetic, nutraceutical, pharmaceutical, biofuels, biological waste treatment, animal feed and food fields. In this regard, a special focus has been given in this review to describe the various methods used for extraction and purification of polysaccharides. The second part of the review provides an up-to-date and comprehensive summary of parameters affecting the microalgae growth and insights to maximize the metabolic output by understanding the intricacies of algal development and polysaccharides production. In the ultimate part, the health and nutraceutical claims associated with marine algal bioactive polysaccharides, explaining their noticeable potential for biotechnological applications, are summarized and comprehensively discussed.
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Faiez Hentati
- Université de Lorraine, INRAE, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, 3018 Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
14
|
Yarkent Ç, Oncel SS. Recent Progress in Microalgal Squalene Production and Its Cosmetic Application. BIOTECHNOL BIOPROC E 2022; 27:295-305. [PMID: 35789811 PMCID: PMC9244377 DOI: 10.1007/s12257-021-0355-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Squalene, [oxidized form squalane] is a terpenoid with biological activity that produced by animals and plants. In the human body, a significant excretion named as sebum includes squalene in 12 percent. This bioactive compound shows anti-inflammatory, detoxifying, moisturizing and antioxidant effects on the human body. In addition to having these properties, it is known that squalene production decreases as less sebum is produced with age. Because of that, the need for supplementation of squalene through products has arisen. As a result, squalene production has been drawn attention due to its many application possibilities by cosmetic, cosmeceutical and pharmaceutical fields. At this point, approximately 3,000 of sharks, the major and the most popular source of squalene must be killed to obtain 1 ton of squalene. These animals are on the verge of extinction. This situation has caused to focus on finding microalgae strains, which are sustainable producers of squalene as alternative to sharks. This review paper summarizes the recent progresses in the topic of squalene. For this purpose, it contains information on squalene producers, microalgal squalene production and cosmetic evaluation of squalene.
Collapse
Affiliation(s)
- Çağla Yarkent
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, 35100 Izmir, Turkey
| | - Suphi S. Oncel
- Department of Bioengineering, Faculty of Engineering, University of Ege, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
15
|
Zhang A, He Y, Sen B, Wang W, Wang X, Wang G. Optimal NaCl Medium Enhances Squalene Accumulation in Thraustochytrium sp. ATCC 26185 and Influences the Expression Levels of Key Metabolic Genes. Front Microbiol 2022; 13:900252. [PMID: 35602038 PMCID: PMC9114700 DOI: 10.3389/fmicb.2022.900252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Squalene, a natural lipid of the terpenoid family, is well-recognized for its roles in regulating cholesterol metabolism, preventing tumor development, and improving immunity. For large-scale squalene production, the unicellular marine protists—thraustochytrids—have shown great potential. However, the growth of thraustochytrids is known to be affected by salt stress, which can eventually influence the squalene content. Here, we study the effects of an optimal concentration of NaCl on the squalene content and transcriptome of Thraustochytrium sp. ATCC 26185. Under the optimal culture conditions (glucose, 30 g/L; yeast extract, 2.5 g/L; and NaCl, 5 g/L; 28°C), the strain yielded 67.7 mg squalene/g cell dry weight, which was significantly greater than that (5.37 mg/g) under the unoptimized conditions. NaCl was determined as the most significant (R = 135.24) factor for squalene production among glucose, yeast extract, and NaCl. Further comparative transcriptomics between the ATCC 26185 culture with and without NaCl addition revealed that NaCl (5 g/L) influences the expression of certain key metabolic genes, namely, IDI, FAS-a, FAS-b, ALDH3, GS, and NDUFS4. The differential expression of these genes possibly influenced the acetyl-CoA and glutamate metabolism and resulted in an increased squalene production. Through the integration of bioprocess technology and transcriptomics, this report provides the first evidence of the possible mechanisms underscoring increased squalene production by NaCl.
Collapse
Affiliation(s)
- Aiqing Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Weijun Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
16
|
Recent advances in the microbial production of squalene. World J Microbiol Biotechnol 2022; 38:91. [PMID: 35426523 PMCID: PMC9010451 DOI: 10.1007/s11274-022-03273-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022]
Abstract
Squalene is a triterpene hydrocarbon, a biochemical precursor for all steroids in plants and animals. It is a principal component of human surface lipids, in particular of sebum. Squalene has several applications in the food, pharmaceutical, and medical sectors. It is essentially used as a dietary supplement, vaccine adjuvant, moisturizer, cardio-protective agent, anti-tumor agent and natural antioxidant. With the increased demand for squalene along with regulations on shark-derived squalene, there is a need to find alternatives for squalene production which are low-cost as well as sustainable. Microbial platforms are being considered as a potential option to meet such challenges. Considerable progress has been made using both wild-type and engineered microbial strains for improved productivity and yields of squalene. Native strains for squalene production are usually limited by low growth rates and lesser titers. Metabolic engineering, which is a rational strain engineering tool, has enabled the development of microbial strains such as Saccharomyces cerevisiae and Yarrowia lipolytica, to overproduce the squalene in high titers. This review focuses on key strain engineering strategies involving both in-silico and in-vitro techniques. Emphasis is made on gene manipulations for improved precursor pool, enzyme modifications, cofactor regeneration, up-regulation of limiting reactions, and downregulation of competing reactions during squalene production. Process strategies and challenges related to both upstream and downstream during mass cultivation are detailed.
