1
|
KIMURA H, YAMAZAKI T, MIHARA T, KAJI N, KISHI K, HORI M. Purinergic P2X7 receptor antagonist ameliorates intestinal inflammation in postoperative ileus. J Vet Med Sci 2022; 84:610-617. [PMID: 35249909 PMCID: PMC9096048 DOI: 10.1292/jvms.22-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Postoperative ileus (POI) is a postsurgical gastrointestinal motility dysfunction caused by mechanical stress to the intestine during abdominal surgery. POI leads to nausea and vomiting reduced patient quality of life, as well as high medical costs and extended hospitalization. Intestinal inflammation caused by macrophages and neutrophils is thought to be important in the mechanism of POI. Surgery-associated tissue injury and inflammation induce the release of adenosine triphosphate (ATP) from injured cells. Released ATP binds the purinergic P2X7 receptor (P2X7R) expressed on inflammatory cells, inducing the secretion of inflammatory mediators. P2X7R antagonists are thought to be important mediators of the first step in the inflammation process, and studies in chemically induced colitis models confirmed that P2X7R antagonists exhibit anti-inflammatory effects. Therefore, we hypothesized that P2X7R plays an important role in POI. POI models were generated from C57BL/6J mice. Mice were treated with P2X7R antagonist A438079 (34 mg/kg) 30 min before and 2 hr after intestinal manipulation (IM). Inflammatory cell infiltration and gastrointestinal transit were measured. A438079 ameliorated macrophage and neutrophil infiltration in the POI model. Impaired intestinal transit improved following A438079 treatment. P2X7R was expressed on both infiltrating and resident macrophages in the inflamed ileal muscle layer. The P2X7R antagonist A438079 exhibits anti-inflammatory effects via P2X7R expressed on macrophages and therefore could be a target in the treatment of POI.
Collapse
Affiliation(s)
- Hitomi KIMURA
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takako YAMAZAKI
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taiki MIHARA
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriyuki KAJI
- Department of Pharmacology, School of Veterinary Medicine,
Azabu University, Kanagawa, Japan
| | - Kazuhisa KISHI
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoshi HORI
- Department of Veterinary Pharmacology, Graduate School of
Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
da Silva W, da Rocha Torres N, de Melo Agripino J, da Silva VHF, de Souza ACA, Ribeiro IC, de Oliveira TA, de Souza LA, Andrade LKR, de Moraes JVB, Diogo MA, de Castro RB, Polêto MD, Afonso LCC, Fietto JLR. ENTPDases from Pathogenic Trypanosomatids and Purinergic Signaling: Shedding Light towards Biotechnological Applications. Curr Top Med Chem 2021; 21:213-226. [PMID: 33019932 DOI: 10.2174/1568026620666201005125146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
ENTPDases are enzymes known for hydrolyzing extracellular nucleotides and playing an essential role in controlling the nucleotide signaling via nucleotide/purinergic receptors P2. Moreover, ENTPDases, together with Ecto-5´-nucleotidase activity, affect the adenosine signaling via P1 receptors. These signals control many biological processes, including the immune system. In this context, ATP is considered as a trigger to inflammatory signaling, while adenosine (Ado) induces anti-inflammatory response. The trypanosomatids Leishmania and Trypanosoma cruzi, pathogenic agents of Leishmaniasis and Chagas Disease, respectively, have their own ENTPDases named "TpENTPDases," which can affect the nucleotide signaling, adhesion and infection, in order to favor the parasite. Besides, TpENTPDases are essential for the parasite nutrition, since the Purine De Novo synthesis pathway is absent in them, which makes these pathogens dependent on the intake of purines and nucleopurines for the Salvage Pathway, in which TpENTPDases also take place. Here, we review information regarding TpNTPDases, including their known biological roles and their effect on the purinergic signaling. We also highlight the roles of these enzymes in parasite infection and their biotechnological applications, while pointing to future developments.
Collapse
Affiliation(s)
- Walmir da Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Nancy da Rocha Torres
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Joice de Melo Agripino
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Anna Cláudia Alves de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Isadora Cunha Ribeiro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Luciana Angelo de Souza
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | | | - Marcel Arruda Diogo
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Raíssa Barbosa de Castro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Luis Carlos Crocco Afonso
- Nucleo de Pesquisa em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
4
|
Zumerle S, Calì B, Munari F, Angioni R, Di Virgilio F, Molon B, Viola A. Intercellular Calcium Signaling Induced by ATP Potentiates Macrophage Phagocytosis. Cell Rep 2020; 27:1-10.e4. [PMID: 30943393 PMCID: PMC6449513 DOI: 10.1016/j.celrep.2019.03.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/26/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular ATP is a signaling molecule exploited by the immune cells for both autocrine regulation and paracrine communication. By performing live calcium imaging experiments, we show that triggered mouse macrophages are able to propagate calcium signals to resting bystander cells by releasing ATP. ATP-based intercellular communication is mediated by P2X4 and P2X7 receptors and is a feature of pro-inflammatory macrophages. In terms of functional significance, ATP signaling is required for efficient phagocytosis of pathogen-derived molecules and apoptotic cells and may represent a target for macrophage regulation by CD39-expressing cells. These results highlight a cell-to-cell communication mechanism tuning innate immunity.
Collapse
Affiliation(s)
- Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Roberta Angioni
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
5
|
Marinho Y, Marques-da-Silva C, Santana PT, Chaves MM, Tamura AS, Rangel TP, Gomes-E-Silva IV, Guimarães MZP, Coutinho-Silva R. MSU Crystals induce sterile IL-1β secretion via P2X7 receptor activation and HMGB1 release. Biochim Biophys Acta Gen Subj 2019; 1864:129461. [PMID: 31676289 DOI: 10.1016/j.bbagen.2019.129461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUD The mechanism by which monosodium urate (MSU) crystals induce inflammation is not completely understood. Few studies have shown that MSU is capable of stimulating the release of IL-1β in the absence of LPS treatment. The purinergic P2X7 receptor is involved in the release of IL-1β in inflammatory settings caused by crystals, as is the case in silicosis. METHODS We investigated the role of P2X7 receptor in sterile MSU-induced inflammation by evaluating peritonitis and paw edema. In in vitro models, we performed the experiments using peritoneal macrophages and THP-1 cells. We measured inflammatory parameters using ELISA and immunoblotting. We measured cell recruitment using cell phenotypic identification and hemocytometer counts. RESULTS Our in vivo data showed that animals without P2X7 receptors generated less paw edema, less cell recruitment, and lower levels of IL-1β release in a peritonitis model. In the in vitro model, we observed that MSU induced dye uptake by the P2X7 receptor. In the absence of the receptor, or when it was blocked, MSU crystals induced less IL-1β release and this effect corresponded to the concentration of extracellular ATP. Moreover, MSU treatment induced HMGB1 release; pre-treatment with P2X7 antagonist reduced the amount of HMGB1 in cell supernatants. CONCLUSIONS IL-1β secretion induced by MSU depends on P2X7 receptor activation and involves HMGB1 release. GENERAL SIGNIFICANCE We propose that cell activation caused by MSU crystals induces peritoneal macrophages and THP-1 cells to release ATP and HMGB1, causing IL-1β secretion via P2X7 receptor activation.
Collapse
Affiliation(s)
- Ygor Marinho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Camila Marques-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Patricia Teixeira Santana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana Martins Chaves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Augusto Shuiti Tamura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thuany Prado Rangel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabel Virgínia Gomes-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
6
|
Immunological Pathways Triggered by Porphyromonas gingivalis and Fusobacterium nucleatum: Therapeutic Possibilities? Mediators Inflamm 2019; 2019:7241312. [PMID: 31341421 PMCID: PMC6612971 DOI: 10.1155/2019/7241312] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/28/2019] [Accepted: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) are Gram-negative anaerobic bacteria possessing several virulence factors that make them potential pathogens associated with periodontal disease. Periodontal diseases are chronic inflammatory diseases of the oral cavity, including gingivitis and periodontitis. Periodontitis can lead to tooth loss and is considered one of the most prevalent diseases worldwide. P. gingivalis and F. nucleatum possess virulence factors that allow them to survive in hostile environments by selectively modulating the host's immune-inflammatory response, thereby creating major challenges to host cell survival. Studies have demonstrated that bacterial infection and the host immune responses are involved in the induction of periodontitis. The NLRP3 inflammasome and its effector molecules (IL-1β and caspase-1) play roles in the development of periodontitis. We and others have reported that the purinergic P2X7 receptor plays a role in the modulation of periodontal disease and intracellular pathogen control. Caspase-4/5 (in humans) and caspase-11 (in mice) are important effectors for combating bacterial pathogens via mediation of cell death and IL-1β release. The exact molecular events of the host's response to these bacteria are not fully understood. Here, we review innate and adaptive immune responses induced by P. gingivalis and F. nucleatum infections and discuss the possibility of manipulations of the immune response as therapeutic strategies. Given the global burden of periodontitis, it is important to develop therapeutic targets for the prophylaxis of periodontopathogen infections.
