1
|
Dong Y, Liu H, Habimana O. High risk of Vibrio pathogen and antibiotic resistance transfer in live seafood wet markets of Shantou, China. Int J Food Microbiol 2025; 432:111098. [PMID: 39954350 DOI: 10.1016/j.ijfoodmicro.2025.111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The global demand for seafood necessitates robust food safety practices, particularly within traditional wet markets. This study investigated the microbiomes of live Japanese mantis shrimp (JMS) and their associated environments (water and biofilm) in local wet markets to assess the risk of pathogen and antibiotic resistance gene (ARG) transfer. Metagenomic analysis showed a significant link between microbiome composition and the type of sample (shrimp, biofilm, and water). While several known human pathogens were associated with shrimp samples, water and biofilm samples exhibited higher abundances of ARGs, suggesting a high risk of pathogen and ARG transfer from the market environment. Notably, this study focused on the diversity and characterization of poorly understood Vibrio species associated with JMS. The prevalence of β-lactam resistance genes in Vibrio isolates, combined with a comparative genomic analysis of several species, highlights this concern. Our study emphasizes the need to improve hygiene practices in wet markets to reduce foodborne illness risks and address antibiotic resistance. This work represents, to our knowledge, the first comparative genomic analysis of Vibrio species in the context of JMS and wet market seafood safety.
Collapse
Affiliation(s)
- Yujian Dong
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Huiyu Liu
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Olivier Habimana
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
3
|
Tsai MA, Chen IC, Chen ZW, Li TH. Further Evidence of Anthropogenic Impact: High Levels of Multiple-Antimicrobial-Resistant Bacteria Found in Neritic-Stage Sea Turtles. Antibiotics (Basel) 2024; 13:998. [PMID: 39596693 PMCID: PMC11591244 DOI: 10.3390/antibiotics13110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Marine turtles are globally threatened and face daily anthropogenic threats, including pollution. Water pollution from emerging contaminants such as antimicrobials is a major and current environmental concern. METHODS This study investigated the phenotypic antimicrobial resistance and heavy metal resistance genes of 47 Vibrio isolates from different stages of sea turtles (oceanic stage vs neritic stage) from the Taiwanese coast. RESULTS The results show that a high proportion (48.9%; 23/47) of the Vibrio species isolated from sea turtles in our study had a multiple antimicrobial resistance (MAR) pattern. It was found that Vibrio spp. isolates with a MAR pattern and those with a MAR index value greater than 0.2 were both more likely to be observed in neritic-stage sea turtles. Furthermore, isolates from neritic-stage sea turtles exhibited greater resistance to the majority of antimicrobials tested (with the exception of beta-lactams and macrolides) than isolates from the oceanic-stage groups. Isolates from neritic sea turtles were found to be more resistant to nitrofurans and aminoglycosides than isolates from oceanic sea turtles. Furthermore, isolates with a MAR pattern (p = 0.010) and those with a MAR index value greater than 0.2 (p = 0.027) were both found to be significantly positively associated with the mercury reductase (merA) gene. CONCLUSIONS The findings of our study indicate that co-selection of heavy metals and antimicrobial resistance may occur in aquatic bacteria in the coastal foraging habitats of sea turtles in Taiwan.
Collapse
Affiliation(s)
- Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - I-Chun Chen
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
| | - Zeng-Weng Chen
- Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli 340401, Taiwan;
| | - Tsung-Hsien Li
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan;
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- IUCN Species Survival Commission, Marine Turtle Specialist Group for the East Asia Region, Taiwan
| |
Collapse
|
4
|
Correa Velez KE, Alam M, Baalousha MA, Norman RS. Wildfire Ashes from the Wildland-Urban Interface Alter Vibrio vulnificus Growth and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8169-8181. [PMID: 38690750 DOI: 10.1021/acs.est.3c08658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Climate change-induced stressors are contributing to the emergence of infectious diseases, including those caused by marine bacterial pathogens such as Vibrio spp. These stressors alter Vibrio temporal and geographical distribution, resulting in increased spread, exposure, and infection rates, thus facilitating greater Vibrio-human interactions. Concurrently, wildfires are increasing in size, severity, frequency, and spread in the built environment due to climate change, resulting in the emission of contaminants of emerging concern. This study aimed to understand the potential effects of urban interface wildfire ashes on Vibrio vulnificus (V. vulnificus) growth and gene expression using transcriptomic approaches. V. vulnificus was exposed to structural and vegetation ashes and analyzed to identify differentially expressed genes using the HTSeq-DESeq2 strategy. Exposure to wildfire ash altered V. vulnificus growth and gene expression, depending on the trace metal composition of the ash. The high Fe content of the vegetation ash enhanced bacterial growth, while the high Cu, As, and Cr content of the structural ash suppressed growth. Additionally, the overall pattern of upregulated genes and pathways suggests increased virulence potential due to the selection of metal- and antibiotic-resistant strains. Therefore, mixed fire ashes transported and deposited into coastal zones may lead to the selection of environmental reservoirs of Vibrio strains with enhanced antibiotic resistance profiles, increasing public health risk.
Collapse
Affiliation(s)
- Karlen Enid Correa Velez
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mahbub Alam
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - Mohammed A Baalousha
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- Center for Environmental Nanoscience and Risk, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| | - R Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, 921 Assembly St., Suite 401, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Zheng P, Lun J, Yu F, Huang T, Peng T, Li J, Hu Z. Deletion of ArmPT, a LamB-like protein, increases cell membrane permeability and antibiotic sensitivity in Vibrio alginolyticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115855. [PMID: 38157797 DOI: 10.1016/j.ecoenv.2023.115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Vibrio bacterial species are dominant pathogens in mariculture animals. However, the extensive use of antibiotics and other chemicals has increased drug resistance in Vibrio bacteria. Despite rigorous investigative studies, the mechanism of drug resistance in Vibrio remains a mystery. In this study, we found that a gene encoding LamB-like outer membrane protein, named ArmPT, was upregulated in Va under antibiotic stress by RT-qPCR. We speculated that ArmPT might play a role in Va's drug resistance. Subsequently, using ArmPT gene knockout and gene complementation experiments, we confirmed its role in resistance against a variety of antibiotics, particularly kanamycin (KA). Transcriptomic and proteomic analyses identified 188 and 83 differentially expressed genes in the mutant strain compared with the wild-type (WT) before and after KA stress, respectively. Bioinformatic analysis predicted that ArmPT might control cell membrane permeability by changing cadaverine biosynthesis, thereby influencing the cell entry of antibiotics in Va. The higher levels of intracellular reactive oxygen species and the infused content of KA showed that antibiotics are more likely to enter the Va mutant strain. These results uncover the drug resistance mechanism of Va that can also exist in other similar pathogenic bacteria.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jingsheng Lun
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
6
|
Bhaskaran R, Ramachandra KSS, Peter R, Gopakumar ST, Gopalan MK, Mozhikulangara RR. Antimicrobial resistance and antagonistic features of bivalve-associated Vibrio parahaemolyticus from the south-west coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107681-107692. [PMID: 37740157 DOI: 10.1007/s11356-023-29924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
- Remya Bhaskaran
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
- Department of Biosciences, Mangalore University, Mangalagangotri - 574 199, Karnataka State, India
| | - Krupesha Sharma Sulumane Ramachandra
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India.
| | - Reynold Peter
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Mini Kalappurakkal Gopalan
- Fishery Resources Assessment, Economics and Extension Division (FRAEED), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Rithin Raj Mozhikulangara
- School of Industrial Fisheries, Cochin University of Science and Technology (CUSAT), Lakeside Campus, Kochi, 682 016, India
| |
Collapse
|
7
|
Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Sun S, Bian C, Zhou N, Shen Z, Yu M. Dietary Astragalus polysaccharides improve the growth and innate immune response of giant freshwater prawn Macrobrachium rosenbergii: Insights from the brain-gut axis. Int J Biol Macromol 2023:125158. [PMID: 37276896 DOI: 10.1016/j.ijbiomac.2023.125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Supplementation with Astragalus polysaccharides (APS) has beneficial effects on aquatic animals. Herein, we aimed to investigate the effects of different doses of APS on the growth, innate immune response, and brain-gut axis of Macrobrachium rosenbergii. The molecular weight and the monosaccharide composition of APS were analyzed. APS were added at concentration of 0 (control), 0.05, 0.10, 0.15, and 0.20 % in practical diets. Growth performance increased significantly under 0.05 to 0.20 % APS, with enhanced lipase and protease activities in intestinal tissues. Prawns receiving APS supplementation had significantly lower amounts of pathogenic intestinal bacteria (Vibrio and Aeromonas) and a markedly different microbial community structure compared with those of the control group. The fecal short chain fatty acid (SCFA) and neurotransmitters γ-aminobutyric acid contents increased in the brains of prawns receiving APS, which was potentially associated with increased Lactobacillus and Bacillus levels. Prawns receiving APS supplementation displayed a significantly enhanced immune function (such as total hemocyte count, total protein concentration, phenoloxidase activity, serum agglutination titer, and lysozyme activity) and improved disease resistance to Vibrio anguillarum compared those in the control group. Thus, dietary APS positively affected the gut-brain axis by altering the microbiota composition, increasing the fecal SCFA content, and enhancing prawn immunity.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau
| | - Zhixin Shen
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China
| | - Ming Yu
- Hainan Huixin Breeding Co., Ltd., Haikou 571126, China
| |
Collapse
|
9
|
Han Y, Wang H, Wu J, Hu Y, Wen H, Yang Z, Wu H. Hydrogen peroxide treatment mitigates antibiotic resistance gene and mobile genetic element propagation in mariculture sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121652. [PMID: 37080523 DOI: 10.1016/j.envpol.2023.121652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Mariculture sediments have been exchange and propagation sources of antibiotic resistance genes (ARGs). However, no efficient methods have been generated to remove ARGs from sediments. Here, we explored the impact of hydrogen peroxide (H2O2) and aeration on the efficient removal of ARGs and mobile genetic elements (MGEs) in mariculture sediments. When compared with the aeration group, the ARG abundance was 3.8-32.3% lower in the H2O2 group during the first 14 days. ARG and MGE abundances were also significantly associated with reduced total bacterial population and diversity (P < 0.05). Based on partial squares path modeling, reduction of MGEs had important roles in ARG removal from H2O2 treatments, while in the aeration group, ARG reductions were mainly determined by changes in bacterial community composition. These results suggested that H2O2 treatment represent a promising method for controlling ARG abundance after dosing feed stuff and limit the spread of ARGs in aquaculture environments.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Haodong Wang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Jiayue Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Yikai Hu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Hexin Wen
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zijian Yang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Hao Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
10
|
Regar RK, Singh D, Gaur VK, Thakur RS, Manickam N. Functional genomic analysis of an efficient indole degrading bacteria strain Alcaligenes faecalis IITR89 and its biodegradation characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51770-51781. [PMID: 36820967 DOI: 10.1007/s11356-023-25955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Indole is a nitrogenous heterocyclic aromatic pollutant often detected in various environments. An efficient indole degrading bacterium strain IITR89 was isolated from River Cauvery, India, and identified as Alcaligenes faecalis subsp. phenolicus. The bacterium was found to degrade ~ 95% of 2.5 mM (293.75 mg/L) of indole within 18 h utilizing it as a sole carbon and energy source. Based on metabolite identification, the metabolic route of indole degradation is indole → (indoxyl) → isatin → (anthranilate) → salicylic acid → (catechol) → (Acetyl-CoA) → and further entering into TCA cycle. Genome sequencing of IITR89 revealed the presence of gene cluster dmpKLMNOP, encoding multicomponent phenol hydroxylase; andAbcd gene cluster, encoding anthranilate 1,2-dioxygenase ferredoxin subunit (andAb), anthranilate 1,2-dioxygenase large subunit (andAc), and anthranilate 1,2-dioxygenase small subunit (andAd); nahG, salicylate hydroxylase; catA, catechol 1,2-dioxygenase; catB, cis, cis-muconate cycloisomerase; and catC, muconolactone D-isomerase which play an active role in indole degradation. The findings strongly support the degradation potential of strain IITR89 and its possible application for indole biodegradation.
