1
|
Cao Y, Xu A, Tao M, Wang S, Yu Q, Li S, Tu Z, Liu Z. Flavor evolution of unsweetened green tea beverage during actual storage: Insights from multi-omics analysis. Food Chem 2025; 481:144039. [PMID: 40157108 DOI: 10.1016/j.foodchem.2025.144039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
The flavor evolution of unsweetened green tea beverage (USGTB) under actual storage is critical for quality control yet remains unclear. Unlike previous studies conducted by accelerated shelf-life testing, this research investigated sensory-chemical changes in naturally stored USGTB (0-7 months) through multi-omics integrating metabolomics and sensomics. Results identified the 5-month as a critical point for flavor preservation. The EC-EGCG dimer emerged as a novel aging marker, contrasting with freshness indicators (ascorbic acid and other antioxidants). Protocatechuic acid and 2-furoic acid served as multi-flavor contributors (yellowish, sweetness and astringency), whereas L-tartaric acid and malic acid enhanced sourness. Concurrently, aroma deterioration was driven by the diminished (E)-β-ionone and accumulated methyl salicylate. Mechanistically, oxidations of ascorbic acid, catechins, and fresh aroma-related volatiles, flavonoid glycosylation, and oligosaccharides hydrolysis collectively drove color darkening, astringency enhancement, sweetness intensification, and cooked-off flavor development. These findings provided targeted quality control points for USGTB during actual shelf-life.
Collapse
Affiliation(s)
- Yanyan Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Anan Xu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qinyan Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Zhang L, Hu Y, Zhang J, Cai M, Lan L, Sun G. Application of chemical pattern recognition and similarity evaluation in electrochemical and HPLC-DAD fingerprints for quality consistency study of herbal medicines. Anal Chim Acta 2025; 1349:343830. [PMID: 40074459 DOI: 10.1016/j.aca.2025.343830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Herbal medicines and their preparations play a significant role in healthcare systems, yet concerns remain about their quality consistency. Chemical fingerprinting and multi-component quantitative analysis are the commonly used analytical methods and are widely applied in the quality analysis of herbal medicines. The study uses Gegen Qinlian tablets (GQTs) as a case to propose a comprehensive quality consistency evaluation system. RESULTS Initially, the evaluation system is based on three quality components and three mixtures representing RPL, RS, and RC, categorizing all samples into eight levels. Subsequently, a four-wavelength fusion HPLC profiling (FWFP) method was established, yielding a relative standard deviation (RSD) of 0.43 % for mean relative retention times (RRA) and 21.12 % for relative retention area using the normalized fingerprint method (NFM). The systematically quantified fingerprint method (SQFM) was employed, resulting in qualitative similarity (Sm) and quantitative similarity (Pm) ranges of 0.878-0.978 and 74.9%-120.4 %, respectively. Concurrently, the Electrochemical Fingerprint method (ECFM) was applied for joint evaluation with FWFP, producing SE and projection quantitative similarity (CE) ranges of 0.962-1.000 and 70.6-155.2 %, respectively. Ultimately, the series spectra from FWFP and ECFM were used to comprehensively assess sample quality, with SFW-EC and CEW-EC ranges of 0.891-0.979 and 87.5-120.9 %, leading to the classification of the 22 GQT batches into five grades. SIGNIFICANCE The study first proposes using characteristic parameters of the ECFM combined with SE and CE to evaluate the similarity of electrochemical fingerprints. It also comprehensively describes and uses SQFM to evaluate the quality of herbal medicines, including methodological validation, qualitative similarity (Sm), quantitative similarity (Pm), and reliability assessment. These methods may provide new insights for the similarity evaluation of different types of fingerprints, which can be applied in the quality consistency study of herbal medicines.
Collapse
Affiliation(s)
- Liuwei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yanlei Hu
- China National Pharmaceutical Industry Corporation Ltd., Beijing, 101301, China
| | - Jianglei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Ming Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
3
|
Zhang J, Zeng J, Xiu X, Lan L, Sun G. Antioxidant analysis and quality standardization of Scutellaria baicalensis tablets using multidimensional analytical methodologies. Food Chem 2025; 485:144505. [PMID: 40300419 DOI: 10.1016/j.foodchem.2025.144505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Scutellaria baicalensis Tablets (SBTs), sourced from the root of Scutellaria baicalensis Georgi, demonstrated notable potential as natural antioxidants for functional-food development. To comprehensively evaluate SBT quality and antioxidant capacity, we developed an integrated analytical workflow combining electronic-transition-theory-driven multi-wavelength concatenation, a binary evaluation system (BES), dual-channel high-performance liquid chromatography-online antioxidant activity coupling (DC-HPLC-OAA), and electrochemical profile integration. First, guided by electronic-transition theory, the multi-wavelength concatenation captured subtle inter-flavonoid variations across several wavelengths, thereby surmounting the constraints of single-wavelength detection. Second, the binary evaluation system, combining Sm and quantitative Pm parameters, provided a multidimensional appraisal of product quality, correlating robustly with key-component levels (e.g., baicalin). Chemometric analysis further confirmed the precision and reliability of Sm and Pm, yielding a triadic framework: "high-dimensional data dimensionality reduction-key component mapping-quality threshold determination." Third, DC-HPLC-OAA systematically screened the antioxidant activities of major flavonoids (baicalin, baicalein, wogonin), whose cumulative capacities were then quantified by electrochemical profile integration. Collectively, this integrated approach established a robust foundation for precise SBT quality control and underscored their promise as natural antioxidant ingredients in functional foods.
Collapse
Affiliation(s)
- Jianglei Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Zeng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaojie Xiu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Lili Lan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Alimu A, Wu X, Huang D, Chu C, Pan B, Xing Y, Chen W, Long L, Sheng P. Application value of baicalein in the management of periprosthetic joint infection: a preliminary in vitro study. BMC Complement Med Ther 2025; 25:152. [PMID: 40269827 PMCID: PMC12020321 DOI: 10.1186/s12906-025-04888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND This study aims to evaluate the efficacy of baicalein, a flavonoid derived from Scutellaria baicalensis, against Staphylococcus aureus (S. aureus), focusing on its inhibitory and eradicative effects on biofilms, as well as its cellular cytotoxicity. The goal is to provide preliminary evidence for its potential application in the management of periprosthetic joint infection (PJI). METHODS The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of baicalein against the standard strain of S. aureus ATCC 29213, a clinical strain of methicillin-sensitive S. aureus 115 (MSSA 115), and a clinical strain of methicillin-resistant S. aureus 49 (MRSA 49) were determined using broth microdilution and colony counting methods. Bactericidal kinetics over a 24-h period were evaluated using a time-kill assay. Biofilm inhibition and eradication were assessed on 96-well and titanium alloy plates, while the cellular cytotoxicity of baicalein was examined using the cell counting kit-8 (CCK-8) assay on human primary synovial fibroblasts and chondrocytes. RESULTS The MIC of baicalein was 32 μg/mL for the ATCC 29213, and 64 μg/mL for both MSSA115 and MRSA49. Meanwhile, the MBC for all three strains was 128 μg/mL. Baicalein exhibited a time-dependent bactericidal activity, with maximum efficacy at 24 h. Biofilm inhibition was evident at concentrations equal to or exceeding the MIC, as confirmed by biofilm biomass and metabolic activity assays, along with scanning electron and confocal laser microscope. However, baicalein was unable to completely eradicate preformed biofilms. Baicalein demonstrated significant cytotoxic effects on both synovial fibroblasts and chondrocytes after exposure for 16 and 24 h. CONCLUSIONS Baicalein shows significant bactericidal effects and effectively inhibits S. aureus biofilm formation. These findings suggest its potential as a promising local antibacterial agent for postoperative continuous intra-articular lavage in the treatment of S. aureus-related early postoperative or acute hematogenous PJIs.
Collapse
Affiliation(s)
- Aerman Alimu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dongwei Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chenghan Chu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yang Xing
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, NO.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Li J, Zhang Z, Li J, Li W, Wang L, Pei Y, Huang J. The interference of baicalein with uric acid detected by the enzymatic method and its correction method. Sci Rep 2025; 15:12276. [PMID: 40210742 PMCID: PMC11986037 DOI: 10.1038/s41598-025-97566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
In recent years, the frequency of clinical application and international recognition of Chinese herbal medicines have been increasing, but the effect of Chinese herbal medicines on common clinical biochemical tests is still unclear. This study aimed to investigate the effect of baicalein, a Chinese herbal medicine ingredient, on uric acid (UA), cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and to alleviate the interference of baicalein on these assays by improving the reagent. The interferences of baicalein during the detection of these five analytes were investigated on the Hitachi 7600 system. We prepared UA assay kit according to commercial standards to facilitate the improvement of the formulation and evaluated its performance. Tempol, which could eliminate the interference of baicalein, was found based on the chemical properties of the drug, and the optimum concentration for adding it to our UA reagent was determined. We found that the interference was concentration-dependent for five analytes, with the largest negative interference on UA determination. Self-prepared UA assay kit had a safe analysis performance. Our kit and the commercial kit showed a higher interference of - 71.75% and - 89.98% at 200 µg/mL baicalein, respectively. The addition of 5 mmol/L Tempol to the UA reagent could strongly resist the interference of baicalein. In Conclusion, baicalein has a negative interference effect on analysis based on the Trinder reaction, especially UA assay. With the increase in baicalein concentrations, the negative bias increased, and our improved UA reagent could resist the interference of baicalein on UA detection.