Collapse
|
7
|
Abstract
Inflammatory bowel disease is a chronic nonspecific inflammatory disease of the intestine. Its pathogenesis is not yet fully understood. It may be related to heredity, environmental triggers, infection, immune dysfunction and other factors. Purinergic receptor (P2X7R) ligand-gated ion channel is closely related to inflammation and widely expressed in intestinal cells. Previous studies have shown that ATP/P2X7R signal is involved in the pathogenesis of intestinal inflammation, but its specific mechanism needs further study. This article reviews the research progress of P2X7 receptor in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yajun Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| | - Xiaowei Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
8
|
Moreira-Souza ACA, Rangel TP, Silva SRBD, Figliuolo VR, Savio LEB, Schmitz F, Takiya CM, Wyse ATS, Vommaro RC, Coutinho-Silva R. Disruption of Purinergic Receptor P2X7 Signaling Increases Susceptibility to Cerebral Toxoplasmosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:730-738. [PMID: 30653952 DOI: 10.1016/j.ajpath.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasmosis is a neglected disease that affects millions of individuals worldwide. Toxoplasma gondii infection is an asymptomatic disease, with lethal cases occurring mostly in HIV patients and organ transplant recipients. Nevertheless, atypical strains of T. gondii in endemic locations cause severe pathology in healthy individuals. Toxoplasmosis has no cure but it can be controlled by the proinflammatory immune response. The purinergic receptor P2X7 (P2X7) is involved in many inflammatory events and has been associated with genes that confer resistance against toxoplasmosis in humans. In vitro studies have reported parasite death after P2X7-receptor activation in various cell types. To understand the contribution of P2X7 during cerebral toxoplasmosis, wild-type and P2rx7 knockout mice were infected orally with T. gondii and their pathologic profiles were analyzed. We found that all P2rx7-/- mice died 8 weeks after infection with an increased number of cysts and fewer inflammatory infiltrates in their brains. The cytokines interleukin-1β, interleukin-12, tumor necrosis factor-α, and reactive oxygen species were absent or reduced in P2rx7-/- mice. Taken together, these data suggest that the P2X7 receptor promotes inflammatory infiltrates, proinflammatory cytokines, and reactive oxygen species production in the brain, and that P2X7 signaling mediates major events that confer resistance to cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular Ultrastructure Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thuany Prado Rangel
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa Ribeiro Figliuolo
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Schmitz
- Laboratory of Neuroprotection and Metabolic Disease, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Rossiane Claudia Vommaro
- Laboratory of Cellular Ultrastructure Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Bottari NB, Pillat MM, Schetinger MRC, Reichert KP, Machado V, Assmann CE, Ulrich H, Dutra A, Morsch VM, Vidal T, Da Cruz IBM, Melazzo C, Da Silva AS. Resveratrol-mediated reversal of changes in purinergic signaling and immune response induced by Toxoplasma gondii infection of neural progenitor cells. Purinergic Signal 2018; 15:77-84. [PMID: 30535987 DOI: 10.1007/s11302-018-9634-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
The effects of Toxoplasma gondii during embryonic development have not been explored despite the predilection of this parasite for neurons and glial cells. Here, we investigated the activation of the purinergic system and proinflammatory responses during congenital infection by T. gondii. Moreover, neuroprotective and neuromodulatory properties of resveratrol (RSV), a polyphenolic natural compound, were studied in infected neuronal progenitor cells (NPCs). For this study, NPCs were isolated from the telencephalon of infected mouse embryos and subjected to neurosphere culture in the presence of EGF and FGF2. ATP hydrolysis and adenosine deamination by adenosine deaminase activity were altered in conditions of T. gondii infection. P2X7 and adenosine A2A receptor expression rates were augmented in infected NPCs together with an increase of proinflammatory (INF-γ and TNF-α) and anti-inflammatory (IL-10) cytokine gene expression. Our results confirm that RSV counteracted T. gondii-promoted effects on enzymes hydrolyzing extracellular nucleotides and nucleosides and also upregulated P2X7 and A2A receptor expression and activity, modulating INF-γ, TNF-α, and IL-10 cytokine production, which plays an integral role in the immune response against T. gondii.
Collapse
Affiliation(s)
- Nathieli B Bottari
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil. .,Department of Animal Science, University of Santa Catarina State, 680 D, Rua Beloni Trombeta Zanin, Chapecó, SC, 89815-630, Brazil.
| | - Micheli M Pillat
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Maria R C Schetinger
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Karine P Reichert
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vanessa Machado
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Charles E Assmann
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Anielen Dutra
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Vera M Morsch
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Taís Vidal
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ivana B M Da Cruz
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cinthia Melazzo
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro Schafer Da Silva
- Graduate Program in Toxicological Biochemical and Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil. .,Department of Animal Science, University of Santa Catarina State, 680 D, Rua Beloni Trombeta Zanin, Chapecó, SC, 89815-630, Brazil. .,Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, SC, Brazil.
| |
Collapse
|
10
|
Almeida-da-Silva CLC, Ramos-Junior ES, Morandini AC, Rocha GDC, Marinho Y, Tamura AS, de Andrade KQ, Bellio M, Savio LEB, Scharfstein J, Ojcius DM, Coutinho-Silva R. P2X7 receptor-mediated leukocyte recruitment and Porphyromonas gingivalis clearance requires IL-1β production and autocrine IL-1 receptor activation. Immunobiology 2018; 224:50-59. [PMID: 30429052 DOI: 10.1016/j.imbio.2018.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
The Gram-negative bacterium Porphyromonas gingivalis is strongly associated with periodontitis. We previously demonstrated that P2X7 receptor activation by extracellular ATP (eATP) triggers elimination of intracellular pathogens, such as Leishmania amazonensis, Toxoplasma gondii and Chlamydia trachomatis. We also showed that eATP-induced IL-1β secretion via the P2X7 receptor is impaired by P. gingivalis fimbriae. Furthermore, enhanced P2X7 receptor expression was detected in the maxilla of P. gingivalis-orally infected mice as well as in human periodontitis patients. Here, we examined the effect of P2X7-, caspase-1/11- and IL-1 receptor-mediated responses during P. gingivalis infection. P2X7 receptor played a large role in controlling P. gingivalis infection and P. gingivalis-induced recruitment of inflammatory cells, especially neutrophils. In addition, IL-1β secretion was detected at different time points only when P2X7 receptor was expressed and in the presence of eATP treatment ex vivo. Activation of P2X7 receptor and IL-1 receptor by eATP and IL-1β, respectively, promoted P. gingivalis elimination in macrophages. Interestingly, eATP-induced P. gingivalis killing was inhibited by the IL-1 receptor antagonist (IL-1RA), consistent with autocrine activation of the IL-1 receptor for P. gingivalis elimination. In vivo, caspase-1/11 and IL-1 receptor were also required for bacterial clearance, leukocyte recruitment and IL-1β production after P. gingivalis infection. Our data demonstrate that the P2X7-IL-1 receptor axis activation is required for effective innate immune responses against P. gingivalis infection.
Collapse
Affiliation(s)
- Cássio Luiz Coutinho Almeida-da-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Erivan S Ramos-Junior
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Ana Carolina Morandini
- Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Gabrielle da Costa Rocha
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Ygor Marinho
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Augusto Shuiti Tamura
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Kívia Queiroz de Andrade
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Maria Bellio
- Department of Immunology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 91941-902 Brazil.
| | - Luiz Eduardo Baggio Savio
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - Julio Scharfstein
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| | - David M Ojcius
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil; Department of Biomedical Sciences, University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103 USA.
