1
|
Ujuagu GI, Ejeromedoghene O, Enwemiwe V, Mgbechidinma CL, Omoniyi AO, Oladipo A, Gu J. Exploring the toxicology, socio-ecological impacts and biodegradation of microplastics in Africa: Potentials for resource conservation. Toxicol Rep 2025; 14:101873. [PMID: 39850514 PMCID: PMC11755024 DOI: 10.1016/j.toxrep.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Achieving upcycling and circularity in the microplastic economy predominantly depends on collecting and sorting plastic waste from the source to the end-user for resource conservation. Microplastics, whether from packaging or non-packaging materials, pose a significant environmental challenge as they are often not prioritized for collection or recycling initiatives. The presence of additives impedes the quality of plastic recyclates and the persistence of microplastics as shredded resultants remain a threat to the aquatic and terrestrial ecosystem and its biodiversity. Despite the increasing global research on microplastics, the success of plastic and microplastic waste management in Africa is yet to be fully attained. Considering the improper disposal, limited recycling and upcycling intervention, lack of policy, and strict laws against plastic waste management defaulters, the ecosystems in Africa remain immensely impacted by several socio-ecological factors leading to the loss of aquatic organisms through reducing fertility and increasing stress. As a ripple consequence, the disruption of economic activities, toxic effects on animal/human health, and climate crisis are among their impact. This review therefore provides comprehensive detail of microplastic production and challenges in Africa, the toxicology concerns, socio-ecological issues associated with microplastic waste management, and insight into approaches to mitigate plastic pollution through recycling, upcycling, bioprocessing and their biodegradation with social insects and microorganisms which may form the basis for adoption by policymakers and researchers, thereby minimizing the consequences of plastic pollution in Africa.
Collapse
Affiliation(s)
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Victor Enwemiwe
- Department of Animal and Environmental Biology, Delta State University, PMB 1, Abraka, Nigeria
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Abiodun Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jintu Gu
- Department of Sociology, Hohai University, Nanjing 211100, China
| |
Collapse
|
2
|
Gonçalves GRL, Grey C, Koomson A, Aggrey-Fynn J, Nyarko BK, Narayanaswamy BE. Patterns and implications of plastic accumulation in mangrove ecosystems and sandy beaches in Western and Central regions of Ghana, West Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11996-12012. [PMID: 40259081 PMCID: PMC12049385 DOI: 10.1007/s11356-025-36359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
Plastic pollution has become increasingly apparent in sandy beach zones and aquatic environments, creating more than just visual pollution. Impacts are observed in many environmental and social levels, including the fishing communities that depend on the coastal environment for their livelihoods. Plastic pollution was assessed on the sandy beaches and mangroves of Ghana's Western and Central regions. The study's objective was to determine the composition, abundance and sources of plastic litter at four different sites during the wet and dry seasons. Samples were collected from within 50 cm2 quadrats placed randomly along four transects at each site. Plastic litter was classified according to the OSPAR guide. A total of 1895 plastic litter items with a combined weight of ~ 3000 g, representing 30 plastic categories, were collected. The average number and weight of plastic litter items were 19.73 ± 31.37 number of plastics per 50 cm2 and 32.59 ± 45.47 g per 50 cm2. The minimum and maximum plastic litter items were 0 to 159/50 cm2. The highest amount of plastic litter was found in Ghana's Central region. The total plastic litter weight is the variable that present statistical difference between the wet and dry season period. Bags, bottles, and fragments were the most common plastic items found, with 70% of the plastic litter being land-based, with the most frequent polymer types found in this study being polyethylene (~ 54%) and polypropylene (~ 20%). Mangrove regions act as sinks, specifically trapping plastic bags, contrary to the sandy beach areas, which mainly comprise plastic bottles that accumulate in these regions. Regions that have numerous communities, or are urbanised centres, tend to have higher levels or plastic litter. West Africa generally has poor waste management, absence of safe drinking water, and high levels of single-use plastics which are some of the main reasons for increased levels of plastic litter specifically in Ghana. Urgent actions are needed to prevent, mitigate and control plastic pollution in Ghana and the wider region.
Collapse
Affiliation(s)
- Geslaine Rafaela Lemos Gonçalves
- University of the Highlands and Islands, UHI House, Old Perth Road, Inverness, IV2 3JH, UK.
