1
|
Hu HJ, Fu YY, Du SL, Zhang YH, Zhang ZQ, Han GZ. Role of macrophage ATP metabolism disorder in SiO 2‑induced pulmonary fibrosis: a review. Purinergic Signal 2025:10.1007/s11302-025-10093-8. [PMID: 40358809 DOI: 10.1007/s11302-025-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Silicosis, a chronic lung disease, results from prolonged inhalation of silica dust (SiO2) in occupational environments, and its pathogenesis remains incompletely elucidated. Studies have shown that alveolar macrophages (AMs) play a pivotal role in its development. These AMs phagocytose the inhaled SiO2, which leads to morphological, structural, and functional abnormalities that result in lung fibrosis. During this process, adenosine triphosphate (ATP) not only provides energy for the physiological and pathological activities but also acts as a key intracellular and extracellular signaling molecule and regulates cytokine synthesis and secretion. This complex process has not been systematically summarized. In this study, first, the current data on ATP metabolism in the development of SiO2-induced pulmonary fibrosis are introduced. ATP metabolism disorder, caused by impaired production, utilization, or distribution of ATP, disrupts macrophage energy homeostasis. Then, how ATP metabolism disorder affects macrophage morphology and function and the inflammatory and fibrotic processes of the lungs by activating the P2X7 receptor-mediated ATP signaling pathway are discussed. Finally, current therapeutic strategies targeting ATP metabolism disorder and ATP signaling pathways in silicosis are summarized. In conclusion, SiO2-induced ATP metabolism disorder indirectly accelerates the progression of silicosis fibrosis.
Collapse
Affiliation(s)
- Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Yuan-Yuan Fu
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Yu-Han Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, China.
| | - Gui-Zhi Han
- School of Public Health, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
2
|
Ożarowski M, Karpiński TM, Czerny B, Kamiński A, Seremak-Mrozikiewicz A. Plant Alkaloids as Promising Anticancer Compounds with Blood-Brain Barrier Penetration in the Treatment of Glioblastoma: In Vitro and In Vivo Models. Molecules 2025; 30:1561. [PMID: 40286187 PMCID: PMC11990316 DOI: 10.3390/molecules30071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is one of the most invasive central nervous system tumors, with rising global incidence. Therapy resistance and poor prognosis highlight the urgent need for new anticancer drugs. Plant alkaloids, a largely unexplored yet promising class of compounds, have previously contributed to oncology treatments. While past reviews provided selective insights, this review aims to collectively compare data from the last decade on (1) plant alkaloid-based anticancer drugs, (2) alkaloid transport across the blood-brain barrier (BBB) in vitro and in vivo, (3) alkaloid mechanisms of action in glioblastoma models (in vitro, in vivo, ex vivo, and in silico), and (4) cytotoxicity and safety profiles. Additionally, innovative drug delivery systems (e.g., nanoparticles and liposomes) are discussed. Focusing on preclinical studies of single plant alkaloids, this review includes 22 botanical families and 28 alkaloids that demonstrated anti-GBM activity. Most alkaloids act in a concentration-dependent manner by (1) reducing glioma cell viability, (2) suppressing proliferation, (3) inhibiting migration and invasion, (4) inducing cell death, (5) downregulating Bcl-2 and key signaling pathways, (6) exhibiting antiangiogenic effects, (7) reducing tumor weight, and (8) improving survival rates. The toxic and adverse effect analysis suggests that alkaloids such as noscapine, lycorine, capsaicin, chelerythrine, caffeine, boldine, and colchicine show favorable therapeutic potential. However, tetrandrine, nitidine, harmine, harmaline, cyclopamine, cocaine, and brucine may pose greater risks than benefits. Piperine's toxicity and berberine's poor bioavailability suggest the need for novel drug formulations. Several alkaloids (kukoamine A, cyclovirobuxine D, α-solanine, oxymatrine, rutaecarpine, and evodiamine) require further pharmacological and toxicological evaluation. Overall, while plant alkaloids show promise in glioblastoma therapy, progress in assessing their BBB penetration remains limited. More comprehensive studies integrating glioma research and advanced drug delivery technologies are needed.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland;
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
3
|
Liu J, Qiu L, Chen J, Zeng T. Lycorine hydrochloride Suppresses the Proliferation and Invasion of Esophageal Cancer by Targeting TRIM22 and Inhibiting the JAK2/STAT3 and Erk Pathways. Cancers (Basel) 2025; 17:718. [PMID: 40075566 PMCID: PMC11898953 DOI: 10.3390/cancers17050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Tumor metastasis and poor drug efficacy are two of the most common causes of therapeutic failure in cancer patients. The underlying molecular mechanism requires further exploration, and novel effective curative strategies are urgently needed. Nature is a rich source of novel drugs, and Lycorine hydrochloride (Lyc.HCL) is a natural alkaloid with tremendous therapeutic potential. However, the molecular mechanisms of its antitumor activity are still unknown. In the current study, we investigated the effects and mechanisms of Lyc.HCL against esophageal squamous cell carcinomas (ESCCs), which pose serious threats to human life. METHODS An MTS assay and a clone formation assay were used to assess the viability of ESCC cell lines after Lyc.HCL treatment in vitro. Apoptosis and cell cycle regulation were analyzed using flow cytometry. Wound healing and Transwell assays were used to analyze cell migration, while invasion was analyzed using the Matrigel Transwell assay. We detected the expression of tripartite motif-containing 22 (TRIM22) through immunohistochemistry and Western blotting. A docking experiment was performed to explore the targets of Lyc.HCL. The expression levels of Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/extracellular signal-regulated kinase (Erk) pathway components were detected through Western blotting. A rescue experiment was performed to determine the potential role of TRIM22. In addition, we explored the in vivo anti-ESCC effects and mechanism of Lyc.HCL by using it to treat tumor-bearing mice. RESULTS The Lyc.HCL treatment was found to inhibit esophageal squamous cell carcinoma cell proliferation both in vitro and in vivo by blocking the cell cycle at the G2 phase, inhibiting cell migration and invasion. We found that the TRIM22 protein was highly expressed in ESCCs but not in normal esophageal tissue. Lyc.HCL directly targeted TRIM22, decreasing the expression of TRIM22 and the JAK2/STAT3 and Erk signaling pathways, both in vitro and in vivo. Using animal experiments, we observed that the depletion of TRIM22 delayed tumor growth, but this effect was significantly reversed upon TRIM22 overexpression. CONCLUSIONS Taken together, these findings demonstrate that Lyc.HCL can effectively suppress ESCC both in vitro and in vivo by targeting TRIM22 and regulating the JAK2/STAT3 and Erk pathways. These results suggest that Lyc.HCL may serve as a potential novel therapeutic for ESCC, with TRIM22 emerging as a promising target for treatment.
Collapse
Affiliation(s)
- Jingyan Liu
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liangxian Qiu
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jialing Chen
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
4
|
Dong Q, Niu W, Mu M, Ye C, Wu P, Hu S, Niu C. Lycorine hydrochloride interferes with energy metabolism to inhibit chemoresistant glioblastoma multiforme cell growth through suppressing PDK3. Mol Cell Biochem 2025; 480:355-369. [PMID: 38466468 DOI: 10.1007/s11010-024-04945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Glioblastoma multiforme (GBM) is the highest grade of glioma. Tumours, including GBM, possess reprogrammed metabolism, such as altered aerobic glycolysis and aberrant energy production. Lycorine hydrochloride (LH) was extracted from the bulb of Lycoris radiata. The previous study indicated that LH exerts antiviral, anti-inflammatory and antitumour effects. However, the effect of LH on GBM and the underlying molecular mechanism remain unclear. Our study revealed that LH restrained chemoresistant GBM cells growth by inhibiting PDK3 expression in vitro and in vivo. Functionally, LH inhibited the proliferation and invasive capacity of chemoresistant GBM cells in dose-dependent manner. Metabolomics and cellular energy analyses showed that LH decreased extracellular acidification rates while increased oxidative respiration and ROS levels. Mechanistically, LH inhibits the growth of GBM chemoresistant cells by regulating the expression of apoptosis-related proteins, while overexpression of of PDK3 can reverse the antitumor effect of LH. In conclusion, our study revealed that LH could reprogramme cell energy metabolism, including aerobic glycolysis suppression and oxidative phosphorylation hyperactivation by inhibiting PDK3. PDK3 may be a candidate therapeutic target for chemoresistant GBM treatment with LH.