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902 Brazil.
| |
Collapse
|
11
|
Ferrari D, Idzko M, Müller T, Manservigi R, Marconi P. Purinergic Signaling: A New Pharmacological Target Against Viruses? Trends Pharmacol Sci 2018; 39:926-936. [PMID: 30292585 DOI: 10.1016/j.tips.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Viral diseases represent a major global problem in human health, with high morbidity and mortality. Despite recent progress in antiviral treatments, several viral diseases are still not controlled and millions suffer from them every year. It has recently emerged that purinergic signaling participates in viral infection and replication. Furthermore, stimulation of purinergic receptors in infected cells also induces inflammatory and antiviral responses, thus contributing to the host antiviral defense. Here we review the multiple roles played by the purinergic signaling network in cell-virus interactions that can lead either to viral maintenance in the cells or, by contrast, to stronger antiviral responses, and discuss potential future applications of purinergic signaling modulation for the treatment of viral diseases.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Marco Idzko
- Department of Pneumology, Medical University of Vienna, Vienna, Austria
| | - Tobias Müller
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberto Manservigi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Peggy Marconi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Liu YH, Chang YC, Chen LK, Su PA, Ko WC, Tsai YS, Chen YH, Lai HC, Wu CY, Hung YP, Tsai PJ. The ATP-P2X 7 Signaling Axis Is an Essential Sentinel for Intracellular Clostridium difficile Pathogen-Induced Inflammasome Activation. Front Cell Infect Microbiol 2018; 8:84. [PMID: 29616195 PMCID: PMC5864904 DOI: 10.3389/fcimb.2018.00084] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/28/2018] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of nosocomial infection in hospitalized patients receiving long-term antibiotic treatment. An excessive host inflammatory response is believed to be the major mechanism underlying the pathogenesis of C. difficile infection, and various proinflammatory cytokines such as IL-1β are detected in patients with C. difficile infection. IL-1β is known to be processed by caspase-1, a cysteine protease that is regulated by a protein complex called the inflammasome, which leads to a specialized form of cell death called pyroptosis. The function of inflammasome activation-induced pyroptosis is to clear or limit the spread of invading pathogens via infiltrated neutrophils. Here, we focused on inflammasome activation induced by intact C. difficile to re-evaluate the nature of inflammasome activation in CDI pathogenesis, which could provide information that leads to an alternative therapeutic strategy for the treatment of this condition in humans. First, we found that caspase-1-dependent IL-1β production was induced by C. difficile pathogens in macrophages and increased in a time-dependent manner. Moreover, intracellular toxigenic C. difficile was essential for ATP-P2X7 pathway of inflammasome activation and subsequent caspase-1-dependent pyroptotic cell death, leading to the loss of membrane integrity and release of intracellular contents such as LDH. Notably, we also observed that bacterial components such as surface layer proteins (SLPs) were released from pyroptotic cells. In addition, pro-IL-1β production was completely MyD88 and partially TLR2 dependent. Finally, to investigate the role of the caspase-1-dependent inflammasome in host defense, we found that colonic inflammasome activation was also induced by CDI and that caspase-1 inhibition by Ac-YVAD-CMK led to increased disease progression and C. difficile load. Taken together, the present results suggest that MyD88 and TLR2 are critical component in pro-IL-1β production and intracellular C. difficile following the ATP-P2X7 pathway of inflammasome activation and pyroptosis, which play important roles in host defense through the utilization of inflammation-mediated bacterial clearance mechanisms during C. difficile infection.
Collapse
Affiliation(s)
- Ya-Hui Liu
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yung-Chi Chang
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kuei Chen
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Po-An Su
- Division of Infectious Diseases, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.,Center for Infection Control, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan.,Cardiovascular Research Center, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsuan Chen
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Laboratory Science and Biotechnology, Chang Gung University, Taoyaun, Taiwan.,Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyaun, Taiwan.,Graduate Institute of Health Industry and Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyaun, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyaun, Taiwan.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyaun, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, Medical College, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Dou L, Chen YF, Cowan PJ, Chen XP. Extracellular ATP signaling and clinical relevance. Clin Immunol 2017; 188:67-73. [PMID: 29274390 DOI: 10.1016/j.clim.2017.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/12/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Since purinergic signaling was discovered in the early 1970s, it has been shown that extracellular nucleotides, and their derivative nucleosides, are released in a regulated or unregulated manner by cells in various challenging settings and then bind defined purinergic receptors to activate intricate signaling networks. Extracellular ATP plays a role based on different P2 receptor subtypes expressed on specific cell types. Sequential hydrolysis of extracellular ATP catalyzed by ectonucleotidases (e.g. CD39, CD73) is the main pathway for the generation of adenosine, which in turn activates P1 receptors. Many studies have demonstrated that extracellular ATP signaling functions as an important dynamic regulatory pathway to coordinate appropriate immune responses in various pathological processes, including intracellular infection, host-tumor interaction, pro-inflammation vascular injury, and transplant immunity. ATP receptors and CD39 also participate in related clinical settings. Here, we review the latest research in to the development of promising clinical treatment strategies.
Collapse
Affiliation(s)
- Lei Dou
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Fa Chen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peter J Cowan
- Immunology Research Centre, St Vincent's Hospital, Melbourne, Australia.
| | - Xiao-Ping Chen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Moreira-Souza ACA, Almeida-da-Silva CLC, Rangel TP, Rocha GDC, Bellio M, Zamboni DS, Vommaro RC, Coutinho-Silva R. The P2X7 Receptor Mediates Toxoplasma gondii Control in Macrophages through Canonical NLRP3 Inflammasome Activation and Reactive Oxygen Species Production. Front Immunol 2017; 8:1257. [PMID: 29075257 PMCID: PMC5643413 DOI: 10.3389/fimmu.2017.01257] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the protozoan parasite that causes toxoplasmosis, a potentially fatal disease to immunocompromised patients, and which affects approximately 30% of the world’s population. Previously, we showed that purinergic signaling via the P2X7 receptor contributes to T. gondii elimination in macrophages, through reactive oxygen species (ROS) production and lysosome fusion with the parasitophorous vacuole. Moreover, we demonstrated that P2X7 receptor activation promotes the production of anti-parasitic pro-inflammatory cytokines during early T. gondii infection in vivo. However, the cascade of signaling events that leads to parasite elimination via P2X7 receptor activation remained to be elucidated. Here, we investigated the cellular pathways involved in T. gondii elimination triggered by P2X7 receptor signaling, during early infection in macrophages. We focused on the potential role of the inflammasome, a protein complex that can be co-activated by the P2X7 receptor, and which is involved in the host immune defense against T. gondii infection. Using peritoneal and bone marrow-derived macrophages from knockout mice deficient for inflammasome components (NLRP3−/−, Caspase-1/11−/−, Caspase-11−/−), we show that the control of T. gondii infection via P2X7 receptor activation by extracellular ATP (eATP) depends on the canonical inflammasome effector caspase-1, but not on caspase-11 (a non-canonical inflammasome effector). Parasite elimination via P2X7 receptor and inflammasome activation was also dependent on ROS generation and pannexin-1 channel. Treatment with eATP increased IL-1β secretion from infected macrophages, and this effect was dependent on the canonical NLRP3 inflammasome. Finally, treatment with recombinant IL-1β promoted parasite elimination via mitochondrial ROS generation (as assessed using Mito-TEMPO). Together, our results support a model where P2X7 receptor activation by eATP inhibits T. gondii growth in macrophages by triggering NADPH-oxidase-dependent ROS production, and also by activating a canonical NLRP3 inflammasome, which increases IL-1β production (via caspase-1 activity), leading to mitochondrial ROS generation.
