1
|
Lindheimer F, Lindner MJ, Oos R, Honarpisheh M, Zhang Y, Lei Y, Wolf-van Buerck L, Gildehaus FJ, Lindner S, Bartenstein P, Kemter E, Wolf E, Seissler J, Ziegler S. Non-invasive in vivo imaging of porcine islet xenografts in a preclinical model with [ 68Ga]Ga-exendin-4. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1157480. [PMID: 39355020 PMCID: PMC11440980 DOI: 10.3389/fnume.2023.1157480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/07/2023] [Indexed: 10/03/2024]
Abstract
Introduction Islet xenotransplantation may be a therapeutic option in type 1 diabetes. Recent advances in generating genetically modified source pigs offer advantages as immune suppressants can potentially be eliminated after the transplantation. Therapy monitoring would greatly benefit from noninvasive methods for assessing the viability of transplanted islets. Peptide-based positron emission tomography (PET) targeting the glucagon-like peptide-1 receptor (GLP1R) expression on beta cells may offer a procedure that can directly be translated from an experimental setting to the clinic. The aim of this study was to establish the labeling of the GLP1R ligand [68Ga]Ga-exendin-4, to demonstrate the feasibility of imaging porcine islet xenografts in vivo and to compare signal quality for three different transplantation sites in a mouse model. Materials and methods Mice with engrafted neonatal porcine islet cell clusters (NPICCs) under the kidney capsule, into the inguinal fold, or the lower hindlimb muscle were studied. After reaching normoglycemia, the mice were injected with [68Ga]Ga-exendin-4 for PET data acquisition. Subsequent autoradiography (AR) was used for comparing ex vivo data with in vivo uptake. Results NPICCs in the lower right hindlimb muscle could be detected in vivo and in AR. Due to the high background in the kidney and urinary bladder, islets could not be detected in the PET data at transplantation sites close to these organs, while AR showed a clear signal for the islets in the inguinal fold. Discussion PET with [68Ga]Ga-exendin-4 detects islets transplanted in the hindlimb muscle tissue of mice, offering the potential of longitudinal monitoring of viable porcine islets. Other sites are not suitable for in vivo imaging owing to high activity accumulation of Exendin-4 in kidney and bladder.
Collapse
Affiliation(s)
- Felix Lindheimer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | | | - Rosel Oos
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mohsen Honarpisheh
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Yichen Zhang
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Yutian Lei
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lelia Wolf-van Buerck
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IV, Diabetes Center, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
3
|
Kręcisz P, Czarnecka K, Królicki L, Mikiciuk-Olasik E, Szymański P. Radiolabeled Peptides and Antibodies in Medicine. Bioconjug Chem 2020; 32:25-42. [PMID: 33325685 PMCID: PMC7872318 DOI: 10.1021/acs.bioconjchem.0c00617] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Radiolabeled peptides
are a relatively new, very specific radiotracer
group, which is still expanding. This group is very diverse in terms
of peptide size. It contains very small structures containing several
amino acids and whole antibodies. Moreover, radiolabeled peptides
are diverse in terms of the binding aim and therapeutic or diagnostic
applications. The majority of this class of radiotracers is utilized
in oncology, where the same structure can be used in therapy and diagnostic
imaging by varying the radionuclide. In this study, we collected new
reports of radiolabeled peptide applications in diagnosis and therapy
in oncology and other fields of medicine. Radiolabeled peptides are
also increasingly being used in rheumatology, cardiac imaging, or
neurology. The studies collected in this review concern new therapeutic
and diagnostic procedures in humans and new structures tested on animals.
We also performed an analysis of clinical trials, which concerns application
of radiolabeled peptides and antibodies that were reported in the
clinicaltrials.gov database between 2008 and 2018.
Collapse
Affiliation(s)
- Paweł Kręcisz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, ul. Banacha 1 a, 02-097, Warsaw, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Ståhle M, Kytö V, Kiugel M, Liljenbäck H, Metsälä O, Käkelä M, Li XG, Oikonen V, Saukko P, Nuutila P, Knuuti J, Roivainen A, Saraste A. Glucagon-like peptide-1 receptor expression after myocardial infarction: Imaging study using 68Ga-NODAGA-exendin-4 positron emission tomography. J Nucl Cardiol 2020; 27:2386-2397. [PMID: 30547299 PMCID: PMC7749060 DOI: 10.1007/s12350-018-01547-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Activation of glucagon-like peptide-1 receptor (GLP-1R) signaling protects against cardiac dysfunction and remodeling after myocardial infarction (MI). The aim of the study was to evaluate 68Ga-NODAGA-exendin-4 positron emission tomography (PET) for assessment of GLP-1R expression after MI in rats. METHODS AND RESULTS Rats were studied at 3 days, 1 and 12 weeks after permanent coronary ligation or a sham-operation. Rats were injected with 68Ga-NODAGA-exendin-4 and scanned with PET and contrast-enhanced computed tomography (CT) followed by digital autoradiography and histology of left ventricle tissue sections. 68Ga-NODAGA-exendin-4 PET/CT showed focally increased tracer uptake in the infarcted regions peaking at 3 days and continuing at 1 week after MI. Pre-treatment with an unlabeled exendin-4 peptide significantly reduced 68Ga-NODAGA-exendin-4 uptake. By autoradiography, 68Ga-NODAGA-exendin-4 uptake was 8.6-fold higher in the infarcted region and slightly increased also in the remote, non-infarcted myocardium at 1 week and 12 weeks post-MI compared with sham. Uptake of 68Ga-NODAGA-exendin-4 correlated with the amount of CD68-positive macrophages in the infarcted area and alpha-smooth muscle actin staining in the remote myocardium. CONCLUSIONS 68Ga-NODAGA-exendin-4 PET detects up-regulation of cardiac GLP-1R expression during healing of MI in rats and may provide information on the activated repair mechanisms after ischemic myocardial injury.
Collapse
Affiliation(s)
- Mia Ståhle
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Ville Kytö
- Heart Center, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Max Kiugel
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Olli Metsälä
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku, 20520 Turku, Finland
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, 20520 Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem 2020; 99:103802. [DOI: 10.1016/j.bioorg.2020.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
6
|
Jansen TJP, van Lith SAM, Boss M, Brom M, Joosten L, Béhé M, Buitinga M, Gotthardt M. Exendin-4 analogs in insulinoma theranostics. J Labelled Comp Radiopharm 2020; 62:656-672. [PMID: 31070270 PMCID: PMC6771680 DOI: 10.1002/jlcr.3750] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Insulinomas, neuroendocrine tumors arising from pancreatic beta cells, often show overexpression of the glucagon‐like peptide‐1 receptor. Therefore, imaging with glucagon‐like peptide analog exendin‐4 can be used for diagnosis and preoperative localization. This review presents an overview of the development and clinical implementation of exendin‐based tracers for nuclear imaging, and the potential use of exendin‐4 based tracers for optical imaging and therapeutic applications such as peptide receptor radionuclide therapy or targeted photodynamic therapy.
![]()
Collapse
Affiliation(s)
- Tom J P Jansen
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Marti Boss
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands.,Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Clough TJ, Baxan N, Coakley EJ, Rivas C, Zhao L, Leclerc I, Martinez-Sanchez A, Rutter GA, Long NJ. Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of β-cell-dependent contrast enhancement in the pancreas. Dalton Trans 2020; 49:4732-4740. [PMID: 32207493 PMCID: PMC7116436 DOI: 10.1039/d0dt00332h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic β-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of β-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in β-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(iii) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in β-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]-, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of β-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.
