1
|
van den Dijssel J, Konijn VAL, Duurland MC, de Jongh R, Koets L, Veldhuisen B, Raaphorst H, Turksma AW, Freen‐van Heeren JJ, Steenhuis M, Rispens T, van der Schoot CE, van Ham SM, van Lier RAW, van Gisbergen KPJM, ten Brinke A, van de Sandt CE. Age and Latent Cytomegalovirus Infection Do Not Affect the Magnitude of De Novo SARS-CoV-2-Specific CD8 + T Cell Responses. Eur J Immunol 2025; 55:e202451565. [PMID: 40071711 PMCID: PMC11898545 DOI: 10.1002/eji.202451565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/15/2025]
Abstract
Immunosenescence, age-related immune dysregulation, reduces immunity upon vaccinations and infections. Cytomegalovirus (CMV) infection results in declining naïve (Tnaïve) and increasing terminally differentiated (Temra) T cell populations, further aggravating immune aging. Both immunosenescence and CMV have been speculated to hamper the formation of protective T-cell immunity against novel or emerging pathogens. The SARS-CoV-2 pandemic presented a unique opportunity to examine the impact of age and/or CMV on the generation of de novo SARS-CoV-2-specific CD8+ T cell responses in 40 younger (22-40 years) and 37 older (50-66 years) convalescent individuals. Heterotetramer combinatorial coding combined with phenotypic markers were used to study 35 SARS-CoV-2 epitope-specific CD8+ T cell populations directly ex vivo. Neither age nor CMV affected SARS-CoV-2-specific CD8+ T cell frequencies, despite reduced total CD8+ Tnaïve cells in older CMV- and CMV+ individuals. Robust SARS-CoV-2-specific central memory CD8+ T (Tcm) responses were detected in younger and older adults regardless of CMV status. Our data demonstrate that immune aging and CMV status did not impact the SARS-CoV-2-specific CD8+ T cell response. However, SARS-CoV-2-specific CD8+ T cells of older CMV- individuals displayed the lowest stem cell memory (Tscm), highest Temra and PD1+ populations, suggesting that age, not CMV, may impact long-term SARS-CoV-2 immunity.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Veronique A. L. Konijn
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Mariël C Duurland
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Rivka de Jongh
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Lianne Koets
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- National Screening Laboratory of SanquinResearch and Laboratory ServicesAmsterdamThe Netherlands
| | - Barbera Veldhuisen
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
| | | | | | | | - Maurice Steenhuis
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Amsterdam UMC location Vrije Universiteit AmsterdamMolecular Cell Biology and ImmunologyAmsterdamThe Netherlands
| | - C Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas P. J. M. van Gisbergen
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Physiology and Cancer Programme, Champalimaud ResearchChampalimaud FoundationLisboaPortugal
| | - Anja ten Brinke
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
| | - Carolien E. van de Sandt
- Sanquin Research and Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute for Immunology and Infectious DiseasesAmsterdamThe Netherlands
- Department of Microbiology and ImmunologyUniversity of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Giacconi R, Cardelli M, Piacenza F, Pierpaoli E, Farnocchia E, Di Rosa M, Bonfigli AR, Casoli T, Marchegiani F, Marcheselli F, Recchioni R, Stripoli P, Galeazzi R, Cherubini A, Fedecostante M, Sarzani R, Di Pentima C, Giordano P, Antonicelli R, Provinciali M, Lattanzio F. Effect of Cytomegalovirus Reactivation on Inflammatory Status and Mortality of Older COVID-19 Patients. Int J Mol Sci 2023; 24:ijms24076832. [PMID: 37047803 PMCID: PMC10094990 DOI: 10.3390/ijms24076832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Herpesviridae reactivation such as cytomegalovirus (CMV) has been described in severe COVID-19 (COronaVIrusDisease-2019). This study aimed to understand if CMV reactivation in older COVID-19 patients is associated with increased inflammation and in-hospital mortality. In an observational single-center cohort study, 156 geriatric COVID-19 patients were screened for CMV reactivation by RT-PCR. Participants underwent a comprehensive clinical investigation that included medical history, functional evaluation, laboratory tests and cytokine assays (TNF-α, IFN-α, IL-6, IL-10) at hospital admission. In 19 (12.2%) of 156 COVID-19 patients, CMV reactivation was detected. Multivariate Cox regression models showed that in-hospital mortality significantly increased among CMV positive patients younger than 87 years (HR: 9.94, 95% CI: 1.66–59.50). Other factors associated with in-hospital mortality were C-reactive protein (HR: 1.17, 95% CI: 1.05–1.30), neutrophil count (HR: 1.20, 95% CI: 1.01–1.42) and clinical frailty scale (HR:1.54, 95% CI: 1.04–2.28). In patients older than 87 years, neutrophil count (HR: 1.13, 95% CI: 1.05–1.21) and age (HR: 1.15, 95% CI: 1.01–1.31) were independently associated with in-hospital mortality. CMV reactivation was also correlated with increased IFN-α and TNF-α serum levels, but not with IL-6 and IL-10 serum changes. In conclusion, CMV reactivation was an independent risk factor for in-hospital mortality in COVID-19 patients younger than 87 years old, but not in nonagenarians.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - Elisabetta Farnocchia
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | - MirKo Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, 60124 Ancona, Italy
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, 60121 Ancona, Italy
| | - Francesca Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy
| | - Fiorella Marcheselli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy
| | - Pierpaolo Stripoli
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostic, Italian National Research Center on Aging, IRCCS INRCA, 60127 Ancona, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy
| | - Massimiliano Fedecostante
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per L’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy
| | - Riccardo Sarzani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital “U. Sestilli”, IRCCS INRCA, 60127 Ancona, Italy
| | - Chiara Di Pentima
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital “U. Sestilli”, IRCCS INRCA, 60127 Ancona, Italy
| | - Piero Giordano
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital “U. Sestilli”, IRCCS INRCA, 60127 Ancona, Italy
| | | | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Via Birarelli 8, 60121 Ancona, Italy
| | | |
Collapse
|
3
|
Souquette A, Allen EK, Oshansky CM, Tang L, Wong SS, Jeevan T, Shi L, Pounds S, Elias G, Kuan G, Balmaseda A, Zapata R, Shaw-Saliba K, Damme PV, Tendeloo VV, Dib JC, Ogunjimi B, Webby R, Schultz-Cherry S, Pekosz A, Rothman R, Gordon A, Thomas PG. Integrated Drivers of Basal and Acute Immunity in Diverse Human Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534227. [PMID: 36993205 PMCID: PMC10055315 DOI: 10.1101/2023.03.25.534227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.