Collapse
Affiliation(s)
- Qingsheng Dong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Wanxiang Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Maolin Mu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Chengkun Ye
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
| | - Shanshan Hu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| | - Chaoshi Niu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
5
|
Yapar EA, Ozdemir MN, Durgun ME, Dagıstan OA, Cavalu S, Ozsoy Y, Kartal M. Nanodelivery Approaches of Phytoactives for Skin Cancers: Current and Future Perspectives. Curr Pharm Biotechnol 2025; 26:631-653. [PMID: 38616742 DOI: 10.2174/0113892010300081240329033208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
In recent years, there has been an increase in skin cancers due to external factors, especially environmental factors, and studies on treatment alternatives have gained importance. Nanomaterials are common, from sunscreen formulas to formulations designed to treat skin cancers at various stages. Using bioactives has multiple effects in treating skin cancers, which provides many advantages. In this regard, many phytochemicals gain importance with their antioxidant, anti-proliferative, anti-inflammatory, antiangiogenic, and analgesic effects. Their delivery with nanocarriers is on the agenda for phytochemicals to gain the targeted stability, effectiveness, and toxicity/safety properties. This review presents types of skin cancers, phytochemicals effective in skin cancers, and their nanocarrier-loaded studies from an up-to-date perspective.
Collapse
Affiliation(s)
- Evren Algın Yapar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Merve Nur Ozdemir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Türkiye
| | - Ozlem Akbal Dagıstan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Simona Cavalu
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Bihor, România
| | - Yıldız Ozsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakıf University, Istanbul, Türkiye
- Phytotheraphy Research Center, Bezmialem vakıf University, Istanbul, Türkiye
| |
Collapse
|
6
|
Zhang YM, Li T, Xu CC, Qian JY, Guo H, Zhang X, Zhan ZJ, Lu JJ. Uncover the anticancer potential of lycorine. Chin Med 2024; 19:121. [PMID: 39245716 PMCID: PMC11382518 DOI: 10.1186/s13020-024-00989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Natural products have a long history in drug discovery. Lycorine is an alkaloid derived from Amaryllidaceae plants, demonstrating significant pharmacological potential. Lycorine and its hydrochloride salt, lycorine hydrochloride, have shown outstanding anticancer effects both in vitro and in vivo. PURPOSE This review aims to comprehensively summarize recent research advancements regarding the anticancer potential of lycorine and lycorine hydrochloride. It intends to elucidate current research limitations, optimization strategies, and future research directions to guide clinical translation. METHODS Various databases, e.g., Web of Science, PubMed, and Chinese National Knowledge Infrastructure, are systematically searched for relevant articles using keywords such as lycorine, cancer, pharmacokinetics, and toxicity. The retrieved literature is then categorized and summarized to provide an overview of the research advancements in the anticancer potential of lycorine and lycorine hydrochloride. RESULTS Lycorine and lycorine hydrochloride demonstrate significant anticancer activities against various types of cancer both in vitro and in vivo, employing diverse mechanisms such as inducing cell cycle arrest, triggering cellular senescence, regulating programmed cell death, inhibiting angiogenesis, suppressing metastasis, and modulating immune system. Furthermore, pharmacokinetic profiles and toxicity data are summarized. Additionally, this review discusses the druggability, limitations, optimization strategies, and target identification of lycorine, offering insights for future preclinical studies. CONCLUSION The anticancer effects and safety profile of lycorine and lycorine hydrochloride suggest promising potential for clinical applications. Further research on their in-depth mechanisms and optimization strategies targeting their limitations will enhance the understanding and druggability of lycorine and lycorine hydrochloride.
Collapse
Affiliation(s)
- Yan-Ming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jia-Yu Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
7
|
Shrestha B, Yang S, Griffith L, Ma J, Wang F, Liu H, Zhao Q, Du Y, Zhang J, Chang J, Guo JT. Discovery of hepatitis B virus subviral particle biogenesis inhibitors from a bioactive compound library. Antiviral Res 2024; 228:105955. [PMID: 38964614 DOI: 10.1016/j.antiviral.2024.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
High levels of hepatitis B virus (HBV) surface antigen (HBsAg) in the blood of chronic HBV carriers are considered to drive the exhaustion of antigen-specific T and B lymphocytes and thus responsible for the persistence of infection. Accordingly, therapeutic elimination of HBsAg may facilitate the activation of adaptive antiviral immune responses against HBV and achieve a functional cure of chronic hepatitis B. We discovered recently that an amphipathic alpha helix spanning W156 to R169 of HBV small envelope (S) protein plays an essential role in the morphogenesis of subviral particles (SVPs) and metabolism of S protein. We thus hypothesized that pharmacological disruption of SVP morphogenesis may induce intracellular degradation of S protein and reduce HBsAg secretion. To identify inhibitors of SVP biogenesis, we screened 4417 bioactive compounds with a HepG2-derived cell line expressing HBV S protein and efficiently secreting small spherical SVPs. The screen identified 24 compounds that reduced intracellular SVPs and secreted HBsAg in a concentration-dependent manner. However, 18 of those compounds inhibited the secretion of HBsAg and HBeAg in HBV replicon transfected HepG2 cells at similar efficiency, suggesting each of those compounds may disrupt a common cellular function required for the synthesis and/or secretion of these viral proteins. Interestingly, lycorine more efficiently inhibited the secretion of HBsAg in HepG2 cells transfected with HBV replicons, HepG2.2.15 cells and HBV infected - HepG2 cells expressing sodium taurocholate cotransporting polypeptide (NTCP). The structure activity relationship and antiviral mechanism of lycorine against HBV have been determined.
Collapse
Affiliation(s)
| | - Sisi Yang
- Baruch S. Blumberg Institute, Doylestown, PA, USA; Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Julia Ma
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, USA.
| |
Collapse
|
8
|
Tuo P, Zhao R, Li N, Yan S, Yang G, Wang C, Sun J, Sun H, Wang M. Lycorine inhibits Ang II-induced heart remodeling and inflammation by suppressing the PI3K-AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155464. [PMID: 38484625 DOI: 10.1016/j.phymed.2024.155464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.
Collapse
Affiliation(s)
- Pingping Tuo
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Risheng Zhao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Ning Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, Changchun, 130012, China
| | - Shuang Yan
- Department of Ultrasonography, Inteqrated Traditional Chinese and Western Medicine Hospital of Jilin city Jilin Province, Jilin, 132000, China
| | - Gege Yang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Haiming Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China.
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China.
| |
Collapse
|
9
|
Zhou B, Chen D, Zhang T, Song C, Zhang X, Lin L, Huang J, Peng X, Liu Y, Wu G, Li J, Chen W. Recent advancements in the discovery of small-molecule non-nucleoside inhibitors targeting SARS-CoV-2 RdRp. Biomed Pharmacother 2024; 171:116180. [PMID: 38266622 DOI: 10.1016/j.biopha.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 plays a pivotal role in the life cycle of the novel coronavirus and stands as a significant and promising target for anti-SARS-CoV-2 drugs. Non-nucleoside inhibitors (NNIs), as a category of compounds directed against SARS-CoV-2 RdRp, exhibit a unique and highly effective mechanism, effectively overcoming various factors contributing to drug resistance against nucleoside inhibitors (NIs). This review investigates various NNIs, including both natural and synthetic inhibitors, that closely interacting with the SARS-CoV-2 RdRp with valid evidences from in vitro and in silico studies.
Collapse
Affiliation(s)
- Bangdi Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Dianming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Tingyan Zhang
- School of Nusing, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenggui Song
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Xianwu Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Leying Lin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yuanchang Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Gaorong Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Jingyuan Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
10
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Qi J, Meng M, Liu J, Song X, Chen Y, Liu Y, Li X, Zhou Z, Huang X, Wang X, Zhou Q, Zhao Z. Lycorine inhibits pancreatic cancer cell growth and neovascularization by inducing Notch1 degradation and downregulating key vasculogenic genes. Biochem Pharmacol 2023; 217:115833. [PMID: 37769714 DOI: 10.1016/j.bcp.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC50 value of 1 μM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Jindan Qi
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaoxiao Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiang Huang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, PR China; National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, PR China; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, PR China.
| |
Collapse
|
12
|
Di Sotto A, Valipour M, Azari A, Di Giacomo S, Irannejad H. Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges. Biomedicines 2023; 11:2619. [PMID: 37892993 PMCID: PMC10603990 DOI: 10.3390/biomedicines11102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ongoing viral research, essential for public health due to evolving viruses, gains significance owing to emerging viral infections such as the SARS-CoV-2 pandemic. Marine and plant alkaloids show promise as novel potential pharmacological strategies. In this narrative review, we elucidated the potential of tylophorine and lycorine, two naturally occurring plant-derived alkaloids with a shared benzoindolizidine scaffold, as antiviral agents to be potentially harnessed against respiratory viral infections. Possible structure-activity relationships have also been highlighted. The substances and their derivatives were found to be endowed with powerful and broad-spectrum antiviral properties; moreover, they were able to counteract inflammation, which often underpins the complications of viral diseases. At last, their anticancer properties hold promise not only for advancing cancer research but also for mitigating the oncogenic effects of viruses. This evidence suggests that tylophorine and lycorine could effectively counteract the pathogenesis of respiratory viral disease and its harmful effects. Although common issues about the pharmacologic development of natural substances remain to be addressed, the collected evidence highlights a possible interest in tylophorine and lycorine as antiviral and/or adjuvant strategies and encourages future more in-depth pre-clinical and clinical investigations to overcome their drawbacks and harness their power for therapeutic purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aala Azari
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48471-93698, Iran;
| |
Collapse
|
13
|
Bautista DD, Reyes MAV, González EAB, Bugarin A. Synthetic Approaches to α-, β-, γ-, and δ-lycoranes. European J Org Chem 2023; 26:e202300404. [PMID: 37927304 PMCID: PMC10624333 DOI: 10.1002/ejoc.202300404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 11/07/2023]
Abstract
Lycorane is a pentacyclic core presented in alkaloids isolated from the Amaryllidaceae family of herbaceous flowering plants. Members of this class of natural products have shown to display important biological properties including analgesic, antiviral, and antiproliferative activities. This review presents the known synthetic routes toward α-, β-, γ-, and δ-lycoranes. α-(19 routes), β-(10 routes), γ-(38 routes), and δ-(6 routes).