Collapse
|
17
|
Media Supplementation with Mannitol and Biotin Enhances Squalene Production of Thraustochytrium ATCC 26185 through Increased Glucose Uptake and Antioxidative Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082449. [PMID: 35458647 PMCID: PMC9029391 DOI: 10.3390/molecules27082449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
Media supplementation with exogenous chemicals is known to stimulate the accumulation of important lipids produced by microalgae and thraustochytrids. However, the roles of exogenous chemicals in promoting and preserving the terpenoids pool of thraustochytrids have been rarely investigated. Here, we realized the effects of two media supplements—mannitol and biotin—on the biomass and squalene production by a thraustochytrid strain (Thraustochytrium sp. ATCC 26185) and elucidated their mechanism of action. A significant change in the biomass was not evident with the exogenous addition of these supplements. However, with mannitol (1 g/L) supplementation, the ATCC 26185 culture achieved the best concentration (642 ± 13.6 mg/L) and yield (72.9 ± 9.6 mg/g) of squalene, which were 1.5-fold that of the control culture (non-supplemented). Similarly, with biotin supplementation (0.15 mg/L), the culture showed 459 ± 2.9 g/L and 55.7 ± 3.2 mg/g of squalene concentration and yield, respectively. The glucose uptake rate at 24 h of fermentation increased markedly with mannitol (0.31 g/Lh−1) or biotin (0.26 g/Lh−1) supplemented culture compared with non-supplemented culture (0.09 g/Lh−1). In addition, the reactive oxygen species (ROS) level of culture supplemented with mannitol remained alleviated during the entire period of fermentation while it alleviated after 24 h with biotin supplementation. The ∆ROS with mannitol was better compared with biotin supplementation. The total antioxidant capacity (T-AOC) of the supplemented culture was more than 50% during the late stage (72–96 h) of fermentation. Our study provides the potential of mannitol and biotin to enhance squalene yield and the first lines of experimental evidence for their protective role against oxidative stress during the culture of thraustochytrids.
Collapse
|
18
|
Reboleira J, Félix R, Vicente TFL, Januário AP, Félix C, de Melo MMR, Silva CM, Ribeiro AC, Saraiva JA, Bandarra NM, Sapatinha M, Paulo MC, Coutinho J, Lemos MFL. Uncovering the Bioactivity of Aurantiochytrium sp.: a Comparison of Extraction Methodologies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:40-54. [PMID: 34855032 DOI: 10.1007/s10126-021-10085-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Aurantiochytrium sp. is an emerging alternative source of polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and squalene, playing an important role in the phasing out of traditional fish sources for these compounds. Novel lipid extraction techniques with a focus on sustainability and low environmental footprint are being developed for this organism, but the exploration of other added-value compounds within it is still very limited. In this work, a combination of novel green extraction techniques (high hydrostatic pressure extraction (HPE) and supercritical fluid extraction (SFE)) and traditional techniques (organic solvent Soxhlet extraction and hydrodistillation (HD)) was used to obtain lipophilic extracts of Aurantiochytrium sp., which were then screened for antioxidant (DPPH radical reduction capacity and ferric-reducing antioxidant potential (FRAP) assays), lipid oxidation protection, antimicrobial, anti-aging enzyme inhibition (collagenase, elastase and hyaluronidase), and anti-inflammatory (inhibition of NO production) activities. The screening revealed promising extracts in nearly all categories of biological activity tested, with only the enzymatic inhibition being low in all extracts. Powerful lipid oxidation protection and anti-inflammatory activity were observed in most SFE samples. Ethanolic HPEs inhibited both lipid oxidation reactions and microbial growth. The HD extract demonstrated high antioxidant, antimicrobial, and anti-inflammatory activities making, it a major contender for further studies aiming at the valorization of Aurantiochytrium sp. Taken together, this study presents compelling evidence of the bioactive potential of Aurantiochytrium sp. and encourages further exploration of its composition and application.
Collapse
Affiliation(s)
- João Reboleira
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal.
- Edifício CETEMARES, Avenida Do Porto de Pesca, 2520-630, Peniche, Portugal.
| | - Rafael Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Tânia F L Vicente
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Adriana P Januário
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Carina Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Marcelo M R de Melo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carlos M Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana C Ribeiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 1495-006, Lisboa, Portugal
| | - Maria Sapatinha
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 1495-006, Lisboa, Portugal
| | - Maria C Paulo
- DEPSIEXTRACTA Tecnologias E Biológicas, Lda, Zona Industrial do Monte da Barca rua H, lote 62, 2100-057, Coruche, Portugal
| | - Joana Coutinho
- DEPSIEXTRACTA Tecnologias E Biológicas, Lda, Zona Industrial do Monte da Barca rua H, lote 62, 2100-057, Coruche, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal.