Collapse
Affiliation(s)
- Raj Kumar Regar
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Drug Standardisation Unit, Dr. D.P. Rastogi Central Research Institute for Homoeopathy, Noida, 201301, Uttar Pradesh, India
| | - Deeksha Singh
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
11
|
Kumarage PM, Majeed S, De Silva LADS, Heo GJ. Detection of virulence, antimicrobial resistance, and heavy metal resistance properties in Vibrio anguillarum isolated from mullet (Mugil cephalus) cultured in Korea. Braz J Microbiol 2023; 54:415-425. [PMID: 36735199 PMCID: PMC9944176 DOI: 10.1007/s42770-023-00911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In the present study, we identified and characterized 22 strains of V. anguillarum from 145 samples of mullets (Mugill cephallus) cultured in several fish farms in South Korea. They were subjected to pathogenicity tests, antimicrobial susceptibility test, and broth dilution test to detect virulence markers, antimicrobial resistance, and heavy metal resistance properties. All the isolates showed amylase and caseinase activity, followed by gelatinase (90.9%), DNase (45.5%), and hemolysis activities (α = 81.1% and β = 18.2%). The PCR assay revealed that isolates were positive for VAC, ctxAB, AtoxR, tdh, tlh, trh, Vfh, hupO, VPI, and FtoxR virulence genes at different percentages. All the isolates showed multi-drug resistance properties (MAR index ≥ 0.2), while 100% of the isolates were resistant to oxacillin, ticarcillin, streptomycin, and ciprofloxacin. Antimicrobial resistance genes, qnrS (95.5%), qnrB (86.4%), and StrAB (27.3%), were reported. In addition, 40.9% of the isolates were cadmium-tolerant, with the presence of CzcA (86.4%) heavy metal resistance gene. The results revealed potential pathogenicity associated with V. anguillarum in aquaculture and potential health risk associated with consumer health.
Collapse
Affiliation(s)
- P M Kumarage
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - L A D S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Chungdae-Ro 1, Seowon-Gu, Chungbuk, 28644, Cheongju, South Korea.
| |
Collapse
|
12
|
Xie J, Zhang H, Li Y, Li H, Pan Y, Zhao Y, Xie Q. Transcriptome analysis of the biofilm formation mechanism of Vibrio parahaemolyticus under the sub-inhibitory concentrations of copper and carbenicillin. Front Microbiol 2023; 14:1128166. [PMID: 36937277 PMCID: PMC10018186 DOI: 10.3389/fmicb.2023.1128166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Biofilm formation of Vibrio parahaemolyticus enhanced its tolerance to the environment, but caused many serious problems to food safety and human health. In this paper, the effects of copper and carbenicillin (CARB) stress on the formation of the biofilms of V. parahaemolyticus organisms were studied, and RNA sequencing technology was used to compare the differences in transcriptome profiles of the biofilm-related genes of V. parahaemolyticus organisms under different sub-inhibitory stresses. The results proved that V. parahaemolyticus had a large growth difference under the two stresses, copper and CARB at 1/2 minimal inhibitory concentration (MIC), and it could form a stable biofilm under both stress conditions. The amount of biofilm formed under CARB stress was significantly higher than that of copper stress (p < 0.05). Based on the analysis of transcriptome sequencing results 323, 1,550, and 1,296 significantly differential expressed genes were identified in the three treatment groups namely 1/2 MIC CARB, Cu2+, and Cu2++CARB. Through COG annotation, KEGG metabolic pathway analysis and gene expression analysis related to biofilm formation, the functional pathways of transcriptome changes affecting V. parahaemolyticus were different in the three treatment groups, and the CARB treatment group was significantly different from the other two groups. These differences indicated that the ABC transport system, two-component system and quorum sensing were all involved in the biofilm formation of the V. parahaemolytic by regulating flagellar motility, extracellular polysaccharides and extracellular polymer synthesis. Exploring the effects of different stress conditions on the transcriptome of V. parahaemolyticus could provide a basis for future research on the complex network system that regulates the formation of bacterial biofilms.
Collapse
Affiliation(s)
- Jiaying Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongmin Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yinhui Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hao Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- *Correspondence: Yong Zhao,
| | - Qingchao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Qingchao Xie,
| |
Collapse
|
13
|
Gao Q, Ma X, Wang Z, Chen H, Luo Y, Wu B, Qi S, Lin M, Tian J, Qiao Y, Grossart HP, Xu W, Huang L. Seasonal variation, virulence gene and antibiotic resistance of Vibrio in a semi-enclosed bay with mariculture (Dongshan Bay, Southern China). MARINE POLLUTION BULLETIN 2022; 184:114112. [PMID: 36113173 DOI: 10.1016/j.marpolbul.2022.114112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/09/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In this study, the virulence genes, antibiotic resistance of culturable Vibrio and the environmental factors affecting Vibrio abundance were analyzed in four seasons in DongShan Bay with different intensity of aquaculture practice. A total of 253 bacteria isolates were obtained, of which 177 Vibrio strains belonged to 26 species. Annual Vibrio abundance in this region ranged from 20 to 11,600 CFU mL-1 and the most significant positive correlation occurred with temperature. Detection of 9 different Vibrio virulence genes revealed that most isolates contained atypical virulence genes in addition to the typical ones. In particular, virulence genes of hemolysin such as tdh, trh, and hlyA (6.32 %, 15.52 %, and 11.30 %) showed different degrees of horizontal gene transfer (HGT). In our antibiotic resistance test, the multiple antibiotic resistance (MAR) index of the isolates ranged from 0.01 to 0.03 in different seasons, and three MAR Vibrio strains were detected. Overall, our study sheds new light on the spatial distribution patterns and the occurrence of virulence genes and antibiotics resistance Vibrio isolated from a subtropical bay with intensive aquaculture. Our study provides a suitable microbial quality surveillance in a mariculture impacted coastal environment. It will help to establish effective disease prevention measures in this area and provide useful guidance and support for formulating local antibiotics use policies.
Collapse
Affiliation(s)
- Qiancheng Gao
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Zhichao Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haisheng Chen
- Fishery Technology Promotion Station of Dongshan, Zhangzhou 363400, China
| | - Yu Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Bi Wu
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Shanni Qi
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Miaozhen Lin
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Jing Tian
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| | - Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, China.
| |
Collapse
|
14
|
Wei SS, Yen CM, Marshall IPG, Hamid HA, Kamal SS, Nielsen DS, Ahmad HF. Gut microbiome and metabolome of sea cucumber (Stichopus ocellatus) as putative markers for monitoring the marine sediment pollution in Pahang, Malaysia. MARINE POLLUTION BULLETIN 2022; 182:114022. [PMID: 35963228 DOI: 10.1016/j.marpolbul.2022.114022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic contamination in the marine environment forms an emerging threat to marine ecosystems. This study aimed to compare the gut and coelomic microbiota of Stichopus ocellatus with sediments between two coastal districts of Pahang, which potentially conferring as putative biomarkers for sediment pollution monitoring. The composition of the bacteria communities was determined using 16S rRNA V3-region gene amplicon sequencing, while hybrid whole-genome sequencing was employed to analyze the genome of Vibrio parahaemolyticus. The trace elements and antibiotic compositions were access using high-throughput spectrometry. The alpha- and beta-diversity of bacteria in gut and sediment samples from Kuantan differed substantially within (p-value = 0.017604) and between samples (p-value <0.007), respectively. Vibrio genera predominated in Kuantan samples, while Flavobacterium and Synechococcus_E genera predominated in Pekan samples. Vibrio parahaemolyticus revealed the presence of tet(35) and blaCARB-33 genes that conceived resistance towards tetracycline and beta-lactam antibiotics, respectively, which were detected in sediment and gut samples.