- Scottish Association for Marine Science, Oban, Argyll, Scotland, PA37 1QA, UK.
| | - Curtis Grey
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Albert Koomson
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Aggrey-Fynn
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Kofi Nyarko
- Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana
| | | |
Collapse
|
3
|
Bruce-Vanderpuije P, Agadzi YA, Norvimagbe IC, Asmah R, Hildebrandt L, Pröfrock D, Ebinghaus R, Asante KA. Microplastics in the lower Volta Basin, Ghana - Quantitation and fish dietary exposure assessment using advanced spectroscopic techniques. CHEMOSPHERE 2025; 375:144236. [PMID: 39985919 DOI: 10.1016/j.chemosphere.2025.144236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Despite recent surge in microplastics (MPs) research, there is a paucity of information on freshwaters in Ghana. For the first time, MPs in cage and wild sites of the lower Volta Basin were evaluated, and polymer type characterized using LDIR and ATR-FTIR. Seasonal variations and mode of fish production significantly influenced MPs abundance. In fish, MPs concentration of 387 ± 33.85 (wet season) contrasted with 288 ± 21.4 items individual-1 (dry season). Benthopelagics consumed 63% MPs; cage benthopelagics- Oreochromis niloticus consumed 58.5% MPs. Statistically significant differences in mean MPs were observed in fishes. MPs extracted from grower feed for cage fish was ≥24 items (kg feed)-1. The high metabolic rates of smaller-weighted fishes induced a higher consumption of MPs. From fish health assessment, a positive growth coefficient was observed for Oreochromis niloticus; negative allometric growth was observed for some wild fishes. Spatially, MPs decreased in fish along Basin sites- Asikuma (365 ± 36.58 items individual-1) > Kpong (209 ± 19.71 items individual-1) > Sogakope (71.3 ± 20.86 items individual-1). The Basin sediment was significantly polluted (1950 ± 80 MP items (kg dw)-1), contrary to the freshwater (111.0 ± 11 MP items (L water)-1). 12.3% of MPs polymers characterized had aged and 54% of particles were unknown. MP shapes detected were fibre (97.9%), fragment (2.1%) and film (0.06%). Dominant particle sizes (0.50-2.50 mm, 85%) were black- and blue-coloured. Major polymers were acrylates-polyurethane-varnish (45.7%) and PVC (39%). Lower contributions were obtained from PET, PA, PP, PE, and PE-Cl. An estimated freshwater-fish annual intake (cage: 2561; wild: 4785 MP items (person year)-1) exceeded the recommended EUMOFA/NOAA guidelines (518-3078 particles (year capita)-1). From this study, plastic aquaculture infrastructure from fish cages, effluents, and fishmeal contributed to MPs consumed by fish. This study provides baseline data on MPs distribution within the Volta Basin, Ghana.
Collapse
Affiliation(s)
| | - Yaa Asabea Agadzi
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana; CSIR College of Science and Technology, 1 Second Food Research Rd, Accra, Ghana.
| | - Ishmael Cudjoe Norvimagbe
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana; CSIR College of Science and Technology, 1 Second Food Research Rd, Accra, Ghana.
| | - Ruby Asmah
- CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana.
| | - Lars Hildebrandt
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany.
| | - Daniel Pröfrock
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany.
| | - Ralf Ebinghaus
- Helmholtz Zentrum Hereon, Institute of Coastal Environmental Chemistry, Geesthacht, Germany.
| | | |
Collapse
|
4
|
Fernandes R, Martins R, Marques C. A critical review of microplastics characterisation in aquatic environments: recent trends in the last 10 years. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1415-1427. [PMID: 39749818 DOI: 10.1039/d4ay01802h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Anthropogenic activities have introduced various contaminants into freshwater and marine ecosystems. Microplastics (MPs) are persistent and ubiquitous contaminants threatening natural ecosystems and impairing organisms at different biological levels of organization. Their durability and degradation rate pose a great concern in the scientific community, and thus, several techniques have been used to detect MPs effectively. The present study critically reviews the most commonly used techniques (FTIR, Raman, and fluorescence) and others considered novel regarding MP detection and characterisation, namely LIBS. Despite the effectiveness of such methodologies, none are free from drawbacks. The scientific community must join efforts to create, for example, innovative real-time (bio)sensing methodologies for MPs to overcome this gap.
Collapse
Affiliation(s)
- Rita Fernandes
- CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro, 3810-193 Aveiro, Portugal.
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Martins
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Marques
- CICECO-Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro, 3810-193 Aveiro, Portugal.