- Edifício CETEMARES, Avenida Do Porto de Pesca, 2520-630, Peniche, Portugal.
| |
Collapse
|
19
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
20
|
Xu W, Wang D, Fan J, Zhang L, Ma X, Yao J, Wang Y. Improving squalene production by blocking the competitive branched pathways and expressing rate-limiting enzymes in Rhodopseudomonas palustris. Biotechnol Appl Biochem 2021; 69:1502-1508. [PMID: 34278608 DOI: 10.1002/bab.2222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
Squalene is a medically valuable bioactive compound that can be used as a raw material for fuels. Microbial fermentation is the preferred method for the squalene production. In this study, we employed several metabolic engineering strategies to increase squalene yield in Rhodopseudomonas palustris. A 57% increase in squalene titer was achieved by blocking the carotenoid pathway, thus directing more FPP into the squalene biosynthetic pathway. In order to cut down the conversion of squalene to haponoids, a recombinant strain R. palustris [Δshc, ΔcrtB] in which both carotenoid and haponoid pathways were blocked was then constructed, resulting in a 50-fold increase in squalene titer. Based on the expression of rate-limiting enzymes involved in the squalene pathway, the final squalene content reached 23.3 mg/g DCW, which was 178-times higher than that of the wild-type strain. In this study, several methods effective in improving squalene yield have been described and the potential of R. palustris for producing squalene has been demonstrated.
Collapse
Affiliation(s)
- Wen Xu
- The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Danyang Wang
- Department of Prosthodontics, School of Stomatology, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jinbo Fan
- The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lei Zhang
- The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xi Ma
- The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jia Yao
- The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yang Wang
- The Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Bioprospecting potentials of moderately halophilic bacteria and the isolation of squalene producers from Kuwait sabkha. Int Microbiol 2021; 24:373-384. [PMID: 33755814 DOI: 10.1007/s10123-021-00173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Sabkhas in Kuwait are unique hypersaline marine environments under-explored for bacterial community composition and bioprospecting. The 16S rRNA sequence analysis of 46 isolates with distinct morphology from two Kuwait sabkhas recovered 11 genera. Phylum Firmicutes dominated these isolates, and Bacillus (32.6%) was recovered as the dominant genera, followed by Halococcus (17.4%). These isolates were moderately halophilic, and some of them showed tolerance and growth at extreme levels of salt (20%), pH (5 and/or 11), and temperature (55 °C). A higher percentage of isolates harbored protease (63.0), followed by DNase (41.3), amylase (41.3), and lipase (32.6). Selected isolates showed antimicrobial activity against E. faecalis and isolated Halomonas shengliensis, and Idiomarina piscisalsi harbored gene coding for dNDP-glucose 4,6-dehydratase (Glu 1), indicating their potential to produce biomolecules with deoxysugar moieties. Palmitic acid or oleic acid was the dominant fatty acid, and seven isolates had some polyunsaturated fatty acids (linolenic or γ-linolenic acid). Interestingly, six isolates belonging to Planococcus and Oceanobacillus genus produced squalene, a bioactive isoprenoid molecule. Their content increased 30-50% in the presence of Terbinafine. The potential bioactivities and extreme growth conditions make this untapped bacterial diversity a promising candidate for future bioprospecting studies.
Collapse
|
22
|
Patel A, Rova U, Christakopoulos P, Matsakas L. Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139691. [PMID: 32497881 DOI: 10.1016/j.scitotenv.2020.139691] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The commercial production of docosahexaenoic acid (DHA) from oleaginous microorganisms is getting more attention due to several advantages over fish oils. The processing cost became a major bottleneck for commercialization of DHA from microorganisms. The most of cost shares in the feedstock to cultivate the microorganisms and downstream processing. The cost of feedstock can be compensated with the utilization of substrate from waste stream whereas production of value-added chemicals boosts the economic viability of nutraceutical production. In the present study, the docosahexaenoic acid (DHA)-producing marine protist Aurantiochytrium sp. T66 was cultivated on post-consumption food waste hydrolysate for the mining of squalene. After 120 h of cultivation, cell dry weight was 14.7 g/L, of which 6.34 g/L (43.13%; w/w) were lipids. DHA accounted for 2.15 g/L (34.05%) of total extracted lipids or 0.15 g/gCDW. Maximum squalene concentration and yield were 1.05 g/L and 69.31 mg/gCDW, respectively. Hence, utilization of food waste represents an excellent low-cost strategy for cultivating marine oleaginous thraustochytrids and produce squalene as a byproduct of DHA.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
23
|
Rosales-Calderon O, Arantes V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:240. [PMID: 31624502 PMCID: PMC6781352 DOI: 10.1186/s13068-019-1529-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/17/2019] [Indexed: 05/03/2023]
Abstract
The demand for fossil derivate fuels and chemicals has increased, augmenting concerns on climate change, global economic stability, and sustainability on fossil resources. Therefore, the production of fuels and chemicals from alternative and renewable resources has attracted considerable and growing attention. Ethanol is a promising biofuel that can reduce the consumption of gasoline in the transportation sector and related greenhouse gas (GHG) emissions. Lignocellulosic biomass is a promising feedstock to produce bioethanol (cellulosic ethanol) because of its abundance and low cost. Since the conversion of lignocellulose to ethanol is complex and expensive, the cellulosic ethanol price cannot compete with those of the fossil derivate fuels. A promising strategy to lower the production cost of cellulosic ethanol is developing a biorefinery which produces ethanol and other high-value chemicals from lignocellulose. The selection of such chemicals is difficult because there are hundreds of products that can be produced from lignocellulose. Multiple reviews and reports have described a small group of lignocellulose derivate compounds that have the potential to be commercialized. Some of these products are in the bench scale and require extensive research and time before they can be industrially produced. This review examines chemicals and materials with a Technology Readiness Level (TRL) of at least 8, which have reached a commercial scale and could be shortly or immediately integrated into a cellulosic ethanol process.