Collapse
Affiliation(s)
- Jiuyan Li
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Zichen Zhang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Jia Li
- Jilin Medical University, Jilin Street 5, Jilin, China
| | - Wei Li
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Liqiang Wang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Yumei Pei
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China.
| | - Jing Huang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China.
| |
Collapse
|
6
|
Tajbakhsh A, Hosseinpour-Soleimani F, Abedi M, Hashempur MH, Negahdaripour M. Modulation of Neuroinflammation in Poststroke Rehabilitation: The Role of 12/15-Lipoxygenase Inhibition and Baicalein. Stroke 2025; 56:1092-1103. [PMID: 40052290 DOI: 10.1161/strokeaha.124.049048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Neuroinflammation significantly contributes to stroke pathophysiology, leading to tissue damage and neurological deficits. Baicalein, a potent 12/15-LOX (12/15-lipoxygenase) inhibitor, demonstrates neuroprotective effects by reducing inflammatory lipid mediators, modulating key inflammatory pathways, and attenuating oxidative stress. Experimental studies indicate that baicalein can diminish infarct size and neurological deficits while improving safety and tolerability. Combination therapies with baicalein show promise in enhancing stroke outcomes. Overall, targeting 12/15-LOX and employing baicalein represents a promising approach to modulating neuroinflammation and improving recovery in stroke patients. This review highlights the therapeutic potential of inhibiting the 12/15-LOX pathway and utilizing the natural compound baicalein to mitigate poststroke neuroinflammation.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies (A.T.), Shiraz University of Medical Sciences, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies (A.T.), Shiraz University of Medical Sciences, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee (F.H.-S.), Shiraz University of Medical Sciences, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies (F.H.-S.), Shiraz University of Medical Sciences, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine (M.H.H.), Shiraz University of Medical Sciences, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy (M.N.), Shiraz University of Medical Sciences, Iran
| |
Collapse
|
7
|
Tekіn M, Kuru İS. Phytochemical profile and antioxidant capacity of the endemic species Bellevalia sasonii Fidan. Z NATURFORSCH C 2025; 80:75-83. [PMID: 39094100 DOI: 10.1515/znc-2024-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
The study investigated total phenolic-flavonoid content, antioxidant activity, and phytochemical compounds across various parts (bulb, stem, leaf, and flower) of the endemic Bellevalia sasonii, commonly known as hyacinth, belonging to the Asparagaceae family. Phenolic content was highest in bulb extracts (117.28 μg GAE) and lowest in stems (45.11 μg GAE). Conversely, leaf extracts exhibited the highest flavonoid content (79.44 μg QEs), while stems showed the lowest (22.77 μg QEs). When the antioxidant activities were compared, by DPPH method leaf = flower > bulb > stem; in ABTS and CUPRAC methods bulb > flower > leaf > stem, respectively. Considering the results in general, it was revealed that bulbs and flowers displayed higher activity, while stem exhibited lower activity compared to other parts. The phytochemical analysis identified 53 active substances, with 27 absent in any extract and 15 detected across all extracts. The distribution of phytochemicals varied among parts, with bulbs, stems, flowers, and leaves also different numbers. The LC-MS/MS analysis revealed prominent metabolites including fumaric acid in leaves, caffeic acid in bulbs, and cosmosiin and quinic acid in flowers. This study provides foundational insights into B. sasonii, an important endemic plant in Türkiye, laying the groundwork for future research on its medicinal and ecological roles.
Collapse
Affiliation(s)
- Metin Tekіn
- Department of Biology, 187432 Institute of Graduate Studies, Batman University , Batman, Türkiye
| | - İbrahim Selçuk Kuru
- Department of Plant and Animal Production, 187432 Sason Vocational School, Batman University , Batman, Türkiye
| |
Collapse
|
8
|
Gong G, Yun M, Kwon O, Kim B. Therapeutic and Pharmaceutical Potential of Scutellaria baicalensis-Derived Exosomes for Oily Skin Disorders. Antioxidants (Basel) 2025; 14:364. [PMID: 40227405 PMCID: PMC11939588 DOI: 10.3390/antiox14030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Fine dust exposure worsens oily skin by disrupting lipid metabolism and triggering oxidative inflammation. Scutellaria baicalensis extract-induced exosomes (SBEIEs) have shown anti-inflammatory effects by suppressing reactive oxygen species (ROS) and lipid-regulating properties, making them potential therapeutic agents. METHODS Exosomes from fibroblasts treated with SBEIEs and PM10 were tested on macrophages, adipose-derived stem cells (ASCs), and T lymphocytes. ELISA, flow cytometry, and PCR measured cytokines and gene expression. A 10-day clinical trial evaluated skin hydration, oiliness, and inflammation. RESULTS SBEIEs increased IRF3 (1.6 times) and suppressed PPARγ in ASCs while enhancing lipolysis markers. Sebaceous gland activity (squalene synthase) decreased by 10%. Macrophages showed increased IRF3, IFN-β, and IL-10 (2.1 times). T cells secreted IL-4 and IL-22 (2-2.33 times). Clinically, SBEIEs improved hydration (21%), reduced oiliness (1.6 times), and decreased inflammation (2.2 times). CONCLUSIONS SBEIEs effectively regulate lipid metabolism, cytokines, and immune responses, showing promise to treat oily and inflamed skin caused by fine dust exposure. Further studies are needed for clinical applications.
Collapse
Affiliation(s)
- Guybin Gong
- Department of Management of Beauty and Design, College of Design, Hansung University, Seoul 02876, Republic of Korea; (G.G.); (O.K.)
| | - Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong 36729, Republic of Korea;
| | - Ohhyuk Kwon
- Department of Management of Beauty and Design, College of Design, Hansung University, Seoul 02876, Republic of Korea; (G.G.); (O.K.)
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
9
|
Sun M, Qiu X, Yuan Z, Xu C, Chen Z. New advances in Traditional Chinese Medicine interventions for epilepsy: where are we and what do we know? Chin Med 2025; 20:37. [PMID: 40098198 PMCID: PMC11917061 DOI: 10.1186/s13020-025-01088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
Epilepsy, one of the most common neurological diseases, affects more than 70 million people worldwide. Anti-seizure drugs targeting membrane ion channels or GABAergic neurotransmission are the first choices for controlling seizures, whereas the high incidence of pharmacoresistance and adverse effects largely restrict the availability of current anti-seizure drugs (ASDs). Traditional Chinese Medicine (TCM) has shown historical evidence-based therapeutic effects for neurological diseases including epilepsy. But until the late 1990s, great efforts in both clinical and experimental fields advanced TCM interventions for epilepsy from evidence-based practices to more systematic neuropharmacological significance, and show new lights on preferable management of epilepsy in the last decade. This review summarized the advances of applying TCM interventions (ranging from herbal medicines and their active ingredients to other strategies such as acupuncture) for epilepsy, followed by associated mechanism theories. The therapeutic potential of TCM interventions for epilepsy as well as its comorbidities turns from somehow debatable to hopeful. Finally, some prospects and directions were proposed to drive further clinical translational research. The future directions of TCM should aim at not only deriving specific anti-epileptic molecules but also illustrating more precise mechanisms with the assistance of advanced multifaceted experimental tools.
Collapse
Affiliation(s)
- Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijian Yuan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Zieniuk B, Uğur Ş. The Therapeutic Potential of Baicalin and Baicalein in Breast Cancer: A Systematic Review of Mechanisms and Efficacy. Curr Issues Mol Biol 2025; 47:181. [PMID: 40136435 PMCID: PMC11941372 DOI: 10.3390/cimb47030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer remains a leading cause of death globally, with breast cancer being the most commonly diagnosed cancer in women. This systematic review focuses on the therapeutic potential of baicalin and baicalein, two bioactive flavonoids derived from Scutellaria baicalensis, in breast cancer treatment. These compounds exhibit anticancer properties through mechanisms such as apoptosis induction, cell cycle arrest, and inhibition of metastasis. Baicalin and baicalein modulate key signaling pathways, including NF-κB, PI3K/AKT/mTOR, and Wnt/β-catenin, and have shown efficacy in both in vitro and in vivo models. Their synergy with chemotherapy agents and incorporation into nanotechnology-based delivery systems highlight opportunities to enhance therapeutic outcomes. However, current evidence is predominantly preclinical, with limited clinical trials to validate their safety and efficacy in humans. Challenges such as poor bioavailability and rapid metabolism also underscore the need for advanced formulation strategies. This review synthesizes current evidence on the molecular mechanisms, therapeutic efficacy, and potential applications of baicalin and baicalein in breast cancer research.