Collapse
Affiliation(s)
- Diego Díaz Bautista
- Universidad Juárez Autónoma de Tabasco, Division Académica de Ciencias Básicas, carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco 86690, México
| | - Miguel A Vilchis Reyes
- Universidad Juárez Autónoma de Tabasco, Division Académica de Ciencias Básicas, carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco 86690, México
| | - Ever A Blé González
- Universidad Juárez Autónoma de Tabasco, Division Académica de Ciencias Básicas, carretera Cunduacán-Jalpa Km. 0.5, Cunduacán Tabasco 86690, México
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL, 33965
| | - Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL, 33965
| |
Collapse
|
14
|
Ritomská A, Koutova D, Křoustková J, Královec K, Muthná D, Kuneš J, Nováková L, Havelek R, Cahlíková L. Design of semisynthetic derivatives of the Amaryllidaceae alkaloid ambelline and exploration of their in vitro cytotoxic activities. Saudi Pharm J 2023; 31:101684. [PMID: 37457365 PMCID: PMC10345363 DOI: 10.1016/j.jsps.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023] Open
Abstract
Ambelline, an alkaloid from the Amaryllidaceae family with a crinane-type skeleton, has not yet demonstrated any outstanding biological activity. However, its analogues prepared by derivatization of the C-11 hydroxyl group show different interesting effects. Continuing our earlier work, twelve novel aromatic esters were developed (10, 14, 16, 17, 22-25, 30-33) and studied, together with previously synthesized derivatives (2-9, 11-13, 15, 18-21, 26-29) in terms of their cytotoxic activity. The cytotoxic potential was determined on a panel of nine human cancer cell lines and one noncancerous cell line to characterize their biological activity spectrum. To describe and foresee the structure-activity relationship for further research, substances synthesized and described in our previous work were also included in this cytotoxicity study. The most significant activity was associated with analogues having methyl (10), methoxy (14-17), or ethoxy (18) substitution on the phenyl condensed to ambelline. However, the 4-chloro-3-nitrobenzoyl derivative (32) showed the most promising IC50 values, ranging from 0.6 ± 0.1 µM to 9.9 ± 0.2 µM. In vitro cytotoxicity studies indicated the most potent antiproliferative activity of 32 in a dose-dependent and time-dependent manner. Besides, 32 was found to be effective in decreasing viability and triggering apoptosis of MOLT-4 T-lymphoblastic leukemia cells.
Collapse
Affiliation(s)
- Aneta Ritomská
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Darja Koutova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Jana Křoustková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Karel Královec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Darina Muthná
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Radim Havelek
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Lucie Cahlíková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| |
Collapse
|
15
|
Qiao S, Yao J, Wang Q, Li L, Wang B, Feng X, Wang Z, Yin M, Chen Y, Xu S. Antifungal effects of amaryllidaceous alkaloids from bulbs of Lycoris spp. against Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2023; 79:2423-2432. [PMID: 36810871 DOI: 10.1002/ps.7420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice, and novel fungicides for controlling rice blast are needed owing to the problem of resistance to commonly used control agents. We previously found that methanol extract of Lycoris radiata (L'Her.) Herb. showed an excellent inhibitory effect on mycelial growth of M. oryzae, indicating its potential for developing control agents against M. oryzae. In this study, we aim to investigate the antifungal effects of different Lycoris spp. against M. oryzae, and clarify the main active components. RESULTS Extracts from bulbs of seven Lycoris spp. showed excellent inhibitory effects on mycelial growth and spore germination of M. oryzae at 400 mg L-1 . Liquid chromatography-tandem mass spectrometry was employed to analyze the components of the extracts, and heatmap clustering analysis with Mass Profiler Professional software revealed that lycorine and narciclasine may be the main active components. Lycorine and narciclasine, together with three other amaryllidaceous alkaloids (AAs), were then isolated from bulbs of Lycoris spp. Antifungal assays showed that lycorine and narciclasine had good inhibitory activities against M. oryzae in vitro, but the other three AAs showed no antifungal activities under test concentrations. In addition, lycorine and the ethyl acetate part of L. radiata showed good antifungal effects against M. oryzae in vivo, but narciclasine showed phototoxicity on rice when used alone. CONCLUSION Extracts of test Lycoris spp. and the main active component lycorine have excellent antifungal activities against M. oryzae, and are good candidates for developing control agents against M. oryzae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siwei Qiao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyuan Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Qizhi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Min Yin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
- Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
16
|
Tan X, Qi C, Zhao X, Sun L, Wu M, Sun W, Gu L, Wang F, Feng H, Huang X, Xie B, Shi Z, Xie P, Wu M, Zhang Y, Chen G. ERK Inhibition Promotes Engraftment of Allografts by Reprogramming T-Cell Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206768. [PMID: 37013935 DOI: 10.1002/advs.202206768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Indexed: 06/04/2023]
Abstract
Extracellular regulated protein kinases (ERK) signaling is a master regulator of cell behavior, life, and fate. Although ERK pathway is shown to be involved in T-cell activation, little is known about its role in the development of allograft rejection. Here, it is reported that ERK signaling pathway is activated in allograft-infiltrating T cells. On the basis of surface plasmon resonance technology, lycorine is identified as an ERK-specific inhibitor. ERK inhibition by lycorine significantly prolongs allograft survival in a stringent mouse cardiac allotransplant model. As compared to untreated mice, lycorine-treated mice show a decrease in the number and activation of allograft-infiltrated T cells. It is further confirmed that lycorine-treated mouse and human T cells are less responsive to stimulation in vitro, as indicated by their low proliferative rates and decreased cytokine production. Mechanistic studies reveal that T cells treated with lycorine exhibit mitochondrial dysfunction, resulting in metabolic reprogramming upon stimulation. Transcriptome analysis of lycorine-treated T cells reveals an enrichment in a series of downregulated terms related to immune response, the mitogen-activated protein kinase cascade, and metabolic processes. These findings offer new insights into the development of immunosuppressive agents by targeting the ERK pathway involved in T-cell activation and allograft rejection.
Collapse
Affiliation(s)
- Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Bin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Peiling Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| |
Collapse
|
17
|
Siroka Z. Toxicity of House Plants to Pet Animals. Toxins (Basel) 2023; 15:toxins15050346. [PMID: 37235380 DOI: 10.3390/toxins15050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Cases of ingestion of indoor poisonous plants are relatively common among animals and lead to both acute cases of poisoning and long-term exposure to harmful substances and chronic damage to the animal's health. Plants produce a large number of secondary metabolites, which serve to protect the plant from attacks by insects, parasitic plants, fungi or, for example, during reproduction. However, these metabolites can be toxic if ingested by animals or humans. Toxicologically effective components found in plants are mainly alkaloids, glycosides, saponins, terpenes and others. This review article describes in detail the most common and popular indoor poisonous plants grown in Europe, the mechanisms of action of their active substances and clinical signs of the respective poisonings. This manuscript is supplemented with rich photographic documentation of these plants not found in similar articles, and also includes a description of the treatment of individual types of poisoning.
Collapse
Affiliation(s)
- Zuzana Siroka
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 61242 Brno, Czech Republic
| |
Collapse
|
18
|
Cicio A, Sut S, Dall'Acqua S, Bruno M, Luparello C, Serio R, Zizzo MG. Chemical Characterization and Cytotoxic and Antioxidant Activity Evaluation of the Ethanol Extract from the Bulbs of Pancratium maritimun Collected in Sicily. Molecules 2023; 28:molecules28103986. [PMID: 37241726 DOI: 10.3390/molecules28103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
P. maritimum L., belonging to the Amaryllidaceae family, is a species that grows on beaches and coastal sand dunes mainly on both sides of the Mediterranean Sea and Black Sea, the Middle East, and up to the Caucasus region. It has been largely investigated due to its several interesting biological properties. With the aim of providing new insights into the phytochemistry and pharmacology of this species, the ethanolic extract of the bulbs from a local accession, not previously studied, growing in Sicily (Italy), was investigated. This chemical analysis, performed by mono- and bi-dimensional NMR spectroscopy, as well as LC-DAD-MSn, allowed to identify several alkaloids, three of which were never detected in the genus Pancratium. Furthermore, the cytotoxicity of the preparation was assessed in differentiated human Caco-2 intestinal cells by trypan blue exclusion assay, and its antioxidant potential was evaluated using the DCFH-DA radical scavenging method. The results obtained demonstrate that P. maritimum bulbs' extract exerts no cytotoxic effect and is able to remove free radicals at all the concentrations tested.