Collapse
Affiliation(s)
- Oscar Rosales-Calderon
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP CEP 12602-810 Brazil
| | - Valdeir Arantes
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Estrada Municipal do Campinho, Lorena, SP CEP 12602-810 Brazil
| |
Collapse
|
24
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
25
|
Zhang A, Xie Y, He Y, Wang W, Sen B, Wang G. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes. BIORESOURCE TECHNOLOGY 2019; 287:121415. [PMID: 31078814 DOI: 10.1016/j.biortech.2019.121415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Newly-isolated thraustochytrid strains from coastal waters of China were characterized as bioresource of squalene and the culture condition for the top producer was systematically optimized. Phylogenetic analysis revealed that eight squalene-producing isolates were closely related to genus Aurantiochytrium and one to genus Labyrinthula. The top producer, Aurantiochytrium sp. TWZ-97, produced squalene up to 188.6 mg/L at 28 °C in a 5-L bioreactor containing optimal medium (glucose: 40 g/L, monosodium glutamate: 3 g/L, yeast extract: 25 g/L, and NaCl: 6 g/L), which was 6-fold higher than that under unoptimized condition. Transcriptome analysis revealed for the first time the presence of seven key genes of mevalonate pathway for squalene biosynthesis in strain TWZ-97. Medium optimization yielded a 2.23-fold higher expression of the squalene synthase gene under optimal condition compared to unoptimized. This study provides a potential thraustochytrid strain TWZ-97 as bioresource of squalene and uncovers novel information about its squalene biosynthesis pathway for future strain improvement.
Collapse
Affiliation(s)
- Aiqing Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weijun Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
26
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Corrigendum: Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:114. [PMID: 31192199 PMCID: PMC6547300 DOI: 10.3389/fbioe.2019.00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fbioe.2019.00050.].
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
27
|
Xu W, Yao J, Liu L, Ma X, Li W, Sun X, Wang Y. Improving squalene production by enhancing the NADPH/NADP + ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:68. [PMID: 30962822 PMCID: PMC6437923 DOI: 10.1186/s13068-019-1415-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Squalene is currently used widely in the food, cosmetics, and medicine industries. It could also replace petroleum as a raw material for fuels. Microbial fermentation processes for squalene production have been emerging over recent years. In this study, to study the squalene-producing potential of Escherichia coli (E. coli), we employed several increasing strategies for systematic metabolic engineering. These include the expression of human truncated squalene synthase, the overexpression of rate-limiting enzymes in isoprenoid pathway, the modification of isoprenoid-feeding module and the blocking of menaquinone pathway. RESULTS Herein, human truncated squalene synthase was engineered in Escherichia coli to create a squalene-producing bacterial strain. To increase squalene yield, we employed several metabolic engineering strategies. A fivefold squalene titer increase was achieved by expressing rate-limiting enzymes (IDI, DXS, and FPS) involved in the isoprenoid pathway. Pyridine nucleotide transhydrogenase (UdhA) was then expressed to improve the cellular NADPH/NADP+ ratio, resulting in a 59% increase in squalene titer. The Embden-Meyerhof pathway (EMP) was replaced with the Entner-Doudoroff pathway (EDP) and pentose phosphate pathway (PPP) to feed the isoprenoid pathway, along with the overexpression of zwf and pgl genes which encode rate-limiting enzymes in the EDP and PPP, leading to a 104% squalene content increase. Based on the blocking of menaquinone pathway, a further 17.7% increase in squalene content was achieved. Squalene content reached a final 28.5 mg/g DCW and 52.1 mg/L. CONCLUSIONS This study provided novel strategies for improving squalene yield and demonstrated the potential of producing squalene by E. coli.
Collapse
Affiliation(s)
- Wen Xu
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Jia Yao
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Lijun Liu
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Xi Ma
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Wei Li
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Xiaojing Sun
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Yang Wang
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| |
Collapse
|
28
|
Gohil N, Bhattacharjee G, Khambhati K, Braddick D, Singh V. Engineering Strategies in Microorganisms for the Enhanced Production of Squalene: Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2019; 7:50. [PMID: 30968019 PMCID: PMC6439483 DOI: 10.3389/fbioe.2019.00050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
The triterpene squalene is a natural compound that has demonstrated an extraordinary diversity of uses in pharmaceutical, nutraceutical, and personal care industries. Emboldened by this range of uses, novel applications that can gain profit from the benefits of squalene as an additive or supplement are expanding, resulting in its increasing demand. Ever since its discovery, the primary source has been the deep-sea shark liver, although recent declines in their populations and justified animal conservation and protection regulations have encouraged researchers to identify a novel route for squalene biosynthesis. This renewed scientific interest has profited from immense developments in synthetic biology, which now allows fine-tuning of a wider range of plants, fungi, and microorganisms for improved squalene production. There are numerous naturally squalene producing species and strains; although they generally do not make commercially viable yields as primary shark liver sources can deliver. The recent advances made toward improving squalene output from natural and engineered species have inspired this review. Accordingly, it will cover in-depth knowledge offered by the studies of the natural sources, and various engineering-based strategies that have been used to drive the improvements in the pathways toward large-scale production. The wide uses of squalene are also discussed, including the notable developments in anti-cancer applications and in augmenting influenza vaccines for greater efficacy.