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Parasitology and Cell Biology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thuany Prado Rangel
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Parasitology and Cell Biology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle da Costa Rocha
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Department of Immunology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rossiane Claudia Vommaro
- Parasitology and Cell Biology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Ohbori K, Fujiwara M, Ohishi A, Nishida K, Uozumi Y, Nagasawa K. Prophylactic Oral Administration of Magnesium Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice through a Decrease of Colonic Accumulation of P2X7 Receptor-Expressing Mast Cells. Biol Pharm Bull 2017; 40:1071-1077. [DOI: 10.1248/bpb.b17-00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kenshi Ohbori
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Makiko Fujiwara
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Akihiro Ohishi
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | - Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| | | | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
16
|
Ferrari D, Malavasi F, Antonioli L. A Purinergic Trail for Metastases. Trends Pharmacol Sci 2016; 38:277-290. [PMID: 27989503 DOI: 10.1016/j.tips.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
Nucleotides and nucleosides have emerged as important modulators of tumor biology. Recently acquired evidence shows that, when these molecules are released by cancer cells or surrounding tissues, they act as potent prometastatic factors, favoring tumor cell migration and tissue colonization. Therefore, nucleotides and nucleosides should be considered as a new class of prometastatic factors. In this review, we focus on the prometastatic roles of nucleotides and discuss future applications of purinergic signaling modulation in view of antimetastatic therapies.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Bastos MS, Tremblay A, Agripino JM, Rabelo ILA, Barreto LP, Pelletier J, Lecka J, Silva-Júnior A, Bressan GC, Almeida MR, Sévigny J, Fietto JLR. The expression of NTPDase1 and -2 of Leishmania infantum chagasi in bacterial and mammalian cells: Comparative expression, refolding and nucleotidase characterization. Protein Expr Purif 2016; 131:60-69. [PMID: 27856402 DOI: 10.1016/j.pep.2016.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/17/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022]
Abstract
Visceral Leishmaniasis (VL) represents an important global health problem in several warm countries around the world. The main targets in this study are the two nucleoside triphosphate diphosphohydrolases (NTPDases) from Leishmania infantum chagasi that are the main etiologic agent of VL in the New World. These enzymes, called LicNTPDase1 and -2, are homologous to members 5 and 6 of the mammalian E-NTPDase/CD39 superfamily of enzymes. These enzymes hydrolyze nucleotides and accordingly can participate in the purine salvage pathways and in the modulation of purinergic signaling through the extracellular nucleotide-dependent host immune responses. They can therefore affect adhesion and infection of host cells and the parasite virulence. To further characterize these enzymes, in this work, we expressed LicNTPDase1 and -2 in the classical bacterial system Escherichia coli and mammalian cell system COS-7 cells. Our data demonstrate that changes in refolding after expression in bacteria can increase the activity of recombinant (r) rLicNTPDase2 up to 20 times but has no significant effect on rLicNTPDase1. Meanwhile, the expression in COS-7 led to a significant increase in activity for rLicNTPDase1.
Collapse
Affiliation(s)
- M S Bastos
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas- INBEQMeDI, Brazil; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - A Tremblay
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - J M Agripino
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - I L A Rabelo
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - L P Barreto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - J Pelletier
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - J Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - A Silva-Júnior
- Veterinary Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - G C Bressan
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - M R Almeida
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - J Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada; Centre de recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada
| | - J L R Fietto
- Biochemistry and Molecular Biology Department, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Instituto Nacional de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas- INBEQMeDI, Brazil.
| |
Collapse
|
18
|
Almeida-da-Silva CLC, Morandini AC, Ulrich H, Ojcius DM, Coutinho-Silva R. Purinergic signaling during Porphyromonas gingivalis infection. Biomed J 2016; 39:251-260. [PMID: 27793267 PMCID: PMC6140136 DOI: 10.1016/j.bj.2016.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023] Open
Abstract
Despite recent advances unraveling mechanisms of host-pathogen interactions in innate immunity, the participation of purinergic signaling in infection-driven inflammation remains an emerging research field with many unanswered questions. As one of the most-studied oral pathogens, Porphyromonas gingivalis is considered as a keystone pathogen with a central role in development of periodontal disease. This pathogen needs to evade immune-mediated defense mechanisms and tolerate inflammation in order to survive in the host. In this review, we summarize evidence showing that purinergic signaling modulates P. gingivalis survival and cellular immune responses, and discuss the role played by inflammasome activation and cell death during P. gingivalis infection.
Collapse
Affiliation(s)
| | - Ana Carolina Morandini
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Biomedical Sciences, University of the Pacific, San Francisco, USA
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - David M Ojcius
- Immunobiology Program, Biophysics Institute of the Federal University of Rio de Janeiro, Brazil; Department of Biomedical Sciences, University of the Pacific, San Francisco, USA
| | - Robson Coutinho-Silva
- Immunobiology Program, Biophysics Institute of the Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Ponce NE, Sanmarco LM, Eberhardt N, García MC, Rivarola HW, Cano RC, Aoki MP. CD73 Inhibition Shifts Cardiac Macrophage Polarization toward a Microbicidal Phenotype and Ameliorates the Outcome of Experimental Chagas Cardiomyopathy. THE JOURNAL OF IMMUNOLOGY 2016; 197:814-23. [PMID: 27335499 DOI: 10.4049/jimmunol.1600371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
Abstract
Increasing evidence demonstrates that generation of extracellular adenosine from ATP, which is hydrolyzed by the CD39/CD73 enzyme pair, attenuates the inflammatory response and deactivates macrophage antimicrobial mechanisms. Although CD73 is emerging as a critical pathway and therapeutic target in cardiovascular disorders, the involvement of this ectonucleotidase during myocardial infection has not been explored. Using a murine model of infection with Trypanosoma cruzi, the causal agent of Chagas cardiomyopathy, we observed a sudden switch from the classical M1 macrophage (microbicidal) phenotype toward an alternative M2 (repairing/anti-inflammatory) phenotype that occurred within the myocardium very shortly after BALB/c mice infection. The observed shift in M1/M2 rate correlated with the cardiac cytokine milieu. Considering that parasite persistence within myocardium is a necessary and sufficient condition for the development of the chronic myocarditis, we hypothesized that CD73 activity may counteract cardiac macrophage microbicidal polarization, rendering the local immune response less effective. In fact, a transient treatment with a specific CD73 inhibitor (adenosine 5'-α,β-methylene-diphosphate) enhanced the microbicidal M1 subset predominance, diminished IL-4- and IL-10-producing CD4(+) T cells, promoted a proinflammatory cytokine milieu, and reduced parasite load within the myocardium during the acute phase. As a direct consequence of these events, there was a reduction in serum levels of creatine kinase muscle-brain isoenzyme, a myocardial-specific injury marker, and an improvement in the electrocardiographic characteristics during the chronic phase. Our results demonstrate that this purinergic system drives the myocardial immune response postinfection and harbors a promising potential as a therapeutic target.
Collapse
Affiliation(s)
- Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Liliana Maria Sanmarco
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Natalia Eberhardt
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mónica Cristina García
- Departamento de Farmacia, Facultad de Ciencias Químicas, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Héctor Walter Rivarola
- Facultad de Ciencias Médicas, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; and
| | - Roxana Carolina Cano
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; Facultad de Ciencias Químicas, UA Área de Ciencias Agrarias, Ingeniería, Ciencias Biológicas y de la salud-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Católica de Córdoba, Córdoba 5000, Argentina
| | - Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina;
| |
Collapse
|
20
|
Ferrari D, McNamee EN, Idzko M, Gambari R, Eltzschig HK. Purinergic Signaling During Immune Cell Trafficking. Trends Immunol 2016; 37:399-411. [PMID: 27142306 DOI: 10.1016/j.it.2016.04.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/24/2022]
Abstract
Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, I-44100 Ferrara, Italy.
| | - Eóin N McNamee
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marco Idzko
- Department of Pulmonary Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Roberto Gambari
- Department of Life Science and Biotechnology, University of Ferrara, I-44100 Ferrara, Italy
| | - Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Moreira-Souza ACA, Marinho Y, Correa G, Santoro GF, Coutinho CMLM, Vommaro RC, Coutinho-Silva R. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages. PLoS One 2015; 10:e0133502. [PMID: 26192447 PMCID: PMC4507979 DOI: 10.1371/journal.pone.0133502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cells, Cultured
- Female
- Host-Parasite Interactions/drug effects
- Macrophages/metabolism
- Macrophages/parasitology
- Macrophages/ultrastructure
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/parasitology
- Macrophages, Peritoneal/ultrastructure
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Nitric Oxide/metabolism
- Purinergic P2Y Receptor Agonists/pharmacology
- Purinergic P2Y Receptor Antagonists/pharmacology
- Reactive Oxygen Species/metabolism
- Receptors, Purinergic P2Y/metabolism
- Suramin/pharmacology
- Toxoplasma/physiology
- Uridine Diphosphate/pharmacology
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Ygor Marinho
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Gladys Correa
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Giani França Santoro
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Laboratório de Inovações, Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21.040–900, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Claudia Mara Lara Melo Coutinho
- Laboratório de Inovações, Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21.040–900, Brazil
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24020–140, Brazil
| | - Rossiane Claudia Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
- * E-mail:
| |
Collapse
|
22
|
Santana PT, Benjamim CF, Martinez CG, Kurtenbach E, Takiya CM, Coutinho-Silva R. The P2X7 Receptor Contributes to the Development of the Exacerbated Inflammatory Response Associated with Sepsis. J Innate Immun 2015; 7:417-27. [PMID: 25675986 DOI: 10.1159/000371388] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/05/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Sepsis is associated with high mortality rates in intensive care units worldwide and represents a systemic inflammatory response to infection. P2X7 is an ionotropic purine receptor with known proinflammatory activity. Here, we investigated the role of the P2X7 receptor in sepsis induced by cecal ligation and puncture (CLP). METHODS Wild-type (WT) and P2X7KO (P2X7 null) mice were subjected to CLP and their survival was monitored for 7 days. Blood, peritoneal wash and lungs were collected 24 h after CLP and used to measure bacterial load, immune cell infiltration, nitric oxide (NO), cytokine levels, and peritoneal cell death and to assess lung injury. RESULTS P2X7KO mice showed significantly increased survival 7 days after CLP (30% compared to 60% in WT animals) accompanied by an overall attenuated inflammatory response, with decreased cell recruitment to the peritoneum, no or limited increases in the levels of NO and proinflammatory cytokines (IL-1β, IL-6, IL-12, IL-17, and IL-4), reduced peritoneal cell apoptosis, and less pronounced lung infiltration and morphological changes. CONCLUSIONS Our data show the P2X7 receptor is required for the development of the inflammatory response associated with sepsis and support the notion that P2X7 receptor is a valid therapeutic target against inflammatory diseases.