Collapse
Affiliation(s)
- Siew Shing Wei
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Choo Mei Yen
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia
| | - Ian P G Marshall
- Center for Electromicrobiology, Department of Biology, Ny Munkegade 116, 8000 Aarhus C, Denmark.
| | - Hazrulrizawati Abd Hamid
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia; Centre for Research in Advanced Tropical Bioscience (Biotropic Centre), Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| | - Shamrulazhar Shamzir Kamal
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | | | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang, Malaysia.
| |
Collapse
|
15
|
Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018–2020. PLoS One 2022; 17:e0273700. [PMID: 36018831 PMCID: PMC9416985 DOI: 10.1371/journal.pone.0273700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of acute seafood-associated gastroenteritis worldwide. The aim of this study was to investigate the presence of virulence genes, biofilm formation, motor capacities and antimicrobial resistance profile of V. parahaemolyticus isolates isolated from clinical samples in Nantong during 2018–2020. Sixty-six V. parahaemolyticus strains isolated from stool specimens of diarrheal patients were examined. The PCR results showed that there were two tdh+trh+ isolates, four tdh-trh- isolates and sixty tdh+trh- isolates, accounting for 3.0%, 6.1% and 90.9%, respectively. All the tdh carrying isolates manifested the positive reactions for the Kanagawa phenomenon (KP) test. Most of the isolates harbored at least one of the specific DNA markers of ‘pandemic group’ strains, suggesting that the dominant isolates of V. parahaemolyticus in Nantong might belong to the new O3: K6 or its serovariants. All tdh+ isolates possessed the Vp-PAI genes, but no tdh-trh- isolates carried the T3SS2 genes. All isolates were biofilm producers and had relatively strong motor capacities. In addition, the V. parahaemolyticus isolates were resistant to ampicillin (98.5%), cefuroxime (75.6%), cefepime (66.7%), piperacillin (59.1%) and ampicillin/sulbactam (50.0%), but sensitive to ciprofloxacin (100.0%), levofloxacin (100.0%), trimethoprim-sulfamethoxazole (98.5%), gentamicin (98.5%), amikacin (97%), meropenem (71.2%), and ceftazidime (56.1%). Multidrug-resistant isolates in clinical might be related to the inappropriate use of antimicrobials in aquaculture.
Collapse
|
16
|
Bhat RAH, Thakuria D, Tandel RS, Khangembam VC, Dash P, Tripathi G, Sarma D. Tools and techniques for rational designing of antimicrobial peptides for aquaculture. FISH & SHELLFISH IMMUNOLOGY 2022; 127:1033-1050. [PMID: 35872334 DOI: 10.1016/j.fsi.2022.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Fisheries and aquaculture industries remain essential sources of food and nutrition for millions of people worldwide. Indiscriminate use of antibiotics has led to the emergence of antimicrobial-resistant bacteria and posed a severe threat to public health. Researchers have opined that antimicrobial peptides (AMPs) can be the best possible alternative to curb the rising tide of antimicrobial resistance in aquaculture. AMPs may also help to achieve the objectives of one health approach. The natural AMPs are associated with several shortcomings, like less in vivo stability, toxicity to host cell, high cost of production and low potency in a biological system. In this review, we have provided a comprehensive outline about the strategies for designing synthetic mimics of natural AMPs with high potency. Moreover, the freely available AMP databases and the information about the molecular docking tools are enlisted. We also provided in silico template for rationally designing the AMPs from fish piscidins or other peptides. The rationally designed piscidin (rP1 and rp2) may be used to tackle microbial infections in aquaculture. Further, the protocol can be used to develop the truncated mimics of natural AMPs having more potency and protease stability.
Collapse
Affiliation(s)
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | | | - Victoria C Khangembam
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Pragyan Dash
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| | - Gayatri Tripathi
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Debajit Sarma
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, 263136, Uttarakhand, India
| |
Collapse
|
17
|
Cufaoglu G, Cengiz G, Onaran Acar B, Yesilkaya B, Ayaz ND, Levent G, Goncuoglu M. Antibiotic, heavy metal, and disinfectant resistance in chicken, cattle, and sheep origin
E. coli
and whole‐genome sequencing analysis of a multidrug‐resistant
E. coli
O100:H25 strain. J Food Saf 2022. [DOI: 10.1111/jfs.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gizem Cufaoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gorkem Cengiz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Bahar Onaran Acar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Busra Yesilkaya
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| | - Naim Deniz Ayaz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Kirikkale University Kirikkale Turkey
| | - Gizem Levent
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station Texas USA
- School of Veterinary Medicine Texas Tech University Amarillo Texas USA
| | - Muammer Goncuoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine Ankara University Ankara Turkey
| |
Collapse
|
18
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
19
|
Li W, Li Y, Zheng N, Ge C, Yao H. Occurrence and distribution of antibiotics and antibiotic resistance genes in the guts of shrimp from different coastal areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152756. [PMID: 34990667 DOI: 10.1016/j.scitotenv.2021.152756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
With the continuous increase in shrimp (Litopenaeus vannamei) aquaculture production, the widespread use of antibiotics as a means of preventing and treating diseases has adversely affected the environment, animal health and symbiotic microorganisms in gut environments. At the same time, antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a great threat to aquatic organisms and humans. Therefore, in the present study, the occurrence and distribution of 17 antibiotics, ARGs and mobile genetic elements (MGEs) were detected in the guts of shrimp collected from 12 coastal regions of China. The results showed that sulfadiazine, ciprofloxacin and norfloxacin were detectable in the guts of L. vannamei at all sampling sites. Sul1, sul2, floR and intI-1 were also detected in the guts of L. vannamei at all sampling sites. The total relative abundances of ARGs and MGEs were significantly positively correlated according to Pearson correlation analysis. Sulfonamide resistance genes (sul1 and sul2) were significantly positively correlated with intI-1. These results indicated that MGEs could increase the risk of horizontal gene transfer of ARGs in a gut environment. MGEs are the most important factors promoting the spread of ARGs. Correlation analysis showed that sulfadiazine was significantly positively correlated with sul1 and sul2 and that fluoroquinolone antibiotics were significantly positively correlated with floR, indicating that antibiotics could induce the production of ARGs. Network analysis indicated that Iamia and Alkaliphilus species may harbor the most antibiotic resistance genes, and these bacteria were closely related to the proliferation and spread of ARGs in a gut environment. Antibiotic use and the spread of ARGs in mariculture systems may have negative effects on shrimp and human health. The use of antibiotics should be strictly regulated to control contaminants in mariculture systems, including pathogens and ARGs, thereby reducing potential risks to human health.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Yaying Li
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
20
|
Gambino D, Savoca D, Sucato A, Gargano V, Gentile A, Pantano L, Vicari D, Alduina R. Occurrence of Antibiotic Resistance in the Mediterranean Sea. Antibiotics (Basel) 2022; 11:antibiotics11030332. [PMID: 35326795 PMCID: PMC8944634 DOI: 10.3390/antibiotics11030332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Seawater could be considered a reservoir of antibiotic-resistant bacteria and antibiotic resistance genes. In this communication, we evaluated the presence of bacterial strains in seawater collected from different coasts of Sicily by combining microbiological and molecular methods. Specifically, we isolated viable bacteria that were tested for their antibiotic resistance profile and detected both antibiotic and heavy metal resistance genes. Both antibiotic-resistant Gram-negative bacteria, Vibrio and Aeromonas, and specific antibiotic resistance genes were found in the seawater samples. Alarming levels of resistance were determined towards cefazolin, streptomycin, amoxicillin/clavulanic acid, ceftriaxone, and sulfamethoxazole/trimethoprim, and mainly genes conferring resistance to β-lactamic and sulfonamide antibiotics were detected. This survey, on the one hand, presents a picture of the actual situation, showing the pollution status of the Tyrrhenian coast of Sicily, and, on the other hand, can be considered as a baseline to be used as a reference time for future analysis.
Collapse
Affiliation(s)
- Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (A.G.); (L.P.); (D.V.)
| | - Dario Savoca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90028 Palermo, Italy; (D.S.); (A.S.)
| | - Arianna Sucato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90028 Palermo, Italy; (D.S.); (A.S.)
| | - Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (A.G.); (L.P.); (D.V.)
- Correspondence: (V.G.); (R.A.)
| | - Antonino Gentile
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (A.G.); (L.P.); (D.V.)
| | - Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (A.G.); (L.P.); (D.V.)
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (A.G.); (L.P.); (D.V.)
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90028 Palermo, Italy; (D.S.); (A.S.)
- Correspondence: (V.G.); (R.A.)
| |
Collapse
|
21
|
Characterization of a novel Vibrio parahaemolyticus host-phage pair and antibacterial effect against the host. Arch Virol 2022; 167:531-544. [DOI: 10.1007/s00705-021-05278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
|
22
|
Zhang M, Yu Y, Lian L, Li W, Ren J, Liang Y, Xue F, Tang F, Zhu X, Ling J, Dai J. Functional Mechanism of Antimicrobial Peptide Bomidin and Its Safety for Macrobrachium rosenbergii. Probiotics Antimicrob Proteins 2021; 14:169-179. [PMID: 34642879 DOI: 10.1007/s12602-021-09857-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 01/02/2023]
Abstract
Macrobrachium rosenbergii is an economically important source of crustacean seafood worldwide. Vibrio parahaemolyticus is an important aquatic pathogen that causes epidemics of acute hepatopancreatic necrosis in shrimp populations, which results in significant economic losses to aquaculture farmers. To prevent the antibiotics abuse, which has become a serious threat to human health, novel anti-infective strategies are urgently required to control V. parahaemolyticus. Antimicrobial peptides, which exhibit favourable germicidal activity compared to traditional antibiotics, can be used as a key method to prevent and treat bacterial diseases. Herein, an antimicrobial peptide, bomidin, was expressed through genetic engineering technology. The minimum inhibitory concentration (MIC) of bomidin showed a significant inhibitory effect on V. parahaemolyticus that was equivalent to that of ampicillin. Subsequently, the mechanism of action of recombinant bomidin was explored using PNP and ONPG assays to investigate the effects on membrane permeability. These assays indicated that bomidin penetrated the germ membrane and induced the release of cytoplasmic contents and ultimately interacted with DNA to form a bomidin-DNA complex that inhibits bacterial survival. Transmission electron microscopy and scanning electron microscopy revealed that bomidin could cause damage and dysfunction to the cell wall and membrane. Bomidin was nontoxic to mouse red blood cells within a concentration range that was much larger than the MIC. Toxicity assays revealed that 0.02 mg/mL bomidin was safe for use with juvenile freshwater prawns of M. rosenbergii and significantly inhibited the growth of V. parahaemolyticus in cultured water. These results demonstrated that synthetic peptide bomidin had great antibacterial effect against V. parahaemolyticus and therefore a therapeutic potential in aquaculture.