Collapse
Affiliation(s)
- Nisarg Gohil
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Gargi Bhattacharjee
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Khushal Khambhati
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| | - Darren Braddick
- Department of R&D, Cementic S. A. S., Genopole, Paris, France
| | - Vijai Singh
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, India
| |
Collapse
|
29
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Hoang LAT, Nguyen HC, Le TT, Hoang THQ, Pham VN, Hoang MHT, Ngo HTT, Hong DD. Different fermentation strategies by Schizochytrium mangrovei strain pq6 to produce feedstock for exploitation of squalene and omega-3 fatty acids. JOURNAL OF PHYCOLOGY 2018; 54:550-556. [PMID: 29889307 DOI: 10.1111/jpy.12757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Schizochytrium mangrovei strain PQ6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω-3, DHA) and squalene using a 30-L bioreactor with a working volume of 15 L under various batch and fed-batch fermentation process regimes. The fed-batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L-1 , 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g-1 · L-1 , respectively, after a 96 h fed-batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g-1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial-scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium.
Collapse
Affiliation(s)
- Lan Anh Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Ha Cam Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thom Thi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Huong Quynh Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Van Nhat Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Minh Hien Thi Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Hoai Thu Thi Ngo
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Dang Diem Hong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
31
|
Novickij V, Švedienė J, Paškevičius A, Markovskaja S, Girkontaitė I, Zinkevičienė A, Lastauskienė E, Novickij J. Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Future Microbiol 2017; 13:535-546. [PMID: 29227694 DOI: 10.2217/fmb-2017-0245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Determine the influence of pH on the inactivation efficiency of Candida albicans in pulsed electric fields (PEF) and evaluate the possibilities for sensitization of a drug-resistant strain to antifungal drugs. MATERIALS & METHODS The effects of PEF (2.5-25 kVcm-1) with fluconazole, terbinafine and naftifine were analyzed at a pH range of 3.0-9.0. Membrane permeabilization was determined by flow cytometry and propidium iodide. RESULTS PEF induced higher inactivation of C. albicans at low pH and increased sensitivity to terbinafine and naftifine to which the strain was initially resistant. Up to 5 log reduction in cell survival was achieved. CONCLUSION A proof of concept that electroporation can be used to sensitize drug-resistant microorganisms was presented, which is promising for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko St 41, 03227 Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos St 2, 08412 Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos St 2, 08412 Vilnius, Lithuania.,Laboratory of Microbiology of the Centre of Laboratory Medicine, Vilnius University Hospital Santariškių Clinics, Santariškių St 2, 08661 Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų St 49, 08406 Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių St 5, 08406 Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių St 5, 08406 Vilnius, Lithuania
| | - Eglė Lastauskienė
- Department of Microbiology & Biotechnology, Vilnius University, Sauletekio al. 7, 10257 Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko St 41, 03227 Vilnius, Lithuania
| |
Collapse
|
32
|
Xie Y, Sen B, Wang G. Mining terpenoids production and biosynthetic pathway in thraustochytrids. BIORESOURCE TECHNOLOGY 2017; 244:1269-1280. [PMID: 28549813 DOI: 10.1016/j.biortech.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 05/26/2023]
Abstract
Terpenoids are major bioactive compounds produced by microalgae and other eukaryotic microorganisms. Mining metabolic potential of marine microalgae for commercial production of terpenoids suggest thraustochytrids as one of the promising cell factories. The identification of potential thraustochytrid strains and relevant laboratory scale bioprocesses has been pursued largely. Further investigations in the improvement of terpenoids biosynthesis expect relevant molecular mechanisms to be understood directing metabolic engineering of the pathways. In this review, fermentative and mechanistic studies to identify key enzymes and pathways that are associated to terpenoids biosynthesis in thraustochytrids are discussed. Exploration of biosynthesis mechanisms in other model organisms facilitated identification of potential molecular targets for engineering terpenoids biosynthetic pathway in thraustochytrids. In addition, the preliminary genetic manipulation and in silico analysis in this review provides a platform for system-level metabolic engineering towards thraustochytrid strains improvement. Overall, the review contributes comprehensive information to allow better terpenoids productivity in thraustochytrids.