Collapse
|
4
|
Laupèze B, Doherty TM. Maintaining a 'fit' immune system: the role of vaccines. Expert Rev Vaccines 2023; 22:256-266. [PMID: 36864769 DOI: 10.1080/14760584.2023.2185223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Conventionally, vaccines are thought to induce a specific immune response directed against a target pathogen. Long recognized but poorly understood nonspecific benefits of vaccination, such as reduced susceptibility to unrelated diseases or cancer, are now being investigated and may be due in part to "trained immunity'. AREAS COVERED We discuss 'trained immunity' and whether vaccine-induced 'trained immunity' could be leveraged to prevent morbidity due to a broader range of causes. EXPERT OPINION The prevention of infection i.e. maintaining homeostasis by preventing the primary infection and resulting secondary illnesses, is the pivotal strategy used to direct vaccine design and may have long-term, positive impacts on health at all ages. In the future, we anticipate that vaccine design will change to not only prevent the target infection (or related infections) but to generate positive modifications to the immune response that could prevent a wider range of infections and potentially reduce the impact of immunological changes associated with aging. Despite changing demographics, adult vaccination has not always been prioritized. However, the SARS-CoV-2 pandemic has demonstrated that adult vaccination can flourish given the right circumstances, demonstrating that harnessing the potential benefits of life-course vaccination is achievable for all.
Collapse
|
5
|
Shin MS, Park HJ, Young J, Kang I. Implication of IL-7 receptor alpha chain expression by CD8 + T cells and its signature in defining biomarkers in aging. Immun Ageing 2022; 19:66. [PMID: 36544153 PMCID: PMC9768896 DOI: 10.1186/s12979-022-00324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
CD8+ T cells play an important role in host defense against infections and malignancies as well as contribute to the development of inflammatory disorders. Alterations in the frequency of naïve and memory CD8+ T cells are one of the most significant changes in the immune system with age. As the world population rapidly ages, a better understanding of aging immune function or immunosenescence could become a basis for discovering treatments of illnesses that commonly occur in older adults. In particular, biomarkers for immune aging could be utilized to identify individuals at high risk of developing age-associated conditions and help monitor the efficacy of therapeutic interventions targeting such conditions. This review details the possible role of CD8+ T cell subsets expressing different levels of the cytokine receptor IL-7 receptor alpha chain (IL-7Rα) and the gene signature associated with IL-7Rα as potential biomarkers for immune aging given the association of CD8+ T cells in host defense, inflammation, and immunosenescence.
Collapse
Affiliation(s)
- Min Sun Shin
- Departments of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Hong-Jai Park
- Departments of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Juan Young
- Departments of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Insoo Kang
- Departments of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, S525C TAC, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
6
|
Salumets A, Tserel L, Rumm AP, Türk L, Kingo K, Saks K, Oras A, Uibo R, Tamm R, Peterson H, Kisand K, Peterson P. Epigenetic quantification of immunosenescent CD8 + TEMRA cells in human blood. Aging Cell 2022; 21:e13607. [PMID: 35397197 PMCID: PMC9124311 DOI: 10.1111/acel.13607] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
Age‐related changes in human T‐cell populations are important contributors to immunosenescence. In particular, terminally differentiated CD8+ effector memory CD45RA+ TEMRA cells and their subsets have characteristics of cellular senescence, accumulate in older individuals, and are increased in age‐related chronic inflammatory diseases. In a detailed T‐cell profiling among individuals over 65 years of age, we found a high interindividual variation among CD8+ TEMRA populations. CD8+ TEMRA proportions correlated positively with cytomegalovirus (CMV) antibody levels, however, not with the chronological age. In the analysis of over 90 inflammation proteins, we identified plasma TRANCE/RANKL levels to associate with several differentiated T‐cell populations, including CD8+ TEMRA and its CD28− subsets. Given the strong potential of CD8+ TEMRA cells as a biomarker for immunosenescence, we used deep‐amplicon bisulfite sequencing to match their frequencies in flow cytometry with CpG site methylation levels and developed a computational model to predict CD8+ TEMRA cell proportions from whole blood genomic DNA. Our findings confirm the association of CD8+ TEMRA and its subsets with CMV infection and provide a novel tool for their high throughput epigenetic quantification as a biomarker of immunosenescence.
Collapse
Affiliation(s)
- Ahto Salumets
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
- Institute of Computer Science University of Tartu Tartu Estonia
| | - Liina Tserel
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Anna P. Rumm
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Lehte Türk
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Külli Kingo
- Department of Dermatology and Venereology Institute of Clinical Medicine University of Tartu Tartu Estonia
- Clinic of Dermatology Tartu University Hospital Tartu Estonia
| | - Kai Saks
- Department of Internal Medicine Institute of Clinical Medicine University of Tartu Tartu Estonia
| | - Astrid Oras
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Raivo Uibo
- Department of Immunology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Riin Tamm
- Laboratory of Immune Analysis United Laboratories Tartu University Hospital Tartu Estonia
| | - Hedi Peterson
- Institute of Computer Science University of Tartu Tartu Estonia
| | - Kai Kisand
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Pärt Peterson
- Molecular Pathology Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| |
Collapse
|
7
|
Ferri C, Arcangeletti MC, Caselli E, Zakrzewska K, Maccari C, Calderaro A, D'Accolti M, Soffritti I, Arvia R, Sighinolfi G, Artoni E, Giuggioli D. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. J Autoimmun 2021; 124:102727. [PMID: 34601207 DOI: 10.1016/j.jaut.2021.102727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.