Collapse
Affiliation(s)
- Thomas J Clough
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Nicoleta Baxan
- Biological Imaging Centre, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Emma J Coakley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Charlotte Rivas
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Lan Zhao
- Biological Imaging Centre, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK and National Heart and Lung Institute, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK. and Lee Kong Chain School of Medicine, Nan Yang Technological University, 11 Mandalay Road, 308232 Singapore
| | - Nicholas J Long
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
8
|
Michelotti FC, Bowden G, Küppers A, Joosten L, Maczewsky J, Nischwitz V, Drews G, Maurer A, Gotthardt M, Schmid AM, Pichler BJ. PET/MRI enables simultaneous in vivo quantification of β-cell mass and function. Am J Cancer Res 2020; 10:398-410. [PMID: 31903128 PMCID: PMC6929626 DOI: 10.7150/thno.33410] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Non-invasive imaging of β-cells represents a desirable preclinical and clinical tool to monitor the change of β-cell mass and the loss of function during pre-diabetic stages. Although it is widely accepted that manganese (Mn) ions are actively gated by voltage-dependent calcium channels (VDCC) in response to glucose metabolism, little is known on its specificity in vivo for quantification of islet β-cell function using Mn and magnetic resonance imaging (MRI). On the other hand, glucagon-like-peptide-1 receptor (GLP-1R) represents a validated target for the estimation of β-cell mass using radiolabeled exendin-4 (Ex4) and positron emission tomography (PET). However, a multiparametric imaging workflow revealing β-cell mass and function quantitatively is still missing. Methods: We developed a simultaneous PET/MRI protocol to comprehensively quantify in vivo changes in β-cell mass and function by targeting, respectively, GLP-1R and VDCC coupled with insulin secretion. Differences in the spatial distribution of Mn and radiolabeled Ex4 were monitored overtime in native and transgenic pancreata, characterized by spontaneous pancreatic neuroendocrine tumor development. Follow-up with mass spectrometry imaging (MSI) and autoradiography allowed the ex vivo validation of the specificity of Mn and PET tracer uptake and the detection of endogenous biometals, such as calcium and zinc, throughout the endocrine and exocrine pancreas. Results: Our in vivo data based on a volumetric PET/MRI readout for native pancreata and insulinomas connects uptake of Mn measured at early imaging time points to high non-specific binding by the exocrine tissue, while specific retention was only found 24 h post injection. These results are supported by cross-validation of the spatial distribution of exogenous 55Mn and endogenous 44Ca and 64Zn as well with the specific internalization of the radiolabeled peptide targeting GLP-1R. Conclusion: Simultaneous PET/MR imaging of the pancreas enabled the comprehensive in vivo quantification of β-cell function and mass using Mn and radiolabeled Ex4. Most important, our data revealed that only late time-point measurements reflect the Mn uptake in the islet β-cells, while early time points detect non-specific accumulation of Mn in the exocrine pancreas.
Collapse
|
9
|
Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics 2020; 10:437-461. [PMID: 31903131 PMCID: PMC6929622 DOI: 10.7150/thno.38366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
In the light of theranostics/radiotheranostics and prospective of personalized medicine in diabetes and oncology, this review presents prior and current advances in the development of radiolabeled imaging and radiotherapeutic exendin-based agents targeting glucagon-like peptide-1 receptor. The review covers chemistry, preclinical, and clinical evaluation. Such critical aspects as structure-activity-relationship, stability, physiological potency, kidney uptake, and dosimetry are discussed.
Collapse
Affiliation(s)
- Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Hamamatsu K, Fujimoto H, Fujita N, Murakami T, Shiotani M, Toyoda K, Inagaki N. Investigation of the preservation effect of canagliflozin on pancreatic beta cell mass using SPECT/CT imaging with 111In-labeled exendin-4. Sci Rep 2019; 9:18338. [PMID: 31797889 PMCID: PMC6893013 DOI: 10.1038/s41598-019-54722-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Radiolabeled exendin derivatives are promising for non-invasive quantification of pancreatic beta cell mass (BCM); longitudinal observation of BCM for evaluation of therapeutic effects has not been achieved. The aim of this study is to demonstrate the usefulness of our developing method using [Lys12(111In-BnDTPA-Ahx)]exendin-4 to detect longitudinal changes in BCM. We performed a longitudinal study with obese type 2 diabetes model (db/db) mice administered canagliflozin, which is reported to preserve BCM. Six-week-old mice were assigned to a canagliflozin-administered group or a control group. Blood glucose levels of the canagliflozin group were significantly lower than those of the control group. Plasma insulin levels, insulin secretion during OGTT and insulin content in the pancreas were preserved in the canagliflozin group in comparison with those in the control group. According to SPECT/CT imaging analysis using [Lys12(111In-BnDTPA-Ahx)]exendin-4, pancreatic uptake was significantly decreased in the control group, whereas there was no significant change in the canagliflozin group. After nine weeks, both pancreatic uptake and BCM of the canagliflozin group were significantly higher than those of the control group, and a correlation between them was observed. In conclusion, our imaging method confirmed the BCM-preservation effect of canagliflozin, and demonstrated its potential for longitudinal evaluation of BCM.
Collapse
Affiliation(s)
- Keita Hamamatsu
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naotaka Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masaharu Shiotani
- Sohyaku, Innovative Research division, Mitsubishi Tanabe Pharma Corporation, 2-2-50 Kawagishi, Toda, Saitama, 335-8505, Japan
| | - Kentaro Toyoda
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
11
|
Boss M, Buitinga M, Jansen TJP, Brom M, Visser EP, Gotthardt M. PET-Based Human Dosimetry of 68Ga-NODAGA-Exendin-4, a Tracer for β-Cell Imaging. J Nucl Med 2019; 61:112-116. [PMID: 31519801 PMCID: PMC6954461 DOI: 10.2967/jnumed.119.228627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
68Ga-NODAGA-exendin-4 is a promising tracer for β-cell imaging using PET/CT. Possible applications include preoperative visualization of insulinomas and discrimination between focal and diffuse forms of congenital hyperinsulinism. There is also a significant role for this tracer in extending our knowledge on the role of β-cell mass in the pathophysiology of type 1 and type 2 diabetes by enabling noninvasive quantification of tracer uptake as a measure for β-cell mass. Calculating radiation doses from this tracer is important to assess its safety for use in patients (including young children) with benign diseases and healthy individuals. Methods: Six patients with hyperinsulinemic hypoglycemia were included. After intravenous injection of 100 MBq of the tracer, 4 successive PET/CT scans were obtained at 30, 60, 120, and 240 min after injection. Tracer activity in the pancreas, kidneys, duodenum, and remainder of the body were determined, and time-integrated activity coefficients for the measured organs were calculated. OLINDA/EXM software, version 1.1, was applied to calculate radiation doses using the reference adult male and female models and to estimate radiation doses to children. Results: The mean total effective dose for adults was very low (0.71 ± 0.07 mSv for a standard injected dose of 100 MBq). The organ with the highest absorbed dose was the kidney (47.3 ± 10.2 mGy/100 MBq). The estimated effective dose was 2.32 ± 0.32 mSv for an injected dose of 20 MBq in newborns. This dose decreased to 0.77 ± 0.11 mSv/20 MBq for 1-y-old children and 0.59 ± 0.05 mSv for an injected dose of 30 MBq in 5-y-old children. Conclusion: Our human PET/CT-based dosimetric calculations show that the effective radiation doses from the novel tracer 68Ga-NODAGA-exendin-4 are very low for adults and children. The doses are lower than reported for other polypeptide tracers such as somatostatin analogs (2.1–2.6 mSv/100 MBq) and are beneficial for application as a research tool, especially when repeated examinations are needed.
Collapse
Affiliation(s)
- Marti Boss
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J P Jansen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eric P Visser
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Pan X, Xu Q, Chen J, Wang T, Zhang M, Wang H, Gao H. Preliminary evaluation of 18F‑AlF‑NOTA‑MAL‑Cys40‑Exendin‑4 in rodent heart after myocardial ischemia and reperfusion. Mol Med Rep 2019; 20:2276-2284. [PMID: 31257516 PMCID: PMC6691274 DOI: 10.3892/mmr.2019.10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/15/2019] [Indexed: 11/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) exert cardioprotective effects after myocardial ischemia and reperfusion (MI/R) in animal models and human clinical trials. Receptor imaging with positron emission tomography (PET) provides a non-invasive method for monitoring GLP-1R expression. In the present study, a fluorine-18-labeled aluminum fluoride exendin-4 analog [18F-AlF conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA)-maleimide (MAL)-Cys40-exendin-4] was synthesized and evaluated in a rat MI/R model for GLP-1R imaging. NOTA-MAL-Cys40-exendin-4 was synthesized by coupling Cys40-exendin-4 with NOTA-MAL. NOTA-MAL-Cys40-exendin-4 was then conjugated with 18F-AlF to obtain 18F-AlF-NOTA-MAL-Cys40-exendin-4. The yield of 18F-AlF-NOTA-MAL-Cys40-exendin-4 was 18.5±3.4% (not decay corrected). The process was completed within ~30 min. In rat MI/R models, the tracer exhibited specific binding to GLP-1R and an appropriate signal-to-noise ratio. At 8 h post-MI/R, tracer uptake reached its peak [0.35±0.053% of injected dose (%ID)/g; n=6] in ischemic myocardium. Localized tracer uptake decreased 1 day (0.20±0.032 %ID/g; n=6) and 3 days (0.16±0.017 %ID/g; n=6) post-MI/R compared with 8 h post-MI/R, but still remained higher compared with sham-operated groups (0.06±0.012 %ID/g; n=6). Pre-injected unlabeled exendin-4 effectively blocked tracer accumulation (0.09±0.041 %ID/g; n=6). In conclusion, 18F-AlF-NOTA-MAL-Cys40-exendin-4 demonstrated favorable characteristics for GLP-1R imaging following MI/R. PET imaging using 18F-AlF-NOTA-MAL-Cys40-exendin-4 in rodent hearts after MI/R revealed a dynamic pattern of GLP-1R upregulation.