Collapse
Affiliation(s)
- Bartłomiej Zieniuk
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | | |
Collapse
|
11
|
Zhang J, Huang Y, Shen W, Zeng Y, Miao Y, Feng N, Ci T. Effects of Surface Charge of Inhaled Liposomes on Drug Efficacy and Biocompatibility. Pharmaceutics 2025; 17:329. [PMID: 40142994 PMCID: PMC11945262 DOI: 10.3390/pharmaceutics17030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: Liposomes are a promising drug carrier for inhaled delivery systems and their physical parameters could influence therapeutic efficacy significantly. This study was designed to answer the specific question of the proper surface charge of liposomes in pulmonary inhalation, as well as to study the synergistic anti-inflammation efficacy between drugs. Methods: In this work, a series of drug-loaded liposomes with different surface charges (from negative to positive) were prepared, and several in vitro and in vivo assays, including cytotoxicity, hemolysis assay, mucus penetration and lipopolysaccharide (LPS)-induced pneumonia model test, were adopted to evaluate the anti-inflammation efficacy and biocompatibility of the above liposomes. Results: Compared with cationic liposomes, anionic liposomes are capable of better mucus penetration and good biocompatibility (low cytotoxicity, better blood compatibility and mild tissue inflammation), but with poor cellular uptake by immune cells. In specific, even when the liposome surface charge was only +2.6 mV, its cytotoxicity and blood hemolysis reached around 20% and 15%, respectively. Furthermore, there was no significant difference in biocompatibility between anionic liposomes (-25.9 vs. -2.5 mV), but a slightly negative-charged liposome exhibited better cellular uptake. Conclusions: Thus, slightly negative-charged liposomes (-1~-3 mV) could be a well inhaled drug carrier considering both efficacy and biocompatibility. In an LPS-induced pneumonia mouse model, the drug-loaded liposomes achieved better anti-inflammatory efficacy compared with free drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Y.H.); (W.S.); (Y.Z.); (Y.M.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Y.H.); (W.S.); (Y.Z.); (Y.M.)
| |
Collapse
|
12
|
Vithalkar MP, Sandra KS, Bharath HB, Krishnaprasad B, Fayaz SM, Sathyanarayana B, Nayak Y. Network Pharmacology-driven therapeutic interventions for Interstitial Lung Diseases using Traditional medicines: A Narrative Review. Int Immunopharmacol 2025; 147:113979. [PMID: 39746273 DOI: 10.1016/j.intimp.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This review explores the progressive domain of network pharmacology and its potential to revolutionize therapeutic approaches for Interstitial Lung Diseases (ILDs), a collective term encompassing Interstitial Pneumonia, Pneumoconiosis, Connective Tissue Disease-related ILDs, and Sarcoidosis. The exploration focuses on the profound legacy of traditional medicines, particularly Ayurveda and Traditional Chinese Medicines (TCM), and their largely unexplored capacity in ILD treatment. These ancient healing systems, characterized by their holistic methodologies and multifaceted treatment modalities, offer a promising foundation for discovering innovative therapeutic strategies. Moreover, the review underscores the amalgamation of artificial intelligence (AI) and machine learning (ML) methodologies with bioinformatics, creating a computational synergy capable of deciphering the intricate biological networks associated with ILDs. Network pharmacology has tailored the hypothesis from the conventional "one target, one drug" towards a "network target, multi-component therapeutics" approach. The fusion of traditional literature and computational technology can unveil novel drugs, targets, and pathways, augmenting effective therapies and diminishing adverse effects related to current medications. In conclusion, this review provides a comprehensive exposition of how Network Pharmacology tools can leverage the insights of Ayurveda and TCM to craft efficacious therapeutic solutions for ILDs. It sets the stage for future investigations in this captivating interdisciplinary domain, validating the use of traditional medicines worldwide.
Collapse
Affiliation(s)
- Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - K S Sandra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - H B Bharath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - B Krishnaprasad
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - B Sathyanarayana
- Muniyal Institute of Ayurveda Medical Sciences, Manipal, Karnataka 576104, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
13
|
Soni S, Gambhir L, Sharma G, Sharma A, Kapoor N. Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection. Folia Microbiol (Praha) 2025; 70:1-17. [PMID: 39212846 DOI: 10.1007/s12223-024-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
Collapse
Affiliation(s)
- Saurabh Soni
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, 303303, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India.
| |
Collapse
|
14
|
Fu Q, Yu Q, Luo H, Liu Z, Ma X, Wang H, Cheng Z. Protective effects of wogonin in the treatment of central nervous system and degenerative diseases. Brain Res Bull 2025; 221:111202. [PMID: 39814324 DOI: 10.1016/j.brainresbull.2025.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Wogonin, an O-methylated flavonoid extracted from Scutellaria baicalensis, has demonstrated profound neuroprotective effects in a range of central nervous system (CNS) diseases. This review elucidates the pharmacological mechanisms underlying the protective effects of wogonin in CNS diseases, including ischemic stroke, hemorrhagic stroke, traumatic brain injury, epilepsy, anxiety, neurodegenerative diseases, and CNS infections. Wogonin modulates key signaling pathways, such as the MAPK, NF-κB, and ROS pathways, contributing to its anti-inflammatory, antioxidant, and antiapoptotic properties. In ischemic stroke models, wogonin reduces infarct size and enhances neurological outcomes by mitigating inflammation and oxidative stress. For patients with hemorrhagic stroke and traumatic brain injury, it accelerates hematoma regression, mitigates secondary brain damage, and promotes neurogenesis, making it an entirely new treatment option for patients with limited access to this type of therapy. Its anticonvulsant and anxiolytic effects are mediated through GABA-A receptor modulation. Moreover, wogonin shows promise in treating neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease by promoting autophagy and reducing neuroinflammation. Additionally, it exhibits antiviral properties, offering potential benefits against CNS infections. Despite extensive preclinical evidence, further clinical studies are warranted to confirm its efficacy and safety in humans. This review highlights the great therapeutic potential of wogonin in terms of CNS protection. However, despite the substantial preclinical evidence, further large-scale clinical studies are necessary. Future researchers need to further explore the long-term efficacy and safety of wogonin in clinical trials and translate it for early application in the clinical treatment of true CNS disorders.
Collapse
Affiliation(s)
- Qingan Fu
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Qingyun Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Hongdan Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaowei Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Huijian Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China
| | - Zhijuan Cheng
- Department of Neurology, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
15
|
Wu J, Lu Q, Hou J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet Res 2025; 56:16. [PMID: 39833939 PMCID: PMC11748510 DOI: 10.1186/s13567-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections. Baicalein, a flavonoid derived from Scutellaria baicalensis, has gained attention for its potential antiviral properties. However, there is little information about the effects and mechanisms of baicalein in relation to PRRSV. In this study, a network pharmacology analysis identified seven potential targets of baicalein against PRRSV, with the epidermal growth factor receptor (EGFR) emerging as the core target. The results of molecular docking and dynamics (MD) simulations confirmed that baicalein has a high binding affinity for EGFR, with a measured value of - 7.935 kcal/mol. Additionally, both in vitro (EC50 = 10.20 μg/mL) and in vivo (2.41 mg/kg) experiments were conducted to assess the effectiveness of baicalein against PRRSV. Notably, baicalein was found to inhibit various stages of the PRRSV replication cycle and could directly bind to PRRSV in vitro. Baicalein inhibited the entry of PRRSV by blocking EGFR phosphorylation and the downstream PI3K-AKT signaling pathway. This was confirmed by a decrease in the expression of p-EGFR/EGFR, p-AKT/AKT, PI3K, and SRC following treatment with baicalein. Additionally, baicalein significantly enhanced the immune response in piglets infected with PRRSV. In conclusion, this study suggests that baicalein may be a promising pharmaceutical candidate for preventing and controlling PRRS, offering new insights into the antiviral potential of Chinese herbal medicine.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| |
Collapse
|
16
|
Wang Z, Li T, Huang X, Xu R, Zhao Y, Wei J, Pi W, Yao S, Lu J, Zhang X, Lei H, Wang P. Chiral helix amplification and enhanced bioadhesion of two-component low molecular weight hydrogels regulated by OH to eradicate MRSA biofilms. MATERIALS HORIZONS 2025; 12:575-586. [PMID: 39499027 DOI: 10.1039/d4mh01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The supramolecular chemistry of small chiral molecules has attracted widespread attention owing to their similarity to natural assembly codes. Two-component low-molecular-weight (LMW) hydrogels are crucial as they form helical structures via chirality transfer, enabling diverse functions. Herein, we report a pair of two-component chiral LMW hydrogels based on the small molecular drugs baicalin (BA), scutellarin (SCU) and berberine (BBR). The two hydrogels exhibited different helicities and abilities to adhere to methicillin-resistant staphylococcus aureus (MRSA) biofilms. The BA or SCU can each laterally interact with BBR in a tail-to-tail configuration, forming a stable hydrophobic structure, while hydrophilic glucuronide groups are exposed to a water solution to form a hydrogel. However, the tiny variant steric hindrance of the terminal OH moiety of SCU affects π-π stacking in the layered assembly, resulting in SCU-BBR having much stronger chirality deviation and supramolecular chirality amplification than BA-BBR. Thereafter, the OH group in SCU-BBR forms more intermolecular hydrogen bonds with MRSA biofilms, enhancing stronger adhesion and better scavenging effects than BA-BBR. This work provides a unique chiral supramolecular assembly pattern, expands the antibacterial application prospect of a two-component LMW hydrogel accompanying chirality amplification, and provides a new perspective and strategy for biofilm removal.