Collapse
Affiliation(s)
- Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy; Rheumatology Unit, Casa di Cura Madonna dello Scoglio, Cotronei (KR), Italy.
| | | | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy.
| | - Erica Artoni
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| |
Collapse
|
8
|
Singh N, Wagener MM. Cytomegalovirus Serostatus and Functional Impairment in Liver Transplant Recipients in the Current Era. Viruses 2021; 13:v13081519. [PMID: 34452384 PMCID: PMC8402920 DOI: 10.3390/v13081519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Whether donor (D+) or recipient (R+) cytomegalovirus (CMV) seropositivity is associated with functional impairment in liver transplant recipients is not known. METHODS Patients included adult liver transplant recipients in the Organ Procurement and Transplantation Network database transplanted over a five-year period from 1 January 2014-31 December 2018. Functional status in the database was assessed using Karnofsky performance scale. A logistic regression model that controlled for potential confounders was used to examine the association of CMV serostatus and functional status. Variables significantly associated with functional status (p < 0.05) were then used to develop propensity score and propensity score matched analysis was conducted where each patient was compared with a matched-control with the same propensity score. RESULTS Among 30,267 adult liver transplant recipients, D+ or R+ patients had significantly lower functional status at last follow-up than the D-R- cohort (OR 0.88, 95% CI 0.80-0.96, p = 0.007). In propensity score matched model, D+ or R+ patients had significantly lower functional status than matched-controls (p = 0.009). D+ or R+ CMV serostatus (p = 0.018) and low functional level (p < 0.001) were also independently associated with infections as cause-of-death. CONCLUSIONS D+ or R+ liver transplant recipients had lower functional status and higher risk of deaths due to infections. Future studies are warranted to examine the mechanistic basis of these findings in the setting of transplantation.
Collapse
|
9
|
Laupèze B, Del Giudice G, Doherty MT, Van der Most R. Vaccination as a preventative measure contributing to immune fitness. NPJ Vaccines 2021; 6:93. [PMID: 34315886 PMCID: PMC8316335 DOI: 10.1038/s41541-021-00354-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
The primary goal of vaccination is the prevention of pathogen-specific infection. The indirect consequences may include maintenance of homeostasis through prevention of infection-induced complications; trained immunity that re-programs innate cells to respond more efficiently to later, unrelated threats; slowing or reversing immune senescence by altering the epigenetic clock, and leveraging the pool of memory B and T cells to improve responses to new infections. Vaccines may exploit the plasticity of the immune system to drive longer-term immune responses that promote health at a broader level than just the prevention of single, specific infections. In this perspective, we discuss the concept of “immune fitness” and how to potentially build a resilient immune system that could contribute to better health. We argue that vaccines may contribute positively to immune fitness in ways that are only beginning to be understood, and that life-course vaccination is a fundamental tool for achieving healthy aging.
Collapse
|
10
|
Leuzinger K, Stolz D, Gosert R, Naegele K, Prince SS, Tamm M, Hirsch HH. Comparing cytomegalovirus diagnostics by cell culture and quantitative nucleic acid testing in broncho-alveolar lavage fluids. J Med Virol 2021; 93:3804-3812. [PMID: 33136288 DOI: 10.1002/jmv.26649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Many clinical laboratories have replaced virus isolation in cell-culture (VIC) for cytomegalovirus (CMV) by quantitative-nucleic-acid testing (QNAT), rendering clinically relevant CMV-replication difficult to distinguish from CMV-shedding or latent infection. We compared direct VIC in 1109 consecutive bronchoalveolar lavage fluids (BALFs) and a well-validated CMV-QNAT (Basel-CMV-UL111a-77bp). In the retrospective Group 1 (N = 694) and Group 2 (N = 303), CMV-QNAT was performed within 48 h from 2-fold and 10-fold concentrated total nucleic acid (TNA) eluates, respectively. In Group 3 (N = 112), 2-fold and 10-fold concentrated TNA eluates were prospectively analyzed in parallel to VIC. CMV was detected by VIC in 79 of 694 (11%) and 26 of 303 (9%) of Groups 1 and 2, but in 114 of 694 (16%) and 57 of 303 (17%) by CMV-QNAT, respectively. Median CMV loads were significantly higher in VIC-positive than in VIC-negative BALF. The likelihood for CMV detection by VIC was 85% for BALF CMV- loads >4 log10 copies/ml. In the prospective Group 3, CMV was detected by VIC in 10 of 112 (9%), and in 14 of 112 (13%) and 20 of 112 (18%) by CMV-QNAT, when using 2-fold and 10-fold concentrated TNA eluates, respectively. Notably, CMV was undetectable by CMV-QNAT in 10 VIC-positive cases of Groups 1 and 2, but in none of Group 3. We conclude that CMV-QNAT can be adopted to BALF diagnostics but requires several careful steps in validation. CMV-QNAT loads >10 000 copies/ml in BALF may indicate significant CMV replication as defined by VIC, if short shipment and processing procedures can be guaranteed. Discordance of detecting CMV in time-matched plasma samples emphasises the role of local pulmonary CMV replication, for which histopathology remains the gold standard of proven CMV pneumonia.
Collapse
Affiliation(s)
- Karoline Leuzinger
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daiana Stolz
- Medical Faculty, University of Basel, Basel, Switzerland
- Clinic of Pneumology and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Rainer Gosert
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Klaudia Naegele
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Michael Tamm
- Medical Faculty, University of Basel, Basel, Switzerland
- Clinic of Pneumology and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Hans H Hirsch
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Medical Faculty, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
A Comprehensive Review of Infections in Older Kidney Transplant Recipients. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00320-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Jones E, Sheng J, Carlson J, Wang S. Aging-induced fragility of the immune system. J Theor Biol 2021; 510:110473. [PMID: 32941914 PMCID: PMC7487974 DOI: 10.1016/j.jtbi.2020.110473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
The adaptive and innate branches of the vertebrate immune system work in close collaboration to protect organisms from harmful pathogens. As an organism ages its immune system undergoes immunosenescence, characterized by declined performance or malfunction in either immune branch, which can lead to disease and death. In this study we develop a mathematical framework of coupled innate and adaptive immune responses, namely the integrated immune branch (IIB) model. This model describes dynamics of immune components in both branches, uses a shape-space representation to encode pathogen-specific immune memory, and exhibits three steady states - health, septic death, and chronic inflammation - qualitatively similar to clinically-observed immune outcomes. In this model, the immune system (initialized in the health state) is subjected to a sequence of pathogen encounters, and we use the number of prior pathogen encounters as a proxy for the "age" of the immune system. We find that repeated pathogen encounters may trigger a fragility in which any encounter with a novel pathogen will cause the system to irreversibly switch from health to chronic inflammation. This transition is consistent with the onset of "inflammaging", a condition observed in aged individuals who experience chronic low-grade inflammation even in the absence of pathogens. The IIB model predicts that the onset of chronic inflammation strongly depends on the history of encountered pathogens; the timing of onset differs drastically when the same set of infections occurs in a different order. Lastly, the coupling between the innate and adaptive immune branches generates a trade-off between rapid pathogen clearance and a delayed onset of immunosenescence. Overall, by considering the complex feedback between immune compartments, our work suggests potential mechanisms for immunosenescence and provides a theoretical framework at the system level and on the scale of an organism's lifetime to account for clinical observations.