Collapse
Affiliation(s)
- Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 16, 90128 Palermo, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 16, 90128 Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 16, 90128 Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 16, 90128 Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 16, 90128 Palermo, Italy
| |
Collapse
|
19
|
Li Y, Tai Z, Ma J, Miao F, Xin R, Shen C, Shen M, Zhu Q, Chen Z. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma. J Nanobiotechnology 2023; 21:139. [PMID: 37118807 PMCID: PMC10148442 DOI: 10.1186/s12951-023-01877-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Topical anticancer drugs offer a potential therapeutic modality with high compliance for treating cutaneous squamous cell carcinoma (cSCC). However, the existing topical treatments for cSCC are associated with limited penetrating ability to achieve the desired outcome. Therefore, there remains an urgent requirement to develop drugs with efficient anticancer activity suitable for treating cSCC and to overcome the skin physiological barrier to improve the efficiency of drug delivery to the tumor. RESULTS We introduced lycorine (LR) into the topical treatment for cSCC and developed a cell-penetrating peptide (CPP)-modified cationic transfersome gel loaded with lycorine-oleic acid ionic complex (LR-OA) (LR@DTFs-CPP Gel) and investigated its topical therapeutic effects on cSCC. The anti-cSCC effects of LR and skin penetration of LR-OA transfersomes were confirmed. Simultaneously, cationic lipids and modification of R5H3 peptide of the transfersomes further enhanced the permeability of the skin and tumor as well as the effective delivery of LR to tumor cells. CONCLUSIONS Topical treatment of cSCC-xenografted nude mice with LR@DTFs-CPP Gel showed effective anticancer properties with high safety. This novel formulation provides novel insights into the treatment and pathogenesis of cSCC.
Collapse
Affiliation(s)
- Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Rujuan Xin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Cuie Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai, 200443, China.
- Shanghai Engineering Research Center for Topical Chinese Medicine, 1278 Baode Road, Shanghai, 200443, China.
| |
Collapse
|
20
|
De A, Bhattacharya S, Debroy B, Bhattacharya A, Pal K. Exploring the pharmacological aspects of natural phytochemicals against SARS-CoV-2 Nsp14 through an in silico approach. In Silico Pharmacol 2023; 11:12. [PMID: 37131867 PMCID: PMC10141836 DOI: 10.1007/s40203-023-00143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/13/2023] [Indexed: 05/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), possesses an important bifunctional nonstructural protein (nsp14) with a C-terminal N7-methyltransferase (N7-MTase) domain and an N-terminal domain with exoribonuclease (ExoN) activity that is required for maintaining high-fidelity viral replication. Viruses use the error-prone replication mechanism, which results in high mutation rates, to adapt quickly to stressful situations. The efficiency with which nsp14 removes mismatched nucleotides due to the presence of ExoN activity protects viruses from mutagenesis. We investigated the pharmacological role of the phytochemicals (Baicalein, Bavachinin, Emodin, Kazinol F, Lycorine, Sinigrin, Procyanidin A2, Tanshinone IIA, Tanshinone IIB, Tomentin A, and Tomentin E) against the highly conserved nsp14 protein using docking-based computational analyses in search of new potential natural drug targets. The selected eleven phytochemicals failed to bind the active site of N7-Mtase in the global docking study, while the local docking study identified the top five phytochemicals with high binding energy scores ranging from - 9.0 to - 6.4 kcal/mol. Procyanidin A2 and Tomentin A showed the highest docking score of - 9.0 and - 8.1 kcal/mol, respectively. Local docking of isoform variants was also conducted, yielding the top five phytochemicals, with Procyanidin A1 having the highest binding energy value of - 9.1 kcal/mol. The phytochemicals were later tested for pharmacokinetics and pharmacodynamics analysis for Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) which resulted in choosing Tomentin A as a potential candidate. The molecular dynamics simulations studies of nsp14 revealed significant conformational changes upon complex formation with the identified compound, implying that these phytochemicals could be used as safe nutraceuticals which will impart long-term immunological competence in the human population against CoVs. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00143-7.
Collapse
Affiliation(s)
- Arkajit De
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Somdatta Bhattacharya
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
- Cancer Biology Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Bishal Debroy
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Arijit Bhattacharya
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
- Anti-Microbial Resistance Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| | - Kuntal Pal
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
- Cancer Biology Laboratory, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126 India
| |
Collapse
|
21
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D, Xiang H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv 2023; 13:7798-7817. [PMID: 36909750 PMCID: PMC9994607 DOI: 10.1039/d3ra00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
22
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
23
|
SWATH-MS-Based Proteomics Reveals the Regulatory Metabolism of Amaryllidaceae Alkaloids in Three Lycoris Species. Int J Mol Sci 2023; 24:ijms24054495. [PMID: 36901927 PMCID: PMC10002500 DOI: 10.3390/ijms24054495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Alkaloids are a class of nitrogen-containing alkaline organic compounds found in nature, with significant biological activity, and are also important active ingredients in Chinese herbal medicine. Amaryllidaceae plants are rich in alkaloids, among which galanthamine, lycorine, and lycoramine are representative. Since the difficulty and high cost of synthesizing alkaloids have been the major obstacles in industrial production, particularly the molecular mechanism underlying alkaloid biosynthesis is largely unknown. Here, we determined the alkaloid content in Lycoris longituba, Lycoris incarnata, and Lycoris sprengeri, and performed a SWATH-MS (sequential window acquisition of all theoretical mass spectra)-based quantitative approach to detect proteome changes in the three Lycoris. A total of 2193 proteins were quantified, of which 720 proteins showed a difference in abundance between Ll and Ls, and 463 proteins showed a difference in abundance between Li and Ls. KEGG enrichment analysis revealed that differentially expressed proteins are distributed in specific biological processes including amino acid metabolism, starch, and sucrose metabolism, implicating a supportive role for Amaryllidaceae alkaloids metabolism in Lycoris. Furthermore, several key genes collectively known as OMT and NMT were identified, which are probably responsible for galanthamine biosynthesis. Interestingly, RNA processing-related proteins were also abundantly detected in alkaloid-rich Ll, suggesting that posttranscriptional regulation such as alternative splicing may contribute to the biosynthesis of Amaryllidaceae alkaloids. Taken together, our SWATH-MS-based proteomic investigation may reveal the differences in alkaloid contents at the protein levels, providing a comprehensive proteome reference for the regulatory metabolism of Amaryllidaceae alkaloids.
Collapse
|
24
|
Naidu SAG, Mustafa G, Clemens RA, Naidu AS. Plant-Derived Natural Non-Nucleoside Analog Inhibitors (NNAIs) against RNA-Dependent RNA Polymerase Complex (nsp7/nsp8/nsp12) of SARS-CoV-2. J Diet Suppl 2023; 20:254-283. [PMID: 34850656 DOI: 10.1080/19390211.2021.2006387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of fast-spreading SARS-CoV-2 mutants has sparked a new phase of COVID-19 pandemic. There is a dire necessity for antivirals targeting highly conserved genomic domains on SARS-CoV-2 that are less prone to mutation. The nsp12, also known as the RNA-dependent RNA-polymerase (RdRp), the core component of 'SARS-CoV-2 replication-transcription complex', is a potential well-conserved druggable antiviral target. Several FDA-approved RdRp 'nucleotide analog inhibitors (NAIs)' such as remdesivir, have been repurposed to treat COVID-19 infections. The NAIs target RdRp protein translation and competitively block the nucleotide insertion into the RNA chain, resulting in the inhibition of viral replication. However, the replication proofreading function of nsp14-ExoN could provide resistance to SARS-CoV-2 against many NAIs. Conversely, the 'non-nucleoside analog inhibitors (NNAIs)' bind to allosteric sites on viral polymerase surface, change the redox state; thereby, exert antiviral activity by altering interactions between the enzyme substrate and active core catalytic site of the RdRp. NNAIs neither require metabolic activation (unlike NAIs) nor compete with intracellular pool of nucleotide triphosphates (NTPs) for anti-RdRp activity. The NNAIs from phytonutrient origin are potential antiviral candidates compared to their synthetic counterparts. Several in-silico studies reported the antiviral spectrum of natural phytonutrient-NNAIs such as Suramin, Silibinin (flavonolignan), Theaflavin (tea polyphenol), Baicalein (5,6,7-trihydroxyflavone), Corilagin (gallotannin), Hesperidin (citrus bioflavonoid), Lycorine (pyrrolidine alkaloid), with superior redox characteristics (free binding energy, hydrogen-bonds, etc.) than antiviral drugs (i.e. remdesivir, favipiravir). These phytonutrient-NNAIs also exert anti-inflammatory, antioxidant, immunomodulatory and cardioprotective functions, with multifunctional therapeutic benefits in the clinical management of COVID-19.