Collapse
Affiliation(s)
- Patricia Texeira Santana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
24
|
Neves AR, Castelo-Branco MTL, Figliuolo VR, Bernardazzi C, Buongusto F, Yoshimoto A, Nanini HF, Coutinho CMLM, Carneiro AJV, Coutinho-Silva R, de Souza HSP. Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn's disease. Inflamm Bowel Dis 2014; 20:444-457. [PMID: 24412990 DOI: 10.1097/01.mib.0000441201.10454.06] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Extracellular nucleotides released in conditions of cell stress alert the immune system from tissue injury or inflammation. We hypothesized that the P2X7 receptor (P2X7-R) could regulate key elements in inflammatory bowel disease pathogenesis. METHODS Colonoscopy samples obtained from patients with Crohn's disease (CD), ulcerative colitis, and controls were used to analyze P2X7-R expression by RT and real-time PCR, immunohistochemistry, and confocal microscopy. Inflammatory response was determined by the levels of cytokines by enzyme-linked immunosorbent assay in cultures of intestinal explants. Apoptosis was determined by the TUNEL assay. P2X7-R C57BL/6 mice were treated with trinitrobenzene sulfonic acid or dextran sulfate sodium (DSS) for inducing colitis. RESULTS P2X7-R was expressed in higher levels in inflamed CD epithelium and lamina propria, where it colocalizes more with dendritic cells and macrophages. Basal levels of P2X7-R mRNA were higher in CD inflamed mucosa compared with noninflamed CD and controls and were upregulated after interferon-γ in controls. Apoptotic rates were higher in CD epithelium and lamina propria compared with ulcerative colitis and controls. Levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-17 were higher, whereas IL-10 was lower in CD compared with controls. Levels of tumor necrosis factor-α-α and interleukin-1β increased after adenosine-triphosphate and decreased after KN62 treatment in CD. P2X7-R animals did not develop trinitrobenzene sulfonic acid or DSS colitis. CONCLUSIONS The upregulation of P2X7-R in CD inflamed mucosa is consistent with the involvement of purinoceptors in inflammation and apoptosis. These observations may implicate purinergic signaling in the pathogenesis of intestinal inflammation, and the P2X7-R may represent a novel therapeutic target in CD.
Collapse
Affiliation(s)
- Adriane R Neves
- *Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; †Laboratório de Imunologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; ‡Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; §Laboratório de Inovações em Terapias, Ensino e Bioprodutos-LITEB, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil; and ‖Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marques CC, Castelo-Branco MT, Pacheco RG, Buongusto F, do Rosário A, Schanaider A, Coutinho-Silva R, de Souza HSP. Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:65-78. [PMID: 24184714 DOI: 10.1016/j.bbadis.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND The P2X7 receptor (P2X7-R) is a non-selective adenosine triphosphate-gated cation channel present in epithelial and immune cells, and involved in inflammatory response. Extracellular nucleotides released in conditions of cell stress or inflammation may function as a danger signal alerting the immune system from inflammation. We investigated the therapeutic action of P2X7-R blockade in a model of inflammatory bowel disease. METHODS Rats with trinitrobenzene sulfonic (TNBS) acid-induced colitis were treated with the P2X7-R antagonists A740003 or brilliant blue G (BBG) through intra-peritoneal (IP) or intra-colonic (IC) injection prior to colitis induction. Clinical and endoscopic follow-up, histological scores, myeloperoxidase activity, densities of collagen fibers and goblet cells were evaluated. P2X7-R expression, NF-kappa B and Erk activities, and densities of T-cells and macrophages were analyzed by immunoperoxidase. The inflammatory response was determined by measuring inflammatory cytokines in cultures of colon explants, by enzyme-linked immunosorbent assay. Colonic apoptosis was determined by the TUNEL assay. RESULTS IP-BBG significantly attenuated the severity of colitis, myeloperoxidase activity, collagen deposition, densities of lamina propria T-cells and macrophages, while maintaining goblet cell densities. IP-BBG inhibited the increase in P2X7-R expression in parallel with apoptotic rates. TNF-α and interleukin-1β stabilized in low levels, while TGF-β and interleukin-10 did not change following IP-BBG-therapy. Colonic NF-kappa-B and Erk activation were significantly lower in IP-BBG-treated animals. Prophylactic IP-A740003 also protected rats against the development of TNBS-colitis. CONCLUSIONS Prophylactic systemic P2X7-R blockade is effective in the prevention of experimental colitis, probably due to a systemic anti-inflammatory action, interfering with a stress-inflammation amplification loop mediated by P2X7-R.
Collapse
Affiliation(s)
- Carla Caldas Marques
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil; Laboratório de Imunologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; Programa de Imunobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jacob F, Novo CP, Bachert C, Van Crombruggen K. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 2013; 9:285-306. [PMID: 23404828 PMCID: PMC3757148 DOI: 10.1007/s11302-013-9357-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 01/13/2023] Open
Abstract
Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.
Collapse
Affiliation(s)
- Fenila Jacob
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claudina Pérez Novo
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Koen Van Crombruggen
- Upper Airways Research Laboratory, Department of Otorhinolaryngology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Implication of purinergic P2X7 receptor in M. tuberculosis infection and host interaction mechanisms: A mouse model study. Immunobiology 2013; 218:1104-12. [DOI: 10.1016/j.imbio.2013.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 02/06/2013] [Accepted: 03/08/2013] [Indexed: 11/24/2022]
|
28
|
Oliveira SDDS, Coutinho-Silva R, Silva CLM. Endothelial P2X7 receptors' expression is reduced by schistosomiasis. Purinergic Signal 2013; 9:81-9. [PMID: 22987361 PMCID: PMC3568429 DOI: 10.1007/s11302-012-9332-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/21/2012] [Indexed: 12/28/2022] Open
Abstract
Endothelial cells control vascular tone, permeability and leukocyte transmigration and are modulated by pro-inflammatory mediators. Schistosomiasis is an intravascular disease associated with inflammation, therefore altering endothelial cells' phenotype. Purinergic P2X7 receptors (P2X7R) play an important role in inflammation; however, the impact of the disease upon endothelial P2X7R function or expression has not been explored. Using ethidium bromide uptake to investigate P2X7R function, we observed that the effects of ATP (3 mM) and the P2X7R agonist 3'-O-(4-benzoyl)-ATP (BzATP) were smaller in mesenteric endothelial cells from the Schistosoma mansoni-infected group than in the control group. In the control group, BzATP induced endothelial nitric oxide production, which was blocked by the P2X7R antagonists KN-62 and A740003. However, in the infected group, we observed a reduced effect of BzATP and no effect of both P2X7R antagonists, suggesting a downregulation of endothelial P2X7R in schistosomiasis. We observed similar results in both infected and P2X7R(-/-) groups, which were also comparable to data obtained with KN-62- or A740004-treated control cells. Data from Western blot and immunocytochemistry assays confirmed the reduced expression of P2X7R in the infected group. In conclusion, our data show a downregulation of P2X7R in schistosomiasis infection, which likely limits the infection-related endothelial damage.