- Department of Physics, VSB - Technical University of Ostrava, Ostrava, 70800, Czech Republic
| |
Collapse
|
5
|
Uguen M, Gaudron SM, Seuront L. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178078. [PMID: 39709840 DOI: 10.1016/j.scitotenv.2024.178078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
Collapse
Affiliation(s)
- Marine Uguen
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France.
| | - Sylvie M Gaudron
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Sorbonne Université, UFR 927, F-75005 Paris, France
| | - Laurent Seuront
- Université de Lille, CNRS, Université du Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
6
|
Shilla DJ, Matiya DJ, Nyamandito NL, Tambwe MM, Quilliam RS. Insecticide tolerance of the malaria vector Anopheles gambiae following larval exposure to microplastics and insecticide. PLoS One 2024; 19:e0315042. [PMID: 39666697 PMCID: PMC11637391 DOI: 10.1371/journal.pone.0315042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Microplastic (MP) pollution poses a global threat to urban and rural environments and can have negative effects on a range of organisms. Mosquito larvae often breed in water contaminated with MPs, and given their important role as disease vectors, understanding the effects of larval exposure to MPs is critical for understanding the potential impact on their life history traits and subsequent methods for their control. Here, we have exposed first instar larvae of Anopheles gambiae s.s. to environmentally realistic concentrations of PET microplastics (1.0-7.5 μm) and a sub-lethal dose of insecticide mixed with microplastics, and quantified survival, development, and susceptibility of larvae over six generations. Adult mosquitoes from larvae exposed to these treatments were subsequently tested for insecticide resistance. Exposure to MPs decreased larval survival rates compared to the control; however, over six generations of exposure, survival rates significantly increased. Similarly, there was a higher survival rate of those larvae exposed to MPs mixed with insecticide compared to those exposed to just the insecticide, and survival increased further over the six generations. For the adult mosquito susceptibility tests, knockdown times (KDTs) indicated some level of insecticide tolerance when larvae had been previously exposed to MPs and insecticides. This is the first study demonstrating the selection of insecticide tolerance in adult mosquitoes after consecutive generations of larval exposures to varying concentrations of MPs. Therefore, field-scale studies are now urgently required to quantify whether larval insecticides are less effective at controlling mosquitoes in breeding sites commonly polluted with MPs.
Collapse
Affiliation(s)
- Dativa J. Shilla
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Deokary Joseph Matiya
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Nyanda Laini Nyamandito
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
- Dar es Salaam Institute of Technology, Dar es Salaam, Tanzania
| | | | - Richard S. Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
7
|
Brabo L, Martins LL, Andrades R, Teixeira CEP, do Nascimento AP, de Azevedo RNA, Bezerra LEA, Cavalcante RM, Cottens KF, Soares RA, de Oliveira Sousa PHG, Mont'Alverne TF, Soares MO, Giarrizzo T. A transcontinental threat: Plastic waste from Africa invades Brazil's coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176599. [PMID: 39343399 DOI: 10.1016/j.scitotenv.2024.176599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Identifying the origin of plastic pollution is essential for the development of effective preventive and mitigatory strategies and guidelines for companies, governments, and stakeholders. In 2022, a considerable amount of plastic waste stranded on beaches of the northeastern coast of Brazil. A preliminary analysis of this waste revealed that most of the items were likely foreign made, and a brand auditing approach was applied to identify the brands, parent companies, and potential origin of the plastic waste. The items were also examined to determine their degree of degradation, polymer resin codes, colors, and probable uses. Given their probable foreign origin, a numerical simulation was employed using the OpenDrift dispersion model to determine the likely route each item would have taken before reaching the Brazilian coast. The brand audit confirmed that most of the plastic waste came from Africa (78.5 % of the items), followed by Brazil (15.7 %), and other nations (5.8 %). A total of 31 brands from seven African countries were identified, of which, >90 % originated from the Democratic Republic of the Congo. Drift simulations were consistent with the results of the brand audit, indicating that the plastics originated from the west coast of African, primarily between latitudes 5° N and 10° S. This analysis indicated that the Congo river was the principal source of the plastic waste that found its way to the Brazilian beaches. The present study highlights the widespread occurrence of plastic pollution across the Atlantic Ocean and underscores the need for mitigatory and regulatory measures that consider foreign sources, as well as local drivers of pollution. In this context, continuous monitoring programs will be essential to advance our understanding of the magnitude of the international plastic pollution problem, and provide insights to delineate specific enforcements dealing with this issue.