Collapse
Affiliation(s)
- Eric Jones
- Department of Physics, University of California, Santa Barbara, CA 93106, USA.
| | - Jiming Sheng
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Jean Carlson
- Department of Physics, University of California, Santa Barbara, CA 93106, USA
| | - Shenshen Wang
- Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Clark BL, Thomas PG. A Cell for the Ages: Human γδ T Cells across the Lifespan. Int J Mol Sci 2020; 21:E8903. [PMID: 33255339 PMCID: PMC7727649 DOI: 10.3390/ijms21238903] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The complexity of the human immune system is exacerbated by age-related changes to immune cell functionality. Many of these age-related effects remain undescribed or driven by mechanisms that are poorly understood. γδ T cells, while considered an adaptive subset based on immunological ontogeny, retain both innate-like and adaptive-like characteristics. This T cell population is small but mighty, and has been implicated in both homeostatic and disease-induced immunity within tissues and throughout the periphery. In this review, we outline what is known about the effect of age on human peripheral γδ T cells, and call attention to areas of the field where further research is needed.
Collapse
Affiliation(s)
- Brandi L. Clark
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
14
|
Burd CE, Peng J, Laskowski BF, Hollyfield JL, Zhang S, Fadda P, Yu L, Andridge RR, Kiecolt-Glaser JK. Association of Epigenetic Age and p16INK4a With Markers of T-Cell Composition in a Healthy Cohort. J Gerontol A Biol Sci Med Sci 2020; 75:2299-2303. [PMID: 32361724 PMCID: PMC7662168 DOI: 10.1093/gerona/glaa108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 11/14/2022] Open
Abstract
How the measurement of aging biomarkers in peripheral blood T-lymphocytes (PBTLs) is influenced by cell composition is unclear. Here, we collected peripheral blood and isolated CD3+ PBTLs from 117 healthy couples between the ages of 21 and 72. Each sample was profiled for Horvath epigenetic clock (DNAm), p16INK4a expression, cytomegalovirus (CMV) seropositivity and 74 mRNA markers of PBTL subtype, differentiation, immune checkpoints, and cytokine production. Correlations between individual aging biomarkers (DNAm or p16INK4a) and PBTL mRNAs were corrected for chronological age, sex, and couple. DNAm measurements correlated with CMV seropositivity as well as PBTL mRNAs indicative of effector function (CD8A, EOMES, TBX21, GZMB), poor proliferative capacity (KLRG1, CD57), differentiation (CD45RO, CD45RA), and immune checkpoints (PDCD1, TIGIT, LAG3, CD160, CD244). In contrast, only three PBTL mRNAs, CD28, CD244, and p14ARF, showed a significant association with p16INK4a. p16INK4a expression also showed a weaker association with immunosenescent PBTL subsets than DNAm in flow cytometry analyses. These data suggest that PBTL composition has a greater influence on DNAm than p16INK4a and link accelerated epigenetic aging to immunosenescent phenotypes.
Collapse
Affiliation(s)
- Christin E Burd
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus
| | - Juan Peng
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus
| | - Bryon F Laskowski
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine, College of Medicine, The Ohio State University, Columbus
| | - Jennifer L Hollyfield
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine, College of Medicine, The Ohio State University, Columbus
| | - Suohui Zhang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus
| | - Paolo Fadda
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus
| | - Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus
| | - Rebecca R Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus
| | - Janice K Kiecolt-Glaser
- Department of Psychiatry and Behavioral Health, Institute for Behavioral Medicine, College of Medicine, The Ohio State University, Columbus
| |
Collapse
|
15
|
Nikolich-Žugich J, Bradshaw CM, Uhrlaub JL, Watanabe M. Immunity to acute virus infections with advanced age. Curr Opin Virol 2020; 46:45-58. [PMID: 33160186 DOI: 10.1016/j.coviro.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
New infections in general, and new viral infections amongst them, represent a serious challenge to an older organism. This review discusses the age-related alterations in responsiveness to infection from the standpoint of virus:host relationship and the host physiological whole-organism and specific immune response to the virus. Changes with age in the innate and adaptive immune system homeostasis and function are reviewed briefly. This is followed by a review of specific alterations and defects in the response of older organisms (chiefly mice and humans) to acute (particularly emerging and re-emerging) viral infections, with a very brief summary of the response to latent persistent infections. Finally, we provide a brief summary of the perspectives for possible interventions to enhance antiviral immunity.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA.
| | - Christine M Bradshaw
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| | - Makiko Watanabe
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine - Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
16
|
Semmes EC, Hurst JH, Walsh KM, Permar SR. Cytomegalovirus as an immunomodulator across the lifespan. Curr Opin Virol 2020; 44:112-120. [PMID: 32818717 DOI: 10.1016/j.coviro.2020.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a nearly ubiquitous β-herpesvirus that establishes latent infection in the majority of the world's population. HCMV infection profoundly influences the host immune system and, perhaps more than any other human pathogen, has been shown to create a lasting imprint on human T and NK cell compartments. HCMV-seropositivity has been associated with both beneficial effects, such as increased vaccine responsiveness or heterologous protection against infections, and deleterious effects, such as pathological neurodevelopmental sequelae from congenital infection in utero and cumulative damage from chronic lifelong latency into old age. The significance of many of these associations is unclear, as studies into the causal mechanisms linking HCMV and these disease outcomes are lacking; however, HCMV-mediated changes to the immune system may play a key role. This review examines how HCMV impacts the host immune system in an age-dependent manner with important implications for human immunophenotypes and long-term disease risk.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, NC, USA; Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Jillian H Hurst
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA; Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham NC, USA
| | - Kyle M Walsh
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Sallie R Permar
- Children's Health and Discovery Institute, Department of Pediatrics, Duke University, Durham, NC, USA; Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham NC, USA.