Collapse
Affiliation(s)
- Suellen D’Arc dos Santos Oliveira
- />Instituto de Ciências Biomédicas, Laboratory of Biochemical and Molecular Pharmacology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room J-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
- />Instituto de Biofísica Carlos Chagas Filho, Laboratory of Immunophysiology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room C-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
| | - Robson Coutinho-Silva
- />Instituto de Biofísica Carlos Chagas Filho, Laboratory of Immunophysiology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room C-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
- />Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCT, Cidade Universitária, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- />Instituto de Ciências Biomédicas, Laboratory of Biochemical and Molecular Pharmacology, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, room J-17, Cidade Universitária, Rio de Janeiro, 21941-599 Brazil
| |
Collapse
|
29
|
Coutinho-Silva R, Ojcius DM. Role of extracellular nucleotides in the immune response against intracellular bacteria and protozoan parasites. Microbes Infect 2012; 14:1271-7. [PMID: 22634346 DOI: 10.1016/j.micinf.2012.05.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/29/2012] [Accepted: 05/14/2012] [Indexed: 02/06/2023]
Abstract
Extracellular nucleotides are danger signals involved in recognition and control of intracellular pathogens. They are an important component of the innate immune response against intracellular pathogens, inducing the recruitment of inflammatory cells, stimulating secretion of cytokines, and producing inflammatory mediators such as reactive oxygen species (ROS) and nitric oxide (NO). In the case of extracellular ATP, some of the immune responses are mediated through activation of the NLRP3 inflammasome and secretion of the cytokine, interleukin-1β (IL-1β), through a mechanism dependent on ligation of the P2X7 receptor. Here we review the role of extracellular nucleotides as sensors of intracellular bacteria and protozoan parasites, and discuss how these pathogens manipulate purinergic signaling to diminish the immune response against infection.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ 21941-902, Brazil.
| | | |
Collapse
|
30
|
Marques-da-Silva C, Chaves MM, Chaves SP, Figliuolo VR, Meyer-Fernandes JR, Corte-Real S, Lameu C, Ulrich H, Ojcius DM, Rossi-Bergmann B, Coutinho-Silva R. Infection with Leishmania amazonensis upregulates purinergic receptor expression and induces host-cell susceptibility to UTP-mediated apoptosis. Cell Microbiol 2011; 13:1410-28. [PMID: 21740498 DOI: 10.1111/j.1462-5822.2011.01630.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleotides are released into the extracellular milieu from infected cells and cells at inflammatory sites. The extracellular nucleotides bind to specific purinergic (P2) receptors and thereby induce a variety of cellular responses including anti-parasitic effects. Here we investigated whether extracellular nucleotides affect leishmanial infection in macrophages, and found that UTP reduces strongly the parasite load in peritoneal macrophages. Ultrastructural analysis of infected cells revealed that UTP induced morphological damage in the intracellular parasites. Uridine nucleotides also induced dose-dependent apoptosis of macrophages and production of ROI and RNI only in infected macrophages. The intracellular calcium measurements of infected cells showed that the response to UTP, but not UDP, increased the sensitivity and amplitude of cytosolic Ca(2+) changes. Infection of macrophages with Leishmania upregulated the expression of P2Y(2) and P2Y(4) receptor mRNA. The data suggest indirectly that Leishmania amazonensis infection induces modulation and heteromerization of P2Y receptors on macrophages. Thus UTP modulates the host response against L. amazonensis infection. UTP and UTP homologues should therefore be considered as novel components of therapeutic strategies against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro RJ, 21941-902, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vieira DP, Paletta-Silva R, Saraiva EM, Lopes AH, Meyer-Fernandes JR. Leishmania chagasi: An ecto-3′-nucleotidase activity modulated by inorganic phosphate and its possible involvement in parasite–macrophage interaction. Exp Parasitol 2011; 127:702-7. [DOI: 10.1016/j.exppara.2010.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/03/2010] [Accepted: 11/10/2010] [Indexed: 01/22/2023]
|
32
|
Miller CM, Zakrzewski AM, Ikin RJ, Boulter NR, Katrib M, Lees MP, Fuller SJ, Wiley JS, Smith NC. Dysregulation of the inflammatory response to the parasite, Toxoplasma gondii, in P2X7 receptor-deficient mice. Int J Parasitol 2010; 41:301-8. [PMID: 21044631 DOI: 10.1016/j.ijpara.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/04/2010] [Indexed: 12/18/2022]
Abstract
The P2X(7) receptor (P2X(7)R) is a two transmembrane receptor that is highly expressed on the surface of immune cells. Loss of function polymorphisms in this receptor have been linked to increased susceptibility to intracellular pathogens. P2X(7)R gene knockout (P2X(7)R(-/-); on a C57Bl/6J background), C57Bl/6J and BALB/c mice were infected with the avirulent ME49 strain of the intracellular parasite, Toxoplasma gondii, and susceptibility determined by monitoring weight loss. P2X(7)R(-/-) mice lost significantly more weight than C57Bl/6J mice from day 8p.i. C57Bl/6J, in turn, lost significantly more weight than BALB/c mice. Thus, by day 10p.i., P2X(7)R(-/-) mice had lost 5.7 ± 0.7% of their weight versus 2.4 ± 0.6% for C57Bl/6J mice, whereas BALB/c mice had gained 1.9 ± 0.5%; by day 12p.i., P2X(7)R(-/-) mice had lost 15.1±0.6%, C57Bl/6J had lost 10.1±0.8% and BALB/c had lost 4.8 ± 0.8% of their weight. Neither parasite burden nor liver pathology was greater in the P2X(7)R(-/-) mice than in C57Bl/6J mice but BALB/c mice had significantly smaller numbers of parasites and less pathology in their livers than these strains. Absence of the P2X(7) receptor did not affect IFN-γ, IL-12, IL-1β, monocyte chemoattractant protein-1 (MCP-1) or TNF production. However, both P2X(7)R(-/-) and C57Bl/6J mice produced more IL-1β and TNF than BALB/c mice. There was one important point of differentiation between the P2X(7)R(-/-) and C57Bl/6J mice, namely the significantly enhanced and prolonged production of nitric oxide, accompanied by delayed production of IL-10 in the P2X(7)R-deficient mice.
Collapse
Affiliation(s)
- Catherine M Miller
- Institute for Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway, NSW 2007, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Souza MC, de Assis EA, Gomes RS, Marques da Silva EDA, Melo MN, Fietto JLR, Afonso LCC. The influence of ecto-nucleotidases on Leishmania amazonensis infection and immune response in C57B/6 mice. Acta Trop 2010; 115:262-9. [PMID: 20399737 DOI: 10.1016/j.actatropica.2010.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/30/2010] [Accepted: 04/12/2010] [Indexed: 12/20/2022]
Abstract
Previous results from our laboratory and from the literature have implicated the expression of ecto-nucleotidases in the establishment of Leishmania infection. In the present study we evaluated the correlation between ecto-nucleotidasic activity and the infectivity of L. amazonensis promastigotes that were kept in culture for short or extended numbers of passages, a condition that is known to decrease parasite infectivity. We also analyzed the immune response associated with the infection by these parasites. As expected, we found that long-term cultured parasites induce the development of smaller lesions than the short-term cultured counterparts. Interestingly, long-term cultured parasites presented reduced ecto-nucleotidasic activity. In addition, cells recovered from animals infected with long-term cultured parasites produced higher amounts of IFN-gamma and have smaller parasite load, after 8weeks of infection. Furthermore, after 1week of infection, there is increased expression of the chemokine CCL2 mRNA in animals infected with short-term cultured parasites. Finally, infection of peritoneal macrophages by these parasites also shows marked differences. Thus, while short-term cultured parasites are able to infect a greater proportion of macrophages, cells infected by long-term cultured parasites express higher amounts of CXCL10 mRNA, which may activate these cells to kill the parasites. We suggest that the enzymes involved in metabolism of extracellular nucleotides may have an important role in infection by L. amazonensis, by acting directly in its adhesion to target cells and by modulating host cell chemokine production.