Collapse
Affiliation(s)
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
25
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
26
|
Xiao H, Xu X, Du L, Li X, Zhao H, Wang Z, Zhao L, Yang Z, Zhang S, Yang Y, Wang C. Lycorine and organ protection: Review of its potential effects and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154266. [PMID: 35752077 DOI: 10.1016/j.phymed.2022.154266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Luyang Du
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xiyang Li
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
27
|
Chemical Synthesis and Biological Activities of Amaryllidaceae Alkaloid Norbelladine Derivatives and Precursors. Molecules 2022; 27:molecules27175621. [PMID: 36080382 PMCID: PMC9457815 DOI: 10.3390/molecules27175621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Amaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties. Norbelladine and its derivatives, whose biological properties are poorly studied, are key intermediates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus (DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer’s disease (anti-cholinesterase and -prolyl oligopeptidase) properties. In monocytic leukemia cells, norcraugsodine was highly cytotoxic (CC50 = 27.0 μM), while norbelladine was the most cytotoxic to hepatocarcinoma cells (CC50 = 72.6 μM). HIV-1 infection was impaired only at cytotoxic concentrations of the compounds. The 3,4-dihydroxybenzaldehyde (selectivity index (SI) = 7.2), 3′,4′-O-dimethylnorbelladine (SI = 4.8), 4′-O-methylnorbelladine (SI > 4.9), 3′-O-methylnorbelladine (SI > 4.5), and norcraugsodine (SI = 3.2) reduced the number of DENV-infected cells with EC50 values ranging from 24.1 to 44.9 μM. The O-methylation of norcraugsodine abolished its anti-DENV potential. Norbelladine and its O-methylated forms also displayed butyrylcholinesterase-inhibition properties (IC50 values ranging from 26.1 to 91.6 μM). Altogether, the results provided hints of the structure−activity relationship of norbelladine-type alkaloids, which is important knowledge for the development of new inhibitors of DENV and butyrylcholinesterase.
Collapse
|
28
|
Wang Z, Chen Y, Gu M, Wu Z, Ding B, Yang W, Wu X, Wang C, Gao X, Yang Y, Yin G. Protective effects and mechanisms of lycorine against adriamycin-induced cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154178. [PMID: 35617889 DOI: 10.1016/j.phymed.2022.154178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adriamycin (ADR), a high-efficiency, broad-spectrum anthraquinone chemotherapeutic agent, is currently used to treat various malignant tumors and can lead to cumulative, dose-dependent, and irreversible cardiotoxicity. Lycorine (LYC) is a benzyl phenethylamine alkaloid that exerts remarkable therapeutic effects on cancers and sepsis. PURPOSE However, researchers have not yet elucidated whether LYC exerts protective effects against cardiotoxicity induced by ADR and the possible molecular mechanisms. DESIGN This study established ADR injury models in vitro and in vivo to explore the effects of LYC against cardiotoxicity induced by ADR. The effects of LYC on blood biochemical parameters, cardiac parameters and structure, ADR-related pathophysiological processes, and the SIRT1/PPARγ signal pathway in ADR-injured models, were analyzed using a series of experimental methods. RESULTS LYC significantly improved survival rate, blood biochemical parameters (LDH, CK, and BUN), cardiac parameters (SV and CO), mitochondrial dysfunction, and ameliorated oxidative stress, apoptosis, and myocardial fibrosis in ADR-injured mice (p<0.05). Moreover, LYC obviously increased cell viability and reduced oxidative stress, apoptosis, and mitochondrial dysfunction in ADR-injured cells (p<0.05). Furthermore, this study confirmed that the protective effect of LYC on ADR-induced cardiotoxicitymight be mediated by the SIRT1/PPARγ signaling pathway. These results revealed that the beneficial role of LYC on cardiotoxicity induced by ADR were mediated via regulating SIRT1/PPARγ signaling for the first time. CONCLUSION These discoveries may provide a theoretical basis for the exploitation of LYC as a potential cardioprotective drug candidate due to its multiple biological functions to reduce ADR-induced cardiotoxicity, but further preclinical and clinical studies are still needed.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Mingming Gu
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Zhen Wu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Ding
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wenwen Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xue Wu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xuhui Gao
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Guilin Yin
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
29
|
Bajalia EM, Azzouz FB, Chism DA, Giansiracusa DM, Wong CG, Plaskett KN, Bishayee A. Phytochemicals for the Prevention and Treatment of Renal Cell Carcinoma: Preclinical and Clinical Evidence and Molecular Mechanisms. Cancers (Basel) 2022; 14:3278. [PMID: 35805049 PMCID: PMC9265746 DOI: 10.3390/cancers14133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is associated with about 90% of renal malignancies, and its incidence is increasing globally. Plant-derived compounds have gained significant attention in the scientific community for their preventative and therapeutic effects on cancer. To evaluate the anticancer potential of phytocompounds for RCC, we compiled a comprehensive and systematic review of the available literature. Our work was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The literature search was performed using scholarly databases such as PubMed, Scopus, and ScienceDirect and keywords such as renal cell carcinoma, phytochemicals, cancer, tumor, proliferation, apoptosis, prevention, treatment, in vitro, in vivo, and clinical studies. Based on in vitro results, various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, suppressed cell viability, proliferation and growth, showed cytotoxic activity, inhibited invasion and migration, and enhanced the efficacy of chemotherapeutic drugs in RCC. In various animal tumor models, phytochemicals suppressed renal tumor growth, reduced tumor size, and hindered angiogenesis and metastasis. The relevant antineoplastic mechanisms involved upregulation of caspases, reduction in cyclin activity, induction of cell cycle arrest and apoptosis via modulation of a plethora of cell signaling pathways. Clinical studies demonstrated a reduced risk for the development of kidney cancer and enhancement of the efficacy of chemotherapeutic drugs. Both preclinical and clinical studies displayed significant promise of utilizing phytochemicals for the prevention and treatment of RCC. Further research, confirming the mechanisms and regulatory pathways, along with randomized controlled trials, are needed to establish the use of phytochemicals in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (E.M.B.); (F.B.A.); (D.A.C.); (D.M.G.); (C.G.W.); (K.N.P.)
| |
Collapse
|
30
|
Dong Y, Lv D, Zhao Z, Xu Z, Hu Z, Tang B. Lycorine Inhibits Hypertrophic Scar Formation by Inducing ROS-Mediated Apoptosis. Front Bioeng Biotechnol 2022; 10:892015. [PMID: 35685086 PMCID: PMC9171077 DOI: 10.3389/fbioe.2022.892015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertrophic scar (HS) is a fibrotic cutaneous disease with few effective therapies. Lycorine is a drug with pro-apoptotic ability and anti-fibrosis potential. This study aimed to test whether lycorine could trigger the apoptosis of hypertrophic scar fibroblasts (HSFs) to inhibit HS formation. Methods: The proapoptotic and anti-fibrosis effects of lycorine on the viability and apoptosis of human primary HSFs and their reactive oxygen species (ROS) production as well as a rabbit ear model of HS were determined by CCK-8, flow cytometry, Western blot, immunofluorescence, transwell migration, collagen gel contraction assays. Results: Lycorine treatment selectively decreased the viability of HSFs, and induced their apoptosis, but not normal fibroblasts (NFs). Lycorine treatment increased the relative levels of Bax and cleaved PARP expression, cytochrome C cytoplasm translocation, but decreased Bcl-2, caspase-3 and caspase-9 expression, the mitochondrial membrane potential (MMP) in HSFs. Lycorine inhibited the migration and contraction of HSFs, and reduced the expression of collagen I, collagen III and α-SMA. Mechanistically, lycorine treatment stimulated high levels of ROS production, leading to apoptosis of HSFs while treatment with NAC, a ROS inhibitor, significantly mitigated or abrogated the pro-apoptotic and antifibrotic activity of lycorine in HSFs. Moreover, lycorine treatment mitigated the severity of HS in rabbit ears by inducing fibroblast apoptosis. Conclusion: These results indicate that lycorine has a potent anti-fibrotic activity and is a potential drug for intervention of HS.
Collapse
Affiliation(s)
- Yunxian Dong
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongming Lv
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zirui Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongye Xu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Hu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing Tang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Potential Therapeutic Applications of Plant-Derived Alkaloids against Inflammatory and Neurodegenerative Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7299778. [PMID: 35310033 PMCID: PMC8926539 DOI: 10.1155/2022/7299778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
Alkaloids are a type of natural compound possessing different pharmacological activities. Natural products, including alkaloids, which originate from plants, have emerged as potential protective agents against neurodegenerative disorders (NDDs) and chronic inflammations. A wide array of prescription drugs are used against these conditions, however, not free of limitations of potency, side effects, and intolerability. In the context of personalized medicine, further research on alkaloids to unravel novel therapeutic approaches in reducing complications is critical. In this review, a systematic survey was executed to collect the literature on alkaloids and their health complications, from which we found that majority of alkaloids exhibit anti-inflammatory action via nuclear factor-κB and cyclooxygenase-2 (COX-2), and neuroprotective interaction through acetylcholinesterase (AChE), COX, and β-site amyloid precursor protein activity. In silico ADMET and ProTox-II-related descriptors were calculated to predict the pharmacological properties of 280 alkaloids isolated from traditional medicinal plants towards drug development. Out of which, eight alkaloids such as tetrahydropalmatine, berberine, tetrandrine, aloperine, sinomenine, oxymatrine, harmine, and galantamine are found to be optimal within the categorical range when compared to nicotine. These alkaloids could be exploited as starting materials for novel drug synthesis or, to a lesser extent, manage inflammation and neurodegenerative-related complications.