Collapse
Affiliation(s)
- Lucio Brabo
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | - Laercio L Martins
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil; Laboratório de Engenharia e Exploração de Petróleo, Universidade Estadual do Norte Fluminense (UENF), Macaé, Brazil
| | - Ryan Andrades
- Núcleo de Ecologia Aquática e Pesca da Amazônia (NEAP), Universidade Federal do Pará (UFPA), Belém, Brazil; Laboratório de Ictiologia, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Carlos E P Teixeira
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| | | | | | - Luís E A Bezerra
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| | - Rivelino M Cavalcante
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| | | | | | | | | | - Marcelo O Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil
| | - Tommaso Giarrizzo
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil; Núcleo de Ecologia Aquática e Pesca da Amazônia (NEAP), Universidade Federal do Pará (UFPA), Belém, Brazil.
| |
Collapse
|
8
|
Chukwuka AV, Adegboyegun AD, Oluwale FV, Oni AA, Omogbemi ED, Adeogun AO. Microplastic dynamics and risk projections in West African coastal areas: Developing a vulnerability index, adverse ecological pathways, and mitigation framework using remote-sensed oceanographic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175963. [PMID: 39226961 DOI: 10.1016/j.scitotenv.2024.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Microplastic pollution presents a serious risk to marine ecosystems worldwide, with West Africa being especially susceptible. This study sought to identify the key factors driving microplastic dynamics in the region. Using NASA's Giovanni system, we analyzed environmental data from 2019 to 2024. Results showed uniform offshore air temperatures due to turbulence (25.22-45.62 K) with significant variations nearshore. Salinity levels remained largely stable (4 PSU) but slightly decreased in southern Nigeria. Surface wind speeds rose from 4.206-5.026 m/s in Nigeria to over 5.848 m/s off Mauritania, while eastward stress hotspots were prominent in Nigeria and from Sierra Leone to Senegal. Photosynthetically available radiation (PAR) beam values peaked off Mauritania and dipped from Nigeria to Sierra Leone, with the inverse pattern observed for diffuse PAR. Hotspots of high absorption, particulate backscattering, elevated aerosol optical depth, and remote sensing reflectance all pointed to substantial particulate matter concentrations. The Microplastic Vulnerability Index (MVI) identifies the coastal stretch from Nigeria to Guinea-Bissau as highly vulnerable to microplastic accumulation due to conditions that favor buildup. In contrast, moderate vulnerability was observed from Guinea-Bissau to Senegal and in Mauritania, where conditions were less extreme, such as higher offshore temperatures that could promote widespread microplastic suspension and cooler nearshore temperatures that favor sedimentation. Increased turbulence and temperatures in coastal areas of Senegal and Mauritania may enhance microplastic transport and impact marine life. In Nigeria, stable coastal conditions-characterized by consistent temperatures, low turbulence, and uniform salinity-may lead to increased persistence and accumulation of microplastics in sensitive habitats like mangroves and coral reefs. These findings highlight the need for region-specific management strategies to address microplastic pollution and effectively protect marine ecosystems.
Collapse
Affiliation(s)
- Azubuike Victor Chukwuka
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State, Nigeria.
| | - Ayotunde Daniel Adegboyegun
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State, Nigeria
| | - Femi V Oluwale
- Zoology Department, University of Ibadan, Oyo State, Nigeria
| | - Adeola A Oni
- Zoology Department, University of Ibadan, Oyo State, Nigeria
| | | | - Aina O Adeogun
- Zoology Department, University of Ibadan, Oyo State, Nigeria.
| |
Collapse
|
9
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Luo W, Fu H, Lu Q, Li B, Cao X, Chen S, Liu R, Tang B, Yan X, Zheng J. Microplastic pollution differences in freshwater river according to stream order: Insights from spatial distribution, annual load, and ecological assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121836. [PMID: 39018841 DOI: 10.1016/j.jenvman.2024.121836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Microplastic (MP) pollution has become a pressing concern in global freshwater ecosystems because rivers serve as essential channels for the transport of terrestrial debris to the ocean. The current researches mostly focus on the large catchments, but the impact on the small catchments remains underexplored. In this study, we employed Strahler's stream order classification to delineate the catchment structure of the Beijiang River in South China. The distribution pattern of MP contamination and the factors influencing the distribution pattern, were assessed across the streams at different orders. We found that the Beijiang River was moderately polluted compare to other rivers in China, with an average MP abundance of 2.15 ± 1.65 items/L. MP abundance ranged from 3.17 to 1.45 items/L in the streams at different orders, and significantly decreased with increasing stream order (R2 = 0.93). This highlights the key role of small rivers as the channels for the transport of MPs from watersheds to main streams. The high abundance of PP and PE fibers, the high correlation between the stream order and the resin proportion (R2 = 0.89), and the significant correlation between MP abundance and proximity to urban centers (P = 0.02), indicated that MP pollution across the streams at different orders was predominantly influenced by anthropogenic activities, rather than natural environmental factors. By integrating MP data with hydrographic information, the annual MP loads for the streams at Orders 1 to Order 5 were estimated to be 4.63, 39.38, 204.63, 503.06, and 1137.88 tons/yr, respectively. Additionally, an ecological risk assessment indicates that MP pollution led to a low risk in the Beijiang River. Our findings deepen the understanding of MP pollution within freshwater river networks, and emphasize the crucial role of tributary systems in transporting MPs to main river channels.