| |
Collapse
|
17
|
Autran B. [Alterations in responses to vaccines in older people]. Rev Mal Respir 2019; 36:1047-1056. [PMID: 31522947 DOI: 10.1016/j.rmr.2019.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 11/28/2022]
Abstract
The aging population raises a number of public health issues including a need to address the severity and frequency of infections observed in older people. Vaccines play an important role in prevention. However, immunosenescence alters the intensity and quality of vaccine responses, thus limiting the impact of recommendations directed after 65 years for vaccination against flu, pneumococci, pertussis, tetanus and zoster. Immunosenescence, aggravated by co-morbidities, varies with age, becoming apparent after 60-65 years and more profound after 85 years. All stages of vaccine responses are affected by immunosenescence, from the innate immunity required to activate these responses to the induction of protective antibody responses and immune memory. Nevertheless, the capacity to develop new responses to primary vaccination is more affected than the ability to respond to recalls, although this is also impaired. Responses to vaccines are differentially altered depending on vaccine and age. Influenza vaccines are modestly immunogenic and several meta-analyses agree an estimate for efficacy of about 50% against virologically-proven flu and 40% against flu-related deaths. The anti-pneumococcal 23-valent non-conjugated vaccine does not induce memory while the 13-valent conjugated one does, but their efficacy are likely to be similar between 70 to 52% before 75 years. A sequential vaccination program with the 13-valent primo-vaccination followed by the 23-valent, recommended in immune-suppressed patients, is currently being studied in France. The waning of immunity to pertussis makes recalls necessary in the elderly who develop good antibody responses. Several research avenues are currently being pursued to try improve the degree of protection conferred by these vaccines in elderly.
Collapse
Affiliation(s)
- B Autran
- Sorbonne-université, 75005 Paris, France; UMR-S Inserm/UPMC 1135), CIMI-Paris (centre de recherches immunité maladies infectieuses), 83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
18
|
Cui J, Yan W, Xie H, Xu S, Wang Q, Zhang W, Ni A. Cytomegalovirus antigenemia in patients with autoimmune and non-autoimmune diseases in Beijing: A 10-year single hospital experience. PLoS One 2019; 14:e0221793. [PMID: 31461496 PMCID: PMC6713388 DOI: 10.1371/journal.pone.0221793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/14/2019] [Indexed: 01/22/2023] Open
Abstract
Background Primary cytomegalovirus (CMV) infection is prevalent worldwide and usually results in latency in immunocompetent populations. Reactivation of latent CMV can cause life-threatening complications in immunocompromised hosts. Methods We used the CMV Brite assay to test CMV antigenemia (pp65) in whole blood samples from 22,192 patients with or without autoimmune diseases in Beijing during 2008–2018. Results The overall prevalence of CMV antigenemia was 19.5% (9.7%, males; 26.0%, females). The prevalence of CMV antigenemia was 35.1%, 58.6% and 11.4% in whole patients with autoimmune diseases, in patients with systemic lupus erythematosus (SLE) and in patients with non-SLE autoimmune diseases, respectively. All patients with non-autoimmune diseases, patients with HIV/AIDS or transplantation were found to have 5.0%, 27% or 14.8%, respectively. Patients≤20 years with SLE had a significantly higher prevalence of CMV antigenemia than did all SLE patients, on average. Patients>51 years with non-SLE autoimmune diseases had a significantly higher prevalence than did all patients with non-SLE autoimmune diseases, on average. The prevalence of CMV antigenemia in patients admitted to intensive-care units (ICUs) were 9.2%, which was significantly higher than that among all patients with non-autoimmune diseases. Patients with SLE had 23.8% of negative conversion of CMV antigenemia, significantly lower than the percentage of patients with non-SLE autoimmune (64.3%) and non-autoimmune (61.0%) diseases. The mean number of days to negative conversion of CMV antigenemia in patients with SLE was 35.3±35.8 days, which was significantly longer than that in patients with non-SLE autoimmune diseases (15.4±11.9 days) and non-autoimmune diseases (13.6±7.7 days). Conclusions CMV antigenemia is found more likely in women than in men, more prevalently in patients with SLE than those with HIV/AIDS or transplant recipients, more frequently in patients admitted to ICUs. Patients with SLE had prolonged CMV antigenemia. The role of CMV appears important in SLE.
Collapse
Affiliation(s)
- Jingtao Cui
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjuan Yan
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongjie Xie
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoxia Xu
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofeng Wang
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihong Zhang
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anping Ni
- Department of Clinical Laboratories, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
van den Berg SPH, Pardieck IN, Lanfermeijer J, Sauce D, Klenerman P, van Baarle D, Arens R. The hallmarks of CMV-specific CD8 T-cell differentiation. Med Microbiol Immunol 2019; 208:365-373. [PMID: 30989333 PMCID: PMC6647465 DOI: 10.1007/s00430-019-00608-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Upon cytomegalovirus (CMV) infection, large T-cell responses are elicited that remain high or even increase over time, a phenomenon named memory T-cell inflation. Besides, the maintained robust T-cell response, CMV-specific T cells seem to have a distinctive phenotype, characterized by an advanced differentiation state. Here, we will review this "special" differentiation status by discussing the cellular phenotype based on the expression of CD45 isoforms, costimulatory, inhibitory and natural killer receptors, adhesion and lymphocyte homing molecules, transcription factors, cytokines and cytotoxic molecules. In addition, we focus on whether the differentiation state of CMV-specific CD8 T cells is unique in comparison with other chronic viruses and we will discuss the possible impact of factors such as antigen exposure and aging on the advanced differentiation status of CMV-specific CD8 T cells.
Collapse
Affiliation(s)
- Sara P H van den Berg
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Iris N Pardieck
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Josien Lanfermeijer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Delphine Sauce
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Paul Klenerman
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Debbie van Baarle
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
20
|
Jergović M, Contreras NA, Nikolich-Žugich J. Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol 2019; 208:263-269. [PMID: 31004198 PMCID: PMC6635032 DOI: 10.1007/s00430-019-00605-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022]
Abstract
Aging is accompanied by significant defects in immunity and compromised responses to new, previously unencountered microbial pathogens. Most humans carry several persistent or latent viruses as they age, interacting with the host immune systems for years. In that context maybe the most studied persistent virus is Cytomegalovirus, infamous for its ability to recruit very large T cell responses which increase with age and to simultaneously evade elimination by the immune system. Here we will address how lifelong CMV infection and the immunological burden of its control might affect immune reactivity and health of the host over time.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA
| | - Nico A Contreras
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, 85718, USA.