Collapse
Affiliation(s)
- Xietian Pan
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qing Xu
- Department of Radiation Oncology, The Affiliated Bayi Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jiangwei Chen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tingting Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Haichang Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
13
|
Kaeppeli SAM, Schibli R, Mindt TL, Behe M. Comparison of desferrioxamine and NODAGA for the gallium-68 labeling of exendin-4. EJNMMI Radiopharm Chem 2019; 4:9. [PMID: 31659487 PMCID: PMC6522624 DOI: 10.1186/s41181-019-0060-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Radiolabeled exendin-4 (Ex4) derivatives are used to target the glucagon-like peptide-1 receptor (GLP-1R) for the clinical diagnosis of insulinomas, a rare type of neuroendocrine tumor. Gallium-68 is an ideal diagnostic nuclide for this application and a study evaluating an exendin-4-NODAGA conjugate is currently underway. However, in complexion with the chelator DFO, its in vivo stability has been a matter of dispute. The aim of this work was to directly compare [68Ga]Ga-Ex4NOD with [68Ga]Ga-Ex4DFO in vitro and in vivo. METHODS In our approach, we directly compared N'-[5-(acetyl-hydroxy-amino)pentyl]-N-[5-[3-(5-aminopentyl-hydroxy-carbamoyl)propanoylamino]pentyl]-N-hydroxy-butane diamide (desferriox-amine B, DFO) and 2-(4,7-bis (carboxymethyl)-1,4,7-triazonan-1-yl) pentanedioic acid (NODAGA) conjugated to exendin-4 in vitro and in vivo. We radiolabeled the peptides with gallium-68, followed by HPLC quality control. In vitro characterization was performed in CHL cells overexpressing the GLP-1R and in vivo studies were conducted with CD1 nu/nu mice carrying tumors derived from these cells. RESULTS We found that both peptides could be radiolabeled with a molar activity of about 9.33 MBq/nmol without further purification. They internalized equally well into GLP-1R-expressing cells and their IC50 was similar with 15.6 ± 7.8 nM and 18.4 ± 3.0 nM for [natGa]Ga-Ex4NOD and [natGa]Ga-Ex4DFO, respectively. In vivo, [68Ga]Ga-Ex4NOD accumulated more in all tissue, while [68Ga]Ga-Ex4DFO exhibited a more favorable target-to-kidney ratio. CONCLUSION AND RELEVANCE DFO is a suitable chelator for the radiolabeling of exendin-4 derivatives with gallium-68 for in vitro and preclinical in vivo studies. DFO performed better in vivo due to its significantly lower kidney accumulation (p < 0.0001). It was also found to be stable in vivo in mice, contrary to earlier reports. Based on our results, the DFO chelating system in combination with exendin-4 would be an interesting option for clinical imaging of insulinomas.
Collapse
Affiliation(s)
- Simon A M Kaeppeli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/102, Forschungsstrasse 111, 5232, Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/102, Forschungsstrasse 111, 5232, Villigen-PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital Vienna (AKH), c/o Sekretariat Nuklearmedizin Währinger Gürtel 18-20, Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/102, Forschungsstrasse 111, 5232, Villigen-PSI, Switzerland.
| |
Collapse
|
14
|
Baseline Pancreatic Beta Cell Imaging After Pancreatic Transplantation Using Whole-Body 68Ga-DOTA-Exendin-4 PET/CT. Clin Nucl Med 2019; 44:292-294. [DOI: 10.1097/rlu.0000000000002461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019; 139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 02/09/2023]
Abstract
Since diabetes is becoming a global epidemic, there is a great need to develop early β-cell specific diagnostic techniques for this disorder. There are two types of diabetes (i.e., type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)). In T1DM, the destruction of pancreatic β-cells leads to reduced insulin production or even absolute insulin deficiency, which consequently results in hyperglycemia. Actually, a central issue in the pathophysiology of all types of diabetes is the relative reduction of β-cell mass (BCM) and/or impairment of the function of individual β-cells. In the past two decades, scientists have been trying to develop imaging techniques for noninvasive measurement of the viability and mass of pancreatic β-cells. Despite intense scientific efforts, only two tracers for positron emission tomography (PET) and one contrast agent for magnetic resonance (MR) imaging are currently under clinical evaluation. β-cell specific imaging probes may also allow us to precisely and specifically visualize transplanted β-cells and to improve transplantation outcomes, as transplantation of pancreatic islets has shown promise in treating T1DM. In addition, some of these probes can be applied to the preoperative detection of hidden insulinomas as well. In the present review, we primarily summarize potential tracers under development for imaging β-cells with a focus on tracers for PET, SPECT, MRI, and optical imaging. We will discuss the advantages and limitations of the various imaging probes and extend an outlook on future developments in the field.
Collapse
|
16
|
Babič A, Vinet L, Chellakudam V, Janikowska K, Allémann E, Lange N. Squalene-PEG-Exendin as High-Affinity Constructs for Pancreatic Beta-Cells. Bioconjug Chem 2018; 29:2531-2540. [PMID: 29869878 DOI: 10.1021/acs.bioconjchem.8b00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel drug delivery systems targeting native, transplanted, or cancerous beta-cells are of utmost importance. Herein, we present new exendin-4 derivatives with modified unnatural amino acids at strategic positions within the polypeptide sequence. The modified peptides allowed modular orthogonal chemical modifications to attach imaging agents and amphiphilic squalene-PEG groups. The resulting conjugates, SQ-PEG-ExC1-Cy5 and SQ-PEG-ExC40-Cy5 fluorescence probes, display low nanomolar affinity to GLP-1R in fluorescence-based binding assays with EC50 at 1.1 ± 0.2 and 0.8 ± 0.2 nM, respectively. Naturally expressing GLP-1R MIN6 cells and recombinantly transfected CHL-GLP-1R positive cells were specifically targeted by all of the new beta-cell probes in vitro. Specific islet targeting was observed after i.v. injection of SQ-PEG-ExC1-Cy5 with SQ-PEG in normoglycemic mice ex vivo. Semiquantitative biodistribution analysis by epifluorescence indicated prolonged blood half-life (3.8 h) for the amphiphilic Ex conjugate. Liver and pancreas were identified as main biodistribution organs for SQ-PEG-ExC1-Cy5.
Collapse
Affiliation(s)
- Andrej Babič
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Laurent Vinet
- Institute for Molecular and Translational Imaging , University of Geneva , 1211 , Geneva , Switzerland
| | - Vineetha Chellakudam
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Karolina Janikowska
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| | - Norbert Lange
- School of Pharmaceutical Sciences Geneva-Lausanne , University of Geneva, University of Lausanne , 1211 , Geneva , Switzerland
| |
Collapse
|
17
|
Comparison of 68Ga-DOTA-Siglec-9 and 18F-Fluorodeoxyribose-Siglec-9: Inflammation Imaging and Radiation Dosimetry. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7645070. [PMID: 29463960 PMCID: PMC5804415 DOI: 10.1155/2017/7645070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a ligand of inflammation-inducible vascular adhesion protein-1 (VAP-1). We compared 68Ga-DOTA- and 18F-fluorodeoxyribose- (FDR-) labeled Siglec-9 motif peptides for PET imaging of inflammation. Methods. Firstly, we examined 68Ga-DOTA-Siglec-9 and 18F-FDR-Siglec-9 in rats with skin/muscle inflammation. We then studied 18F-FDR-Siglec-9 for the detection of inflamed atherosclerotic plaques in mice and compared it with previous 68Ga-DOTA-Siglec-9 results. Lastly, we estimated human radiation dosimetry from the rat data. Results. In rats, 68Ga-DOTA-Siglec-9 (SUV, 0.88 ± 0.087) and 18F-FDR-Siglec-9 (SUV, 0.77 ± 0.22) showed comparable (P = 0.29) imaging of inflammation. In atherosclerotic mice, 18F-FDR-Siglec-9 detected inflamed plaques with a target-to-background ratio (1.6 ± 0.078) similar to previously tested 68Ga-DOTA-Siglec-9 (P = 0.35). Human effective dose estimates for 68Ga-DOTA-Siglec-9 and 18F-FDR-Siglec-9 were 0.024 and 0.022 mSv/MBq, respectively. Conclusion. Both tracers are suitable for PET imaging of inflammation. The easier production and lower cost of 68Ga-DOTA-Siglec-9 present advantages over 18F-FDR-Siglec-9, indicating it as a primary choice for clinical studies.