Collapse
Affiliation(s)
- Weikeng Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongyu Fu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Qiyuan Lu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Bowen Li
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China.
| | - Xue Cao
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Sifan Chen
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Ruijuan Liu
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Bin Tang
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Xiao Yan
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| | - Jing Zheng
- Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, PR China
| |
Collapse
|
11
|
Wang Y, Fu Z, Guan D, Zhao J, Zhang Q, Liu Q, Xie J, Sun Y, Guo L. Occurrence Characteristics and Ecotoxic Effects of Microplastics in Environmental Media: a Mini Review. Appl Biochem Biotechnol 2024; 196:5484-5507. [PMID: 38158486 DOI: 10.1007/s12010-023-04832-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.
Collapse
Affiliation(s)
- Yuxin Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhou Fu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Dezheng Guan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Qi Zhang
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Qingxin Liu
- School of Environmental Science and Engineering, Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, China
| | - Jingliang Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Liang Guo
- China Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
12
|
Recabarren T, Torres M, Gómez V, Jacobsen C, Villablanca M, Ahrendt C, da Silva Montes C, Galbán-Malagón C, Tombesi N, Pozo K. Occurrence of marine plastic litter and plasticizers from touristic beaches of Arauco Gulf in Central Chile. MARINE POLLUTION BULLETIN 2024; 205:116575. [PMID: 38885574 DOI: 10.1016/j.marpolbul.2024.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Marine plastic litter (MPL) was collected from beaches (n = 3) of the Arauco Gulf in central Chile in spring 2021 and summer 2022. MPL was analyzed for physical and chemical characteristics, and plasticizers were also screened using FTIR-ATR. Three hundred seventeen plastic items with an accumulated weight of 226.8 g were found. MPL densities ranged from 0.4 to 17.1 items m-2. Significant differences (p < 0.05) between seasons were observed for Arauco and Maule beaches, being ∼ten times higher in summer compared to spring. Solid pieces were the predominant shape, macroplastics were the most abundant (>2.5 cm), and white and blue colors were dominant. Polypropylene (52 %) and polyethylene (31 %) were the predominant polymers. Plasticizers (n = 3) were detected in the MPL in the study area (dioctyl phthalate, polybutene, and alpha-methylstyrene) for the first time. This study contributes new information related to MPL in coastal areas of central Chile and their chemical composition.
Collapse
Affiliation(s)
- Tatiana Recabarren
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | - Mariett Torres
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | - Victoria Gómez
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago de Chile, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - Camila Jacobsen
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | - Mathias Villablanca
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile
| | | | - Caroline da Silva Montes
- Laboratory of Ecotoxicology and Laboratory of Marine Environmental Monitoring Research (LAPMAR), Federal University of Pará, Belém, Pará, Brazil
| | - Cristóbal Galbán-Malagón
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago de Chile, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Center for Environment, Florida International University, Miami, FL, USA
| | - Norma Tombesi
- Instituto de Química del Sur (INQUISUR - CONICET/UNS), Bahía Blanca, Argentina
| | - Karla Pozo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, 4030000, Chile; RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
13
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
14
|
Khan A, Jie Z, Wang J, Nepal J, Ullah N, Zhao ZY, Wang PY, Ahmad W, Khan A, Wang W, Li MY, Zhang W, Elsheikh MS, Xiong YC. Ecological risks of microplastics contamination with green solutions and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165688. [PMID: 37490947 DOI: 10.1016/j.scitotenv.2023.165688] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
The rise of plasticulture as mulching material in farming systems has raised concerns about microplastics (MPs) in the agricultural landscape. MPs are emerging pollutants in croplands and water systems with significant ecological risks, particularly over the long term. In the soil systems, MPs polymer type, thinness, shape, and size induces numerous effects on soil aggregates, dissolved organic carbon (C), rapidly oxidized organic C, microbial biomass C, microbial biomass nitrogen (N), microbial immobilization, degradation of organic matter, N cycling, and production of greenhouse gas emissions (GHGs), thereby posing a significant risk of impairing soil physical and biochemical properties over time. Further, toxic chemicals released from polyethylene mulching (PMs) might indirectly harm plant growth by affecting soil wetting-drying cycles, releasing toxic substances that interact with soil matrix, and suppressing soil microbial activity. In the environment, accumulation of MPs poses a risk to human health by accelerating emissions of GHGs, e.g., methane and carbon dioxide, or directly releasing toxic substances such as phthalic acid esters (PAEs) into the soils. Also, larger sizes MPs can adhere to root surface and block stomata could significantly change the shape of root epidermal cells resulting in arrest plant growth and development by restricting water-nutrient uptake, and gene expression and altering the biodiversity of the soil pollutants. In this review, we systematically analyzed the potential risks of MPs to the soil-plant and human body, their occurrence, abundance, and migration in agroecosystems. Further, the impacts of MPs on soil microbial function, nutrient cycling, soil C, and GHGs are mechanistically reviewed, with emphasis on potential green solutions such as organic materials amendments along with future research directions for more eco-friendly and sustainable plastic management in agroecosystems.