Collapse
Affiliation(s)
- Zhijia Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ran Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yihang Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jichang Wei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenmin Pi
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuchang Yao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jihui Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiang Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
17
|
Wang Y, Fu X, Shang Z, Qiao Y, Liu Y, Zhou L, Liu D. In vivo and in vitro study on the regulatory mechanism of XiaoChaiHu decoction on PANoptosis in sepsis-induced cardiomyopathy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118740. [PMID: 39197800 DOI: 10.1016/j.jep.2024.118740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In accordance with the tenets of traditional Chinese medicine, sepsis is categorized into three distinct syndromes: heat syndrome, blood stasis syndrome, and deficiency syndrome. Xiaochaihu decoction (XCHD) has many functions, including the capacity to protect the liver, cholagogue, antipyretic, anti-inflammatory, and anti-pathogenic microorganisms. XCHD exerts the effect of clearing heat and reconciling Shaoyang. The XCHD contains many efficacious active ingredients, yet the mechanism of sepsis-induced cardiomyopathy (SIC) remains elusive. AIM OF THE STUDY To investigate the molecular mechanisms underlying the protective effects of XCHD against SIC using an integrated approach combining network pharmacology and molecular biology techniques. MATERIALS AND METHODS Network pharmacology methods identified the active ingredients, target proteins, and pathways affected by XCHD in the context of SIC. We conducted in vivo experiments using mice with lipopolysaccharide-induced SIC, evaluating cardiac function through echocardiography and histology. XCHD-containing serum was analyzed to determine its principal active components using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The effects of XCHD-containing serum on SIC were further tested in vitro in LPS-treated H9c2 cardiac cells. Protein expression levels were quantified via Western blotting and enzyme-linked immunosorbent assay (ELISA). Additionally, molecular docking was performed between the active components and ZBP1, a potential target protein. Overexpression of ZBP1 in H9c2 cells allowed for a deeper exploration of its role in modulating SIC-associated gene expression. RESULTS UPLC-MS/MS identified 31 shared XCHD and XCHD-containing serum components. These included organic acids, terpenoids, and flavonoids, which have been identified as the active components of XCHD. Our findings revealed that XCHD alleviated LPS-induced myocardial injury, improved cardiac function, and preserved cardiomyocyte morphology in mice. In vitro studies, we demonstrated that XCHD-containing serum significantly suppressed the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-α) in LPS-induced H9c2 cells. Mechanistic investigations showed that XCHD downregulated genes associated with PANoptosis, a novel cell death pathway, suggesting its protective role in sepsis-damaged hearts. Conversely, overexpression of ZBP1 abolished the protective effects of XCHD and amplified PANoptosis-related gene expression. CONCLUSIONS Our study provides the first evidence supporting the protective effects of XCHD against SIC, both in vitro and in vivo. The underlying mechanism involves the inhibition of ZBP1-initiated PANoptosis, offering new insights into treating SIC using XCHD.
Collapse
Affiliation(s)
- Yaru Wang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Xingxing Fu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Zhao Shang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yamei Qiao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Yue Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Li Zhou
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Dan Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
18
|
Shi Y, Tang Y, Sun Z, Sui P, Shao Y, Wang Z, Zhang J, Gao M. Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway. Drug Des Devel Ther 2025; 19:51-64. [PMID: 39803606 PMCID: PMC11720808 DOI: 10.2147/dddt.s489092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
Purpose Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown. Methods The Cell Counting Kit-8, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays were used to analyze cell proliferation ability in vitro. TLR4/TRAF6/NF-κB signaling transduction was investigated by RNA sequencing analysis, quantitative real-time polymerase chain reaction, Western blotting, NF-κB luciferase reporter assay, immunofluorescent staining, and immunoprecipitation. Molecular docking and cellular thermal shift assay were employed to confirm the binding interaction between SCU and TLR4. The effects of SCU and TLR4 overexpression on OS growth were analyzed using a xenograft tumor model and immunohistochemical staining. Results SCU was found to significantly inhibit OS cell proliferation, and RNA sequencing analysis suggested that the NF-κB pathway is closely associated with this process. Further studies revealed that SCU inhibited the canonical NF-κB pathway through its binding with TLR4, which disrupted the interaction of TLR4 and TRAF6. Moreover, SCU also repressed NF-κB signal transduction by inhibiting TLR4 expression. Furthermore, SCU was revealed to suppress OS cell proliferation by targeting TLR4 in vitro and in vivo. Conclusion SCU exhibited a dual impact by inhibiting TLR4 expression and disrupting TLR4-TRAF6 interaction, resulting in NF-κB inactivation, thereby blocking OS growth.
Collapse
Affiliation(s)
- Yingxu Shi
- Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People’s Republic of China
| | - Yu Tang
- Pharmaceutical Department, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People’s Republic of China
| | - Zhiwei Sun
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ping Sui
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Yiming Shao
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Zhonghao Wang
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
| | - Jian Zhang
- Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People’s Republic of China
| | - Ming Gao
- Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People’s Republic of China
| |
Collapse
|
19
|
Yang J, Lu X, Hu S, Yang X, Cao X. microRNA858 represses the transcription factor gene SbMYB47 and regulates flavonoid biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY 2024; 197:kiae607. [PMID: 39520698 DOI: 10.1093/plphys/kiae607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding endogenous single-stranded RNAs that regulate target gene expression by reducing their transcription and translation. Several miRNAs in plants function in secondary metabolism. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine that contains flavonoids (baicalin, wogonoside, and baicalein) as its main active ingredients. Although the S. baicalensis genome sequence has been published, information regarding its miRNAs is lacking. In this study, 12 small RNA libraries of different S. baicalensis tissues were compiled, including roots, stems, leaves, and flowers. A total of 129 miRNAs were identified, including 99 miRNAs from 27 miRNA families and 30 predicted miRNAs. Furthermore, 46 reliable target genes of 15 miRNA families were revealed using psRNATarget and confirmed by degradome sequencing. It was speculated that the microRNA858 (miR858)-SbMYB47 module might be involved in flavonoid biosynthesis. Transient assays in Nicotiana benthamiana leaves indicated that miR858 targets SbMYB47 and suppresses its expression. Artificial miRNA-mediated knockdown of miR858 and overexpression of SbMYB47 significantly increased the flavonoid content in S. baicalensis hairy roots, while SbMYB47 knockdown inhibited flavonoid accumulation. Yeast one-hybrid and dual-luciferase assays indicated that SbMYB47 directly binds to and activates the S. baicalensis phenylalanine ammonia-lyase 3 (SbPAL-3) and flavone synthase II (SbFNSⅡ-2) promoters. Our findings reveal the link between the miR858-SbMYB47 module and flavonoid biosynthesis, providing a potential strategy for the production of flavonoids with important pharmacological activities through metabolic engineering.
Collapse
Affiliation(s)
- Jiaxin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
- Department of Pharmacy, Medicine School, Xi'an International University, Xi'an 710077, China
| | - Xiayang Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| | - Suying Hu
- Shaanxi Institute of Microbiology, Xi'an 710043, China
| | - Xiaozeng Yang
- Institute of Botany, Chinese of Academy Sciences, Beijing 100093, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
20
|
Krieger JM, Hagele AM, Mumford PW, De Gregorio D, Gaige CJ, Hoffman ER, Gross KN, Holley KF, Allen LE, Kerksick CM. Effects of Acacia catechu and Scutellaria baicalensis extract on cognitive function in a healthy adult population: a double-blind, randomized, placebo-controlled trial. Nutr Neurosci 2024:1-12. [PMID: 39701593 DOI: 10.1080/1028415x.2024.2442425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Flavonoids, known for their neuroprotective properties, are abundant in Acacia catechu and Scutellaria baicalensis. Yet, human studies on their combined effects are limited. OBJECTIVE This study evaluated the cognitive effects of combined Acacia catechu and Scutellaria baicalensis supplementation in healthy adults. METHODS In a randomized, double-blind, placebo-controlled trial, 26 males and 59 females (N = 85; 43 ± 8 yrs) consumed the test product (TP) containing 240 mg stem extract of Scutellaria baicalensis and 51 mg heartwood extract of Acacia catechu (UP326, Unigen, Tacoma, WA USA) or placebo (PLA) for four weeks. Cognitive function and biomarkers were assessed throughout the study. RESULTS Significant time effects (p < 0.001) were observed across cognitive function assessments, with no differences between groups. Energy and fatigue reports showed a significant time effect (p = 0.023), while no significant differences emerged in general health and well-being scores. Cortisol levels increased significantly over time across conditions (p = 0.005), but no significant changes were observed in change scores or individual visits. Interim (p = 0.023) and final (p = 0.004) absolute basophil levels differed significantly between groups, with no intergroup changes. No significant differences in BDNF, CRP, or health and safety biomarkers were detected between supplemental conditions or over time. DISCUSSION Four-week daily TP supplementation significantly enhanced cognitive function without difference from placebo. However, no adverse events or significant blood marker changes were noted, suggesting TP supplementation is generally well-tolerated. Further research is warranted to explore the preventive and attenuating cognitive effects of this supplementation.Trial registration: ISRCTN.org identifier: ISRCTN16548309.