Collapse
|
18
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Willekens SMA, Joosten L, Boerman OC, Balhuizen A, Eizirik DL, Gotthardt M, Brom M. Strain Differences Determine the Suitability of Animal Models for Noninvasive In Vivo Beta Cell Mass Determination with Radiolabeled Exendin. Mol Imaging Biol 2017; 18:705-14. [PMID: 26886298 PMCID: PMC5010585 DOI: 10.1007/s11307-016-0936-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Purpose Noninvasive beta cell mass (BCM) quantification is a crucial tool to understand diabetes development and progression. [111In]exendin is a promising agent for in vivo beta cell imaging, but tracer testing has been hampered by the lack of well-defined rodent models. Procedures Biodistribution and pancreatic uptake of [111In]exendin were compared in rats and mice. In selected models, the amount of [111In]exendin accumulation in the pancreas and other organs was determined using a model of alloxan-induced beta cell loss. GLP-1R expression levels were analyzed by RT-PCR and immunohistochemistry. Results Namely Brown Norway rats showed beta-cell-specific tracer accumulation and favorable pancreas-to-background ratios for noninvasive BCM determination. Mice displayed receptor-mediated [111In]exendin uptake in endocrine and exocrine pancreas, in spite of very low GLP-1R expression in exocrine tissue. Conclusions Rats display better characteristics for in vivo BCM determination than mice and are suggested as a more adequate model for humans. Electronic supplementary material The online version of this article (doi:10.1007/s11307-016-0936-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefanie M A Willekens
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO BOX 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Balhuizen
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Hernandez R, Graves SA, Gregg T, VanDeusen HR, Fenske RJ, Wienkes HN, England CG, Valdovinos HF, Jeffery JJ, Barnhart TE, Severin GW, Nickles RJ, Kimple ME, Merrins MJ, Cai W. Radiomanganese PET Detects Changes in Functional β-Cell Mass in Mouse Models of Diabetes. Diabetes 2017; 66:2163-2174. [PMID: 28515126 PMCID: PMC5521871 DOI: 10.2337/db16-1285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/12/2017] [Indexed: 01/09/2023]
Abstract
The noninvasive measurement of functional β-cell mass would be clinically valuable for monitoring the progression of type 1 and type 2 diabetes as well as the viability of transplanted insulin-producing cells. Although previous work using MRI has shown promise for functional β-cell mass determination through voltage-dependent Ca2+ channel (VDCC)-mediated internalization of Mn2+, the clinical utility of this technique is limited by the cytotoxic levels of the Mn2+ contrast agent. Here, we show that positron emission tomography (PET) is advantageous for determining functional β-cell mass using 52Mn2+ (t1/2: 5.6 days). We investigated the whole-body distribution of 52Mn2+ in healthy adult mice by dynamic and static PET imaging. Pancreatic VDCC uptake of 52Mn2+ was successfully manipulated pharmacologically in vitro and in vivo using glucose, nifedipine (VDCC blocker), the sulfonylureas tolbutamide and glibenclamide (KATP channel blockers), and diazoxide (KATP channel opener). In a mouse model of streptozotocin-induced type 1 diabetes, 52Mn2+ uptake in the pancreas was distinguished from healthy controls in parallel with classic histological quantification of β-cell mass from pancreatic sections. 52Mn2+-PET also reported the expected increase in functional β-cell mass in the ob/ob model of pretype 2 diabetes, a result corroborated by histological β-cell mass measurements and live-cell imaging of β-cell Ca2+ oscillations. These results indicate that 52Mn2+-PET is a sensitive new tool for the noninvasive assessment of functional β-cell mass.
Collapse
Affiliation(s)
- Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Trillian Gregg
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI
| | - Halena R VanDeusen
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Rachel J Fenske
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI
| | - Haley N Wienkes
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI
| | | | | | - Justin J Jeffery
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Gregory W Severin
- Center for Nuclear Technologies, Technical University of Denmark, Roskilde, Denmark
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI
- Department of Radiology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
21
|
Fani M, Peitl PK, Velikyan I. Current Status of Radiopharmaceuticals for the Theranostics of Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2017; 10:E30. [PMID: 28295000 PMCID: PMC5374434 DOI: 10.3390/ph10010030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Nuclear medicine plays a pivotal role in the management of patients affected by neuroendocrine neoplasms (NENs). Radiolabeled somatostatin receptor analogs are by far the most advanced radiopharmaceuticals for diagnosis and therapy (radiotheranostics) of NENs. Their clinical success emerged receptor-targeted radiolabeled peptides as an important class of radiopharmaceuticals and it paved the way for the investigation of other radioligand-receptor systems. Besides the somatostatin receptors (sstr), other receptors have also been linked to NENs and quite a number of potential radiolabeled peptides have been derived from them. The Glucagon-Like Peptide-1 Receptor (GLP-1R) is highly expressed in benign insulinomas, the Cholecystokinin 2 (CCK2)/Gastrin receptor is expressed in different NENs, in particular medullary thyroid cancer, and the Glucose-dependent Insulinotropic Polypeptide (GIP) receptor was found to be expressed in gastrointestinal and bronchial NENs, where interestingly, it is present in most of the sstr-negative and GLP-1R-negative NENs. Also in the field of sstr targeting new discoveries brought into light an alternative approach with the use of radiolabeled somatostatin receptor antagonists, instead of the clinically used agonists. The purpose of this review is to present the current status and the most innovative strategies for the diagnosis and treatment (theranostics) of neuroendocrine neoplasms using a cadre of radiolabeled regulatory peptides targeting their receptors.
Collapse
Affiliation(s)
- Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, University Hospital of Basel, 4031 Basel, Switzerland.
| | - Petra Kolenc Peitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
22
|
Läppchen T, Tönnesmann R, Eersels J, Meyer PT, Maecke HR, Rylova SN. Radioiodinated Exendin-4 Is Superior to the Radiometal-Labelled Glucagon-Like Peptide-1 Receptor Probes Overcoming Their High Kidney Uptake. PLoS One 2017; 12:e0170435. [PMID: 28103285 PMCID: PMC5245897 DOI: 10.1371/journal.pone.0170435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
GLP-1 receptors are ideal targets for preoperative imaging of benign insulinoma and for quantifying the beta cell mass. The existing clinical tracers targeting GLP-1R are all agonists with low specific activity and very high kidney uptake. In order to solve those issues we evaluated GLP-1R agonist Ex-4 and antagonist Ex(9-39) radioiodinated at Tyr40 side by side with [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4 (68Ga-Ex-4) used in the clinic. The Kd, Bmax, internalization and binding kinetics of [Nle14,125I-Tyr40-NH2]Ex-4 and [Nle14,125I-Tyr40-NH2]Ex(9-39) were studied in vitro using Ins-1E cells. Biodistribution and imaging studies were performed in nude mice bearing Ins-1E xenografts. In vitro evaluation demonstrated high affinity binding of the [Nle14,125I-Tyr40-NH2]Ex-4 agonist to the Ins-1E cells with fast internalization kinetics reaching a plateau after 30 min. The antagonist [Nle14,125I-Tyr40-NH2]Ex(9-39) did not internalize and had a 4-fold higher Kd value compared to the agonist. In contrast to [Nle14,125I-Tyr40-NH2]Ex(9-39), which showed low and transient tumor uptake, [Nle14,125I-Tyr40-NH2]Ex-4 demonstrated excellent in vivo binding properties with tumor uptake identical to that of 68Ga-Ex-4, but substantially lower kidney uptake resulting in a tumor-to-kidney ratio of 9.7 at 1 h compared to 0.3 with 68Ga-Ex-4. Accumulation of activity in thyroid and stomach for both peptides, which was effectively blocked by irenat, confirms that in vivo deiodination is the mechanism behind the low kidney retention of iodinated peptides. The 124I congener of [Nle14,125I-Tyr40-NH2]Ex-4 demonstrated a similar favourable biodistribution profile in the PET imaging studies in contrast to the typical biodistribution pattern of [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4. Our results demonstrate that iodinated Ex-4 is a very promising tracer for imaging of benign insulinomas. It solves the problem of high kidney uptake of the radiometal-labelled tracers by improving the tumor-to-kidney ratio measured for [Nle14,Lys40(Ahx-DOTA-68Ga)NH2]Ex-4 by 32 fold.