Collapse
Affiliation(s)
- Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zheng Jie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China
| | - Jing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Najeeb Ullah
- Agriculture Research Station, office of VP For Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ze-Ying Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wiqar Ahmad
- Department of the Soil and Environmental Sciences, AMKC, The University of Agriculture, Peshawar, Pakistan
| | - Adnan Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Meng-Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | | | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Mugilarasan M, Karthik R, Robin RS, Subbareddy B, Hariharan G, Anandavelu I, Jinoj TPS, Purvaja R, Ramesh R. Anthropogenic marine litter: An approach to environmental quality for India's southeastern Arabian Sea coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161363. [PMID: 36610620 DOI: 10.1016/j.scitotenv.2022.161363] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic marine litter (AML), mainly plastic, is a global concern that is persistent and widespread. To prevent and mitigate this threat, we need to understand the magnitude and source of AML. There is limited knowledge about AML pollution on the Indian Coast. In this context, the present study examined the distribution, abundance, typology, and beach quality based on AML along 22 beaches on the southeastern coast of the Arabian Sea. A total of 4911 AML items were classified into 9 categories, weighing 16.79 kg, and retrieved from a total area of 8000 m2. The mean abundance and weight of AML in the current study were 0.45 ± 0.34 items/m2 and 1.53 ± 0.92 g/m2, respectively. Thottapally showed the most abundant AML among the studied beaches with 0.96 items/m2, followed by Azheekkal with 0.73 items/m2. Plastic, being the most common item, accounts for 77.6 % of all items and has a mean density of 0.35 items/m2 comprising hard plastic (22 %), thermocol (13 %), food wrappers (7 %), cigarette butts (7 %), plastic rope (6 %), and plastic cutlery (6 %). Hazardous anthropogenic litter (HAL) was maximum at Thottapally (17.71 %; 85 out of 480 items collected). Based on the cleanliness of beaches, they are graded "moderately clean" (63 %) by the General Index (GI), "clean" (54 %), and "moderately clean" (40 %) as calculated by the Clean Coast Index (CCI). Hazardous Anthropogenic Beach Litter Index (HABLI) classifies 72 % of beaches as "moderately safe", while the Environmental Status Index (ESI) rates 68 % of beaches as "mediocre". Besides, model simulations demonstrated the pathways of AML propagation, which correlate to the littoral and coastal current flow patterns over the region. Land-based activities were the crucial factors influencing AML distribution. The study highlighted the need for effective regional litter management strategies, policy instruments for the litter impact pathways, economic, regulatory, and behavioural management tools, which were also discussed.
Collapse
Affiliation(s)
- M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India.