Collapse
Affiliation(s)
- Joesi M Krieger
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Anthony M Hagele
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Petey W Mumford
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Diego De Gregorio
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Connor J Gaige
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Ethan R Hoffman
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Kristen N Gross
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Kevin F Holley
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Leah E Allen
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, College of Science, Technology and Health, Lindenwood University, St. Charles, MO, USA
| |
Collapse
|
21
|
Ślusarczyk S, Grzelka K, Jaśpińska J, Pawlikowska-Bartosz A, Pecio Ł, Stafiniak M, Rahimmalek M, Słupski W, Cieślak A, Matkowski A. Changes in Growth and Metabolic Profile of Scutellaria baicalensis Georgi in Response to Sodium Chloride. BIOLOGY 2024; 13:1058. [PMID: 39765725 PMCID: PMC11673518 DOI: 10.3390/biology13121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
Scutellaria baicalensis Georgi is a valuable medicinal plant of the Lamiaceae family. Its roots have been used in Traditional Chinese Medicine (under the name Huang-qin) since antiquity and are nowadays included in Chinese and European Pharmacopoeias. It is abundant in bioactive compounds which constitute up to 20% of dried root mass. These substances are lipophilic flavones with unsubstituted B-ring, baicalein, and wogonin and their respective glucuronides-baicalin and wogonoside being the most abundant. The content of these compounds is variable and the environmental factors causing this remain partially unknown. The role of these compounds in stress response is still being investigated and in our efforts to measure the effect of NaCl treatment on S. baicalensis growth and metabolic profile, we hope to contribute to this research. Short-term exposure to salt stress (50, 100, and 150 mM NaCl) resulted in a marked increase of baicalein from 1.55 mg to 2.55 mg/g DM (1.6-fold), baicalin from 8.2 mg to 14.7 mg (1.8-fold), wogonin from 4.9 to 6.8 (1.4-fold), and wogonoside from 3.3 to 6.8 mg/g DM (2-fold) in the roots. Conversely, in the aerial parts, the content of individual major flavonoids: carthamidine-7-O-glucuronide and scutellarein-7-O-glucuronide decreased the most by 10-50% from 18.6 mg to 11.3 mg/g (1.6-fold less) and from 6.5 mg to 3.4 mg/g DM (0.52-fold less), respectively. The amino acid profile was also altered with an increase in root concentrations of the following amino acids: arginine from 0.19 to 0.33 mg/g (1.7-fold), glutamate from 0.09 to 0.16 mg/g DM (1.6-fold), alanine from 0.009 to 0.06 mg/g (6.8-fold), proline from 0.011 to 0.029 (2.4-fold) and lysine from 0.016 to 0.063 mg/g (3.9-fold). Aspartate concentration decreased from 0.01 to 0.002 mg/g (4.8-fold less) at 150 mM NaCl. In the aerial parts, the concentration and variation in levels of specific amino acids differed among groups. For instance, the glutamate content exhibited a significant increase exclusively in the treatment group, rising from 0.031 to 0.034 mg/g, representing a 1.2-fold increase. Proline concentration showed a marked increase across all treated groups with the highest from 0.011 to 0.11 mg/g (10-fold). In conclusion, moderate salt stress was shown to increase S. baicalensis root biomass and flavonoid content which is rarely observed in a glycophyte species and provides a foundation for further studies on the mechanisms of osmotic stress adaptation on the specialized metabolism level.
Collapse
Affiliation(s)
- Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.G.); (M.S.)
| | - Kajetan Grzelka
- Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.G.); (M.S.)
| | - Joanna Jaśpińska
- Laboratory of Experimental Plant Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-367 Wroclaw, Poland; (J.J.); (A.P.-B.)
| | - Anna Pawlikowska-Bartosz
- Laboratory of Experimental Plant Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-367 Wroclaw, Poland; (J.J.); (A.P.-B.)
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland;
| | - Marta Stafiniak
- Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.G.); (M.S.)
| | - Mehdi Rahimmalek
- Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Life Sciences, ul. Norwida 1, 50-375 Wroclaw, Poland
| | - Wojciech Słupski
- Department of Pharmacology, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Adam Cieślak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland;
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Division Pharmaceutical Biology and Botany, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.G.); (M.S.)
- Laboratory of Experimental Plant Cultivation, Botanical Garden of Medicinal Plants, Wroclaw Medical University, Al. Jana Kochanowskiego 14, 50-367 Wroclaw, Poland; (J.J.); (A.P.-B.)
| |
Collapse
|
22
|
Xing F, Xiao Q, Gul H, Liu T, Cao W, Zhang Y, Duan H, Li Y, Liang J, Zhang X, Xu D, Liu Z. Comparative global profiling of Perilla leaf and stem via transcriptomics and metabolomics. Gene 2024; 929:148828. [PMID: 39122229 DOI: 10.1016/j.gene.2024.148828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Perilla (Perilla frutescens L.) is a time-honored herbal plant with widespread applications in both medicine and culinary practices around the world. Profiling the essential organs and tissues with medicinal significance on a global scale offers valuable insights for enhancing the yield of desirable compounds in Perilla and other medicinal plants. In the present study, genome-wide RNA-sequencing (RNA-seq) and assessing the global spectrum of metabolites were carried out in the two major organs/tissues of stem (PfST) and leaf (PfLE) in Perilla. The results showed a total of 18,490 transcripts as the DEGs (differentially expressed genes) and 144 metabolites as the DAMs (differentially accumulated metabolites) through the comparative profiling of PfST vs PfLE, and all the DEGs and DAMs exhibited tissue-specific trends. An association analysis between the transcriptomics and metabolomics revealed 14 significantly enriched pathways for both DEGs and DAMs, among which the pathways of Glycine, serine and threonine metabolism (ko00260), Glyoxylate and dicarboxylate metabolism (ko00630), and Glucagon signaling pathway (ko04922) involved relatively more DEGs and DAMs. The results of qRT-PCR assays of 18 selected DEGs confirmed the distinct tissue-specific characteristics of all identified DEGs between PfST and PfLE. Notably, all eight genes associated with the flavonoid biosynthesis/metabolism pathways exhibited significantly elevated expression levels in PfLE compared to PfST. This observation suggests a heightened accumulation of metabolites related to flavonoids in Perilla leaves. The findings of this study offer a comprehensive overview of the organs and tissues in Perilla that have medicinal significance.
Collapse
Affiliation(s)
- Fangyu Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Hameed Gul
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Tingting Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Wan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Yingyi Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Hong Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China
| | - Yongjun Li
- Qianzhongdao Perilla Planting Professional Cooperative, Chongqing Houli Biotechnology Co., Ltd, Chongqing 409600, PR China
| | - Jiahong Liang
- Qianzhongdao Perilla Planting Professional Cooperative, Chongqing Houli Biotechnology Co., Ltd, Chongqing 409600, PR China
| | - Xingcui Zhang
- Qianzhongdao Perilla Planting Professional Cooperative, Chongqing Houli Biotechnology Co., Ltd, Chongqing 409600, PR China
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Guizhou 563099, PR China.
| | - Zhizhai Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
23
|
Sulaiman U, Vaughan R, Siegel P, Liu D, Gilbert E, Cline M. Embryonic Thermal Programming and Dietary Baicalein Supplementation Post-Hatch: Effects on Broiler Adipose Tissue Deposition. Animals (Basel) 2024; 14:3563. [PMID: 39765466 PMCID: PMC11672455 DOI: 10.3390/ani14243563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Optimization of growth performance and fat metabolism in broilers are critical for meat quality and overall production efficiency. This experiment investigated the effects of dietary baicalein supplementation and embryonic heat conditioning (EHC) on the growth performance and adipose tissue metabolism of 10-day old broilers. Fertile eggs were divided into control and EHC groups, with EHC eggs exposed to intermittent heating (39.5 °C) from day 7 to day 16 of incubation. Hatched chicks were further divided into four groups: CC (control control), CT (control treatment with baicalein), EC (embryonic heat control), and ET (embryonic heat treatment with baicalein), and were fed ad libitum. On day 10 post-hatch, blood and adipose tissue samples were collected for analysis. C/EBPα mRNA was lower in the ET group compared to the EC group and higher in the CT group compared to the CC group. PPARγ and HSL mRNAs were elevated in both the ET and CT groups relative to their controls. Additionally, plasma non-esterified fatty acid (NEFA) levels were significantly higher in the CT group compared to the CC group. These results indicate that baicalein supplementation, particularly when combined with embryonic heat conditioning, can modulate fat metabolism and potentially improve the growth performance of broilers, thereby offering insights into strategies for enhancing poultry production.
Collapse
Affiliation(s)
- Usman Sulaiman
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (U.S.); (P.S.)
| | - Reagan Vaughan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (R.V.); (D.L.)
| | - Paul Siegel
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (U.S.); (P.S.)
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (R.V.); (D.L.)
| | - Elizabeth Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Mark Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| |
Collapse
|
24
|
Liu J, Yang D, Li X, Jin Z, Li J. In Vitro Inducted Tetraploid Elsholtzia splendens Nakai ex F. Maek. Alters Polyphenol Species and Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:3374. [PMID: 39683167 DOI: 10.3390/plants13233374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Elsholtzia splendens Nakai ex F. Maek. has been employed in traditional Chinese medicine for millennia. Nevertheless, the small size and the paucity of research on its pharmacological effects have restricted its extensive utilisation in clinical medicine. Polyploid breeding represents an effective method for the rapid enhancement of plant biomass and metabolites. In this study, the most effective in vitro method for inducing tetraploid formation was identified as axillary buds treated in a solution of colchicine at a concentration of 1% for 24 h. Meanwhile, a comparison between tetraploids and diploids yielded two significant findings: (1) The presence of 6-zonocolpate and 8-zonocolpate pollen grains can be used as distinguishing characteristics for diploid and tetraploid, respectively. (2) Genome duplication resulted in alterations to the polyphenol species and synthesis pathway in E. splendens. The accumulation of wogonin, oroxylin A, baicalin, chrysin, acacetin and related derivatives was markedly greater in tetraploid plants, whereas apigenin, naringenin, scutellarein and related derivatives were found to accumulate to a greater extent in diploid plants. It is noteworthy that wogonin and oroxylin A were uniquely detected in tetraploids, indicating that the generated tetraploids may harbor novel pharmacological value. The findings not only provided new insights into the metabolic mechanism of polyploidisation but also established a foundation for the selection and breeding of novel genetic resources of E. splendens.