Collapse
Affiliation(s)
- Miao Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Youli Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lele Lian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wanjun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ying Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaohua Zhu
- Jiangsu Fresh Water Aquatic Research Institute, Nanjing, China
| | - Jianqun Ling
- Jiangsu Genloci Biotechnologies Inc, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Hossain S, Heo GJ. Detection of Antimicrobial and Heavy-Metal Resistance Genes in Aeromonas spp. Isolated from Hard-Shelled Mussel ( Mytilus Coruscus). Microb Drug Resist 2021; 28:127-135. [PMID: 34297616 DOI: 10.1089/mdr.2020.0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hard-shelled mussel (Mytilus coruscus) is a popular seafood in South Korea because of its delicacy and high nutritional value. Our study aimed to identify antimicrobial and heavy-metal resistance determinants in Aeromonas isolates from marketed hard-shelled mussel in South Korea. A total of 33 Aeromonas species were isolated, and antimicrobial disk diffusion test was done to observe antimicrobial resistance patterns. In addition, broth microdilution test was performed to determine resistance to heavy-metals. PCR amplification was done to detect resistance genes. High resistance to amoxicillin (100.0%), ampicillin (93.9%), rifampicin (78.8%), and cephalothin (48.5%) was observed where least resistance to other antimicrobials was also detected. In addition, the isolates showed high resistance to cadmium (Cd) (57.6%), and 42.4% and 27.3% were resistant to chromium (Cr) and copper (Cu). The occurrence of antimicrobial resistance genes, such as blaTEM, blaSHV, blaCTX-M, tetB, tetE, and intI1 genes, was observed in 9 (27.3%), 8 (24.2%), 8 (24.2%), 6 (18.2%), 5 (15.2%), and 9 (27.3%) isolates, respectively. Also, heavy-metal resistance genes, czcA, copA, and merA were detected in 17 (51.5%), 11 (33.3%), and 7 (21.2%) of the isolates, respectively. The results suggest that mussels are a reservoir of multidrug and heavy-metal-resistant Aeromonas spp.
Collapse
Affiliation(s)
- Sabrina Hossain
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
24
|
Skandalis N, Maeusli M, Papafotis D, Miller S, Lee B, Theologidis I, Luna B. Environmental Spread of Antibiotic Resistance. Antibiotics (Basel) 2021; 10:640. [PMID: 34071771 PMCID: PMC8226744 DOI: 10.3390/antibiotics10060640] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023] Open
Abstract
Antibiotic resistance represents a global health concern. Soil, water, livestock and plant foods are directly or indirectly exposed to antibiotics due to their agricultural use or contamination. This selective pressure has acted synergistically to bacterial competition in nature to breed antibiotic-resistant (AR) bacteria. Research over the past few decades has focused on the emergence of AR pathogens in food products that can cause disease outbreaks and the spread of antibiotic resistance genes (ARGs), but One Health approaches have lately expanded the focus to include commensal bacteria as ARG donors. Despite the attempts of national and international authorities of developed and developing countries to reduce the over-prescription of antibiotics to humans and the use of antibiotics as livestock growth promoters, the selective flow of antibiotic resistance transmission from the environment to the clinic (and vice-versa) is increasing. This review focuses on the mechanisms of ARG transmission and the hotspots of antibiotic contamination resulting in the subsequent emergence of ARGs. It follows the transmission of ARGs from farm to plant and animal food products and provides examples of the impact of ARG flow to clinical settings. Understudied and emerging antibiotic resistance selection determinants, such as heavy metal and biocide contamination, are also discussed here.
Collapse
Affiliation(s)
- Nicholas Skandalis
- Department of Medicine, Keck School of Medicine at USC, Los Angeles, CA 90033, USA; (N.S.); (M.M.)
| | - Marlène Maeusli
- Department of Medicine, Keck School of Medicine at USC, Los Angeles, CA 90033, USA; (N.S.); (M.M.)
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| | - Dimitris Papafotis
- Department of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (D.P.); (I.T.)
| | - Sarah Miller
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| | - Bosul Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| | - Ioannis Theologidis
- Department of Biology, National and Kapodistrian University of Athens, 157 72 Athens, Greece; (D.P.); (I.T.)
| | - Brian Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at USC, 1441 Eastlake Ave, NTT 6419, Los Angeles, CA 90033, USA; (S.M.); (B.L.)
| |
Collapse
|
25
|
Xie J, Mei H, Jin S, Bu L, Wang X, Wang C, Zhao Q, Ma R, Zhou S. Outbreak of vibriosis associated with Vibrio parahaemolyticus in the mud crab Scylla paramamosain cultured in China. DISEASES OF AQUATIC ORGANISMS 2021; 144:187-196. [PMID: 34042066 DOI: 10.3354/dao03587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a Gram-negative bacterium was isolated from diseased Scylla paramamosain and tentatively named strain QX17. The bacterial isolate was identified as Vibrio parahaemolyticus based on morphological and biochemical characteristics and molecular identification with the 16S rRNA and HSP60 genes. In the challenge experiment, S. paramamosain injected intramuscularly with the V. parahaemolyticus isolate developed pathological signs similar to the naturally diseased mud crabs. The infection experiment also showed that the median lethal dosage (LD50) for QX17 was 4.79 × 102 CFU g-1 (crab weight). Histopathological analysis of the diseased mud crabs infected with V. parahaemolyticus showed deformation and basement membrane rupture of hepatopancreatic tubules in the hepatopancreas, and disordered and broken muscle fiber in the muscle. Antimicrobial susceptibility tests revealed that QX17 was highly sensitive to most of the tested aminoglycosides, tetracyclines, and quinolones. To the best of our knowledge, this is the first study reporting isolation and antibiotic sensitivities of V. parahaemolyticus from cultured mud crabs. The discovery of V. parahaemolyticus in cultured mud crabs not only adds to the growing list of emerging pathogens in crab aquaculture in China, but also highlights the necessity of developing early detection strategies and appropriate interventions to reduce the damage caused by V. parahaemolyticus in mud crab aquaculture.
Collapse
Affiliation(s)
- Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Su C, Chen L. Virulence, resistance, and genetic diversity of Vibrio parahaemolyticus recovered from commonly consumed aquatic products in Shanghai, China. MARINE POLLUTION BULLETIN 2020; 160:111554. [PMID: 32810672 DOI: 10.1016/j.marpolbul.2020.111554] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus can cause severe gastroenteritis, septicaemia and even death in humans. Continuous monitoring of V. parahaemolyticus contamination in aquatic products is imperative for ensuring food safety. In this study, we isolated and characterized 561 V. parahaemolyticus strains recovered from 23 species of commonly consumed shellfish, crustaceans, and fish collected in July and August of 2017 in Shanghai, China. The bacterium was not isolated from two fish species Carassius auratus and Parabramis pekinensis. The results revealed a very low occurrence of pathogenic V. parahaemolyticus carrying the toxin genes trh (0.2%) and tdh (0.0%). However, high percentages of resistance to the antimicrobial agents ampicillin (93.0%), rifampin (82.9%), streptomycin (75.4%) and kanamycin (50.1%) were found. A high incidence of tolerance to the heavy metals Hg2+ (74.7%) and Zn2+ (56.2%) was also observed in the isolates. ERIC-PCR-based fingerprinting of MDR isolates (77.5%) revealed 428 ERIC-genotypes, demonstrating remarkable genetic variation among the isolates. The results of this study support the urgent need for food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Chenli Su
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China.
| |
Collapse
|
27
|
Lu Y, Yang L, Meng J, Zhao Y, Song Y, Zhu Y, Ou J, Pan Y, Liu H. Microevolution of Vibrio parahaemolyticus Isolated from Clinical, Acute Hepatopancreatic Necrosis Disease Infecting Shrimps, and Aquatic Production in China. Microbes Environ 2020; 35. [PMID: 32201414 PMCID: PMC7308574 DOI: 10.1264/jsme2.me19095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of bacteria-associated foodborne diarrheal diseases and specifically causes early mortality syndrome (EMS), which is technically known as acute hepatopancreatic necrosis disease (AHPND), a serious threat to shrimp aquaculture. To investigate the genetic and evolutionary relationships of V. parahaemolyticus in China, 184 isolates from clinical samples (VPC, n=40), AHPND-infected shrimp (VPE, n=10), and various aquatic production sources (VPF, n=134) were collected and evaluated by a multilocus sequence analysis (MLST). Furthermore, the presence of potential virulence factors (tlh, tdh, and trh) and single nucleotide polymorphisms (SNPs) in V. parahaemolyticus isolates was assessed using genomic sequencing. Analyses of virulence factors revealed that the majority of VPC isolates (97.5%) possessed the tdh and/or trh genes, while most of the VPF isolates (83.58%) did not encode hemolysin genes. Therefore, we hypothesized that the environment is a potential reservoir that promotes horizontal DNA transfer, which drives evolutionary change that, in turn, leads to the emergence of novel, potentially pathogenic strains. Phylogenetic analyses identified VPF-112 as a non-pathogenic maternal strain isolated from aquatic products and showed that it had a relatively high evolutionary status. All VPE strains and some VPC strains were grouped into several small subgroups and evenly distributed on phylogenetic trees. Anthropogenic activities and environmental selective pressure may be important factors influencing the process of transforming strains from non-pathogenic to pathogenic bacteria.