- University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave, P.O. Box 221245, Tucson, AZ, 85724, USA.
| |
Collapse
|
21
|
Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019; 316:H1124-H1140. [PMID: 30848677 PMCID: PMC6580383 DOI: 10.1152/ajpheart.00776.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andrea Molnar
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center , Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Eszter Farkas
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School , Pecs , Hungary
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University , Chicago, Illinois
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Semmelweis University, Department of Pulmonology , Budapest , Hungary
| |
Collapse
|
22
|
Lérias JR, Paraschoudi G, Silva I, Martins J, de Sousa E, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Jäger E, Rao M, Maeurer M. Clinically Relevant Immune Responses against Cytomegalovirus: Implications for Precision Medicine. Int J Mol Sci 2019; 20:ijms20081986. [PMID: 31018546 PMCID: PMC6514820 DOI: 10.3390/ijms20081986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Immune responses to human cytomegalovirus (CMV) can be used to assess immune fitness in an individual. Further to its clinical significance in posttransplantation settings, emerging clinical and translational studies provide examples of immune correlates of protection pertaining to anti-CMV immune responses in the context of cancer or infectious diseases, e.g., tuberculosis. In this viewpoint, we provide a brief overview about CMV-directed immune reactivity and immune fitness in a clinical context and incorporate some of our own findings obtained from peripheral blood or tumour-infiltrating lymphocytes (TIL) from patients with advanced cancer. Observations in patients with solid cancers whose lesions contain both CMV and tumour antigen-specific T-cell subsets are highlighted, due to a possible CMV-associated “bystander” effect in amplifying local inflammation and subsequent tumour rejection. The role of tumour-associated antibodies recognising diverse CMV-derived epitopes is also discussed in light of anti-cancer immune responses. We discuss here the use of anti-CMV immune responses as a theranostic tool—combining immunodiagnostics with a personalised therapeutic potential—to improve treatment outcomes in oncological indications.
Collapse
Affiliation(s)
- Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Georgia Paraschoudi
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Inês Silva
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Ernest Dodoo
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
- Department of Oncology and Haematology, Krankenhaus Nordwest, Steinbacher Hohl 2-26, 60488 Frankfurt am Main, Germany.
| |
Collapse
|
23
|
Jergović M, Uhrlaub JL, Contreras NA, Nikolich-Žugich J. Do cytomegalovirus-specific memory T cells interfere with new immune responses in lymphoid tissues? GeroScience 2019; 41:155-163. [PMID: 31069636 PMCID: PMC6544713 DOI: 10.1007/s11357-019-00068-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
In both mice and humans, the CD8 T cell compartment is expanded with age in the presence of a cytomegalovirus (CMV) infection due to an absolute increase in the CD8+ T cell effector memory (TEM) cells. It has been hypothesized that in CMV+ subjects, such accumulated TEM cells could interfere with responses to new infection by competing for space/resources or could inhibit new responses by other, undefined, means. Here we present evidence against this hypothesis. We show that MCMV-specific CD8 T cells accumulate in blood and bone marrow, but not lymph nodes (frequent sites of immune response initiation), in either persistent lifelong CMV infection or following reactivation. Moreover, adoptive transfer of effector memory T cells from MCMV positive mice into naïve animals did not interfere with either humoral or cellular response to West Nile virus or Listeria monocytogenes infection in recipient mice. We conclude that MCMV infection is unlikely to inhibit new immune responses in old animals through direct interference of MCMV-specific CD8 T cells with the priming.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 221245, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 221245, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Nico A Contreras
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 221245, 1501 N Campbell Ave, Tucson, AZ, 85724, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, P.O. Box 221245, 1501 N Campbell Ave, Tucson, AZ, 85724, USA.
| |
Collapse
|
24
|
Aiello A, Accardi G, Candore G, Caruso C, Colomba C, Di Bona D, Duro G, Gambino CM, Ligotti ME, Pandey JP. Role of Immunogenetics in the Outcome of HCMV Infection: Implications for Ageing. Int J Mol Sci 2019; 20:ijms20030685. [PMID: 30764515 PMCID: PMC6386818 DOI: 10.3390/ijms20030685] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
The outcome of host-virus interactions is determined by a number of factors, some related to the virus, others to the host, such as environmental factors and genetic factors. Therefore, different individuals vary in their relative susceptibility to infections. Human cytomegalovirus (HCMV) is an important pathogen from a clinical point of view, as it causes significant morbidity and mortality in immunosuppressed or immunosenescent individuals, such as the transplanted patients and the elderly, respectively. It is, therefore, important to understand the mechanisms of virus infection control. In this review, we discuss recent advances in the immunobiology of HCMV-host interactions, with particular emphasis on the immunogenetic aspects (human leukocyte antigens, HLA; killer cell immunoglobulin-like receptors, KIRs; immunoglobulin genetic markers, GM allotypes) to elucidate the mechanisms underlying the complex host-virus interaction that determine various outcomes of HCMV infection. The results, which show the role of humoral and cellular immunity in the control of infection by HCMV, would be valuable in directing efforts to reduce HCMV spurred health complications in the transplanted patients and in the elderly, including immunosenescence. In addition, concerning GM allotypes, it is intriguing that, in a Southern Italian population, alleles associated with the risk of developing HCMV symptomatic infection are negatively associated with longevity.
Collapse
Affiliation(s)
- Anna Aiello
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giulia Accardi
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giuseppina Candore
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Calogero Caruso
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Claudia Colomba
- Dipartimento di Scienze per la Promozione della Salute e Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy.
| | - Danilo Di Bona
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giovanni Duro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Caterina Maria Gambino
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Mattia Emanuela Ligotti
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
25
|
Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S. Advances and challenges in geroscience research: An update. Physiol Int 2018; 105:298-308. [PMID: 30587027 PMCID: PMC9341286 DOI: 10.1556/2060.105.2018.4.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Aging remains the most pervasive risk factor for a wide range of chronic diseases that afflict modern societies. In the United States alone, incidence of age-related diseases (e.g., cardiovascular disease, stroke, Alzheimer's disease, vascular cognitive impairment and dementia, cancer, hypertension, type-2 diabetes, chronic obstructive pulmonary disease, and osteoarthritis) is on the rise, posing an unsustainable socioeconomic burden even for the most developed countries. Tackling each and every age-related disease alone is proving to be costly and ineffective. The emerging field of geroscience has posed itself as an interdisciplinary approach that aims to understand the relationship between the biology of aging and the pathophysiology of chronic age-related diseases. According to the geroscience concept, aging is the single major risk factor that underlies several age-related chronic diseases, and manipulation of cellular and systemic aging processes can delay the manifestation and/or severity of these age-related chronic pathologies. The goal of this endeavor is to achieve health improvements by preventing/delaying the pathogenesis of several age-related diseases simultaneously in the elderly population by targeting key cellular and molecular processes of aging instead of managing diseases of aging as they arise individually. In this review, we discuss recent advances in the field of geroscience, highlighting their implications for potential future therapeutic targets and the associated scientific challenges and opportunities that lay ahead.