Collapse
Affiliation(s)
- Tilman Läppchen
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Roswitha Tönnesmann
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jos Eersels
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Helmut R. Maecke
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Svetlana N. Rylova
- Department of Nuclear Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
23
|
van der Kroon I, Woliner-van der Weg W, Brom M, Joosten L, Frielink C, Konijnenberg MW, Visser EP, Gotthardt M. Whole organ and islet of Langerhans dosimetry for calculation of absorbed doses resulting from imaging with radiolabeled exendin. Sci Rep 2017; 7:39800. [PMID: 28067253 PMCID: PMC5220322 DOI: 10.1038/srep39800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Radiolabeled exendin is used for non-invasive quantification of beta cells in the islets of Langerhans in vivo. High accumulation of radiolabeled exendin in the islets raised concerns about possible radiation-induced damage to these islets in man. In this work, islet absorbed doses resulting from exendin-imaging were calculated by combining whole organ dosimetry with small scale dosimetry for the islets. Our model contains the tissues with high accumulation of radiolabeled exendin: kidneys, pancreas and islets. As input for the model, data from a clinical study (radiolabeled exendin distribution in the human body) and from a preclinical study with Biobreeding Diabetes Prone (BBDP) rats (islet-to-exocrine uptake ratio, beta cell mass) were used. We simulated 111In-exendin and 68Ga-exendin absorbed doses in patients with differences in gender, islet size, beta cell mass and radiopharmaceutical uptake in the kidneys. In all simulated cases the islet absorbed dose was small, maximum 1.38 mGy for 68Ga and 66.0 mGy for 111In. The two sources mainly contributing to the islet absorbed dose are the kidneys (33-61%) and the islet self-dose (7.5-57%). In conclusion, all islet absorbed doses are low (<70 mGy), so even repeated imaging will hardly increase the risk on diabetes.
Collapse
Affiliation(s)
- Inge van der Kroon
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lieke Joosten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cathelijne Frielink
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mark W Konijnenberg
- Department of Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Eric P Visser
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
24
|
Grob NM, Behe M, von Guggenberg E, Schibli R, Mindt TL. Methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates. J Pept Sci 2017; 23:38-44. [PMID: 28054429 DOI: 10.1002/psc.2948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023]
Abstract
Radiolabelled peptides with high specificity and affinity towards receptors that are overexpressed by tumour cells are used in nuclear medicine for the diagnosis (imaging) and therapy of cancer. In some cases, the sequences of peptides under investigations contain methionine (Met), an amino acid prone to oxidation during radiolabelling procedures. The formation of oxidative side products can affect the purity of the final radiopharmaceutical product and/or impair its specificity and affinity towards the corresponding receptor. The replacement of Met with oxidation resistant amino acid analogues, for example, norleucine (Nle), can provide a solution. While this approach has been applied successfully to different radiolabelled peptides, a Met → Nle switch only preserves the length of the amino acid side chain important for hydrophobic interactions but not its hydrogen-bonding properties. We report here the use of methoxinine (Mox), a non-canonical amino acid that resembles more closely the electronic properties of Met in comparison to Nle. Specifically, we replaced Met15 by Mox15 and Nle15 in the binding sequence of a radiometal-labelled human gastrin derivative [d-Glu10 ]HG(10-17), named MG11 (d-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ). A comparison of the physicochemical properties of 177 Lu-DOTA[X15 ]MG11 (X = Met, Nle, Mox) in vitro (cell internalization/externalization properties, receptor affinity (IC50 ), blood plasma stability and logD) showed that Mox indeed represents a suitable, oxidation-stable amino acid substitute of Met in radiolabelled peptide conjugates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nathalie M Grob
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog Weg 4, CH-8093, Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | | | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog Weg 4, CH-8093, Zurich, Switzerland.,Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, CH-5232, Villigen, Switzerland
| | - Thomas L Mindt
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog Weg 4, CH-8093, Zurich, Switzerland.,Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
25
|
Moreau M, Poty S, Vrigneaud JM, Walker P, Guillemin M, Raguin O, Oudot A, Bernhard C, Goze C, Boschetti F, Collin B, Brunotte F, Denat F. MANOTA: a promising bifunctional chelating agent for copper-64 immunoPET. Dalton Trans 2017; 46:14659-14668. [DOI: 10.1039/c7dt01772c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparison of four bifunctional chelating agents showed superior behaviour of a new NOTA derivative for 64Cu labelling of antibody fragments.
Collapse
|
26
|
Jodal A, Schibli R, Béhé M. Targets and probes for non-invasive imaging of β-cells. Eur J Nucl Med Mol Imaging 2016; 44:712-727. [PMID: 28025655 PMCID: PMC5323463 DOI: 10.1007/s00259-016-3592-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications.
Collapse
Affiliation(s)
- Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
27
|
Mikkola K, Yim CB, Lehtiniemi P, Kauhanen S, Tarkia M, Tolvanen T, Nuutila P, Solin O. Low kidney uptake of GLP-1R-targeting, beta cell-specific PET tracer, 18F-labeled [Nle 14,Lys 40]exendin-4 analog, shows promise for clinical imaging. EJNMMI Res 2016; 6:91. [PMID: 27957723 PMCID: PMC5153397 DOI: 10.1186/s13550-016-0243-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Background Several radiometal-labeled, exendin-based tracers that target glucagon-like peptide-1 receptors (GLP-1R) have been intensively explored for β cell imaging. The main obstacle has been the high uptake of tracer in the kidneys. This study aimed to develop a novel GLP1-R-specific tracer, with fluorine-18 attached to exendin-4, to label β cells for clinical imaging with PET (positron emission tomography). We hypothesized that this tracer would undergo reduced kidney uptake. 18F-labeled [Nle14,Lys40]exendin-4 analog ([18F]exendin-4) was produced via Cu-catalyzed click chemistry. The biodistribution of [18F]exendin-4 was assessed with ex vivo organ γ-counting and in vivo PET imaging. We also tested the in vivo stability of the radiotracer. The localization of 18F radioactivity in rat and human pancreatic tissue sections was investigated with autoradiography. Receptor specificity was assessed with unlabeled exendin-3. Islet labeling was confirmed with immunohistochemistry. The doses of radiation in humans were estimated based on biodistribution results in rats. Results [18F]exendin-4 was synthesized with high yield and high specific activity. Results showed specific, sustained [18F]exendin-4 uptake in pancreatic islets. In contrast to previous studies that tested radiometal-labeled exendin-based tracers, we observed rapid renal clearance of [18F]exendin-4. Conclusions [18F]exendin-4 showed promise as a tracer for clinical imaging of pancreatic β cells, due to its high specific uptake in native β cells and its concomitant low kidney radioactivity uptake.
Collapse
Affiliation(s)
- Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland. .,MediCity Research Laboratory, University of Turku, Turku, Finland.
| | - Cheng-Bin Yim
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | | | - Saila Kauhanen
- Turku PET Centre, University of Turku, Turku, Finland.,Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Miikka Tarkia
- Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Tuula Tolvanen
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland.,Accelerator Laboratory, Åbo Akademi University, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Zhang L, Thurber GM. Quantitative Impact of Plasma Clearance and Down-regulation on GLP-1 Receptor Molecular Imaging. Mol Imaging Biol 2016; 18:79-89. [PMID: 26194012 DOI: 10.1007/s11307-015-0880-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Quantitative molecular imaging of beta cell mass (BCM) would enable early detection and treatment monitoring of type 1 diabetes. The glucagon-like peptide-1 (GLP-1) receptor is an attractive target due to its beta cell specificity and cell surface location. We quantitatively investigated the impact of plasma clearance and receptor internalization on targeting efficiency in healthy B6 mice. PROCEDURES Four exenatide-based probes were synthesized that varied in molecular weight, binding affinity, and plasma clearance. The GLP-1 receptor internalization rate and in vivo receptor expression were quantified. RESULTS Receptor internalization (54,000 receptors/cell in vivo) decreased significantly within minutes, reducing the benefit of a slower-clearing agent. The multimers and albumin binding probes had higher kidney and liver uptake, respectively. CONCLUSIONS Slow plasma clearance is beneficial for GLP-1 receptor peptide therapeutics. However, for exendin-based imaging of islets, down-regulation of the GLP-1 receptor and non-specific background uptake result in a higher target-to-background ratio for fast-clearing agents.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
29
|
Bandara N, Zheleznyak A, Cherukuri K, Griffith DA, Limberakis C, Tess DA, Jianqing C, Waterhouse R, Lapi SE. Evaluation of Cu-64 and Ga-68 Radiolabeled Glucagon-Like Peptide-1 Receptor Agonists as PET Tracers for Pancreatic β cell Imaging. Mol Imaging Biol 2016; 18:90-8. [PMID: 25987465 DOI: 10.1007/s11307-015-0861-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Copper-64 (Cu-64) and Galium-68 (Ga-68) radiolabeled DO3A and NODA conjugates of exendin-4 were used for preclinical imaging of pancreatic β cells via targeting of glucagon-like peptide-1 receptor (GLP-1R). PROCEDURES DO3A-VS- and NODA-VS-tagged Cys(40)exendin-4 (DO3A-VS-Cys(40)-exendin-4 and NODA-VS-Cys(40)-exendin-4, respectively) were labeled with Cu-64 and Ga-68 using standard techniques. Biodistribution and dynamic positron emission tomography (PET) were carried out in normal Sprague-Dawley (SD) rats. Ex vivo autoradiography imaging was conducted with freshly frozen pancreatic thin sections. RESULTS DO3A-VS- and NODA-VS-Cys(40)-exendin-4 analogues were labeled with Cu-64 and Ga-68 to a specific activity of 518.7 ± 3.7 Ci/mmol (19.19 ± 0.14 TBq/mmol) and radiochemical yield above 98 %. Biodistribution data demonstrated pancreatic uptake of 0.11 ± 0.02 %ID/g for [(64)Cu]DO3A-VS-, 0.14 ± 0.02 %ID/g for [(64)Cu]NODA-VS-, 0.11 ± 0.03 for [(68)Ga]DO3A-VS-, and 0.26 ± 0.03 for [(68)Ga]NODA-VS-Cys(40)-exendin-4. Excess exendin-4 and exendin-(9-39)-amide displaced all four Cu-64 and Ga-68 labeled exendin-4 derivatives in blocking studies. CONCLUSIONS [(64)Cu]/[(68)Ga]DO3A-VS-Cys(40)- and [(64)Cu]/[(68)Ga]NODA-VS-Cys(40)-exendin-4 can be used as PET imaging agents specific for GLP-1R expressed on β cells. Here, we report the first evidence of pancreatic uptake visualized with exendin-4 derivative in a rat animal model via in vivo dynamic PET imaging.