Collapse
Affiliation(s)
- Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
33
|
Biotechnological production of value-added compounds by ustilaginomycetous yeasts. Appl Microbiol Biotechnol 2017; 101:7789-7809. [DOI: 10.1007/s00253-017-8516-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/30/2022]
|
34
|
Fossier Marchan L, Lee Chang KJ, Nichols PD, Mitchell WJ, Polglase JL, Gutierrez T. Taxonomy, ecology and biotechnological applications of thraustochytrids: A review. Biotechnol Adv 2017; 36:26-46. [PMID: 28911809 DOI: 10.1016/j.biotechadv.2017.09.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
Abstract
Thraustochytrids were first discovered in 1934, and since the 1960's they have been increasingly studied for their beneficial and deleterious effects. This review aims to provide an enhanced understanding of these protists with a particular emphasis on their taxonomy, ecology and biotechnology applications. Over the years, thraustochytrid taxonomy has improved with the development of modern molecular techniques and new biochemical markers, resulting in the isolation and description of new strains. In the present work, the taxonomic history of thraustochytrids is reviewed, while providing an up-to-date classification of these organisms. It also describes the various biomarkers that may be taken into consideration to support taxonomic characterization of the thraustochytrids, together with a review of traditional and modern techniques for their isolation and molecular identification. The originality of this review lies in linking taxonomy and ecology of the thraustochytrids and their biotechnological applications as producers of docosahexaenoic acid (DHA), carotenoids, exopolysaccharides and other compounds of interest. The paper provides a summary of these aspects while also highlighting some of the most important recent studies in this field, which include the diversity of polyunsaturated fatty acid metabolism in thraustochytrids, some novel strategies for biomass production and recovery of compounds of interest. Furthermore, a detailed overview is provided of the direct and current applications of thraustochytrid-derived compounds in the food, fuel, cosmetic, pharmaceutical, and aquaculture industries and of some of the commercial products available. This review is intended to be a source of information and references on the thraustochytrids for both experts and those who are new to this field.
Collapse
Affiliation(s)
- Loris Fossier Marchan
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Kim J Lee Chang
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Peter D Nichols
- CSIRO Oceans and Atmosphere, GPO Box 1538, Hobart, TAS, 7001, Australia.
| | - Wilfrid J Mitchell
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Jane L Polglase
- Jane L Polglase Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Tony Gutierrez
- Institute of Mechanical, Process & Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
35
|
Production of squalene by microbes: an update. World J Microbiol Biotechnol 2016; 32:195. [DOI: 10.1007/s11274-016-2155-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/06/2016] [Indexed: 01/24/2023]
|
36
|
Rasool A, Zhang G, Li Z, Li C. Engineering of the terpenoid pathway in Saccharomyces cerevisiae co-overproduces squalene and the non-terpenoid compound oleic acid. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Rasool A, Ahmed MS, Li C. Overproduction of squalene synergistically downregulates ethanol production in Saccharomyces cerevisiae. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Xu W, Chai C, Shao L, Yao J, Wang Y. Metabolic engineering of Rhodopseudomonas palustris for squalene production. ACTA ACUST UNITED AC 2016; 43:719-25. [DOI: 10.1007/s10295-016-1745-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
Abstract
Abstract
Squalene is a strong antioxidant used extensively in the food, cosmetic and medicine industries. Rhodopseudomonas palustris TIE-1 was used as the host because of its ability to grow photosynthetically using solar energy and carbon dioxide from atmosphere. The deletion of the shc gene resulted in a squalene production of 3.8 mg/g DCW, which was 27-times higher than that in the wild type strain. For constructing a substrate channel to elevate the conversion efficiency, we tried to fuse crtE gene with hpnD gene. By fusing the two genes, squalene content was increased to 12.6 mg/g DCW, which was 27.4 % higher than that resulted from the co-expression method. At last, the titer of squalene reached 15.8 mg/g DCW by co-expressing the dxs gene, corresponding to 112-fold increase relative to that for wild-type strain. This study provided novel strategies for improving squalene yield and demonstrated the potential of producing squalene by Rhodopseudomonas palustris.
Collapse
Affiliation(s)
- Wen Xu
- grid.43169.39 0000000105991243 Department of Pathogen Biology, School of Basic Medical Science Xi’an Medical University 710021 Xi’an Shaanxi China
| | - Changbin Chai
- grid.43169.39 0000000105991243 Department of Pathogen Biology, School of Basic Medical Science Xi’an Medical University 710021 Xi’an Shaanxi China
| | - Lingqiao Shao
- grid.43169.39 0000000105991243 Department of Pathogen Biology, School of Basic Medical Science Xi’an Medical University 710021 Xi’an Shaanxi China
| | - Jia Yao
- grid.43169.39 0000000105991243 Department of Pathogen Biology, School of Basic Medical Science Xi’an Medical University 710021 Xi’an Shaanxi China
| | - Yang Wang
- grid.43169.39 0000000105991243 Department of Pathogen Biology, School of Basic Medical Science Xi’an Medical University 710021 Xi’an Shaanxi China
| |
Collapse
|
39
|
Song X, Wang X, Tan Y, Feng Y, Li W, Cui Q. High Production of Squalene Using a Newly Isolated Yeast-like Strain Pseudozyma sp. SD301. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8445-51. [PMID: 26350291 DOI: 10.1021/acs.jafc.5b03539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A yeast-like fungus, termed strain SD301, with the ability to produce a high concentration of squalene, was isolated from Shuidong Bay, China. The nucleotide sequence analysis of the internal transcribed spacer (ITS) region of SD301 indicated the strain belonged to Pseudozyma species. The highest biomass and squalene production of SD301 were obtained when glucose and yeast extracts were used as the carbon and nitrogen sources, respectively, with a C/N ratio of 3. The optimal pH and temperature were 6 and 25 °C, with 15 g L(-1) of supplemented sea salt. The maximum squalene productivity reached 0.039 g L(-1) h(-1) in batch fermentation, while the maximum squalene yield of 2.445 g L(-1) was obtained in fed-batch fermentation. According to our knowledge, this is the highest squalene yield produced thus far using fermentation technology, and the newly isolated strain Pseudozyma sp. SD301 is a promising candidate for commercial squalene production.