Collapse
Affiliation(s)
- A Yabluchanskiy
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
| | - Z Ungvari
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
- 3 Department of Medical Physics and Informatics, University of Szeged , Szeged, Hungary
- 4 Department of Pulmonology, Semmelweis University , Budapest, Hungary
| | - A Csiszar
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
- 3 Department of Medical Physics and Informatics, University of Szeged , Szeged, Hungary
| | - S Tarantini
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Fulop GA, Kiss T, Tarantini S, Balasubramanian P, Yabluchanskiy A, Farkas E, Bari F, Ungvari Z, Csiszar A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. GeroScience 2018; 40:513-521. [PMID: 30470983 DOI: 10.1007/s11357-018-0047-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022] Open
Abstract
Aging-induced pro-inflammatory phenotypic alterations of the cerebral vasculature critically contribute to the pathogenesis of vascular cognitive impairment. Cellular senescence is a fundamental aging process that promotes inflammation; however, its role in cerebrovascular aging remains unexplored. The present study was undertaken to test the hypothesis that advanced aging promotes cellular senescence in the cerebral vasculature. We found that in cerebral arteries of 24-month-old mice, expression of molecular markers of senescence (p16INK4a, p21) is upregulated as compared to that in young controls. Induction of senescence programs in cerebral arteries is associated by an upregulation of a wide range of inflammatory cytokines and chemokines, which are known to contribute to the senescence-associated secretory phenotype (SASP) in vascular cells. Age-related cerebrovascular senescence and inflammation are associated with neuroinflammation, as shown by the molecular footprint of microglia activation in the hippocampus. Genetic depletion of the pro-survival/anti-aging transcriptional regulator Nrf2 exacerbated age-related induction of senescence markers and inflammatory SASP factors and resulted in a heightened inflammatory status of the hippocampus. In conclusion, our studies provide evidence that aging and Nrf2 dysfunction promote cellular senescence in cerebral vessels, which may potentially cause or exacerbate age-related pathology.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Pulmonology, Semmelweis University, Budapest, Hungary. .,Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
27
|
Ungvari Z, Yabluchanskiy A, Tarantini S, Toth P, Kirkpatrick AC, Csiszar A, Prodan CI. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. GeroScience 2018; 40:485-496. [PMID: 30288646 DOI: 10.1007/s11357-018-0044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 01/24/2023] Open
Abstract
Multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds"), which are associated with rupture of small intracerebral vessels, have been recognized as an important cause for cognitive decline in older adults. Although recent studies demonstrate that CMHs are highly prevalent in patients 65 and older, many aspects of the pathogenesis and clinical significance of CMHs remain obscure. In this longitudinal observational study, a case of a 77-year-old man with multifocal CMHs is described, in whom the rupture of intracerebral vessels could be linked to repeatedly performing extended Valsalva maneuvers. This patient was initially seen with acute aphasia after performing a prolonged Valsalva maneuver during underwater swimming. T2-weighted magnetic resonance imaging revealed a left acute frontal intracerebral hemorrhage (ICH) with multiple CMHs. The aphasia was resolved and no cognitive impairment was present. Two years later, he developed unsteadiness and confusion after performing two prolonged Valsalva maneuvers during underwater swimming separated by about 12 days. Repeat brain imaging revealed an acute right and a subacute left ICH, with a marked interval increase in the number of CMHs. The patient also exhibited manifest memory loss after the second admission and was diagnosed with dementia. These observations suggest that prolonged Valsalva maneuver is potentially a common precipitating cause of both CMHs and symptomatic ICHs. The Valsalva maneuver both increases the systolic arterial pressure and gives rise to a venous pressure wave transmitted to the brain in the absence of the competent antireflux jugular vein valves. This pressure increase is superimposed on existing hypertension and/or increases in blood pressure due to exercise and increased venous return due to immersion of the body in water. We advocate that further studies are needed to distinguish between CMHs with arterial and venous origins and their potential to lead to ICH induced by Valsalva maneuver as well as to determine whether these lesions have a predilection for a particular location.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary.,Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L. Young Blvd Suite 2040, Oklahoma City, 73104, OK, USA.
| |
Collapse
|
28
|
Arcangeletti MC, Maccari C, Vescovini R, Volpi R, Giuggioli D, Sighinolfi G, De Conto F, Chezzi C, Calderaro A, Ferri C. A Paradigmatic Interplay between Human Cytomegalovirus and Host Immune System: Possible Involvement of Viral Antigen-Driven CD8+ T Cell Responses in Systemic Sclerosis. Viruses 2018; 10:E508. [PMID: 30231575 PMCID: PMC6163388 DOI: 10.3390/v10090508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent opportunistic agent in the world population, which persists as a latent virus after a primary infection. Besides the well-established role of this agent causing severe diseases in immunocompromised individuals, more recently, HCMV has been evoked as a possible factor contributing to the pathogenesis of autoimmune diseases such as systemic sclerosis (SSc). The interplay between HCMV and immune surveillance is supposed to become unbalanced in SSc patients with expanded anti-HCMV immune responses, which are likely involved in the exacerbation of inflammatory processes. In this study, blood samples from a cohort of SSc patients vs. healthy subjects were tested for anti-HCMV immune responses (IgM, IgG antibodies, and T cells to peptide pools spanning the most immunogenic HCMV proteins). Statistically significant increase of HCMV-specific CD8+ T cell responses in SSc patients vs. healthy subjects was observed. Moreover, significantly greater HCMV-specific CD8+ T cell responses were found in SSc patients with a longer disease duration and those with higher modified Rodnan skin scores. Given the known importance of T cells in the development of SSc and that this virus may contribute to chronic inflammatory diseases, these data support a relevant role of HCMV-specific CD8+ T cell responses in SSc pathogenesis.