Collapse
|
32
|
Improved Enzymatic Assay and Inhibition Analysis of Redox Membranotropic Enzymes, AtGALDH and TcGAL, Using a Reversed Micellar System. ANALYTICA 2022. [DOI: 10.3390/analytica3010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reversed micelles are helpful to solubilize otherwise insoluble membranotropic or membrane-bound enzymes in their functional form, thus enabling activity assay and inhibition analysis. However, in the case of redox enzymes, this task is further complicated by the necessity to select an appropriate electron-acceptor (EA) which, ideally, should be compatible with spectrophotometric measurements in reversed micelles. Here, we have identified such an EA and successfully used it in a reversed micellar environment to assay the activity of two homologous enzymes from mitochondria: l-galactone-1,4-lactone dehydrogenase (EC 1.3.2.3) from Arabidopsis thaliana (AtGALDH) and galactonolactone oxidase (EC 1.3.3.12) from Trypanosoma cruzi (TcGAL), differing in their membranotropic properties, with TcGAL being almost insoluble in water and particularly difficult to assay. Furthermore, we have demonstrated the possibility to use this assay for inhibition analysis, with an elucidation of the mechanism and inhibition parameters, which otherwise could not be possible. In order to perform inhibition analysis, we improved the approach for the determination of activity of such membrane enzymes based on a reversed micellar system as membrane matrix, necessary for the functioning of membrane enzymes. A number of electron acceptors (EA) were tested for AtGALDH and optimal conditions of activity determination for AtGALDH were found. The suggested method was successfully applied to the study of the inhibition of AtGALDH by lycorine, and the mixed competitive mechanism of inhibition of AtGALDH by lycorine was determined. The developed approach to inhibitor analysis was applied for TcGAL, insoluble in water membrane, and the method provides new opportunities for searching effective inhibitors that may be potential drugs. Indeed, galactonolactone oxidase from Trypanosoma cruzi (TcGAL) and AtGALDH are homologues, and the inhibition of TcGAL stops the vital biosynthesis of vitamin C in parasite Trypanosoma cruzi from causing Chagas disease. The approach proposed can be applied for the screening of inhibitors of AtGALDH and TcGAL, as well as to study properties of other membrane enzymes including determination of the mechanisms of inhibition, structure and catalytic properties, the impact of membrane components (for example lipids), and so on.
Collapse
|
33
|
Ren PX, Shang WJ, Yin WC, Ge H, Wang L, Zhang XL, Li BQ, Li HL, Xu YC, Xu EH, Jiang HL, Zhu LL, Zhang LK, Bai F. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol Sin 2022; 43:483-493. [PMID: 33907306 PMCID: PMC8076879 DOI: 10.1038/s41401-021-00668-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.
Collapse
Affiliation(s)
- Peng-Xuan Ren
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Wei-Juan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wan-Chao Yin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Wang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang-Lei Zhang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Bing-Qian Li
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Hong-Lin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ye-Chun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eric H Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Liang Jiang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
34
|
Kittakoop P, Darshana D, Sangsuwan R, Mahidol C. Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Wu J, Fu Y, Wu YX, Wu ZX, Wang ZH, Li P. Lycorine ameliorates isoproterenol-induced cardiac dysfunction mainly via inhibiting inflammation, fibrosis, oxidative stress and apoptosis. Bioengineered 2021; 12:5583-5594. [PMID: 34515620 PMCID: PMC8806515 DOI: 10.1080/21655979.2021.1967019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alleviating cardiac dysfunction improves the prognosis of heart failure patients. Lycorine is an alkaloid with several beneficial biological properties. Here, we used mice to evaluate the effect of lycorine on cardiac dysfunction elicited by isoproterenol. Mice were divided into four groups: control, lycorine, isoproterenol, and isoproterenol + lycorine. Mice in the combined group were treated daily with 10 mg/kg isoproterenol intraperitoneally for 2 weeks and 5 mg/kg lycorine was given simultaneously intraperitoneally for 4 weeks. Cardiac structure and function were assessed by echocardiography, hematoxylin and eosin staining, and Masson's trichrome staining. Isoproterenol-induced cardiac dysfunction and histopathological injury that was significantly improved by treatment with lycorine. Western blotting and the quantitative real-time polymerase chain reaction were used to explore the molecular mechanisms of these effects. Levels of the inflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, were increased by treatment with isoproterenol; these increases were significantly reduced by lycorine, with involvement of the NF-κB signaling pathway. The fibrotic factors, collagen I and collagen III, were increased by isoproterenol and decreased by treatment with lycorine through inhibiting activation of the Smad signaling pathway. In addition, lycorine alleviated oxidative stress as evidenced by a reduction in total reactive oxygen species in the isoproterenol + lycorine group compared to the isoproterenol group. Lycorine exerted an anti-apoptotic effect as evidenced by upregulating Bcl-2 and downregulating Bax. Overall, our findings demonstrate that lycorine protects against cardiac dysfunction induced by isoproterenol by inhibiting inflammation, fibrosis, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ji Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yang Fu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying-xing Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zu-xiang Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhen-hua Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- CONTACT Ping Li Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi330006, China
| |
Collapse
|
36
|
Yun C, Lee HJ, Lee CJ. Small Molecule Drug Candidates for Managing the Clinical Symptoms of COVID-19: a Narrative Review. Biomol Ther (Seoul) 2021; 29:571-581. [PMID: 34615772 PMCID: PMC8551738 DOI: 10.4062/biomolther.2021.134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Towards the end of 2019, an atypical acute respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China and subsequently named Coronavirus disease 2019 (COVID-19). The rapid dissemination of COVID-19 has provoked a global crisis in public health. COVID-19 has been reported to cause sepsis, severe infections in the respiratory tract, multiple organ failure, and pulmonary fibrosis, all of which might induce mortality. Although several vaccines for COVID-19 are currently being administered worldwide, the COVID-19 pandemic is not yet effectively under control. Therefore, novel therapeutic agents to eradicate the cause of the disease and/or manage the clinical symptoms of COVID-19 should be developed to effectively regulate the current pandemic. In this review, we discuss the possibility of managing the clinical symptoms of COVID-19 using natural products derived from medicinal plants used for controlling pulmonary inflammatory diseases in folk medicine. Diverse natural products have been reported to exert potential antiviral effects in vitro by affecting viral replication, entry into host cells, assembly in host cells, and release. However, the in vivo antiviral effects and clinical antiviral efficacies of these natural products against SARS-CoV-2 have not been successfully proven to date. Thus, these properties need to be elucidated through further investigations, including randomized clinical trials, in order to develop optimal and ideal therapeutic candidates for COVID-19.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyun Jae Lee
- Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea
| | - Choong Jae Lee
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
37
|
Misra SK, Pathak K. Naturally occurring heterocyclic anticancer compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Naturally occurring heterocyclic scaffolds are key ingredients for the development of various therapeutics employed for biomedical applications. Heterocyclic pharmacophores are widely disseminated and have been befallen in almost all categories of drugs for the alleviation of myriad ailments including diabetes, neurodegenerative, psychiatric, microbial infections, disastrous cancers etc. Countless fused heterocyclic anticancerous templates are reported to display antimetabolite, antioxidant, antiproliferative, cytostatic etc. pharmacological actions via targeting different signaling pathways (cell cycle, PI-3kinase/Akt, p53, caspase extrinsic pathway etc.), overexpressive receptors (EGRF, HER2, EGF, VEGF etc.) and physiological enzymes (topoisomerase I and II, cyclin dependent kinase etc.). A compiled description on various natural sources (plants, microbes, marine) containing anticancer agents comprising heterocyclic ring specified with presence of nitrogen (vincristine, vinblastine, indole-3-carbinol, meridianins, piperine, lamellarins etc.), oxygen (paclitaxel, halichondrin B, quercetin, myricetin, kaempferol etc.) and sulphur atoms (brugine, fucoidan, carrageenan etc.) are displayed here along with their molecular level cytotoxic action and therapeutic applications.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Shahu Ji Maharaj University , Kanpur , 208026 , India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences , Saifai , Etawah , 206130 , Uttar Pradesh , India
| |
Collapse
|
38
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
39
|
Li D, Liu M, Li Z, Zheng G, Chen A, Zhao L, Yang P, Wei L, Chen Y, Ruan XZ. Sterol-resistant SCAP Overexpression in Vascular Smooth Muscle Cells Accelerates Atherosclerosis by Increasing Local Vascular Inflammation through Activation of the NLRP3 Inflammasome in Mice. Aging Dis 2021; 12:747-763. [PMID: 34094640 PMCID: PMC8139202 DOI: 10.14336/ad.2020.1120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 12/01/2022] Open
Abstract