Collapse
Affiliation(s)
- Yi Lu
- College of Food Science and Technology, Shanghai Ocean University
| | - Lulu Yang
- College of Food Science and Technology, Shanghai Ocean University
| | - Jing Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture
| | - Jie Ou
- College of Food Science and Technology, Shanghai Ocean University.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation.,Laboratory of Quality & Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture.,Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University
| |
Collapse
|
28
|
Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China. Sci Rep 2020; 10:14329. [PMID: 32868874 PMCID: PMC7459350 DOI: 10.1038/s41598-020-71288-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 01/26/2023] Open
Abstract
Here, 70 potential Vibrio pathogens belonging to nine species, dominated by Vibrio harveyi, were isolated and identified from diseased aquacultured marine fish in South China. Subsequently, the prevalence of 11 virulence genes and the resistance to 15 antibiotics in these strains were determined. Most strains possessed atypical virulence genes in addition to typical virulence genes. Notably, hflk and chiA originating from V. harveyi, and flaC associated with V. anguillarum were detected in more than 40% of atypical host strains. Multidrug resistance was widespread: 64.29% strains were resistant to more than three antibiotics, and the multi-antibiotic resistance index ranged from 0.00 to 0.60. The proportions of strains resistant to the antibiotics vancomycin, amoxicillin, midecamycin, and furazolidone all exceeded 50%; nevertheless, all strains were sensitive to florfenicol, norfloxacin, and ciprofloxacin. Furthermore, both virulence genes and antibiotic resistance were more prevalent in Hainan than in Guangdong, owing to the warmer climate and longer annual farming time in Hainan. These results therefore suggest that warming temperatures and overuse of antibiotics are probably enhancing antibiotic resistance and bacterial infection. This study reveals that pathogenic Vibrio spp. with multi-antibiotic resistance are highly prevalent among marine fish in South China and thus warrant further attention. The results will provide helpful guidance for ecological regulation and local antibiotic use in the control of marine fish farming’ Vibrio diseases in South China, facilitating the implementation of national green and healthful aquaculture.
Collapse
|
29
|
Deng Y, Xu L, Liu S, Wang Q, Guo Z, Chen C, Feng J. What drives changes in the virulence and antibiotic resistance of Vibrio harveyi in the South China Sea? JOURNAL OF FISH DISEASES 2020; 43:853-862. [PMID: 32557678 DOI: 10.1111/jfd.13197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
To understand the driving environmental factors in changes of bacterial virulence and antibiotic resistance, we determined the prevalence, antibiotic resistance and antibiotic resistance and virulence genes of Vibrio harveyi isolated from diseased marine fish in south coastal China. We isolated 2, 52 and 53 V. harveyi strains from Fujian, Hainan and Guangdong, respectively, and identified them by multilocus sequence analysis of 16S rRNA-toxRVh -rctB. Nine typical virulence genes were represented at a higher average in Hainan (7.39 ± 0.24) than in Guangdong (6.91 ± 0.28). Five atypical virulence genes were detected in some isolates. In particular, flaC and vvh were detected in more than 60% of isolates. Their average number was significantly higher in Hainan (2.30 ± 0.20) than in Guangdong (1.70 ± 0.10). Multidrug resistance was widespread with an average resistance to 4.57 ± 0.18 of 15 antibiotics. Both the average number of antibiotic resistance and antibiotic resistance genes were higher in Hainan (5.25 ± 0.27 and 1.11 ± 0.15, respectively) than in Guangdong (3.87 ± 0.21 and 0.75 ± 0.10, respectively). This study demonstrated that there were more virulence genes and greater drug resistance in Hainan than in Guangdong, suggesting that warmer temperature and antibiotics pollutants probably enhance antibiotic resistance and bacterial infection.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| |
Collapse
|
30
|
Fang J, Cheng H, Yu T, Jiang H. Occurrence of Virulence Factors and Antibiotic and Heavy Metal Resistance in Vibrio parahaemolyticus Isolated from Pacific Mackerel at Markets in Zhejiang, China. J Food Prot 2020; 83:1411-1419. [PMID: 32294206 DOI: 10.4315/jfp-20-091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 12/24/2022]
Abstract
ABSTRACT Vibrio parahaemolyticus is a widespread bacterium in the marine environment and is one of the leading causes of food-derived bacterial poisoning in humans worldwide. The main objective of this study was to determine the prevalence, virulence factors, and antibiotic and heavy metal resistance profiles of V. parahaemolyticus in Pacific mackerel (Pneumatophorus japonicus) from different markets in Zhejiang Province, People's Republic of China. In total, 112 (31.11%) V. parahaemolyticus isolates were identified from 360 Pacific mackerel samples, with an extremely low occurrence of the virulence genes trh (1.79%, 2 of 112) and tdh (0%, 0 of 112). Antibiotic resistance testing revealed that most isolates showed resistance to ampicillin (96.43%, 108 of 112) and streptomycin (90.18%, 101 of 112), whereas all strains were sensitive to kanamycin, florfenicol, cefamandole, and trimethoprim-sulfamethoxazole. Furthermore, 46.43% (52 of 112) of isolates, which had 12 different phenotypes, were classified as multidrug resistant. In addition, the multiple antibiotic resistance index values of isolates were between 0.05 and 0.63, and the maximum multiple antibiotic resistance index was attributed to two isolates that exhibited resistance to 12 antibiotics. Heavy metal resistance patterns were similar among the six different markets. The majority of isolates showed resistance to Cd2+ (78.57%) and Pb2+ (51.79%), and fewer were resistant to Cu2+ (37.50%), Zn2+ (25.00%), Co2+ (9.82%), Ni2+ (6.25%), and Mn2+ (4.46%). No isolates were resistant to Cr3+. In total, 22.32% (25 of 112) of strains were multiheavy metal resistant. Furthermore, multidrug resistance and multiheavy metal resistance were found to be positively correlated in the V. parahaemolyticus strains by using Pearson's correlation analysis (P = 0.008; R = 0.925). This information will contribute to the monitoring of variations in the antibiotic and heavy metal resistance profiles of V. parahaemolyticus strains from seafood and provide insight into the appropriate use of antibiotics and the safe consumption of seafood. HIGHLIGHTS
Collapse
Affiliation(s)
- Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Hui Cheng
- Research and Develop Department, Hangzhou Wahaha Group Co. Ltd., Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ting Yu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
31
|
Zhu Z, Yang L, Yu P, Wang Y, Peng X, Chen L. Comparative Proteomics and Secretomics Revealed Virulence and Antibiotic Resistance-Associated Factors in Vibrio parahaemolyticus Recovered From Commonly Consumed Aquatic Products. Front Microbiol 2020; 11:1453. [PMID: 32765437 PMCID: PMC7381183 DOI: 10.3389/fmicb.2020.01453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Vibrio parahaemolyticus is a seafoodborne pathogen that can cause severe gastroenteritis and septicemia diseases in humans and even death. The emergence of multidrug-resistant V. parahaemolyticus leads to difficulties and rising costs of medical treatment. The bacterium of environmental origins containing no major virulence genes (tdh and trh) has been reported to be associated with infectious diarrhea disease as well. Identification of risk factors in V. parahaemolyticus is imperative for assuming food safety. In this study, we obtained secretomic and proteomic profiles of V. parahaemolyticus isolated from 12 species of commonly consumed aquatic products and identified candidate protein spots by using two-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry techniques. A total of 11 common and 28 differential extracellular proteins were found from distinct secretomic profiles, including eight virulence-associated proteins: outer membrane channel TolC, maltoporin, elongation factor Tu, enolase, transaldolase, flagellin C, polar flagellin B/D, and superoxide dismutase, as well as five antimicrobial and/or heavy metal resistance-associated ABC transporter proteins. Comparison of proteomic profiles derived from the 12 V. parahaemolyticus isolates also revealed five intracellular virulence-related proteins, including aldehyde-alcohol dehydrogenase, outer membrane protein A, alkyl hydroperoxide reductase C, phosphoenolpyruvate-protein phosphotransferase, and phosphoglycerate kinase. Additionally, our data indicated that aquatic product matrices significantly altered proteomic profiles of the V. parahaemolyticus isolates with a number of differentially expressed proteins identified. The results in this study meet the increasing need for novel diagnosis candidates of the leading seafoodborne pathogen worldwide.
Collapse
Affiliation(s)
- Zhuoying Zhu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lianzhi Yang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Peng
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
32
|
Zampieri BDB, da Costa Andrade V, Chinellato RM, Garcia CAB, de Oliveira MA, Brucha G, de Oliveira AJFC. Heavy metal concentrations in Brazilian port areas and their relationships with microorganisms: can pollution in these areas change the microbial community? ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:512. [PMID: 32661589 DOI: 10.1007/s10661-020-08413-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
The objectives of this study were to analyze the difference in ways in which metals polluting Brazilian port areas influence bacterial communities and the selection of resistant strains. The hypothesis tested was that port areas would have microbial communities significantly different from a pristine area, mainly due to a greater load of metals found in these areas. Sediment samples were collected in two port areas (Santos and São Sebastião) and one pristine area (Ubatuba). Total DNA was extracted and MiSeq sequencing was performed. A hundred strains were isolated from the same samples and were tested for metal resistance. The community composition was similar in the two port regions, but differed from the pristine area. Microbial diversity was significantly lower in the port areas. The phyla Proteobacteria, Cyanobacteria, and Thermodesulfobacteria exhibited positive correlations with copper and zinc concentrations. Chloroflex, Nitrospirae, Planctomycetes, and Chlorobi exhibited negative correlations with copper, chromium, and zinc. Cr and Zn had higher concentrations at port areas and were responsible to select more metal-resistant strains. Some genera were found to be able to easily develop metal resistance. The most isolated genera were Bacillus, Vibrio, and Pseudomonas. This type of study can illustrate, even in very complex natural environments, the influence of pollution on the community as a whole and the consequences of these changes.