Collapse
Affiliation(s)
- Maria-Cristina Arcangeletti
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Clara Maccari
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Rosanna Vescovini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Riccardo Volpi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| | - Flora De Conto
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Chezzi
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Adriana Calderaro
- Virology Unit, University-Hospital of Parma, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, University-Hospital Policlinico of Modena, 41121 Modena, Italy.
| |
Collapse
|
29
|
Lifelong CMV infection improves immune defense in old mice by broadening the mobilized TCR repertoire against third-party infection. Proc Natl Acad Sci U S A 2018; 115:E6817-E6825. [PMID: 29967140 DOI: 10.1073/pnas.1719451115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lifelong interactions between host and the ubiquitous and persistent cytomegalovirus (CMV) have been proposed to contribute to the age-related decline in immunity. Prior work from us and others found some support for that idea, yet evidence that this led to increased vulnerability to other infections was not obtained. Moreover, evidence has accumulated that CMV infection can be beneficial to immune defense in young/adult mice and humans, dominantly via enhanced innate immunity. Here, we describe an unexpected impact of murine CMV (MCMV) upon the T cell response of old mice to Listeria monocytogenes expressing the model antigen, OVA (Lm-OVA). Single-cell sequencing of the OVA-specific CD8 T cell receptor β (TCRβ) repertoire of old mice demonstrated that old MCMV-infected mice recruited many diverse clonotypes that afforded broad and often more efficient recognition of antigenic peptide variants. This stood in contrast to old control mice, which exhibited strong narrowing and homogenization of the elicited repertoire. High-throughput sequencing of the total naïve CD8 TCRβ repertoire showed that many of these diverse OVA-specific clonotypes were present in the naïve CD8 repertoire of mice in all groups (adult, old control, and old MCMV+) yet were only recruited into the Lm-OVA response in MCMV+ old mice. These results have profound implications for our understanding of T cell immunity over a life span and suggest that our coevolution with CMV may include surprising, potentially positive impacts on adaptive heterologous immunity in late life.
Collapse
|
30
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
31
|
Alyazidi R, Murthy S, Slyker JA, Gantt S. The Potential Harm of Cytomegalovirus Infection in Immunocompetent Critically Ill Children. Front Pediatr 2018; 6:96. [PMID: 29692984 PMCID: PMC5902572 DOI: 10.3389/fped.2018.00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous infection that causes disease in congenitally infected children and immunocompromised patients. Although nearly all CMV infections remain latent and asymptomatic in immunologically normal individuals, numerous studies have found that systemic viral reactivation is common in immunocompetent critically ill adults, as measured by detection of CMV in the blood (viremia). Furthermore, CMV viremia is strongly correlated with adverse outcomes in the adult intensive care unit (ICU), including prolonged stay, duration of mechanical ventilation, and death. Increasing evidence, including from a randomized clinical trial of antiviral treatment, suggests that these effects of CMV may be causal. Therefore, interventions targeting CMV might improve outcomes in adult ICU patients. CMV may have an even greater impact on critically ill children, particularly in low and middle income countries (LMIC), where CMV is regularly acquired in early childhood, and where inpatient morbidity and mortality are inordinately high. However, to date, there are few data regarding the clinical relevance of CMV infection or viremia in immunocompetent critically ill children. We propose that CMV infection should be studied as a potential modifiable cause of disease in critically ill children, and that these studies be conducted in LMIC. Below, we briefly review the role of CMV in immunologically normal critically ill adults and children, outline age-dependent differences in CMV infection that may influence ICU outcomes, and describe an agenda for future research.
Collapse
Affiliation(s)
- Raidan Alyazidi
- University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.,Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Srinivas Murthy
- University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | | | - Soren Gantt
- University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
32
|
Nikolich-Žugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 2017; 19:10-19. [PMID: 29242543 DOI: 10.1038/s41590-017-0006-x] [Citation(s) in RCA: 721] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023]
Abstract
Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.
Collapse
Affiliation(s)
- Janko Nikolich-Žugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
| |
Collapse
|
33
|
Ungvari Z, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Fülöp GA, Kiss T, Csiszar A. Connective tissue growth factor (CTGF) in age-related vascular pathologies. GeroScience 2017; 39:491-498. [PMID: 28875415 DOI: 10.1007/s11357-017-9995-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Connective tissue growth factor (CTGF, also known as CCN2) is a matricellular protein expressed in the vascular wall, which regulates diverse cellular functions including cell adhesion, matrix production, structural remodeling, angiogenesis, and cell proliferation and differentiation. CTGF is principally regulated at the level of transcription and is induced by mechanical stresses and a number of cytokines and growth factors, including TGFβ. In this mini-review, the role of age-related dysregulation of CTGF signaling and its role in a range of macro- and microvascular pathologies, including pathogenesis of aorta aneurysms, atherogenesis, and diabetic retinopathy, are discussed. A potential role of CTGF and TGFβ in regulation and non-cell autonomous propagation of cellular senescence is also discussed.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Marta Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor A Fülöp
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street, Oklahoma City, OK, 73104, USA.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
34
|
Nikolich-Zugich J, Goodrum F, Knox K, Smithey MJ. Known unknowns: how might the persistent herpesvirome shape immunity and aging? Curr Opin Immunol 2017; 48:23-30. [PMID: 28780492 DOI: 10.1016/j.coi.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/08/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
Abstract
The microbial community that colonizes all living organisms is gaining appreciation for its contributions to both physiologic and pathogenic processes. The virome, a subset of the overall microbiome, large and diverse, including viruses that persistently inhabit host cells, endogenous viral elements genomically or epigenomically integrated into cells, and viruses that infect the other (bacterial, protozoan, fungal, and archaeal) microbiome phylla. These viruses live in the organism for its life, and therefore are to be considered part of the aging process experienced by the organism. This review considers the impact of the persistent latent virome on immune aging. Specific attention will be devoted to the role of herpesviruses, and within them, the cytomegalovirus, as the key modulators of immune aging.
Collapse
Affiliation(s)
- Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States.
| | - Felicia Goodrum
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States
| | - Kenneth Knox
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States; University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, United States
| | - Megan J Smithey
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, United States.
| |
Collapse
|