Atherosclerosis is a serious age-related pathology, and one of its hallmarks is the presence of chronic inflammation. Sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) is a cholesterol sensor that plays an essential role in regulating intracellular cholesterol homeostasis. Accordingly, dysregulation of the SCAP-SREBP pathway has been reported to be closely associated with an increased risk of obesity, hypercholesterolemia, and cardiovascular disease. In this study, we explored whether sterol-resistant SCAP (D443N mutation) in vascular smooth muscle cells (VSMCs) of mice promotes vascular inflammation and accelerates the occurrence and progression of atherosclerosis. We established a transgenic knock-in mouse model of atherosclerosis with an activating D443N mutation at the sterol-sensing domain of SCAP (SCAPD443N) by microinjection. Next, SCAPD443N/ApoE-/- mice were generated by crossing SCAPD443N mice with apolipoprotein E-/- (ApoE-/-) background mice. We found that sterol-resistant SCAP markedly amplified and accelerated the progression of atherosclerotic plaques in SCAPD443N/ApoE-/- mice compared with that in control ApoE-/- mice. Similarly, in SCAPD443N mice, aortic atherosclerotic plaques both appeared earlier and were greater in number than that in control SCAP+/+ mice, both of which were fed a Western diet for 12 or 24 weeks. Moreover, we observed that sterol-resistant SCAP significantly increased local inflammation and induced endothelial dysfunction in the aortas of SCAPD443N mice and SCAPD443N/ApoE-/- mice. In vitro, we also found that sterol-resistant SCAP overexpression in VSMCs increased the release of inflammatory cytokines and induced endothelial cell injury when both cell types were cocultured. Furthermore, we demonstrated that sterol-resistant SCAP overexpression in VSMCs promoted SCAP and NLRP3 inflammasome cotranslocation to the Golgi and increased the activation of the NLRP3 inflammasome pathway. These findings suggested that sterol-resistant SCAP in VSMCs of mice induced vascular inflammation and endothelial dysfunction, consequently accelerating atherosclerosis by activating the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Danyang Li
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mihua Liu
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Li
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guo Zheng
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Amei Chen
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Yang
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- 1Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,2National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,3John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| |
Collapse
|
40
|
Jin YH, Min JS, Jeon S, Lee J, Kim S, Park T, Park D, Jang MS, Park CM, Song JH, Kim HR, Kwon S. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153440. [PMID: 33376043 PMCID: PMC7738280 DOI: 10.1016/j.phymed.2020.153440] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function. PURPOSE We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections. METHODS We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp. RESULTS Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 μM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 μM, compared with remdesivir's IC50 value of 6.335 ± 0.731 μM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (-6.2 kcal/mol) were higher than those of remdesivir (-4.7 kcal/mol). CONCLUSIONS Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Jung Sun Min
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Daeui Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Department of Non-Clinical Studies, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
41
|
Palit P, Chattopadhyay D, Thomas S, Kundu A, Kim HS, Rezaei N. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153396. [PMID: 33380375 PMCID: PMC7591300 DOI: 10.1016/j.phymed.2020.153396] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, novel coronavirus disease (Covid-19) outbreak creates global panic across the continents, as people from almost all countries and territories have been affected by this highly contagious viral disease. The scenario is deteriorating due to lack of proper & specific target-oriented pharmacologically safe prophylactic agents or drugs, and or any effective vaccine. drug development is urgently required to back in the normalcy in the community and to combat this pandemic. PURPOSE Thus, we have proposed two novel drug targets, Furin and TMPRSS2, as Covid-19 treatment strategy. We have highlighted this target-oriented novel drug delivery strategy, based on their pathophysiological implication on SARS-CoV-2 infection, as evident from earlier SARS-CoV-1, MERS, and influenza virus infection via host cell entry, priming, fusion, and endocytosis. STUDY DESIGN & METHODS: An earlier study suggested that Furin and TMPRSS2 knockout mice had reduced level of viral load and a lower degree of organ damage such as the lung. The present study thus highlights the promise of some selected novel and potential anti-viral Phytopharmaceutical that bind to Furin and TMPRSS2 as target. RESULT Few of them had shown promising anti-viral response in both preclinical and clinical study with acceptable therapeutic safety-index. CONCLUSION Hence, this strategy may limit life-threatening Covid-19 infection and its mortality rate through nano-suspension based intra-nasal or oral nebulizer spray, to treat mild to moderate SARS-COV-2 infection when Furin and TMPRSS2 receptor may initiate to express and activate for processing the virus to cause cellular infection by replication within the host cell and blocking of host-viral interaction.
Collapse
Affiliation(s)
- Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, Assam-788011 India.
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kerala 686 560, India.
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14194, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
42
|
Spina R, Saliba S, Dupire F, Ptak A, Hehn A, Piutti S, Poinsignon S, Leclerc S, Bouguet-Bonnet S, Laurain-Mattar D. Molecular Identification of Endophytic Bacteria in Leucojum aestivum In Vitro Culture , NMR-Based Metabolomics Study and LC-MS Analysis Leading to Potential Amaryllidaceae Alkaloid Production. Int J Mol Sci 2021; 22:ijms22041773. [PMID: 33578992 PMCID: PMC7916811 DOI: 10.3390/ijms22041773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, endophytic bacteria belonging to the Bacillus genus were isolated from in vitro bulblets of Leucojum aestivum and their ability to produce Amaryllidaceae alkaloids was studied. Proton Nuclear Magnetic Resonance (1H NMR)-based metabolomics combined with multivariate data analysis was chosen to compare the metabolism of this plant (in vivo bulbs, in vitro bulblets) with those of the endophytic bacteria community. Primary metabolites were quantified by quantitative 1H NMR (qNMR) method. The results showed that tyrosine, one precursor of the Amaryllidaceae alkaloid biosynthesis pathway, was higher in endophytic extract compared to plant extract. In total, 22 compounds were identified including five molecules common to plant and endophyte extracts (tyrosine, isoleucine, valine, fatty acids and tyramine). In addition, endophytic extracts were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) for the identification of compounds in very low concentrations. Five Amaryllidaceae alkaloids were detected in the extracts of endophytic bacteria. Lycorine, previously detected by 1H NMR, was confirmed with LC-MS analysis. Tazettine, pseudolycorine, acetylpseudolycorine, 1,2-dihydro-chlidanthine were also identified by LC-MS using the positive ionization mode or by GC-MS. In addition, 11 primary metabolites were identified in the endophytic extracts such as tyramine, which was obtained by decarboxylation of tyrosine. Thus, Bacillus sp. isolated from L. aestivum bulblets synthesized some primary and specialized metabolites in common with the L.aestivum plant. These endophytic bacteria are an interesting new approach for producing the Amaryllidaceae alkaloid such as lycorine.
Collapse
Affiliation(s)
- Rosella Spina
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5262 (R.S.); +33-3-7274-5675 (D.L.-M.)
| | - Sahar Saliba
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
| | - Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140 Krakow, Poland;
| | - Alain Hehn
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France; (A.H.); (S.P.)
| | - Séverine Piutti
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France; (A.H.); (S.P.)
| | - Sophie Poinsignon
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (S.P.); (S.B.-B.)
| | | | | | - Dominique Laurain-Mattar
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.S.); (F.D.)
- Correspondence: (R.S.); (D.L.-M.); Tel.: +33-3-7274-5262 (R.S.); +33-3-7274-5675 (D.L.-M.)
| |
Collapse
|
43
|
Alkaloids: Therapeutic Potential against Human Coronaviruses. Molecules 2020; 25:molecules25235496. [PMID: 33255253 PMCID: PMC7727683 DOI: 10.3390/molecules25235496] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Alkaloids are a class of natural products known to have wide pharmacological activity and have great potential for the development of new drugs to treat a wide array of pathologies. Some alkaloids have antiviral activity and/or have been used as prototypes in the development of synthetic antiviral drugs. In this study, eleven anti-coronavirus alkaloids were identified from the scientific literature and their potential therapeutic value against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is discussed. In this study, in silico studies showed an affinity of the alkaloids for binding to the receptor-binding domain of the SARS-CoV-2 spike protein, putatively preventing it from binding to the host cell. Lastly, several mechanisms for the known anti-coronavirus activity of alkaloids were discussed, showing that the alkaloids are interesting compounds with potential use as bioactive agents against SARS-CoV-2.
Collapse
|
44
|
Cahlíková L, Breiterová K, Opletal L. Chemistry and Biological Activity of Alkaloids from the Genus Lycoris (Amaryllidaceae). Molecules 2020; 25:molecules25204797. [PMID: 33086636 PMCID: PMC7587589 DOI: 10.3390/molecules25204797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022] Open
Abstract
Lycoris Herbert, family Amaryllidaceae, is a small genus of about 20 species that are native to the warm temperate woodlands of eastern Asia, as in China, Korea, Japan, Taiwan, and the Himalayas. For many years, species of Lycoris have been subjected to extensive phytochemical and pharmacological investigations, resulting in either the isolation or identification of more than 110 Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Lycoris.