| | - B Subbareddy
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - T P S Jinoj
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| |
Collapse
|
16
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
17
|
Siddiqui SA, Khan S, Tariq T, Sameen A, Nawaz A, Walayat N, Oboturova NP, Ambartsumov TG, Nagdalian AA. Potential risk assessment and toxicological impacts of nano/micro-plastics on human health through food products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:361-395. [PMID: 36863839 DOI: 10.1016/bs.afnr.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The problem of environmental pollution with plastic is becoming more and more acute every year. Due to the low rate of decomposition of plastic, its particles get into food and harm the human body. This chapter focuses on the potential risks and toxicological effects of both nano and microplastics on human health. The main places of distribution of various toxicants along with the food chain have been established. The effects of some examples of the main sources of micro/nanoplastics on the human body are also emphasised. The processes of entry and accumulation of micro/nanoplastics are described, and the mechanism of accumulation that occurs inside the body is briefly explained. Potential toxic effects reported from studies on various organisms are highlighted as well.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | | | | |
Collapse
|
18
|
Biological water quality of an impaired tropical river: the macrozoobenthos approach. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Cao J, Xu R, Wang F, Geng Y, Xu T, Zhu M, Lv H, Xu S, Guo MY. Polyethylene microplastics trigger cell apoptosis and inflammation via inducing oxidative stress and activation of the NLRP3 inflammasome in carp gills. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108470. [PMID: 36470402 DOI: 10.1016/j.fsi.2022.108470] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Microplastics cause varying degrees of damage to aquatic organisms. Exposure to microplastics contaminated water, the gills are among the first tissues, after the skin, to be affected by microplastics. As an essential immune organ, prolonged stimulation by microplastics disrupts immune function not only in the gills but throughout the body, yet the underlying mechanisms remain elusive. A model of gill injury from exposure to polyethylene (PE) microplastics was developed in this study. H&E staining revealed that polyethylene microplastics caused gill inflammation, vascular remodeling, and mucous cell proliferation. An increase in collagen indicates severe tissue damage. Additional analysis showed that polyethylene microplastics profoundly exacerbated oxidative stress in the gills. TUNEL assay demonstrated cell apoptosis induced by polyethylene microplastic. The mRNA levels were subsequently quantified using RT-PCR. The results showed that polyethylene microplastics increased the expression of the nuclear factor-κB (NF-κB) pathway (NF-κB p65, IKKα, IKKβ) and apoptosis biomarkers (p53, caspase-3, caspase-9, and Bax). Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasomes, which is an influential component of innate immunity, were overactive. What's more, the pro-inflammatory factors (TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-1β) that induce immune disorder also increased significantly, while the anti-inflammatory factors (IL-4, IL-10) decreased significantly. These results suggested that oxidative stress acted as an activation signal of apoptosis triggered by the NF-κB pathway and activating the NLRP3 inflammasome to promote inflammatory immune responses. The present study provided a different target for the prevention of toxin-induced gill injury under polyethylene microplastics.
Collapse
Affiliation(s)
- Jingwen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ran Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Fuhan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuan Geng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tianchao Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Mengran Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongli Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shiwen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Seuront L, Zardi GI, Uguen M, Bouchet VMP, Delaeter C, Henry S, Spilmont N, Nicastro KR. A whale of a plastic tale: A plea for interdisciplinary studies to tackle micro- and nanoplastic pollution in the marine realm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157187. [PMID: 35868387 DOI: 10.1016/j.scitotenv.2022.157187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Plastic is one of the most ubiquitous sources of both contamination and pollution of the Anthropocene, and accumulates virtually everywhere on the planet. As such, plastic threatens the environment, the economy and human well-being globally. The related potential threats have been identified as a major global conservation issue and a key research priority. As a consequence, plastic pollution has become one of the most prolific fields of research in research areas including chemistry, physics, oceanography, biology, ecology, ecotoxicology, molecular biology, sociology, economy, conservation, management, and even politics. In this context, one may legitimately expect plastic pollution research to be highly interdisciplinary. However, using the emerging topic of microplastic and nanoplastic leachate (i.e., the desorption of molecules that are adsorbed onto the surface of a polymer and/or absorbed into the polymer matrix in the absence of plastic ingestion) in the ocean as a case study, we argue that this is still far from being the case. Instead, we highlight that plastic pollution research rather seems to remain structured in mostly isolated monodisciplinary studies. A plethora of analytical methods are now available to qualify and quantify plastic monomers, polymers and the related additives. We nevertheless show though a survey of the literature that most studies addressing the effects of leachates on marine organisms essentially still lack of a quantitative assessment of the chemical nature and content of both plastic items and their leachates. In the context of the ever-increasing research effort devoted to assess the biological and ecological effects of plastic waste, we subsequently argue that the lack of a true interdisciplinary approach is likely to hamper the development of this research field. We finally introduce a roadmap for future research which has to evolve through the development of a sound and systematic ability to chemically define what we biologically compare.