Collapse
Affiliation(s)
| | - Xiaolong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | | | | | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | | |
Collapse
|
40
|
Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 2015; 99:8363-75. [DOI: 10.1007/s00253-015-6920-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023]
|
41
|
Pang KL, Lin HJ, Lin HY, Huang YF, Chen YM. Production of arachidonic and eicosapentaenoic acids by the marine oomycete Halophytophthora. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:121-129. [PMID: 25119161 DOI: 10.1007/s10126-014-9600-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are fatty acids with more than one double bond in the chemical structure. Arachidonic acid (ARA, 20:4 (n-6)) and eicosapentaenoic acid (EPA, 22:5 (n-3)) are common PUFAs with beneficial health effects. Marine fish and meat are the main sources of omega-3 and omega-6 fatty acids in human's diet, respectively. In particular, there is a general decline in fish catch, implicating the need for an alternative source of omega-3 fatty acids. Previous studies have examined the production of polyunsaturated fatty acids including ARA and EPA by various microorganisms, including microalgae, fungi, and thraustochytrids. In this study, the production of ARA and EPA by 10 isolates of four estuarine Halophytophthora species (Halophytophthora avicenniae, Halophytophthora polymorphica, Halophytophthora vesicula, and Halophytophthora spinosa var. spinosa) cultured from fallen mangrove leaves in Taiwan was examined. The yield of ARA ranged from 0.004 to 0.052 g/L with the highest yield of ARA obtained from H. spinosa var. spinosa IMB162, but no or a very low level of EPA was produced by IMB162. For EPA production by Halophytophthora spp., the yield ranged from 0 to 0.047 g/L. Percentage of ARA in total fatty acid ranged between 7.16 and 25.02%. One-way ANOVA analysis using Tukey Test (p ≥ 0.05) suggested that there is significant difference in the percentage of EPA in total fatty acid produced by the isolates, which ranged from 0.01 to 18.42%. BODIPY 505/515 fluorescent staining suggests that lipid bodies were evenly distributed in the mycelia of Halophytophthora species.
Collapse
Affiliation(s)
- Ka-Lai Pang
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 20224, Taiwan, Republic of China,
| | | | | | | | | |
Collapse
|
42
|
Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H. Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 2015; 10:e0120446. [PMID: 25764133 PMCID: PMC4357444 DOI: 10.1371/journal.pone.0120446] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/22/2015] [Indexed: 11/19/2022] Open
Abstract
Several microalgae accumulate high levels of squalene, and as such provide a potentially valuable source of this useful compound. However, the molecular mechanism of squalene biosynthesis in microalgae is still largely unknown. We obtained the sequences of two enzymes involved in squalene synthesis and metabolism, squalene synthase (CrSQS) and squalene epoxidase (CrSQE), from the model green alga Chlamydomonas reinhardtii. CrSQS was functionally characterized by expression in Escherichia coli and CrSQE by complementation of a budding yeast erg1 mutant. Transient expression of CrSQS and CrSQE fused with fluorescent proteins in onion epidermal tissue suggested that both proteins were co-localized in the endoplasmic reticulum. CrSQS-overexpression increased the rate of conversion of 14C-labeled farnesylpyrophosphate into squalene but did not lead to over-accumulation of squalene. Addition of terbinafine caused the accumulation of squalene and suppression of cell survival. On the other hand, in CrSQE-knockdown lines, the expression level of CrSQE was reduced by 59-76% of that in wild-type cells, and significant levels of squalene (0.9-1.1 μg mg-1 cell dry weight) accumulated without any growth inhibition. In co-transformation lines with CrSQS-overexpression and CrSQE-knockdown, the level of squalene was not increased significantly compared with that in solitary CrSQE-knockdown lines. These results indicated that partial knockdown of CrSQE is an effective strategy to increase squalene production in C. reinhardtii cells.