Collapse
|
45
|
Herranz R, Copete MA, Herranz JM, Copete E, Ferrandis P. Optimization of Plant Production by Seed Treatment in Two Wild Subspecies of Narcissus pseudonarcissus Rich in Alkaloids. Molecules 2020; 25:molecules25194439. [PMID: 32992590 PMCID: PMC7582531 DOI: 10.3390/molecules25194439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
The daffodil Narcissus pseudonarcissus L. contains alkaloids of pharmaceutical interest. Wild daffodil populations have diverse genetic backgrounds and various genetic traits of possible importance. Developing protocols for plant production from seeds may ensure the availability of a large reservoir of individuals as well as being important for species with bulbs that are difficult to acquire. The closely related Narcissus pseudonarcissus subsp. munozii-garmendiae and subsp. nevadensis were investigated in this study because the alkaloids isolated from both are of high pharmacological interest. At the dispersal time, the seeds of both were dormant with underdeveloped embryos, i.e., morphophysiological dormancy (MPD). Experiments were conducted outdoors and under controlled laboratory conditions. Embryo growth and the percentages of radicle and seedling emergence were calculated under different temperature-light stratifications. In N. munozii-garmendiae, embryo growth occurred during warm stratification (28/14 °C or 25/10 °C) and the radicle then emerged when the temperature decreased, but the shoot was dormant. In N. nevadensis, the seeds germinated when cold stratified (5 °C) and then incubated at cool temperatures. Thus, N. munozii-garmendiae and N. nevadensis exhibit different levels of MPD, i.e., deep simple epicotyl and intermediate complex, respectively. Plant production protocols from seeds were established for both taxa in this study.
Collapse
Affiliation(s)
- Raquel Herranz
- ETSIAM, Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, 02071 Albacete, Spain; (R.H.); (J.M.H.); (E.C.); (P.F.)
| | - Miguel A. Copete
- ETSIAM, Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, 02071 Albacete, Spain; (R.H.); (J.M.H.); (E.C.); (P.F.)
- Botanical Institute, University of Castilla-La Mancha, Avenida de la Mancha s/n, 02006 Albacete, Spain
- Correspondence: ; Tel.: +34-967-599-204
| | - José M. Herranz
- ETSIAM, Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, 02071 Albacete, Spain; (R.H.); (J.M.H.); (E.C.); (P.F.)
- Botanical Institute, University of Castilla-La Mancha, Avenida de la Mancha s/n, 02006 Albacete, Spain
| | - Elena Copete
- ETSIAM, Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, 02071 Albacete, Spain; (R.H.); (J.M.H.); (E.C.); (P.F.)
| | - Pablo Ferrandis
- ETSIAM, Department of Plant Production and Agricultural Technology, University of Castilla-La Mancha, University Campus s/n, 02071 Albacete, Spain; (R.H.); (J.M.H.); (E.C.); (P.F.)
- Botanical Institute, University of Castilla-La Mancha, Avenida de la Mancha s/n, 02006 Albacete, Spain
| |
Collapse
|
46
|
Zhang S, Liu Y, Xing F, Che CM. Direct preparation of unprotected aminimides (R 3N +-NH -) from natural aliphatic tertiary alkaloids (R 3N) by [Mn(TDCPP)Cl]-catalysed N-amination reaction. Chem Commun (Camb) 2020; 56:9102-9105. [PMID: 32644058 DOI: 10.1039/d0cc02934c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A panel of natural aliphatic tertiary alkaloids (R3N) were directly converted to R3N+-NH- (without the need to prepare protected aminimides R3N+-NR'- followed by deprotection) by [Mn(TDCPP)Cl]-catalysed N-amination reaction, with O-(2,4-dinitrophenyl)hydroxylamine as the nitrogen source, in up to 98% yields under mild reaction conditions.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Fangrong Xing
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China. and Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, P. R. China and HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
47
|
Haiaty S, Rashidi MR, Akbarzadeh M, Maroufi NF, Yousefi B, Nouri M. Targeting vasculogenic mimicry by phytochemicals: A potential opportunity for cancer therapy. IUBMB Life 2020; 72:825-841. [PMID: 32026601 DOI: 10.1002/iub.2233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Vasculogenic mimicry (VM) is regarded as a process where very aggressive cancer cells generate vascular-like patterns without the presence of endothelial cells. It is considered as the main mark of malignant cancer and has pivotal role in cancer metastasis and progression in various types of cancers. On the other hand, resistance to the antiangiogenesis therapies leads to the cancer recurrence. Therefore, development of novel chemotherapies and their combinations is urgently needed for abolition of VM structures and also for better tumor therapy. Hence, identifying compounds that target VM structures might be superior therapeutic factors for cancers treatment and controlling the recurrence and metastasis. In recent times, naturally occurring compounds, especially phytochemicals have obtained great attention due to their safe properties. Phytochemicals are also capable of targeting VM structure and also their main signaling pathways. Consequently, in this review article, we illustrated key signaling pathways in VM, and the phytochemicals that affect these structures including curcumin, genistein, lycorine, luteolin, columbamine, triptolide, Paris polyphylla, dehydroeffusol, jatrorrhizine hydrochloride, grape seed proanthocyanidins, resveratrol, isoxanthohumol, dehydrocurvularine, galiellalactone, oxacyclododecindione, brucine, honokiol, ginsenoside Rg3, and norcantharidin. The recognition of these phytochemicals and their safety profile may lead to new therapeutic agents' development for VM elimination in different types of tumors.
Collapse
Affiliation(s)
- Sanya Haiaty
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nazila F Maroufi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
The versatile O-methyltransferase LrOMT catalyzes multiple O-methylation reactions in amaryllidaceae alkaloids biosynthesis. Int J Biol Macromol 2019; 141:680-692. [PMID: 31494163 DOI: 10.1016/j.ijbiomac.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Amaryllidaceae alkaloids are unique benzylphenethylamine derivatives that comprise of more than 600 members with a huge chemical diversity. Most of them showed interesting bioactivities, for instance, galanthamine (GAL) is clinically used for Alzheimer's disease treatment. All Amaryllidaceae alkaloids had been thought to be derived from 4'-O-methylnorbelladine originated from norbelladine catalyzed by norbelladine 4'-O-methyltransferase (N4OMT). Herein we mined the transcriptome datasets of Lycoris radiata, a GAL-producing plant. LrOMT was cloned, overexpressed in Escherichia coli, and purified to homogeneity. Bioinformatics analysis and enzymatic activity assays revealed that LrOMT is an S-adenosylmethionine-dependent Class I OMT. LrOMT exhibited both para- and meta-O-methylation activities toward norbelladine to give 4'- and 3'-O-methylnorbelladine. Twenty-four analogues, including the proposed biosynthetic intermediates, were introduced to investigate the substrate scope of LrOMT and it showed that the aromatic substrates should have two vicinal hydroxyl groups. The LrOMT-catalyzed O-methylation preference is dependent on the properties of the binding group of the substrates. The transcription levels of LrOMT were positively associated with the accumulation of the Amaryllidaceae alkaloids and the biosynthetic intermediates in L. radiata. The present work revealed that LrOMT catalyzes multiple O-methylation reactions and its characterization will be helpful to uncover novel biosynthetic genes for Amaryllidaceae alkaloids biosynthesis.
Collapse
|
49
|
Tasker SZ, Cowfer AE, Hergenrother PJ. Preparation of Structurally Diverse Compounds from the Natural Product Lycorine. Org Lett 2018; 20:5894-5898. [PMID: 30204451 PMCID: PMC6499378 DOI: 10.1021/acs.orglett.8b02562] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis of a 52-member compound collection from the natural product lycorine is reported, highlighted by divergent cross-coupling and substitution strategies and an unusual ring rearrangement induced by reaction with aryne intermediates.
Collapse
Affiliation(s)
- Sarah Z. Tasker
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Amanda E. Cowfer
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Roy M, Liang L, Xiao X, Feng P, Ye M, Liu J. Lycorine: A prospective natural lead for anticancer drug discovery. Biomed Pharmacother 2018; 107:615-624. [PMID: 30114645 PMCID: PMC7127747 DOI: 10.1016/j.biopha.2018.07.147] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Outline of the anticancer properties and associated molecular mechanism mediated by lycorine. Comprehensive analysis of the structure activity relationship associated with anticancer activity of lycorine. Summary of the pharmacological aspects and implications for future directions with this compound.
Nature is the most abundant source for novel drug discovery. Lycorine is a natural alkaloid with immense therapeutic potential. Lycorine is active in a very low concentration and with high specificity against a number of cancers both in vivo and in vitro and against various drug-resistant cancer cells. This review summarized the therapeutic effect and the anticancer mechanisms of lycorine. At the same time, we have discussed the pharmacology and comparative structure-activity relationship for the anticancer activity of this compound. The researches outlined in this paper serve as a foundation to explain lycorine as an important lead compound for new generation anticancer drug design and provide the principle for the development of biological strategies to utilize lycorine in the treatment of cancers.
Collapse
Affiliation(s)
- Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Long Liang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|