Collapse
Affiliation(s)
- Jie Liu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Dang Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Xin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| |
Collapse
|
25
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
26
|
Lin Y, Jiang X, Zhao M, Li Y, Jin L, Xiang S, Pei R, Lu Y, Jiang L. Wogonin induces mitochondrial apoptosis and synergizes with venetoclax in diffuse large B-cell lymphoma. Toxicol Appl Pharmacol 2024; 492:117103. [PMID: 39278550 DOI: 10.1016/j.taap.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is among the most aggressive hematological malignancies and patients are commonly treated with combinatorial immunochemotherapies such as R-CHOP. Till now, the prognoses are still variable and unsatisfactory, depending on the molecular subtype and the treatment response. Developing effective and tolerable new agents is always urgently needed, and compounds from a natural source have gained increasing attentions. Wogonin is an active flavonoid extracted from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi and has shown extensive antitumor potentials. However, the therapeutic effect of wogonin on DLBCL remains unknown. Here, we found that treatment with wogonin dose- and time-dependently reduced the viability in a panel of established DLBCL cell lines. The cytotoxicity of wogonin was mediated through apoptosis induction, along with the loss of mitochondrial membrane potential and the downregulation of BCL-2, MCL-1, and BCL-xL. In terms of the mechanism, wogonin inhibited the PI3K and MAPK pathways, as evidenced by the clear decline in the phosphorylation of AKT, GSK3β, S6, ERK, and P38. Furthermore, the combination of wogonin and the BCL-2 inhibitor venetoclax elicited synergistically enhanced killing effect on DLBCL cells regardless of their molecular subtypes. Finally, administration of wogonin significantly impeded the progression of the DLBCL tumor in a xenograft animal model without obvious side effects. Taken together, the present study suggests a promising potential of wogonin in the treatment of DLBCL patients either as monotherapy or an adjuvant for venetoclax-based combinations.
Collapse
Affiliation(s)
- Ye Lin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Sumeng Xiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China.
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
27
|
Li L, Liu Z, Guo J, Zhou Y, Li L, Yu Y, Yang Z. Preparative separation of ten flavonoids from Scutellaria baicalensis Georgi roots using two-dimensional countercurrent chromatography with an online-storage, dilution, and mixing interface. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124325. [PMID: 39342820 DOI: 10.1016/j.jchromb.2024.124325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The process of counter-current chromatography (CCC) separation for natural products typically necessitates the use of multiple solvent systems to accommodate constituents with a wide range of polarities. However, the incompatibility between these different solvent systems often results in unsuccessful online 2D successive separations. In this study, a 2D CCC system was developed, featuring an interface for online-storage, dilution, and mixing. It facilitated the implementation of online 2D CCC using different solvent systems. The method was subsequently applied for the preparative isolation of flavonoids from Scutellaria baicalensis Georgi roots. For 1D CCC, n-heptane-ethyl acetate-methanol-water (HepEMWat, 5:5:4:6, v/v) was utilized, while for 2D CCC, ethyl acetate-n-butanol-water (EBuWat, 0:5:5, v/v) was employed. The eluent with low resolution in 1D CCC was stored online, diluted three times using the lower phase of EBuWat (0:5:5, v/v), and subsequently transferred into 2D CCC for further isolation utilizing the same EBuWat (0:5:5, v/v) system. As results, six lipophilic compounds were isolated in 1D CCC in a normal mode, while two major hydrophilic constituents were isolated in a pH-peak-focusing mode in 2D CCC. Additionally, two additional compounds were purified through subsequent semi-preparative HPLC separation in order to resolve co-elution in 2D CCC. The developed 2D CCC system with a multifunctional interface demonstrated to be an exceptionally efficient and promising approach for the high-throughput purification of complex natural products.
Collapse
Affiliation(s)
- Lanjie Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhuo Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Jinxing Guo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Yi Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China
| | - Yao Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China.
| | - Zhi Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
28
|
Mireles NA, Malla CF, Tavío MM. Cinnamaldehyde and baicalin reverse colistin resistance in Enterobacterales and Acinetobacter baumannii strains. Eur J Clin Microbiol Infect Dis 2024; 43:1899-1908. [PMID: 39066966 PMCID: PMC11405490 DOI: 10.1007/s10096-024-04884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Colistin is used as a last resort antibiotic against infections caused by multidrug-resistant gram-negative bacteria, especially carbapenem-resistant bacteria. However, colistin-resistance in clinical isolates is becoming more prevalent. Cinnamaldehyde and baicalin, which are the major active constituents of Cinnamomum and Scutellaria, have been reported to exhibit antibacterial properties. The aim of this study was to evaluate the capacity of cinnamaldehyde and baicalin to enhance the antibiotic activity of colistin in Enterobacterales and Acinetobacter baumannii strains. METHODS The MICs of colistin were determined with and without fixed concentrations of cinnamaldehyde and baicalin by the broth microdilution method. The FIC indices were also calculated. In addition, time-kill assays were performed with colistin alone and in combination with cinnamaldehyde and baicalin to determine the bactericidal action of the combinations. Similarly, the effects of L-arginine, L-glutamic acid and sucrose on the MICs of colistin combined with cinnamaldehyde and baicalin were studied to evaluate the possible effects of these compounds on the charge of the bacterial cell- wall. RESULTS At nontoxic concentrations, cinnamaldehyde and baicalin partially or fully reversed resistance to colistin in Enterobacterales and A. baumannii. The combinations of the two compounds with colistin had bactericidal or synergistic effects on the most resistant strains. The ability of these agents to reverse colistin resistance could be associated with bacterial cell wall damage and increased permeability. CONCLUSION Cinnamaldehyde and baicalin are good adjuvants for the antibiotic colistin against Enterobacterales- and A. baumannii-resistant strains.
Collapse
Affiliation(s)
- Natalia A Mireles
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, Las Palmas de Gran Canaria, 35016, Spain
- Medical Oncology, Josep Trueta University Hospital of Girona, Girona, 17007, Spain
| | - Cristina F Malla
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, Las Palmas de Gran Canaria, 35016, Spain
| | - María M Tavío
- Microbiology, Clinical Science Department, Faculty of Health Sciences, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe s/n, Las Palmas de Gran Canaria, 35016, Spain.
| |
Collapse
|
29
|
Zhou YX, Wang WP, Ke J, Ou HP, Chen LY, Hou AG, Li P, Ma YS, Bin Jin W. Nuciferine analogs block voltage-gated sodium, calcium and potassium channels to regulate the action potential and treat arrhythmia. Biomed Pharmacother 2024; 179:117422. [PMID: 39276399 DOI: 10.1016/j.biopha.2024.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Dysfunction of the Nav1.5, Cav1.2, and Kv channels could interfere with the AP and result in arrhythmias and even heart failure. We herein present a novel library of nuciferine analogs that target ion channels for the treatment of arrhythmias. Patch clamp measurements of ventricular myocytes revealed that 6a dramatically blocked both the INa and ICa without altering the currentvoltage relationship (including the activation potential and peak potential), accelerated the inactivation of Nav and Cav channels and delayed the resurrection of these channels after inactivation. Additionally, 6a significantly decreased the APA and RMP without affecting the APD30 or APD50. The IC50 values of 6a against Nav1.5 and Cav1.2 were 4.98 μM and 4.62 μM, respectively. Furthermore, 6a (10 μM) blocked IKs, IK1, and Ito with values of 17.01 %±2.54 %, 9.09 %±2.78 %, and 11.15 %±3.52 %, respectively. Surprisingly, 6a weakly inhibited hERG channels, suggesting a low risk of proarrhythmia. The cytotoxicity evaluation of 6a with the H9c2 cell line indicated that this compound was noncytotoxic. In vivo studies suggested that these novel nuciferine analogs could shorten the time of arrhythmia continuum induced by BaCl2 and normalize the HR, QRS, QT and QTc interval and the R wave amplitude. Moreover, 6a dose-dependently affected aconitine-induced arrhythmias and notably improved the cumulative dosage of aconitine required to evoke VP, VT, VF and CA in rats with aconitine-induced arrhythmia. In conclusion, nuciferine analogs could be promising ion channel blockers that could be further developed into antiarrhythmic agents.
Collapse
Affiliation(s)
- Ying Xun Zhou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Ping Wang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin Ke
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Hui Ping Ou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lin Yun Chen
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - An Guo Hou
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Peng Li
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, Guangdong, China; State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yun Shu Ma
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Wen Bin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Niu Q, Zhou C, Li R, Guo J, Qiao S, Chen XX, Zhang G. Proteomic analysis reveals the antiviral effects of baicalin on pseudorabies virus. Int J Biol Macromol 2024; 277:134149. [PMID: 39059539 DOI: 10.1016/j.ijbiomac.2024.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Pseudorabies virus (PRV) poses a significant threat to livestock and even humans. Baicalin, a bioactive flavonoid glycoside with medicinal potential, has been reported to have various biological activities. However, its inhibitory effect on PRV remains poorly understood. In this study, we proved that baicalin effectively inhibits PRV infection. Proteomic analysis revealed that baicalin reduces the expression of 14 viral proteins, which are associated with virus replication, release and immune evasion. Furthermore, the abundance of 116 host proteins was altered by PRV infection, but restored to normal levels after treatment with baicalin. Pathway analysis indicated that baicalin mitigates reactive oxygen species (ROS) and suppresses abnormal mitochondrion by reducing the expression of NFU1 iron‑sulfur cluster scaffold homolog (NFU1) protein induced by PRV. Notably, baicalin also activates the complete coagulation cascade by increasing the expression of coagulation factor III (F3) protein and enhances nucleoplasm by upregulating the expression of solute carrier family 3 member 2 (SLC3A2) and CCAAT enhancer binding protein beta (CEBPB) proteins, contributing to its inhibitory effects on PRV. Our findings implied that baicalin has the potential to be developed as an anti-PRV drug and provide insights into the underlying molecular basis.