Collapse
Affiliation(s)
- Nilantha Bandara
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kaavya Cherukuri
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David A Griffith
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Chris Limberakis
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA
| | - David A Tess
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Chen Jianqing
- Clinical and Translational Imaging, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Rikki Waterhouse
- Clinical and Translational Imaging, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Suzanne E Lapi
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Bailey DL, Pichler BJ, Gückel B, Barthel H, Beer AJ, Botnar R, Gillies R, Goh V, Gotthardt M, Hicks RJ, Lanzenberger R, la Fougere C, Lentschig M, Nekolla SG, Niederdraenk T, Nikolaou K, Nuyts J, Olego D, Riklund KÅ, Signore A, Schäfers M, Sossi V, Suminski M, Veit-Haibach P, Umutlu L, Wissmeyer M, Beyer T. Combined PET/MRI: from Status Quo to Status Go. Summary Report of the Fifth International Workshop on PET/MR Imaging; February 15-19, 2016; Tübingen, Germany. Mol Imaging Biol 2016; 18:637-50. [PMID: 27534971 PMCID: PMC5010606 DOI: 10.1007/s11307-016-0993-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article provides a collaborative perspective of the discussions and conclusions from the fifth international workshop of combined positron emission tomorgraphy (PET)/magnetic resonance imaging (MRI) that was held in Tübingen, Germany, from February 15 to 19, 2016. Specifically, we summarise the second part of the workshop made up of invited presentations from active researchers in the field of PET/MRI and associated fields augmented by round table discussions and dialogue boards with specific topics. This year, this included practical advice as to possible approaches to moving PET/MRI into clinical routine, the use of PET/MRI in brain receptor imaging, in assessing cardiovascular diseases, cancer, infection, and inflammatory diseases. To address perceived challenges still remaining to innovatively integrate PET and MRI system technologies, a dedicated round table session brought together key representatives from industry and academia who were engaged with either the conceptualisation or early adoption of hybrid PET/MRI systems. Discussions during the workshop highlighted that emerging unique applications of PET/MRI such as the ability to provide multi-parametric quantitative and visual information which will enable not only overall disease detection but also disease characterisation would eventually be regarded as compelling arguments for the adoption of PET/MR. However, as indicated by previous workshops, evidence in favour of this observation is only growing slowly, mainly due to the ongoing inability to pool data cohorts from independent trials as well as different systems and sites. The participants emphasised that moving from status quo to status go entails the need to adopt standardised imaging procedures and the readiness to act together prospectively across multiple PET/MRI sites and vendors.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls-Universität, Tübingen, Germany
| | - B Gückel
- Department of Interventional and Diagnostic Radiology, Eberhard-Karls-Universität, Tübingen, Germany
| | - H Barthel
- Department of Nuclear Medicine, University Clinic, Leipzig, Germany
| | - A J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - R Botnar
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - V Goh
- Division of Imaging Sciences and Biomedical Engineering, Department of Cancer Imaging, King's College London, London, UK
| | - M Gotthardt
- Department of Nuclear Medicine, Radboud University, Nijmegen, The Netherlands
| | - R J Hicks
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C la Fougere
- Division of Nuclear Medicine and clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany
| | - M Lentschig
- ZEMODI, Zentrum für Moderne Diagnostik, Bremen, Germany
| | - S G Nekolla
- Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - T Niederdraenk
- Strategy and Innovation Technology Center, Siemens Healthcare GmbH, Erlangen, Germany
| | - K Nikolaou
- Department of Interventional and Diagnostic Radiology, Eberhard-Karls-Universität, Tübingen, Germany
| | - J Nuyts
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven - University of Leuven, Leuven, Belgium
| | - D Olego
- Philips, 3000 Minuteman Road, Andover, MA, 01810, USA
| | - K Åhlström Riklund
- Department of Diagnostic Radiology, Radiation Sciences, Umeå University/Norrlands University Hospital, Umeå, Sweden
| | - A Signore
- Nuclear Medicine Unit, Departments of Medical-Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Schäfers
- Department of Nuclear Medicine, University Hospital Münster and European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - V Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | | | - P Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - L Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - M Wissmeyer
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - T Beyer
- Center for Medical Physics and Biomedical Engineering, General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
31
|
Li J, Karunananthan J, Pelham B, Kandeel F. Imaging pancreatic islet cells by positron emission tomography. World J Radiol 2016; 8:764-774. [PMID: 27721939 PMCID: PMC5039672 DOI: 10.4329/wjr.v8.i9.764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/15/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells.
Collapse
|
32
|
Eriksson O, Laughlin M, Brom M, Nuutila P, Roden M, Hwa A, Bonadonna R, Gotthardt M. In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia 2016; 59:1340-1349. [PMID: 27094935 DOI: 10.1007/s00125-016-3959-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022]
Abstract
Radiotracer imaging is characterised by high in vivo sensitivity, with a detection limit in the lower picomolar range. Therefore, radiotracers represent a valuable tool for imaging pancreatic beta cells. High demands are made of radiotracers for in vivo imaging of beta cells. Beta cells represent only a small fraction of the volume of the pancreas (usually 1-3%) and are scattered in the tiny islets of Langerhans throughout the organ. In order to be able to measure a beta cell-specific signal, one has to rely on highly specific tracer molecules because current in vivo imaging technologies do not allow the resolution of single islets in humans non-invasively. Currently, a considerable amount of preclinical data are available for several radiotracers and three are under clinical evaluation. We summarise the current status of the evaluation of these tracer molecules and put forward recommendations for their further evaluation.
Collapse
Affiliation(s)
- Olof Eriksson
- Preclinical PET Platform, Department of Medical Chemistry, Uppsala University, Dag Hammarskjölds väg 14C, 3tr, SE-751 83, Uppsala, Sweden.
- Turku PET Centre, University of Turku, Turku, Finland.