Collapse
|
34
|
Jamieson SE, Peixoto-Rangel AL, Hargrave AC, de Roubaix LA, Mui EJ, Boulter NR, Miller EN, Fuller SJ, Wiley JS, Castellucci L, Boyer K, Peixe RG, Kirisits MJ, de Souza Elias L, Coyne JJ, Correa-Oliveira R, Sautter M, Smith NC, Lees MP, Swisher CN, Heydemann P, Noble AG, Patel D, Bardo D, Burrowes D, McLone D, Roizen N, Withers S, Bahia-Oliveira LMG, McLeod R, Blackwell JM. Evidence for associations between the purinergic receptor P2X(7) (P2RX7) and toxoplasmosis. Genes Immun 2010; 11:374-83. [PMID: 20535134 PMCID: PMC2908187 DOI: 10.1038/gene.2010.31] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/29/2010] [Accepted: 02/11/2010] [Indexed: 11/15/2022]
Abstract
Congenital Toxoplasma gondii infection can result in intracranial calcification, hydrocephalus and retinochoroiditis. Acquired infection is commonly associated with ocular disease. Pathology is characterized by strong proinflammatory responses. Ligation of ATP by purinergic receptor P2X(7), encoded by P2RX7, stimulates proinflammatory cytokines and can lead directly to killing of intracellular pathogens. To determine whether P2X(7) has a role in susceptibility to congenital toxoplasmosis, we examined polymorphisms at P2RX7 in 149 child/parent trios from North America. We found association (FBAT Z-scores +/-2.429; P=0.015) between the derived C(+)G(-) allele (f=0.68; OR=2.06; 95% CI: 1.14-3.75) at single-nucleotide polymorphism (SNP) rs1718119 (1068T>C; Thr-348-Ala), and a second synonymous variant rs1621388 in linkage disequilibrium with it, and clinical signs of disease per se. Analysis of clinical subgroups showed no association with hydrocephalus, with effect sizes for associations with retinal disease and brain calcifications enhanced (OR=3.0-4.25; 0.004
Collapse
Affiliation(s)
- Sarra E. Jamieson
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Western Australia, Australia
| | - Alba L. Peixoto-Rangel
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Oswaldo Cruz Belo Horizonte MG
| | - Aubrey C. Hargrave
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Lee-Anne de Roubaix
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Ernest J. Mui
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Nicola R. Boulter
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW, Australia
| | - E. Nancy Miller
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen J. Fuller
- Nepean Clinical School, Nepean Hospital, University of Sydney, Penrith, NSW, Australia
| | - James S. Wiley
- Nepean Clinical School, Nepean Hospital, University of Sydney, Penrith, NSW, Australia
| | - Léa Castellucci
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Federal University of Bahia, Salvador, Brazil
| | - Kenneth Boyer
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - Ricardo Guerra Peixe
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Michael J. Kirisits
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Liliani de Souza Elias
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Jessica J. Coyne
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | | | - Mari Sautter
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Nicholas C. Smith
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW, Australia
| | - Michael P. Lees
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW, Australia
| | - Charles N. Swisher
- Department of Pediatric Neurology Northwestern Children’s Hospital, Chicago Illinois, USA
| | - Peter Heydemann
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Rush University Medical Center, Chicago, Illinois, USA
| | - A. Gwendolyn Noble
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
- Department of Pediatric Neurology Northwestern Children’s Hospital, Chicago Illinois, USA
| | - Dushyant Patel
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Dianna Bardo
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Delilah Burrowes
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - David McLone
- Department of Pediatric Neurology Northwestern Children’s Hospital, Chicago Illinois, USA
| | - Nancy Roizen
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Shawn Withers
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | | | - Rima McLeod
- Departments of Ophthalmology, Medicine, Pediatrics, Committees on Immunology, Molecular Medicine, and Genetics Institute of Genomics and Systems Biology, and The College, University of Chicago, and Michael Reese Hospital and Medical Center, Chicago, Illinois, USA
| | - Jenefer M. Blackwell
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
35
|
Corrêa G, Marques da Silva C, de Abreu Moreira-Souza AC, Vommaro RC, Coutinho-Silva R. Activation of the P2X(7) receptor triggers the elimination of Toxoplasma gondii tachyzoites from infected macrophages. Microbes Infect 2010; 12:497-504. [PMID: 20298798 DOI: 10.1016/j.micinf.2010.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/23/2022]
Abstract
Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii, which is widespread throughout the world. After active penetration, the parasite is enclosed within a parasitophorous vacuole and survives in the host cell by avoiding, among other mechanisms, lysosomal degradation. A large number of studies have demonstrated the importance of ATP signalling via the P2X(7) receptor, as a component of the inflammatory response against intracellular pathogens. Here we evaluate the effects of extracellular ATP on T. gondii infection of macrophages. ATP treatment inhibits the parasite load and the appearance of large vacuoles in the cytoplasm of intracellular parasites. ROS and NO assays showed that only ROS production is involved with the ATP effects. Immunofluorescence showed colocalization of Lamp1 and SAG1 only after ATP treatment, suggesting the formation of phagolysosomes. The involvement of P2X(7) receptors in T. gondii clearance was confirmed by the use of P2X(7) agonists and antagonists, and by infecting macrophages from P2X(7) receptor-deficient mice. We conclude that parasite elimination might occur following P2X(7) signalling and that novel therapies against intracellular pathogens could take advantage of activation of purinergic signalling.
Collapse
Affiliation(s)
- Gladys Corrêa
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373. 21941-902 Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
36
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
37
|
Yegutkin GG, Hytönen J, Samburski SS, Yrjänäinen H, Jalkanen S, Viljanen MK. Disordered lymphoid purine metabolism contributes to the pathogenesis of persistent Borrelia garinii infection in mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:5112-20. [PMID: 20357256 DOI: 10.4049/jimmunol.0902760] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular ATP and adenosine are important regulators of immune responses; however, contribution of purinergic signaling to host defense during persistent microbial infections remains obscure. Lyme borreliosis is a common arthropod-borne infection caused by Borrelia burgdorferi sensu lato. In this study, we investigated whether lymphoid purinergic signaling contributes to the mechanisms by which borreliae species evade the immune system and trigger joint inflammation. Intracutaneous inoculation of Borrelia garinii to C3H/He mice induced symptomatic infection manifested in elevated levels of borrelia-specific IgG Abs, persistent spirochete dissemination into the tissues and joint swelling, as well as approximately 2- to 2.5-fold enlargement of draining lymph nodes with hyperplasia of B cell follicle area and L-selectin shedding from activated T lymphocytes. Purine catabolism was also activated in lymph nodes but not spleen and blood of infected C3H/He mice within the first 4 postinfection weeks, particularly manifested in transient upregulations of adenosine triphosphatase/ectonucleoside triphosphate diphosphohydrolase and ecto-5'-nucleotidase/CD73 on CD4(+)CD8(+) T lymphocytes and adenosine deaminase activity on B220(+) B lymphocytes. Compared with borrelia-susceptible C3H/He strain, lymphocytes from C57BL/6 mice displayed markedly enhanced adenosine-generating capability due to approximately three times higher ratio of ecto-5'-nucleotidase to adenosine deaminase. Borrelia-infected C57BL/6 mice efficiently eradicated the inoculated spirochetes at more chronic stage without any signs of arthritis. Strikingly, deletion of key adenosine-generating enzyme, ecto-5'-nucleotidase/CD73, was accompanied by significantly enhanced joint swelling in borrelia-infected CD73-deficient C57BL/6 mice. Collectively, these data suggest that insufficient basal adenosine level and/or pathogen-induced disordered lymphoid purine homeostasis may serve as important prerequisite for promotion of inflammatory responses and further host's commitment to persistence of bacterial infection and arthritis development.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520 Turku, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Francione L, Smith PK, Accari SL, Taylor PE, Bokko PB, Bozzaro S, Beech PL, Fisher PR. Legionella pneumophila multiplication is enhanced by chronic AMPK signalling in mitochondrially diseased Dictyostelium cells. Dis Model Mech 2009; 2:479-89. [PMID: 19638422 DOI: 10.1242/dmm.003319] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human patients with mitochondrial diseases are more susceptible to bacterial infections, particularly of the respiratory tract. To investigate the susceptibility of mitochondrially diseased cells to an intracellular bacterial respiratory pathogen, we exploited the advantages of Dictyostelium discoideum as an established model for mitochondrial disease and for Legionella pneumophila pathogenesis. Legionella infection of macrophages involves recruitment of mitochondria to the Legionella-containing phagosome. We confirm here that this also occurs in Dictyostelium and investigate the effect of mitochondrial dysfunction on host cell susceptibility to Legionella. In mitochondrially diseased Dictyostelium strains, the pathogen was taken up at normal rates, but it grew faster and reached counts that were twofold higher than in the wild-type host. We reported previously that other mitochondrial disease phenotypes for Dictyostelium are the result of the activity of an energy-sensing cellular alarm protein, AMP-activated protein kinase (AMPK). Here, we show that the increased ability of mitochondrially diseased cells to support Legionella proliferation is suppressed by antisense-inhibiting expression of the catalytic AMPKalpha subunit. Conversely, mitochondrial dysfunction is phenocopied, and intracellular Legionella growth is enhanced, by overexpressing an active form of AMPKalpha in otherwise normal cells. These results indicate that AMPK signalling in response to mitochondrial dysfunction enhances Legionella proliferation in host cells.