Collapse
Affiliation(s)
- Bruna Del Busso Zampieri
- Department of Biochemistry and Microbiology, School of Biology, São Paulo State University - Rio Claro Campus (UNESP Rio Claro), Av. 24 A, 1515 - Jardim Vila Bela, Rio Claro, São Paulo, 13506-900, Brazil.
| | - Vanessa da Costa Andrade
- Department of Biochemistry and Microbiology, School of Biology, São Paulo State University - Rio Claro Campus (UNESP Rio Claro), Av. 24 A, 1515 - Jardim Vila Bela, Rio Claro, São Paulo, 13506-900, Brazil
| | - Roberta Merguizo Chinellato
- School of Biosciences, São Paulo State University - São Vicente Campus (UNESP São Vicente), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Paulo, 11330-900, Brazil
| | - Carlos Alexandre Borges Garcia
- Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sergipe - São Cristóvão Campus (UFS São Cristóvão), Cidade Universitária Prof. José Aloísio de Campos Rosa Elze, São Cristóvão, Sergipe, 49100000, Brazil
| | - Marcos Antônio de Oliveira
- School of Biosciences, São Paulo State University - São Vicente Campus (UNESP São Vicente), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Paulo, 11330-900, Brazil
| | - Gunther Brucha
- School of Technological Sciences, Federal University of Alfenas (UNIFAL-MG), Rodovia Aurélio Vilela, n 11.999 Cidade Universitária, Poços de Caldas, Minas Gerais, 37715400, Brazil
| | - Ana Julia Fernandes Cardoso de Oliveira
- School of Biosciences, São Paulo State University - São Vicente Campus (UNESP São Vicente), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Paulo, 11330-900, Brazil
| |
Collapse
|
33
|
Liang W, Wu R, Yang T, Shen H, Hu Z. Effect of pathogenic bacteria on a novel C-type lectin, hemocyte and superoxide dismutase/ alkaline phosphatase activity in Onchidium reevesii. FISH & SHELLFISH IMMUNOLOGY 2020; 102:185-194. [PMID: 32289514 DOI: 10.1016/j.fsi.2020.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Bacterial infection in the marine environment is a serious problem to maintain the stability of marine ecosystems. Nevertheless, there is little report so far for the biological effects of pathogenic bacteria in coastal ecosystems. Hence, we investigated the responses of shell-less Onchidium reevesii to resist against pathogenic bacterial infection. Analysis of data here could be used as fundamental information for assessment of innate immune response of O. reevesii. The full-length OrCTL cDNA was cloned and consists of 1849 base pair (bp) encoding protein of 192 amino acids. Constructing multiple alignments suggested that OrCTL has conserved carbohydrate recognition domain (CRD) of CTLs, containing an EPS (Glu-Pro-Ser) motif that may imply the function of recognition of carbohydrates like others invertebrate. OrCTL mRNAs were mainly detected in ganglion and hepatopancreas, and expression was highly up-regulated from 2 h after Vibrio harveyi challenge, rapidly decreased at 4 h, and significantly increased at 12 h. In addition, after challenge with Vibrio parahaemolytics, OrCTL gene expression was slightly up-regulated from 2 h, peaked at 12 h. Enzyme activity (in the hepatopancreas) and cell immune (in the hemolymph) were investigated along with Superoxide dismutase (SOD) activity, alkaline phosphatase (ALP) activity and cell cycle. SOD activities were significantly higher after V. harveyi and V. parahaemolytics challenge than that in the control group, respectively. By contrast, ALP activities were significantly inhibited after challenged with bacteria than that in the control group, respectively. Enzyme activities in the hepatopancreas obviously fluctuated, and ALP activity was more sensitive to bacteria. Cell responses illustrated that there were a significant higher percentage of cells in the S and G2/M phase in hemolymph after challenged with bacteria. Our results suggested that the immune response of O. reevesii could be activated by pathogenic bacteria, and the data will provide referent for the disease prevention of systematic investigation in aquatic animal.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Rongyu Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Tiezhu Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Heding Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhongjun Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, China; National Demonstration Center for Experimental Fisheries Science Education, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
34
|
Jo S, Shin C, Shin Y, Kim PH, Park JI, Kim M, Park B, So JS. Heavy metal and antibiotic co-resistance in Vibrio parahaemolyticus isolated from shellfish. MARINE POLLUTION BULLETIN 2020; 156:111246. [PMID: 32510388 DOI: 10.1016/j.marpolbul.2020.111246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in Korea. Recent studies have reported that heavy metal and antimicrobial resistance in bacteria are related. In this study, we investigated heavy metal and antimicrobial resistance in wild strains of V. parahaemolyticus. First, we isolated and characterized 38 V. parahaemolyticus strains (toxR-positive) from shellfish collected from the West Sea of Korea between May and November 2018. Antibiotic and heavy metal resistance in the 38 strains were tested by disk diffusion assay and broth dilution assay, respectively. Then, we selected seven strains that showed resistance to cobalt (Co2+) and copper (Cu2+), to examine the relationship between heavy metal resistance and antimicrobial resistance. After heavy metal (Co2+ and Cu2+) pretreatment, the seven strains exhibited increased resistance to kanamycin, streptomycin, tetracycline, and gentamycin. Likewise, antimicrobial pretreatment resulted in increased heavy metal tolerance.
Collapse
Affiliation(s)
- SeongBeen Jo
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - ChangHyeon Shin
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - YuJin Shin
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Poong Ho Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Jin Il Park
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Minju Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Bomi Park
- West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Incheon, Republic of Korea
| | - Jae-Seong So
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
35
|
Hu Y, Li F, Zheng Y, Jiao X, Guo L. Isolation, Molecular Characterization and Antibiotic Susceptibility Pattern of Vibrio parahaemolyticus from Aquatic Products in the Southern Fujian Coast, China. J Microbiol Biotechnol 2020; 30:856-867. [PMID: 32160689 PMCID: PMC9728269 DOI: 10.4014/jmb.2001.01005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in many Asian countries. Antimicrobial resistance in V. parahaemolyticus has been recognized as a critical threat to food safety. In this study, we determined the prevalence and incidence of antimicrobial resistance in V. parahaemolyticus in the southern Fujian coast, China. A total of 62 isolates were confirmed in retail aquatic products from June to October of 2018. The serotype O3:K6 strains, the virulence genes tdh and trh, antibiotic susceptibility and molecular typing were investigated. Then plasmid profiling analysis and curing experiment were performed for multidrug-resistant strains. The results showed that the total occurrence of V. parahaemolyticus was 31% out of 200 samples. Five strains (8.1%) out of 62 isolates were identified as the V. parahaemolyticus O3:K6 pandemic clone. A large majority of isolates exhibited higher resistance to penicillin (77.4%), oxacillin (71%), ampicillin (66.1%) and vancomycin (59.7%). Seventy-one percent (44/62) of the isolates exhibited multiple antimicrobial resistance. All 62 isolates were grouped into 7 clusters by randomly amplified polymorphic DNA, and most of the isolates (80.6%) were distributed within cluster A. Plasmids were detected in approximately 75% of the isolates, and seven different profiles were observed. Seventy-six percent (25/33) of the isolates carrying the plasmids were eliminated by 0.006% SDS incubated at 42°C, a sublethal condition. The occurrence of multidrug-resistant strains could be an indication of the excessive use of antibiotics in aquaculture farming. The rational use of antimicrobial agents and the surveillance of antibiotic administration may reduce the acquisition of resistance by microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China,Corresponding author Phone: +86-596-2528735 Fax: +86-596-2528735 E-mail:
| | - Fengxia Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Yixian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China
| | - Liqing Guo
- Zhangzhou Center for Disease Control and Prevention, Zhangzhou 6000, P.R. China
| |
Collapse
|
36
|
Jiang H, Yu T, Yang Y, Yu S, Wu J, Lin R, Li Y, Fang J, Zhu C. Co-occurrence of Antibiotic and Heavy Metal Resistance and Sequence Type Diversity of Vibrio parahaemolyticus Isolated From Penaeus vannamei at Freshwater Farms, Seawater Farms, and Markets in Zhejiang Province, China. Front Microbiol 2020; 11:1294. [PMID: 32676056 PMCID: PMC7333440 DOI: 10.3389/fmicb.2020.01294] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne bacterial poisoning in China and is a threat to human health worldwide. The aim of this study was to assess the antibiotic resistance profiles and distribution of heavy metal resistance of V. parahaemolyticus isolates from Penaeus vannamei from freshwater farms, seawater farms, and their corresponding markets in Zhejiang, China and to assess the relationship between multidrug resistance (MDR) and multi-heavy metal resistance (MHMR). Of the 360 P. vannamei samples that we tested, 90 (25.00%) were V. parahaemolyticus positive, but the occurrence of pathogenic isolates carrying the toxin genes tdh (4.44%) and trh (3.33%) was low. None of the tested isolates harbored both the tdh and trh genes. However, antibiotic resistance profiles varied among different sampling locations, levels of resistance to the antibiotics ampicillin (76.67%) and streptomycin (74.44%) were high overall, and MDR isolates were common (40.00% of all isolates). Heavy metal resistance patterns were similar among the different sampling locations. Overall, the majority of V. parahaemolyticus isolates displayed tolerance to Cd2+ (60.00%), and fewer were resistant to Cu2+ (40.00%), Zn2+ (38.89%), Ni2+ (24.44%), Cr3+ (14.44%), and Co2+ (8.89%). In addition, 34.44% (31/90) of isolates tested in this study were found to be MHMR. Using Pearson's correlation analysis, MDR and MHMR were found to be positively correlated (P = 0.004; R = 0.759). The 18 V. parahaemolyticus isolates that were both MDR and MHMR represented 18 sequence types, of which 12 were novel to the PubMLST database, and displayed a high level of genetic diversity, suggesting that dissemination may be affected by mobile genetic elements via horizontal gene transfer. However, a low percentage of class 1 integrons without gene cassettes and no class 2 or 3 integrons were detected in the 18 MDR and MHMR isolates or in the 90 V. parahaemolyticus isolates overall. Thus, we suggest that future research focus on elucidating the mechanisms that lead to a high prevalence of resistance determinants in V. parahaemolyticus. The results of this study provide data that will support aquatic animal health management and food safety risk assessments in the aquaculture industry.
Collapse
Affiliation(s)
- Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ting Yu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yuting Yang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Shengtao Yu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiangchun Wu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Rumeng Lin
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yixian Li
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
37
|
Thornber K, Verner‐Jeffreys D, Hinchliffe S, Rahman MM, Bass D, Tyler CR. Evaluating antimicrobial resistance in the global shrimp industry. REVIEWS IN AQUACULTURE 2020; 12:966-986. [PMID: 32612676 PMCID: PMC7319481 DOI: 10.1111/raq.12367] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 05/13/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to global public health, and the overuse of antibiotics in animals has been identified as a major risk factor. With high levels of international trade and direct connectivity to the aquatic environment, shrimp aquaculture may play a role in global AMR dissemination. The vast majority of shrimp production occurs in low- and middle-income countries, where antibiotic quality and usage is widely unregulated, and where the integration of aquaculture with family livelihoods offers many opportunities for human, animal and environmental bacteria to come into close contact. Furthermore, in shrimp growing areas, untreated waste is often directly eliminated into local water sources. These risks are very different to many other major internationally-traded aquaculture commodities, such as salmon, which is produced in higher income countries where there are greater levels of regulation and well-established management practices. Assessing the true scale of the risk of AMR dissemination in the shrimp industry is a considerable challenge, not least because obtaining reliable data on antibiotic usage is very difficult. Combating the risks associated with AMR dissemination is also challenging due to the increasing trend towards intensification and its associated disease burden, and because many farmers currently have no alternatives to antibiotics for preventing crop failure. In this review, we critically assess the potential risks the shrimp industry poses to AMR dissemination. We also discuss some of the possible risk mitigation strategies that could be considered by the shrimp industry as it strives for a more sustainable future in production.