- Department of Biosciences, Åbo Akademi University, Turku, Finland.
| | - Maren Laughlin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Albert Hwa
- JDRF, Discovery Research, New York, NY, USA
| | - Riccardo Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma and AOU of Parma, Parma, Italy
| | - Martin Gotthardt
- Department of Radiology and Nuclear Medicine, Radboud university medical center, PO Box 9101, 6500HB, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Luo Y, Pan Q, Yao S, Yu M, Wu W, Xue H, Kiesewetter DO, Zhu Z, Li F, Zhao Y, Chen X. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study. J Nucl Med 2016; 57:715-720. [PMID: 26795291 PMCID: PMC5227553 DOI: 10.2967/jnumed.115.167445] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Preoperative localization of insulinoma is a clinical dilemma. We aimed to investigate whether glucagon-like peptide-1 receptor (GLP-1R) PET/CT with (68)Ga-NOTA-MAL-cys(40)-exendin-4 ((68)Ga-NOTA-exendin-4) is efficient in detecting insulinoma. METHODS In our prospective cohort study, patients with endogenous hyperinsulinemic hypoglycemia were enrolled. CT, MRI, endoscopic ultrasound, and (99m)Tc-hydrazinonicotinamide-TOC SPECT/CT were done according to standard protocols. GLP-1R PET/CT was performed 30-60 min after the injection of (68)Ga-NOTA-exendin-4. The gold standard for diagnosis was the histopathologic results after surgery. RESULTS Of 52 recruited patients, 43 patients with histopathologically proven insulinomas were included for the imaging studies. Nine patients did not undergo surgical intervention. (68)Ga-NOTA-exendin-4 PET/CT correctly detected insulinomas in 42 of 43 patients with high tumor uptake (mean SUVavg ± SD, 10.2 ± 4.9; mean SUVmax ± SD, 23.6 ± 11.7), resulting in sensitivity of 97.7%. In contrast, (99m)Tc-hydrazinonicotinamide-TOC SPECT/CT showed a low sensitivity of 19.5% (8/41) in this group of patients; however, it successfully localized the tumor that was false-negative with GLP-1R PET/CT. The sensitivities of CT, MR, and endoscopic ultrasonography were 74.4% (32/43), 56.0% (14/25), and 84.0% (21/25), respectively. CONCLUSION (68)Ga-NOTA-exendin-4 PET/CT is a highly sensitive imaging technique for the localization of insulinoma.
Collapse
Affiliation(s)
- Yaping Luo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Qingqing Pan
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Shaobo Yao
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Miao Yu
- Department of Endocrinology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Wenming Wu
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Huadan Xue
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China; and
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
Rylova SN, Waser B, Del Pozzo L, Tönnesmann R, Mansi R, Meyer PT, Reubi JC, Maecke HR. Approaches to Improve the Pharmacokinetics of Radiolabeled Glucagon-Like Peptide-1 Receptor Ligands Using Antagonistic Tracers. J Nucl Med 2016; 57:1282-8. [DOI: 10.2967/jnumed.115.168948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/21/2016] [Indexed: 01/14/2023] Open
|
35
|
Jadhav S, Yim CB, Rajander J, Grönroos TJ, Solin O, Virta P. Solid-Supported Porphyrins Useful for the Synthesis of Conjugates with Oligomeric Biomolecules. Bioconjug Chem 2016; 27:1023-9. [PMID: 26898631 DOI: 10.1021/acs.bioconjchem.6b00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
meso-Tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin and 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (Photochlor, HPPH) were amide-coupled to 1R,2S,3R,4R-2,3-dihydroxy-4-(hydromethyl)-1-aminocyclopentane and immobilized via an ester linkage to long chain alkyl amine-derivatized controlled pore glass (LCAA-CPG). The applicability of these supports (5 and 6) for the synthesis of porphyrin conjugates with oligomeric biomolecules was demonstrated using an automated phosphoramidite coupling chemistry. Cleavage from the support with concentrated ammonia gave the products, viz., porphyrin conjugates of oligonucleotides (7-9) and dendritic glycoclusters (10-13) and a cyclooctyne derivative (14) in 23-58% yield. In addition, the synthesized cyclooctyne derivative of meso-tris(pyridin-4-yl)(4-carboxyphenyl)porphyrin (14) was conjugated with an azidopropyl-modified hyaluronic acid (19). The hyaluronic acid-porphyrin conjugate (15) was radiolabeled with (64)Cu and its (15[(64)Cu]) receptor binding affinity to CD44-expressing tumor cells was evaluated.
Collapse
Affiliation(s)
- Satish Jadhav
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Johan Rajander
- Turku PET Centre, Åbo Akademi University , FI-20520 Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku , FI-20520 Turku, Finland.,Medicity Research Laboratory, University of Turku , FI-20520 Turku, Finland
| | - Olof Solin
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland.,Turku PET Centre, University of Turku , FI-20520 Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku , FI-20014 Turku, Finland
| |
Collapse
|
36
|
Mathijs I, Xavier C, Peleman C, Caveliers V, Brom M, Gotthardt M, Herrera PL, Lahoutte T, Bouwens L. A standardized method for in vivo mouse pancreas imaging and semiquantitative β cell mass measurement by dual isotope SPECT. Mol Imaging Biol 2015; 17:58-66. [PMID: 25070262 DOI: 10.1007/s11307-014-0771-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE In order to evaluate future β cell tracers in vivo, we aimed to develop a standardized in vivo method allowing semiquantitative measurement of a prospective β cell tracer within the pancreas. PROCEDURES 2-[(123)I]Iodo-L-phenylalanine ([(123)I]IPA) and [Lys(40)([(111)In]DTPA)]exendin-3 ([(111)In]Ex3) pancreatic uptake and biodistribution were evaluated using SPECT, autoradiography, and an ex vivo biodistribution study in a controlled unilaterally nephrectomized mouse β cell depletion model. Semiquantitative measurement of the imaging results was performed using [(123)I]IPA to delineate the pancreas and [(111)In]Ex3 as a β cell tracer. RESULTS The uptake of [(123)I]IPA was highest in the pancreas. Aside from the kidneys, the uptake of [(111)In]Ex3 was highest in the pancreas and lungs. Autoradiography showed only uptake of [(111)In]Ex3 in insulin-expressing cells. Semiquantitative measurement of [(111)In]Ex3 in the SPECT images based on the delineation of the pancreas with [(123)I]IPA showed a high correlation with the [(111)In]Ex3 uptake data of the pancreas obtained by dissection. A strong positive correlation was observed between the relative insulin positive area and the pancreas-to-blood ratios of [(111)In]Ex3 uptake as determined by counting with a gamma counter and the semiquantitative analysis of the SPECT images. CONCLUSIONS [(123)I]IPA is a promising tracer to delineate pancreatic tissue on SPECT images. It shows a high uptake in the pancreas as compared to other abdominal tissues. This study also demonstrates the feasibility and accuracy to measure the β cell mass in vivo in an animal model of diabetes.
Collapse
Affiliation(s)
- Iris Mathijs
- Cell Differentiation Unit, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bauman A, Valverde IE, Fischer CA, Vomstein S, Mindt TL. Development of 68Ga- and 89Zr-Labeled Exendin-4 as Potential Radiotracers for the Imaging of Insulinomas by PET. J Nucl Med 2015; 56:1569-74. [PMID: 26251418 DOI: 10.2967/jnumed.115.159186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Clinical studies have demonstrated the potential of radiometallated exendin-4 derivatives for the imaging of glucagonlike peptide-1 receptor-overexpressing insulinomas. Recently investigated exendin-4 derivatives were radiolabeled with the SPECT isotopes 99mTc or 111In. Despite promising results, the low spatial resolution associated with SPECT and the occasional need to perform imaging several days after injection for the demarcation of insulinomas from the kidneys represent current limitations. The aim of this work was the development of exendin-4 derivatives for the imaging of insulinomas by high-resolution PET at early or late time points after injection of the radiotracer. METHODS An exendin-4 derivative conjugated to desferrioxamine (DFO) was used for radiolabeling with the PET isotopes 68Ga and 89Zr. Both radiotracers were evaluated in vitro with RIN-m5F cells for their cell internalization properties as well as affinities and specificities toward the glucagonlike peptide-1 receptor. Serum stabilities of the radiopeptides were assessed in blood serum, and their distribution coefficient was determined by the shake-flask method. Biodistribution experiments were performed with nude mice bearing RIN-m5F xenografts. For all experiments, clinically evaluated [Lys40-(AHX-DTPA-111In)NH2]exendin-4 was used as a reference compound. RESULTS [Lys40-(AHX-DFO)NH2]exendin-4 was labeled with 89Zr and 68Ga in high radiochemical yield and purity. In vitro experiments showed favorable cell uptake and receptor affinity for [Lys40-(AHX-DFO-68Ga)NH2]exendin-4, and [Lys40-(AHX-DFO-89Zr)NH2]exendin-4 and [Lys40-(AHX-DTPA-111In)NH2]exendin-4 performed similarly well. In biodistribution experiments, [Lys40-(AHX-DFO-68Ga)NH2]exendin-4 exhibited a significantly enhanced tumor uptake 1 h after injection in comparison to the other 2 radiotracers. Tumor uptake of [Lys40-(AHX-DFO-89Zr)NH2]exendin-4 was comparable to that of [Lys40-(AHX-DTPA-111In)NH2]exendin-4 at 1-48 h after injection. All compounds showed a fast blood clearance and low accumulation in receptor-negative organs and tissue with the exception of the kidneys, a known characteristic for exendin-4-based radiotracers. CONCLUSION 68Ga- and 89Zr-radiolabeled [Lys40-(AHX-DFO)NH2]exendin-4 exhibit characteristics comparable or superior to the clinically tested reference compound [Lys40-(AHX-DTPA-111In)NH2]exendin-4 and, thus, represent potential new tracers for the imaging of insulinomas by PET.