Collapse
Affiliation(s)
- Lisa Francione
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
The P2X(7) receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types. Purinergic Signal 2009; 5:385-94. [PMID: 19533417 DOI: 10.1007/s11302-009-9163-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/26/2009] [Indexed: 01/12/2023] Open
Abstract
We previously demonstrated that canine erythrocytes express the P2X(7) receptor, and that the function and expression of this receptor is greatly increased compared with human erythrocytes. Using (86)Rb(+) (K(+)) and organic cation flux measurements, we further compared P2X(7) in erythrocytes and mononuclear leukocytes from these species. Concentration response curves of BzATP- and ATP-induced (86)Rb(+) efflux demonstrated that canine P2X(7) was less sensitive to inhibition by extracellular Na(+) ions compared to human P2X(7). In contrast, canine and human P2X(7) showed a similar sensitivity to the P2X(7) antagonists KN-62 and Mg(2+). KN-62 and Mg(2+) also inhibited ATP-induced choline(+) uptake into canine and human erythrocytes. BzATP and ATP but not ADP or NAD induced ethidium(+) uptake into canine monocytes, T- and B-cells. ATP-induced ethidium(+) uptake was twofold greater in canine T-cells compared to canine B-cells and monocytes. KN-62 inhibited the ATP-induced ethidium(+) uptake in each cell type. P2X(7)-mediated uptake of organic cations was 40- and fivefold greater in canine erythrocytes and lymphocytes (T- and B-cells), respectively, compared to equivalent human cell types. In contrast, P2X(7) function was threefold lower in canine monocytes compared to human monocytes. Thus, P2X(7) activation can induce the uptake of organic cations into canine erythrocytes and mononuclear leukocytes, but the relative levels of P2X(7) function differ to that of equivalent human cell types.
Collapse
|
40
|
Chaves SP, Torres-Santos EC, Marques C, Figliuolo VR, Persechini PM, Coutinho-Silva R, Rossi-Bergmann B. Modulation of P2X(7) purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes Infect 2009; 11:842-9. [PMID: 19439191 DOI: 10.1016/j.micinf.2009.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/13/2009] [Accepted: 05/02/2009] [Indexed: 12/20/2022]
Abstract
The purinergic P2X(7) receptor is a membrane protein of leucocytes involved in the clearance of intracellular bacteria such as Chlamydia and Mycobacterium. In this work, we investigated the role and modulation of macrophage P2X(7)R in intracellular infection with the protozoan parasite Leishmania amazonensis. Upon infection, isolated murine macrophages displayed enhanced expression of P2X(7)R and were significantly more responsive to extracellular ATP (ATPe)-induced pore opening, as demonstrated by the increased uptake of Lucifer Yellow. This was extended to the in vivo situation, where cells from established cutaneous lesions were more sensitive to ATPe than cells from uninfected mice. ATP treatment of infected macrophages inhibited parasite growth, and this was prevented by pre-treatment with oxidized ATP, a selective antagonist of P2X(7)R. Parasite killing was unlikely due to induction of nitric oxide production or cytolysis of infected macrophage, as those functions were unaltered with parasite-effective ATPe concentrations. A direct drug effect is also unlike, as ATPe enhanced axenic parasite growth. We found that leishmanial infection rendered wild-type but not P2X(7)R-deficient macrophages more prone to ATP-induced apoptosis. These results show that macrophage infection with L. amazonensis leads to enhanced expression of functional P2X(7)R, that upon ligation with ATPe helps in the elimination of the parasites by an as yet unclear mechanism possibly involving host cell apoptosis.
Collapse
Affiliation(s)
- Suzana Passos Chaves
- Laboratory of Immunopharmacology, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373. 21941-902 Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Welter-Stahl L, da Silva CM, Schachter J, Persechini PM, Souza HS, Ojcius DM, Coutinho-Silva R. Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNgamma in human epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1176-1187. [PMID: 19306841 DOI: 10.1016/j.bbamem.2009.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/10/2009] [Accepted: 03/13/2009] [Indexed: 12/20/2022]
Abstract
The cervical epithelial cell line, HeLa, is one of the oldest and most commonly used cell lines in cell biology laboratories. Although a truncated P2X(7) receptor has recently been identified in HeLa cells, the expression of other purinergic receptors or the function of the P2X(7) protein has not been characterized. We here show that HeLa cells express transcripts for most P2X and P2Y purinergic receptors. Treatment of cells with ATP or other P2X(7) agonists does not stimulate cell death, but can induce atypical calcium fluxes and ion currents. Cervical epithelial cells represent an important target for sexually-transmitted pathogens and are commonly exposed to pro-inflammatory cytokines such as IFNgamma. Stimulation of HeLa cells with IFNgamma upregulates expression of P2X(7) mRNA and full-length protein, modifies ATP-dependent calcium fluxes, and renders the cells sensitive to ATP-induced apoptosis, which can be blocked by a P2X(7) antagonist. IFNgamma treatment also increased dramatically the sensitivity of the intestinal epithelial cell line, HCT8, to ATP-induced apoptosis. Significantly, IFNgamma also stimulated P2X(7) expression on human intestinal tissues. Responses to other purinergic receptor ligands suggest that HeLa cells may also express functional P2Y(1), P2Y(2) and P2Y(6) receptors, which could be relevant for modulating ion homeostasis in the cells.
Collapse
|
42
|
Coutinho-Silva R, Corrêa G, Sater AA, Ojcius DM. The P2X(7) receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 2009; 5:197-204. [PMID: 19214779 DOI: 10.1007/s11302-009-9130-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 09/16/2008] [Indexed: 02/07/2023] Open
Abstract
The purinergic receptor, P2X(7), has recently emerged as an important component of the innate immune response against microbial infections. Ligation of P2X(7) by ATP can stimulate inflammasome activation and secretion of proinflammatory cytokines, but it can also lead directly to killing of intracellular pathogens in infected macrophages and epithelial cells. Thus, while some intracellular pathogens evade host defense responses by modulating with membrane trafficking or cell signaling in the infected cells, the host cells have also developed mechanisms for inhibiting infection. This review will focus on the effects of P2X(7) on control of infection by intracellular pathogens, microbial virulence factors that interfere with P2X(7) activity, and recent evidence linking polymorphisms in human P2X(7) with susceptibility to infection.
Collapse
Affiliation(s)
- Robson Coutinho-Silva
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, RJ, Brazil,
| | | | | | | |
Collapse
|
43
|
Costa-Junior HM, Mendes AN, Davis GHNG, da Cruz CM, Ventura ALM, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio RDC, Persechini PM. ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 2008; 88:51-61. [PMID: 18984060 DOI: 10.1016/j.prostaglandins.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/16/2008] [Accepted: 09/29/2008] [Indexed: 01/10/2023]
Abstract
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X(7) receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP(e) in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6h after an induction period of 20 min in the presence of ATP. Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect on apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3), inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+)-independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X(7) in macrophages.
Collapse
Affiliation(s)
- Helio Miranda Costa-Junior
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shemon AN, Sluyter R, Stokes L, Manley PW, Wiley JS. Inhibition of the human P2X7 receptor by a novel protein tyrosine kinase antagonist. Biochem Biophys Res Commun 2007; 365:515-20. [PMID: 17999916 DOI: 10.1016/j.bbrc.2007.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
A panel of 18 protein tyrosine kinase antagonists were tested for their inhibitory effect on human P2X(7) receptor-mediated (86)Rb(+) (K(+)) efflux. The most potent compound (compound P), a phthalazinamine derivative and an inhibitor of vascular endothelial growth factor receptor kinase, blocked ATP-induced (86)Rb(+)-efflux in human B-lymphocytes and erythrocytes by 76% and 66%, respectively. This inhibition was dose-dependent in both cell types with an IC(50) of approximately 5muM. Kinetic analysis showed compound P was a non-competitive inhibitor of P2X(7). This compound also inhibited ATP-induced ethidium(+) influx into B-lymphocytes and P2X(7)-transfected-HEK-293 cells, as well as ATP-induced (86)Rb(+)-efflux from canine erythrocytes. Externally, but not internally, applied compound P impaired ATP-induced inward currents in P2X(7)-transfected-HEK-293 cells. This study demonstrates that a novel protein tyrosine kinase antagonist directly impairs native and recombinant human P2X(7) receptors. The data suggests that antagonists which target ATP-binding sites of kinases may potentially block the P2X(7) receptor.
Collapse
Affiliation(s)
- Anne N Shemon
- Department of Medicine, Nepean Clinical School, University of Sydney, Penrith, NSW, Australia
| | | | | | | | | |
Collapse
|