Collapse
Affiliation(s)
- Qiaoge Niu
- College of Veterinary Medicine, Jilin University, Changchun, China; Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Chuanjie Zhou
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Rui Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Songlin Qiao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Xin-Xin Chen
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China; Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Nanjing, China.
| |
Collapse
|
31
|
Ebrahimi A, Mehrabi M, Miraghaee SS, Mohammadi P, Fatehi Kafash F, Delfani M, Khodarahmi R. Flavonoid compounds and their synergistic effects: Promising approaches for the prevention and treatment of psoriasis with emphasis on keratinocytes - A systematic and mechanistic review. Int Immunopharmacol 2024; 138:112561. [PMID: 38941673 DOI: 10.1016/j.intimp.2024.112561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Psoriasis, a chronic autoimmune skin disorder, causes rapid and excessive skin cell growth due to immune system dysfunction. Numerous studies have shown that flavonoids have anti-psoriatic effects by modulating various molecular mechanisms involved in inflammation, cytokine production, keratinocyte proliferation, and more. This study reviewed experimental data reported in scientific literature and used network analysis to identify the potential biological roles of flavonoids' targets in treating psoriasis. 947 records from Web of Sciences, ScienceDirect database, Scopus, PubMed, and Cochrane library were reviewed without limitations until June 26, 2023. 66 articles were included in the systematic review. The ten genes with the highest scores, including interleukin (IL)-10, IL-12A, IL-1β, IL-6, Tumor necrosis factor-α (TNF-α), Janus kinase 2 (JAK 2), Jun N-terminal kinase (JUN), Proto-oncogene tyrosine-protein kinase Src (SRC), Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and Signal transducer and activator of transcription 3 (STAT3), were identified as the hub genes. KEGG pathway analysis identified connections related to inflammation and autoimmune responses, which are key characteristics of psoriasis. IL-6, STAT3, and JUN's presence in both hub and enrichment genes suggests their important role in flavonoid's effect on psoriasis. This comprehensive study highlights how flavonoids can target biological processes in psoriasis, especially when combined for enhanced effectiveness.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Department of Dermatology, Hajdaie Dermatology Clinic, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Masomeh Mehrabi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Fatehi Kafash
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohana Delfani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
32
|
Brodzicka A, Galanty A, Paśko P. Modulation of Multidrug Resistance Transporters by Food Components and Dietary Supplements: Implications for Cancer Therapy Efficacy and Safety. Curr Issues Mol Biol 2024; 46:9686-9706. [PMID: 39329928 PMCID: PMC11430623 DOI: 10.3390/cimb46090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The aim of this review is to explore how diet and dietary supplements influence the activity of key multidrug resistance (MDR) transporters-MRP2, BCRP, and P-gp. These transporters play a crucial role in drug efflux from cancer cells and significantly affect chemotherapy outcomes. This review focuses on how dietary phytochemicals, such as catechins and quercetin, impact the expression and function of these transporters. Both in vitro and in vivo experiments were examined to assess changes in drug bioavailability and intracellular drug accumulation. The findings show that certain dietary components-such as catechins, flavonoids, resveratrol, curcumin, terpenoids, sterols, and alkaloids-can either inhibit or induce MDR transporter activity, thus influencing the effectiveness of chemotherapy. These results highlight the importance of understanding diet-drug interactions in cancer therapy to improve treatment outcomes and reduce side effects. In conclusion, dietary modifications and supplements should be carefully considered in cancer treatment plans to optimize therapeutic efficacy.
Collapse
Affiliation(s)
- Agnieszka Brodzicka
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland;
| | - Paweł Paśko
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
33
|
Yun M, Kim B. Effects of Scutellaria baicalensis Extract-Induced Exosomes on the Periodontal Stem Cells and Immune Cells under Fine Dust. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1396. [PMID: 39269058 PMCID: PMC11397387 DOI: 10.3390/nano14171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In adverse environments, fine dust is linked to a variety of health disorders, including cancers, cardiovascular, neurological, renal, reproductive, motor, systemic, and respiratory diseases. Although PM10 is associated with oral inflammation and cancer, there is limited research on biomaterials that prevent damage caused by fine dust. In this study, we evaluated the effects of biomaterials using microRNA profiling, flow cytometry, conventional PCR, immunocytochemistry, Alizarin O staining, and ELISA. Compared to SBE (Scutellaria baicalensis extract), the preventive effectiveness of SBEIEs (SBE-induced exosomes) against fine dust was approximately two times higher. Furthermore, SBEIEs promoted cellular differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts, periodontal ligament cells (PDLCs), and pulp progenitor cells (PPCs), enhancing immune modulation for oral health against fine dust. In terms of immune modulation, SBEIEs activated the secretion of cytokines such as IL-10, LL-37, and TGF-β in T cells, B cells, and macrophages, while attenuating the secretion of MCP-1 in macrophages. MicroRNA profiling revealed that significantly modulated miRNAs in SBEIEs influenced four biochemical categories: apoptosis, cellular differentiation, immune activation, and anti-inflammation. These findings suggest that SBEIEs are an optimal biomaterial for developing oral health care products. Additionally, this study proposes functional microRNA candidates for the development of pharmaceutical liposomes.
Collapse
Affiliation(s)
- Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong-si 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
34
|
Sharma V, Chaudhary AA, Bawari S, Gupta S, Mishra R, Khan SUD, Ali MAM, Shahid M, Srivastava S, Verma D, Gupta A, Kumar S, Kumar S. Unraveling cancer progression pathways and phytochemical therapeutic strategies for its management. Front Pharmacol 2024; 15:1414790. [PMID: 39246660 PMCID: PMC11377287 DOI: 10.3389/fphar.2024.1414790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 09/10/2024] Open
Abstract
Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma in situ. Cancer is the second-leading cause of mortality worldwide, and a more than 61% increase is expected by 2040. A detailed exploration of cancer progression pathways, including the NF-kβ signaling pathway, Wnt-B catenin signaling pathway, JAK-STAT pathway, TNF-α-mediated pathway, MAPK/mTOR pathway, and apoptotic and angiogenic pathways and effector molecules involved in cancer development, has been discussed in the manuscript. Critical evaluation of these effector molecules through molecular approaches using phytomolecules can intersect cancer formation and its metastasis. Manipulation of effector molecules like NF-kβ, SOCS, β-catenin, BAX, BAK, VEGF, STAT, Bcl2, p53, caspases, and CDKs has played an important role in inhibiting tumor growth and its spread. Plant-derived secondary metabolites obtained from natural sources have been extensively studied for their cancer-preventing potential in the last few decades. Eugenol, anethole, capsaicin, sanguinarine, EGCG, 6-gingerol, and resveratrol are some examples of such interesting lead molecules and are mentioned in the manuscript. This work is an attempt to put forward a comprehensive approach to understanding cancer progression pathways and their management using effector herbal molecules. The role of different plant metabolites and their chronic toxicity profiling in modulating cancer development pathways has also been highlighted.
Collapse
Affiliation(s)
- Vikas Sharma
- Metro College of Health Sciences and Research, Greater Noida, India
- School of Pharmacy, Sharda University, Greater Noida, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Devvrat Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Arti Gupta
- Lloyd School of Pharmacy, Greater Noida, India
| | - Sanjay Kumar
- Biological and Bio-computational Laboratory, Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India
- DST-FIST Laboratory, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| |
Collapse
|
35
|
Liu L, Zhang M, Cao B, Che L, Su Y, Zhou X, Li X, Chen C, Li G, Bai C. Optimization of extraction, separation and purification of baicalin in Scutellaria baicalensis using response surface methodology. INDUSTRIAL CROPS AND PRODUCTS 2024; 214:118555. [DOI: 10.1016/j.indcrop.2024.118555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
|
36
|
Liu ZSJ, Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Swinton C, Kim JH, Hernández D, Kidnapillai S, Gray L, Berk M, Dean OM, Walder K. The potential of baicalin to enhance neuroprotection and mitochondrial function in a human neuronal cell model. Mol Psychiatry 2024; 29:2487-2495. [PMID: 38503930 DOI: 10.1038/s41380-024-02525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Baicalin is a flavone glycoside derived from flowering plants belonging to the Scutellaria genus. Previous studies have reported baicalin's anti-inflammatory and neuroprotective properties in rodent models, indicating the potential of baicalin in neuropsychiatric disorders where alterations in numerous processes are observed. However, the extent of baicalin's therapeutic effects remains undetermined in a human cell model, more specifically, neuronal cells to mimic the brain environment in vitro. As a proof of concept, we treated C8-B4 cells (murine cell model) with three different doses of baicalin (0.1, 1 and 5 μM) and vehicle control (DMSO) for 24 h after liposaccharide-induced inflammation and measured the levels of TNF-α in the medium by ELISA. NT2-N cells (human neuronal-like cell model) underwent identical baicalin treatment, followed by RNA extraction, genome-wide mRNA expression profiles and gene set enrichment analysis (GSEA). We also performed neurite outgrowth assays and mitochondrial flux bioanalysis (Seahorse) in NT2-N cells. We found that in C8-B4 cells, baicalin at ≥ 1 μM exhibited anti-inflammatory effects, lowering TNF-α levels in the cell culture media. In NT2-N cells, baicalin positively affected neurite outgrowth and transcriptionally up-regulated genes in the tricarboxylic acid cycle and the glycolysis pathway. Similarly, Seahorse analysis showed increased oxygen consumption rate in baicalin-treated NT2-N cells, an indicator of enhanced mitochondrial function. Together, our findings have confirmed the neuroprotective and mitochondria enhancing effects of baicalin in human-neuronal like cells. Given the increased prominence of mitochondrial mechanisms in diverse neuropsychiatric disorders and the paucity of mitochondrial therapeutics, this suggests the potential therapeutic application of baicalin in human neuropsychiatric disorders where these processes are altered.