Collapse
Affiliation(s)
- Kelly Thornber
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- BiosciencesUniversity of ExeterExeterUK
| | - David Verner‐Jeffreys
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouthUK
| | - Steve Hinchliffe
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Department of GeographyUniversity of ExeterExeterUK
| | | | - David Bass
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- Centre for Environment, Fisheries and Aquaculture ScienceWeymouthUK
| | - Charles R. Tyler
- Centre for Sustainable Aquaculture FuturesUniversity of ExeterExeterUK
- BiosciencesUniversity of ExeterExeterUK
| |
Collapse
|
38
|
Wickramanayake MVKS, Dahanayake PS, Hossain S, De Zoysa M, Heo GJ. Aeromonas spp. Isolated from Pacific Abalone (Haliotis discus hannai) Marketed in Korea: Antimicrobial and Heavy-Metal Resistance Properties. Curr Microbiol 2020; 77:1707-1715. [PMID: 32300925 DOI: 10.1007/s00284-020-01982-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Antimicrobial and heavy-metal resistance of 29 Aeromonas spp. (Aeromonas hydrophila n = 9, Aeromonas enteropelogenes n = 14, Aeromonas veronii n = 3, Aeromonas salmonicida n = 2, and Aeromonas sobria n = 1) isolated from Pacific abalone marketed in Korea were analyzed. All isolates were found to be resistant against ampicillin. High level of resistant to cephalothin (86%), rifampicin (73%), imipenem (42%), and oxytetracycline (35%) were also detected. Thirteen (45%) of the isolates showed multiple antimicrobial resistance (MAR) index ≥ 0.2. The PCR assays implied the presence of qnrS, qnrB, qnrA, tetB, tetA, aac (3')- IIa, aac(6')-Ib, aphAI-IAB, blaCTX, blaTEM, and intI1 genes among 76%, 28%, 14%, 17%, 3%, 3%, 41%, 10%, 41%, 28%, and 66% of the isolates, respectively. Class 1 integron gene cassette profiles aadA1(3%) and aadA2 (3%) were also identified. Lead (Pb) resistance was the highest (69%) among 5 heavy metals tested, whereas 38%, 27%, and 20% of the isolates were resistant to Cadmium (Cd), Chromium (Cr), and Copper (Cu), respectively. Heavy-metal resistance genes, CopA, CzcA, and merA were positive in 83%, 75%, and 41% of the isolates, respectively. In conclusion, observed genotypic and phenotypic resistance profiles of Aeromonas spp. against antimicrobials and heavy metals reveal the ability of serving as a source of antimicrobials and heavy-metal-resistant traits.
Collapse
Affiliation(s)
- M V K S Wickramanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - P S Dahanayake
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sabrina Hossain
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
39
|
Li P, Liu C, Li B, Ma Q. Structural analysis of the CARB β-lactamase from Vibrio parahaemolyticus facilitates application of the β-lactam/β-lactamase inhibitor therapy. Biochimie 2020; 171-172:213-222. [DOI: 10.1016/j.biochi.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
40
|
Xing J, Yu J, Liu Y. Improvement and evaluation of loop-mediated isothermal amplification combined with chromatographic flow dipstick assays for Vibrio parahaemolyticus. J Microbiol Methods 2020; 171:105866. [PMID: 32057897 DOI: 10.1016/j.mimet.2020.105866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Vibrio parahaemolyticus, a major food-borne pathogen, is a gram-negative rod-shaped halophilic bacterium which inhabits marine environments throughout the world. It can pose a threat to humans after the consumption of raw or undercooked seafood. Fast detection is crucial for hindering and controlling V. parahaemolyticus infection. Compared with traditional methods, loop-mediated isothermal amplification (LAMP) is a simple, rapid and versatile method. It can be performed at one temperature without the need for cycling. As a new method in recent years, LAMP combined with a chromatographic flow dipstick (LFD) meets the needs of point-of-care testing without the need for special instruments. It avoids the limitations of LAMP, reduces detection time and increases detection accuracy. Our previous studies have suggested that the optimized LFD method can improve the sensitivity of LAMP detection and shorten the isothermal amplification time during the detection process. In the present study, two LAMP assays were improved to LFD methods, and a LFD targeting 16S23S rRNA gene internal transcribed spacer (ITS) of V. parahaemolyticus was developed. The lower limit for tlh, toxR, ITS LFD assays were detected as 3.1 × 100, 3.1 × 101, and 3.1 × 100 CFU respectively, whether in pure cultures or artificially contaminated food samples. The shortest amplification times at the limit of each assay were determined as 20 min, 35 min and 25 min. A heating block was used to perform two (tlh and ITS) LFD assays to detect 20 food samples. Compared to a standard method (GB 4789.7-2013 National Food Safety Standards, Food Microbiology Inspection, Vibrio parahaemolyticus test), tlh and ITS LFD assays showed more MPN (most probable number) results than that of culture. It demonstrated that the improved LFD technology can provide a simple and rapid detection method with high sensitivity and specificity for detection of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jiahua Xing
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yu
- College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Yin Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
41
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
42
|
Deng Y, Xu H, Su Y, Liu S, Xu L, Guo Z, Wu J, Cheng C, Feng J. Horizontal gene transfer contributes to virulence and antibiotic resistance of Vibrio harveyi 345 based on complete genome sequence analysis. BMC Genomics 2019; 20:761. [PMID: 31640552 PMCID: PMC6805501 DOI: 10.1186/s12864-019-6137-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT), which is affected by environmental pollution and climate change, promotes genetic communication, changing bacterial pathogenicity and drug resistance. However, few studies have been conducted on the effect of HGT on the high pathogenicity and drug resistance of the opportunistic pathogen Vibrio harveyi. RESULTS V. harveyi 345 that was multidrug resistant and infected Epinephelus oanceolutus was isolated from a diseased organism in Shenzhen, Southern China, an important and contaminated aquaculture area. Analysis of the entire genome sequence predicted 5678 genes including 487 virulence genes contributing to bacterial pathogenesis and 25 antibiotic-resistance genes (ARGs) contributing to antimicrobial resistance. Five ARGs (tetm, tetb, qnrs, dfra17, and sul2) and one virulence gene (CU052_28670) on the pAQU-type plasmid p345-185, provided direct evidence for HGT. Comparative genome analysis of 31 V. harveyi strains indicated that 217 genes and 7 gene families, including a class C beta-lactamase gene, a virulence-associated protein D gene, and an OmpA family protein gene were specific to strain V. harveyi 345. These genes could contribute to HGT or be horizontally transferred from other bacteria to enhance the virulence or antibiotic resistance of 345. Mobile genetic elements in 71 genomic islands encoding virulence factors for three type III secretion proteins and 13 type VI secretion system proteins, and two incomplete prophage sequences were detected that could be HGT transfer tools. Evaluation of the complete genome of V. harveyi 345 and comparative genomics indicated genomic exchange, especially exchange of pathogenic genes and drug-resistance genes by HGT contributing to pathogenicity and drug resistance. Climate change and continued environmental deterioration are expected to accelerate the HGT of V. harveyi, increasing its pathogenicity and drug resistance. CONCLUSION This study provides timely information for further analysis of V. harveyi pathogenesis and antimicrobial resistance and developing pollution control measurements for coastal areas.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China
| | - Haidong Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, 572426, China.
| |
Collapse
|
43
|
He Y, Wang S, Zhang J, Zhang X, Sun F, He B, Liu X. Integrative and Conjugative Elements-Positive Vibrio parahaemolyticus Isolated From Aquaculture Shrimp in Jiangsu, China. Front Microbiol 2019; 10:1574. [PMID: 31379767 PMCID: PMC6657232 DOI: 10.3389/fmicb.2019.01574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of multidrug- and toxin-resistant bacteria as a result of increasing industrialization and sustained and intense antimicrobial use in aquaculture results in human health problems through increased incidence of food-borne illnesses. Integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that allow bacteria to acquire complex new traits through horizontal gene transfer and encode a wide variety of genetic information, including resistance to antibiotics and heavy metals; however, there is a lack of studies of ICEs of environmental origin in Asia. Here, we determined the prevalence, genotypes, heavy metal resistance and antimicrobial susceptibility of 997 presumptive strains of Vibrio parahaemolyticus (tlh+, tdh–), a Gram-negative bacterium that causes gastrointestinal illness in humans, isolated from four species of aquaculture shrimp in Jiangsu, China. We found that 59 of the 997 isolates (5.9%) were ICE-positive, and of these, 9 isolates tested positive for all resistance genes. BLAST analysis showed that similarity for the eight strains to V. parahaemolyticus was 99%. Tracing the V. parahaemolyticus genotypes, showed no significant relevance of genotype among the antimicrobial resistance strains bearing the ICEs or not. Thus, in aquaculture, ICEs are not the major transmission mediators of resistance to antibiotics or heavy metals. We suggest future research to elucidate mechanisms that drive transmission of resistance determinants in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yu He
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Shuai Wang
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Jianping Zhang
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Xueyang Zhang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai, China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Zaozhuang, China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
44
|
Dahanayake PS, Hossain S, Wickramanayake MVKS, Heo GJ. Antibiotic and heavy metal resistance genes in Aeromonas spp. isolated from marketed Manila Clam (Ruditapes philippinarum) in Korea. J Appl Microbiol 2019; 127:941-952. [PMID: 31211903 DOI: 10.1111/jam.14355] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022]
Abstract
AIMS Manila clam (Ruditapes philippinarum) is one of the most popular seafood in Korea, owing to their unique taste and nutritional value. This study aimed to disclose the antibiotic and heavy metal resistance characteristics of Aeromonas spp. isolated from marketed Manila clam in Korea. METHODS AND RESULTS A total of 36 Aeromonas spp. strains were isolated and subjected to two tests: an antibiotic disk diffusion test to determine their resistance to antibiotics, and a broth dilution test to determine their resistance to heavy metals. PCR-based amplification was performed to detect the resistance genes. A high level of resistance to ampicillin (100%) and cephalothin (89%) was observed, while 42, 39, 36 and 36% of the isolates were resistant to oxytetracycline, imipenem, nalidixic acid and tetracycline respectively. In addition, among the tested heavy metals, cadmium (Cd) recorded the highest resistance rate (61%), followed by chromium (Cr) (50%), lead (Pb) (47%) and copper (Cu) (37%). However, mercury (Hg) resistance was not observed. PCRs revealed the occurrence of blaTEM , blaSHV , blaCTX-M , qnrS, tetB, tetE, aac(6')-Ib, strA-strB and intI1 genes among 100, 31, 31, 78, 78, 89, 25, 50 and 72% of the isolates respectively. Moreover, heavy metal resistance genes, copA, merA and czcA were detected in 25, 47 and 61% of the isolates respectively. CONCLUSIONS The results suggest the importance of multi-drug and heavy metal-resistant aeromonads in Manila clam to assess the consumer safety and public health. SIGNIFICANCE AND IMPACT OF THE STUDY This study is the first to elaborate on the importance of multi-drug and heavy metal-resistant aeromonads in Manila clam. Particularly, the presence of extended-spectrum-β-lactamase genes and other antibiotic resistance genes intensifies the possible health risks and may complicate therapeutic treatments upon infection, while heavy metal resistance suggests possible heavy metal exposure.