Collapse
Affiliation(s)
- Laurent Seuront
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France; Department of Marine Energy and Resource, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa.
| | - Gerardo I Zardi
- Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
| | - Marine Uguen
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Vincent M P Bouchet
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Camille Delaeter
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Solène Henry
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Nicolas Spilmont
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France
| | - Katy R Nicastro
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, 62930 Wimereux, France; Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; CCMAR-Centro de Ciencias do Mar, CIMAR Laboratório Associado, Universidade do Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
21
|
Ribeiro-Brasil DRG, Brasil LS, Veloso GKO, Matos TPD, Lima ESD, Dias-Silva K. The impacts of plastics on aquatic insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152436. [PMID: 34971686 DOI: 10.1016/j.scitotenv.2021.152436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Environmental contamination by plastics and its negative effect on biodiversity have been well-documented in several types of organisms, especially in marine environments. Therefore, it is necessary to assess the impacts of plastic on other organisms such as aquatic insects, which predominantly inhabit freshwaters. It is widely known that these organisms are sensitive to environmental change, especially by contamination. Therefore, this study aimed at testing the hypothesis that aquatic insects are impacted by plastic contamination. We made a systematic search for international papers related to plastics and aquatic insects in databases such as Google Scholar, Web of Science, and Scopus. We obtained 1217 studies of which 40 discussed the impacts of contamination by plastics on aquatic insects. We identified two main impacts: the first one is caused by the use of black macroplastic to protect crops from contact with the soil in agriculture. These black macroplastics attract tons of adult aquatic insects (terrestrial stage) that mistake the plastic surface for water because they select oviposition sites through phototaxis or polarotaxis. The second one comes from water contamination that can originate from the inadequate disposal of plastics, which harms young aquatic insects (aquatic phase) when they feed, reproduce, and construct shelters. Our results show the negative impacts of plastics on both larvae and adult aquatic insects. Despite the large knowledge gap regarding the impacts of plastic on aquatic insects, the evidence above is sufficient to consider these organisms important in global discussions regarding the impacts of plastic on biodiversity.
Collapse
Affiliation(s)
- Danielle Regina Gomes Ribeiro-Brasil
- Ecology and Conservation Laboratory (LABECO), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Augusto Corrêa Street, n° 01, 66075-110, Guamá, Belém, PA, Brazil; Postgraduate Program in Ecology (PPGECO), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Augusto Corrêa Street, n° 01, 66075-110, Guamá, Belém, PA, Brazil.
| | - Leandro Schlemmer Brasil
- Ecology and Conservation Laboratory (LABECO), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Augusto Corrêa Street, n° 01, 66075-110, Guamá, Belém, PA, Brazil; Postgraduate Program in Zoology (PPGZOO), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Augusto Corrêa Street, n° 01, 66075-110, Guamá, Belém, PA, Brazil
| | - Geysa Kelly Oliveira Veloso
- Aquatic Insect Ecology Laboratory (LEIA), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil; Postgraduate Program in Ecology (PPGECO), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Augusto Corrêa Street, n° 01, 66075-110, Guamá, Belém, PA, Brazil
| | - Talissa Pio de Matos
- Aquatic Insect Ecology Laboratory (LEIA), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil; Postgraduate Program in Biodiversity and Conservation (PPGBC), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil
| | - Eduarda Silva de Lima
- Aquatic Insect Ecology Laboratory (LEIA), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil; Postgraduate Program in Biodiversity and Conservation (PPGBC), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil
| | - Karina Dias-Silva
- Postgraduate Program in Ecology (PPGECO), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Augusto Corrêa Street, n° 01, 66075-110, Guamá, Belém, PA, Brazil; Aquatic Insect Ecology Laboratory (LEIA), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil; Postgraduate Program in Biodiversity and Conservation (PPGBC), Faculty of Biological Sciences (FCB), Federal University of Pará (UFPA), Coronel José Porfírio Avenue 2515, 68372-040, São Sebastião, Altamira, PA, Brazil
| |
Collapse
|
22
|
Plastic Pollution, Waste Management Issues, and Circular Economy Opportunities in Rural Communities. SUSTAINABILITY 2021. [DOI: 10.3390/su14010020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rural areas are exposed to severe environmental pollution issues fed by industrial and agricultural activities combined with poor waste and sanitation management practices, struggling to achieve the United Nations’ Sustainable Development Goals (SDGs) in line with Agenda 2030. Rural communities are examined through a “dual approach” as both contributors and receivers of plastic pollution leakage into the natural environment (through the air–water–soil–biota nexus). Despite the emerging trend of plastic pollution research, in this paper, we identify few studies investigating rural communities. Therefore, proxy analysis of peer-reviewed literature is required to outline the significant gaps related to plastic pollution and plastic waste management issues in rural regions. This work focuses on key stages such as (i) plastic pollution effects on rural communities, (ii) plastic pollution generated by rural communities, (iii) the development of a rural waste management sector in low- and middle-income countries in line with the SDGs, and (iv) circular economy opportunities to reduce plastic pollution in rural areas. We conclude that rural communities must be involved in both future plastic pollution and circular economy research to help decision makers reduce environmental and public health threats, and to catalyze circular initiatives in rural areas around the world, including less developed communities.
Collapse
|