Collapse
Affiliation(s)
| | - Seiko Kinohira
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Akira Ando
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Miki Shimoyama
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Misako Kato
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Hoang MH, Ha NC, Thom LT, Tam LT, Anh HTL, Thu NTH, Hong DD. Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process. J Biosci Bioeng 2014; 118:632-9. [DOI: 10.1016/j.jbiosc.2014.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
44
|
ThraustochytridAurantiochytriumsp. 18W-13a Accummulates High Amounts of Squalene. Biosci Biotechnol Biochem 2014; 75:2246-8. [DOI: 10.1271/bbb.110430] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 2014; 98:5789-805. [DOI: 10.1007/s00253-014-5780-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
46
|
Sun L, Ren L, Zhuang X, Ji X, Yan J, Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 159:199-206. [PMID: 24657750 DOI: 10.1016/j.biortech.2014.02.106] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 05/27/2023]
Abstract
Four nutrient limitation cultures, namely monosodium glutamate (MSG-L), phosphate (P-L), ammonium sulfate (NH4(+)-L) and double (D-L, MSG and P limitation) limited, were designed to study how cell growth and biochemical components of Schizochytrium sp. were affected by nutrient limitations. All limited conditions caused decrease in biomass especially MSG-L and D-L conditions. MSG-L condition attained the highest lipid yield of 30.73 g/l but the lowest protein content. P-L condition shortened the fermentation time and obtained the highest DHA productivity of 291 mg/lh. D-L condition was the most cost-effective fermentation condition which gained the highest input-output ratio. NH4(+)-L condition got the highest squalene and DHA content in lipids. Meanwhile, nitrogen limited conditions promoted the accumulation of neutral lipids. All limited conditions benefit the PUFAs accumulation in the neutral lipids. In addition, the existence of NH4(+) or the absence of MSG and phosphate reduced the unsaponifiable matters content in lipid.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Lujing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| | - Xiaoyan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Jiacheng Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
47
|
Ohara J, Sakaguchi K, Okita Y, Okino N, Ito M. Two fatty acid elongases possessing C18-Δ6/C18-Δ9/C20-Δ5 or C16-Δ9 elongase activity in Thraustochytrium sp. ATCC 26185. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:476-486. [PMID: 23547001 DOI: 10.1007/s10126-013-9496-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Thraustochytrids, unicellular eukaryotic marine protists, accumulate polyunsaturated fatty acids. Here, we report the molecular cloning and functional characterization of two fatty acid elongase genes (designated tselo1 and tselo2), which could be involved in the desaturase/elongase (standard) pathway in Thraustochytrium sp. ATCC 26185. TsELO1, the product of tselo1 and classified into a Δ6 elongase group by phylogenetic analysis, showed strong C18-Δ6 elongase activity and relatively weak C18-Δ9 and C20-Δ5 activities when expressed in the budding yeast Saccharomyces cerevisiae. TsELO2, classified into a Δ9 elongase subgroup, showed only C16-Δ9 activity. When expressed in Aurantiochytrium limacinum mh0186 using a thraustochytrid-derived promoter and a terminator, TsELO1 exhibited almost the same specificity as expressed in the yeast but TsELO2 showed weak C18-Δ9 activity, in addition to its main C16-Δ9 activity. These results suggest that TsELO1 functions not only as a C18-Δ6 and a C20-Δ5 elongase in the main route but also as a C18-Δ9 elongase in the alternative route of standard pathway, while TsELO2 functions mainly as a C16-Δ9 elongase generating vaccenic acid (C18:1n-7) in thraustochytrids. This is the first report describing a fatty acid elongase harboring C16-Δ9 activity in thraustochytrids.
Collapse
Affiliation(s)
- Junichiro Ohara
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
48
|
Abad S, Turon X. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids. Biotechnol Adv 2012; 30:733-41. [DOI: 10.1016/j.biotechadv.2012.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
|
49
|
Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. BIORESOURCE TECHNOLOGY 2012; 109:287-91. [PMID: 22023965 DOI: 10.1016/j.biortech.2011.09.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 05/23/2023]
Abstract
Optimum conditions of temperature, salinity and glucose concentration were investigated for squalene production of the strain of Aurantiochytrium sp. 18 W-13a, with a high content of squalene. Squalene production by this strain was optimum at 25 °C, 25-50% seawater concentration and 2-6% glucose concentration. When this strain was grown in the optimum condition, the squalene content and production of approximately 171 mg/g dry weight and 0.9 g/L were much higher than that previously reported in thraustochytrids, plants and yeasts, respectively. Therefore, 18 W-13a could be used as an alternative source of commercial squalene.
Collapse
Affiliation(s)
- Atsushi Nakazawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1, Tennodai, Tsukuba 305-8572, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Naziri E, Mantzouridou F, Tsimidou MZ. Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9980-9. [PMID: 21806066 DOI: 10.1021/jf201328a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Interest is increasing in establishing renewable sources for squalene, a functional lipid, as the conventional ones are limited. In the present study, squalene production was achieved in a wild-type laboratory Saccharomyces cerevisiae strain by two safe chemical means using terbinafine (0.05-0.55 mM) and methyl jasmonate (MJ) (0-1.00 mM). Bioprocess kinetics optimized by response surface methodology and monitored by high-performance liquid chromatography revealed a clear dependence of growth and squalene content (SQC) and yield (SQY) on the above regulators. Maximum SQC (10.02±0.53 mg/g dry biomass) and SQY (20.70±1.00 mg/L) were achieved using 0.442 mM terbinafine plus 0.044 mM MJ after 28 h and 0.300 mM terbinafine after 30 h, respectively. A 10-fold increase in SQY was achieved in comparison to that in the absence of regulator. The ruggedness of optimum conditions for SQY was verified for five industrial strains. The cellular lipid fraction (∼12% of dry biomass) was rich in squalene (12-13%). Results are encouraging toward bioprocess scale up.
Collapse
Affiliation(s)
- Eleni Naziri
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | |
Collapse
|