Collapse
Affiliation(s)
- P S Dahanayake
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - S Hossain
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - M V K S Wickramanayake
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| | - G-J Heo
- Veterinary Medical Center, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Korea
| |
Collapse
|
45
|
Zhou R, Zeng S, Hou D, Liu J, Weng S, He J, Huang Z. Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. J Environ Sci (China) 2019; 80:248-256. [PMID: 30952342 DOI: 10.1016/j.jes.2019.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
46
|
Paudyal N, Pan H, Liao X, Zhang X, Li X, Fang W, Yue M. A Meta-Analysis of Major Foodborne Pathogens in Chinese Food Commodities Between 2006 and 2016. Foodborne Pathog Dis 2019; 15:187-197. [PMID: 29652195 DOI: 10.1089/fpd.2017.2417] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prevalence of pathogenic bacteria in food commodities in China have been reported in numerous publications over time. However, the results are scattered and varied. To calculate a robust point estimate with a higher statistical power, we applied meta-analytic approach for investigating the prevalence of common foodborne pathogens in major food items in China. Data, on prevalence of bacteria in various food commodities were extracted and analyzed from 361 (132 English and 229 Chinese) publications. Prevalence of eight most frequently reported pathogens on six broad food categories was used for pooled and subgroup meta-analysis by DerSimonian-Laird method in random-effects model. The estimated overall prevalence of pathogens in the foods was 8.5% (95% CI 8.2-8.7). The highest prevalence, irrespective of the pathogen type, was in the aquatic produce at 12.8% (12.0-13.5), while the least was in the vegetables at 3.0% (2.6-3.4). Among the pathogens, the most prevalent was Vibrio at 21.3% (19.6-23.1), whereas the least was pathogenic Escherichia coli at 4.3% (3.3-5.2). The major food pathogens in Chinese foods in decreasing order of prevalence were Vibrio parahaemolyticus, Campylobacter, Bacillus cereus, Staphylococcus aureus, Salmonella, Enterobacter, Listeria monocytogenes, and pathogenic E. coli. Presence of these organisms in foods equates the risk of microbiological food safety in China with other developed countries rather than the developing countries. This justifies the need of novel perspectives for formulating policies on microbiological food safety and risk mitigation.
Collapse
Affiliation(s)
- Narayan Paudyal
- 1 Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Hang Pan
- 1 Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Xiayi Liao
- 1 Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Xian Zhang
- 2 College of Animal Sciences and Technology, Zhejiang Agricultural and Forestry University , Hangzhou, China
| | - Xiaoliang Li
- 1 Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Weihuan Fang
- 1 Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China .,2 College of Animal Sciences and Technology, Zhejiang Agricultural and Forestry University , Hangzhou, China
| | - Min Yue
- 1 Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
47
|
Cheng H, Jiang H, Fang J, Zhu C. Antibiotic Resistance and Characteristics of Integrons in Escherichia coli Isolated from Penaeus vannamei at a Freshwater Shrimp Farm in Zhejiang Province, China. J Food Prot 2019; 82:470-478. [PMID: 30806555 DOI: 10.4315/0362-028x.jfp-18-444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our study was conducted to investigate the antibiotic susceptibility profiles, integrons and their associated gene cassettes (GCs), and insertion sequence common regions of Escherichia coli isolates from Penaeus vannamei collected at a large-scale freshwater shrimp farm in Zhejiang Province, People's Republic of China. A total of 182 E. coli isolates were identified from 200 samples. With the exception of imipenem, isolates were most commonly resistant to β-lactams, followed by tetracylines and sulfonamides. Fifty-two (28.6%) E. coli isolates were classified as multidrug resistant, and the patterns were highly diverse, with 29 types represented. The multiple-antibiotic resistance indices of the isolates were 0.17 to 0.56; 9.3% (17) of the 182 isolates were positive for class 1 integrons, 0.5% (1 isolate) was positive for class 2 integrons, and an insertion sequence common region 1 element was found upstream of the intI1 (integrase) gene in one of the intI1-positive isolates. Four GC arrays were detected in class 1 integrons, and one GC array was detected in class 2 integrons. Although the overall prevalence of antimicrobial-resistant bacteria in P. vannamei was lower than that previously reported for poultry and livestock farms in China, concerns about the inappropriate use of antibiotics and the transmission of antimicrobial-resistant bacteria in aquaculture were raised. Alternative approaches to reducing or replacing the use of antibiotics should be further studied.
Collapse
Affiliation(s)
- Hui Cheng
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jiehong Fang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
48
|
Anupama KP, Chakraborty A, Karunasagar I, Karunasagar I, Maiti B. Loop-mediated isothermal amplification assay as a point-of-care diagnostic tool for Vibrio parahaemolyticus: recent developments and improvements. Expert Rev Mol Diagn 2019; 19:229-239. [PMID: 30657706 DOI: 10.1080/14737159.2019.1571913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION A number of DNA-based diagnostic tools have been developed for the detection of Vibrio parahaemolyticus in seafood. However, the loop-mediated isothermal amplification (LAMP) has distinct advantages with regards to its simplicity, speed and the ease of performing without any need for sophisticated equipment. Over the last decade, LAMP has emerged as a potential tool for the detection of V. parahaemolyticus. Area covered: The literature search was restricted to LAMP assay and its variants for the detection of V. parahaemolyticus. The focus in this review is to enlist the various techniques that have been developed using the principle of the LAMP towards improved simplicity, sensitivity and specificity of the assay. Expert commentary: LAMP assay and its variants are significantly faster and require minimum accessories compared to other DNA based molecular techniques such as PCR and their types. Despite the availability of several versions, LAMP-based diagnostics is not the first choice for the detection of V. parahaemolyticus in the seafood sector. Our recommendation would be to explore the possibilities of developing cost-effective LAMP kits and implementing these kits as point-of-care diagnostic tools for rapid and sensitive detection of pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Karanth Padyana Anupama
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Anirban Chakraborty
- b Division of Molecular Genetics and Cancer , Nitte University Centre for Science Education and Research , Mangaluru , India
| | - Iddya Karunasagar
- c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Indrani Karunasagar
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India.,c NITTE (Deemed to be University), University Enclave , Mangaluru, Medical Sciences Complex , India
| | - Biswajit Maiti
- a Division of Infectious Diseases , Nitte University Centre for Science Education and Research , Mangaluru , India
| |
Collapse
|
49
|
Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. CHEMOSPHERE 2019; 215:846-857. [PMID: 30359954 DOI: 10.1016/j.chemosphere.2018.10.114] [Citation(s) in RCA: 307] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 05/19/2023]
Abstract
Misuse/over use of antibiotics increases the threats to human health since this is a main reason behind evolution of antibiotic resistant bacterial pathogens. However, metals such as mercury, lead, zinc, copper and cadmium are accumulating to critical concentration in the environment and triggering co-selection of antibiotic resistance in bacteria. The co-selection of metal driven antibiotic resistance in bacteria is achieved through co-resistance or cross resistance. Metal driven antibiotic resistant determinants evolved in bacteria and present on same mobile genetic elements are horizontally transferred to distantly related bacterial human pathogens. Additionally, in marine environment persistent pollutants like microplastics is recognized as a vector for the proliferation of metal/antibiotics and human pathogens. Recently published research confirmed that horizontal gene transfer between phylogenetically distinct microbes present on microplastics is much faster than free living microbes. Therefore, microplastics act as an emerging hotspot for metal driven co-selection of multidrug resistant human pathogens and pose serious threat to humans which do recreational activities in marine environment and ingest marine derived foods. Therefore, marine environment co-polluted with metal, antibiotics, human pathogens and microplastics pose an emerging health threat globally.
Collapse
Affiliation(s)
- Md Imran
- Department of Biotechnology, Goa University Taleigao Plateau, Goa, 403206, India.
| | - Kirti Ranjan Das
- Department of Biotechnology, Goa University Taleigao Plateau, Goa, 403206, India
| | - Milind Mohan Naik
- Department of Microbiology, Goa University Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
50
|
Frozen White-Leg Shrimp (Litopenaeus vannamei) in Korean Markets as a Source of Aeromonas spp. Harboring Antibiotic and Heavy Metal Resistance Genes. Microb Drug Resist 2018; 24:1587-1598. [DOI: 10.1089/mdr.2018.0035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|