Collapse
Affiliation(s)
- Andreas Bauman
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Ibai E Valverde
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Christiane A Fischer
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Sandra Vomstein
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| | - Thomas L Mindt
- Division of Radiopharmaceutical Chemistry, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
38
|
Berclaz C, Pache C, Bouwens A, Szlag D, Lopez A, Joosten L, Ekim S, Brom M, Gotthardt M, Grapin-Botton A, Lasser T. Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers. Sci Rep 2015; 5:10385. [PMID: 25988507 PMCID: PMC4437378 DOI: 10.1038/srep10385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022] Open
Abstract
The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis.
Collapse
Affiliation(s)
- Corinne Berclaz
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Arno Bouwens
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Szlag
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, PL-87-100 Torun, Poland
| | - Antonio Lopez
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lieke Joosten
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Selen Ekim
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maarten Brom
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Theo Lasser
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Velikyan I. Continued rapid growth in68Ga applications: update 2013 to June 2014. J Labelled Comp Radiopharm 2015; 58:99-121. [PMID: 25689590 DOI: 10.1002/jlcr.3250] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Irina Velikyan
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; SE-75183 Uppsala Sweden
- Department of Radiology, Oncology and Radiation Science; Uppsala University; SE-75285 Uppsala Sweden
- PET-Centre, Centre for Medical Imaging; Uppsala University Hospital; SE-75185 Uppsala Sweden
| |
Collapse
|
40
|
Vinet L, Lamprianou S, Babič A, Lange N, Thorel F, Herrera PL, Montet X, Meda P. Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia 2015; 58:304-12. [PMID: 25413047 PMCID: PMC4287680 DOI: 10.1007/s00125-014-3442-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Non-invasive imaging of beta cells is a much-needed development but is one that faces significant biological and technological hurdles. A relevant imaging method should at least allow for an evaluation over time of the mass of beta cells under physiological and pathological conditions, and for an assessment of novel therapies. We, therefore, investigated the ability of a new MRI probe to repeatedly measure the loss of beta cells in a rodent model. METHODS We developed an innovative nanoparticle probe that targets the glucagon-like peptide 1 receptor, and can be used for both fluorescence imaging and MRI. Using fluorescence, we characterised the specificity and biodistribution of the probe. Using 1.5 T MRI, we longitudinally imaged the changes in insulin content in male and female mice of the RIP-DTr strain, which mimic the changes expected in type 1 and type 2 diabetes, respectively. RESULTS We showed that this probe selectively labelled beta cells in situ, imaged in vivo native pancreatic islets and evaluated their loss after diphtheria toxin administration, in a model of graded beta cell deletion. Thus, using clinical MRI, the probe quantitatively differentiates, in the same mouse strain, between female animals featuring a 50% loss of beta cells and the males featuring an almost complete loss of beta cells. CONCLUSIONS/INTERPRETATION The approach addresses several of the hurdles that have so far limited the non-invasive imaging of beta cells, including the potential to repeatedly monitor the very same animals using clinically available equipment, and to differentiate graded losses of beta cells.
Collapse
Affiliation(s)
- Laurent Vinet
- Department of Genetic Medicine and Development, University of Geneva, Geneva, CMU, 1 rue Michel-Servet, CH-1211, Geneva 4, Switzerland,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang L, Navaratna T, Liao J, Thurber GM. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands. Bioconjug Chem 2015; 26:329-37. [PMID: 25594741 DOI: 10.1021/bc500584t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Chemical Engineering, ‡Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
42
|
Steyn LV, Ananthakrishnan K, Anderson MJ, Patek R, Kelly A, Vagner J, Lynch RM, Limesand SW. A Synthetic Heterobivalent Ligand Composed of Glucagon-Like Peptide 1 and Yohimbine Specifically Targets β Cells Within the Pancreas. Mol Imaging Biol 2015; 17:461-70. [PMID: 25604385 DOI: 10.1007/s11307-014-0817-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/15/2022]
Abstract
PURPOSE β Cell specificity for a heterobivalent ligand composed of glucagon-like peptide-1 (GLP-1) linked to yohimbine (GLP-1/Yhb) was evaluated to determine its utility as a noninvasive imaging agent. PROCEDURES Competition binding assays were performed on βTC3 cells and isolated rat islets. Immunostaining for insulin was used to co-localized intravenously injected Cy5-labeled GLP-1/Yhb in β cells of Sprague-Dawley rats. Rats were intravenously injected with In-111-labeled GLP-1/Yhb to determine clearance rates and tissue biodistribution. Tissue-specific binding was confirmed by competition with pre-administration of unlabeled GLP-1/Yhb and in Streptozotocin-induced diabetic rats. RESULTS In βTC3 cells, high affinity binding of GLP-1/Yhb required interactions with both receptors because monovalent competition or receptor knockdown with RNAi lowered specificity and avidity of the heterobivalent ligand. Binding specificity for isolated islets was 2.6-fold greater than that of acinar tissue or islets pre-incubated with excess unlabeled GLP-1/Yhb. Immunofluorescent localization of Cy5-labeled GLP-1/Yhb was restricted to pancreatic islets. Within 30 min, ~90% of the In-111-labeled GLP-1/Yhb was cleared from blood. Tissue-specific accumulation of radiolabeled ligand was apparent in the pancreas, but not in other tissues within the abdominal imaging field. Pancreas specificity was lost in Streptozotocin-induced diabetic rats. CONCLUSIONS The GLP-1/Yhb exhibits high specificity for β cells, rapid blood clearance rates, and low non-specific uptake by other tissues within the abdominal imaging field. These characteristics of GLP-1/Yhb are desirable for application to β cell imaging in vivo and provide a basis for developing additional multivalent β cell-specific targeting agents to aid in the management of type 1 diabetes.
Collapse
Affiliation(s)
- Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, William J. Parker Agricultural Research Center, The University of Arizona, 4101 N Campbell Ave, Tucson, AZ, 85719, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jodal A, Lankat-Buttgereit B, Brom M, Schibli R, Béhé M. A comparison of three (67/68)Ga-labelled exendin-4 derivatives for β-cell imaging on the GLP-1 receptor: the influence of the conjugation site of NODAGA as chelator. EJNMMI Res 2014; 4:31. [PMID: 25006548 PMCID: PMC4078388 DOI: 10.1186/s13550-014-0031-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/03/2014] [Indexed: 11/26/2022] Open
Abstract
Background Various diseases derive from pathologically altered β-cells. Their function can be increased, leading to hyperinsulinism, or decreased, resulting in diabetes. Non-invasive imaging of the β-cell-specific glucagon-like peptide receptor-1 (GLP-1R) would allow the assessment of both β-cell mass and derived tumours, potentially improving the diagnosis of various conditions. We tested three new 67/68Ga-labelled derivatives of exendin-4, an agonist of GLP-1R, in vitro and in vivo. We determined the influence of the chelator NODAGA conjugated to resident lysines either at positions 12 and 27 or the C-terminally attached lysine at position 40 on the binding and kinetics of the peptide. Methods Binding and internalisation of 67Ga-labelled Ex4NOD12, Ex4NOD27 and Ex4NOD40 were tested on Chinese hamster lung (CHL) cells stably transfected to express the GLP-1 receptor (GLP-1R). In vivo biodistribution of 68Ga-labelled peptides was investigated in CD1 nu/nu mice with subcutaneous CHL-GLP-1R positive tumours; the specificity of the binding to GLP-1R was determined by pre-injecting excess peptide. Results All peptides showed good in vitro binding affinities to GLP-1R in the range of 29 to 54 nM. 67/68Ga-Ex4NOD40 and 67/68Ga-Ex4NOD12 show excellent internalisation (>30%) and high specific uptake in GLP-1R positive tissue, but high activity was also found in the kidneys. Conclusions We show that of the three peptides, Ga-Ex4NOD40 and Ga-Ex4NOD12 demonstrate the most favourable in vitro properties and in vivo binding to GLP-1R positive tissue. Therefore, we conclude that the lysines at positions 12 and 40 might preferentially be utilised for modifying exendin-4.
Collapse
Affiliation(s)
- Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/103, Villigen 5232, Switzerland
| | - Brigitte Lankat-Buttgereit
- Faculty of Medicine, Department of Gastroenterology, Endocrinology and Metabolism, University of Marburg, Marburg 35037, Germany
| | - Maarten Brom
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/103, Villigen 5232, Switzerland ; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8092, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA/103, Villigen 5232, Switzerland
| |
Collapse
|