Collapse
Affiliation(s)
- Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia.
| | - Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Briana Spolding
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Courtney Swinton
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Damián Hernández
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Laura Gray
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, 3220, Australia
| |
Collapse
|
37
|
Sun CK, Kung YY, Lee WH, Lin LC, Yang MH, Tsai TH. Pharmacokinetic analysis of antiviral drug ritonavir across the blood-brain barrier and its interaction with Scutellaria baicalensis using multisite microdialysis in rats. J Pharm Biomed Anal 2024; 245:116162. [PMID: 38678857 DOI: 10.1016/j.jpba.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Ritonavir, an excellent inhibitor of CYP3A4, has recently been combined with nirmatrelvir to form Paxlovid for the treatment of severe acute respiratory syndrome coronavirus 2 infections. The root of Scutellaria baicalensis Georgi (S. baicalensis), a traditional Chinese medicinal (TCM) herb commonly used to treat heat/inflammation in the lung and digestive tracts, which are major organs targeted by viral infections, contains flavones that can influence the CYP3A metabolism pathway. To investigate the ability of ritonavir to cross the bloodbrain barrier (BBB) and its potential herb-drug interactions with an equivalent TCM clinical dose of S. baicalensis, multisite microdialysis coupled with an LCMS/MS system was developed using rat model. Pretreatment with S. baicalensis extract for 5 days, which contains less flavones than those used in previous studies, had a significant influence on ritonavir, resulting in a 2-fold increase in the total concentration of flavones in the blood and brain. Treatment also boosted the maximum blood concentration of flavones by 1.5-fold and the maximum brain concentration of flavones by 2-fold, all the while exerting no noticeable influence on the transfer ratio across the bloodbrain barrier. These experimental results demonstrated that the use of a typical traditional Chinese medicinal dose of S. baicalensis is sufficient to influence the metabolic pathway and synergistically increase the concentration of ritonavir in rats.
Collapse
Affiliation(s)
- Chung-Kai Sun
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yen-Ying Kung
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wan-Hsin Lee
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Law and Interdisciplinary Studies, College of Law, National Chengchi University, Taipei 116, Taiwan.
| |
Collapse
|
38
|
Liu H, Huang M, Xin D, Wang H, Yu H, Pu W. Natural products with anti-tumorigenesis potential targeting macrophage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155794. [PMID: 38875811 DOI: 10.1016/j.phymed.2024.155794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Inflammation is a risk factor for tumorigenesis. Macrophage, a subset of immune cells with high plasticity, plays a multifaceted role in this process. Natural products, which are bioactive compounds derived from traditional herbs or foods, have exhibited diverse effects on macrophages and tumorigenesis making them a valuable resource of drug discovery or optimization in tumor prevention. PURPOSE Provide a comprehensive overview of the various roles of macrophages in tumorigenesis, as well as the effects of natural products on tumorigenesis by modulating macrophage function. METHODS A thorough literature search spanning the past two decades was carried out using PubMed, Web of Science, Elsevier, and CNKI following the PRISMA guidelines. The search terms employed included "macrophage and tumorigenesis", "natural products, macrophages and tumorigenesis", "traditional Chinese medicine and tumorigenesis", "natural products and macrophage polarization", "macrophage and tumor related microenvironment", "macrophage and tumor signal pathway", "toxicity of natural products" and combinations thereof. Furthermore, certain articles are identified through the tracking of citations from other publications or by accessing the websites of relevant journals. Studies that meet the following criteria are excluded: (1) Articles not written in English or Chinese; (2) Full texts were not available; (3) Duplicate articles and irrelevant studies. The data collected was organized and summarized based on molecular mechanisms or compound structure. RESULTS This review elucidates the multifaceted effect of macrophages on tumorigenesis, encompassing process such as inflammation, angiogenesis, and tumor cell invasion by regulating metabolism, non-coding RNA, signal transduction and intercellular crosstalk. Natural products, including vitexin, ovatodiolide, ligustilide, and emodin, as well as herbal remedies, have demonstrated efficacy in modulating macrophage function, thereby attenuating tumorigenesis. These interventions mainly focus on mitigating the initial inflammatory response or modifying the inflammatory environment within the precancerous niche. CONCLUSIONS These mechanistic insights of macrophages in tumorigenesis offer valuable ideas for researchers. The identified natural products facilitate the selection of promising candidates for future cancer drug development.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Manru Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dandan Xin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
39
|
Wang C, Hao D, Jiao W, Li J, Yuan J, Ma Y, Wang X, Xu A, Wang M, Wang Y. Identification and Fungicide Sensitivity of Fusarium spp. Associated with Root Rot of Scutellaria baicalensis in Shanxi Province, China. PHYTOPATHOLOGY 2024; 114:1533-1541. [PMID: 38377011 DOI: 10.1094/phyto-05-23-0173-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Fusarium root rot is usually classified as an extremely destructive soilborne disease. From 2020 to 2021, Fusarium root rot was observed in production areas and seriously affected the yield and quality of Scutellaria baicalensis in Shanxi Province, China. Based on morphological characteristics and combined analysis of the internal transcribed spacer region of ribosomal DNA and translation elongation factor 1-alpha sequences, 68 Fusarium isolates obtained in this work were identified as F. oxysporum (52.94%), F. acuminatum (20.59%), F. solani (16.17%), F. proliferatum (5.88%), F. incarnatum (2.94%), and F. brachygibbosum (1.47%). In the pathogenicity tests, all Fusarium isolates could infect S. baicalensis roots, presenting different pathogenic ability. Among these isolates, F. oxysporum was found to have the highest virulence on S. baicalensis roots, followed by F. acuminatum, F. solani, F. proliferatum, F. brachygibbosum, and F. incarnatum. According to fungicide sensitivity tests, Fusarium isolates were more sensitive to fludioxonil and difenoconazole, followed by carbendazim, thiophanate-methyl, and hymexazol. In brief, this is the first report of Fusarium species (F. oxysporum, F. acuminatum, F. solani, F. proliferatum, F. incarnatum, and F. brachygibbosum) as causal agents of root rot of S. baicalensis in Shanxi Province, China. The fungicide sensitivity results will be helpful for formulating management strategies of S. baicalensis root rot.
Collapse
Affiliation(s)
- Chunwei Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Dainan Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wenhui Jiao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jiangbo Li
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jiaqi Yuan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yurong Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaomin Wang
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, Shanxi 044000, China
| | - Ailing Xu
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, Shanxi 044000, China
| | - Meiqin Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yan Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| |
Collapse
|
40
|
Prashant SP, Bhawana M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14400. [PMID: 38945697 DOI: 10.1111/ppl.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Since prehistoric times, medicinal and aromatic plants (MAPs) have been employed for various therapeutic purposes due to their varied array of pharmaceutically relevant bioactive compounds, i.e. secondary metabolites. However, when secondary metabolites are isolated directly from MAPs, there is occasionally very poor yield and limited synthesis of secondary metabolites from particular tissues and certain developmental stages. Moreover, many MAPs species are in danger of extinction, especially those used in pharmaceuticals, as their natural populations are under pressure from overharvesting due to the excess demand for plant-based herbal remedies. The extensive use of these metabolites in a number of industrial and pharmaceutical industries has prompted a call for more research into increasing the output via optimization of large-scale production using plant tissue culture techniques. The potential of plant cells as sources of secondary metabolites can be exploited through a combination of product recovery technology research, targeted metabolite production, and in vitro culture establishment. The plant tissue culture approach provides low-cost, sustainable, continuous, and viable secondary metabolite production that is not affected by geographic or climatic factors. This study covers recent advancements in the induction of medicinally relevant metabolites, as well as the conservation and propagation of plants by advanced tissue culture technologies.
Collapse
Affiliation(s)
- Shera Pandit Prashant
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| | - Mishra Bhawana
- Department of Environmental Sciences, Central University of Himachal Pradesh (CUHP), Kangra, Shahpur, Himachal Pradesh
| |
Collapse
|
41
|
Guo F, Li C, Dou J, Liang J, Chen Z, Xu Z, Wang T. Research progress on pharmacological properties and application of probiotics in the fermentation of Scutellaria baicalensis Georgi. Front Nutr 2024; 11:1407182. [PMID: 38903628 PMCID: PMC11187263 DOI: 10.3389/fnut.2024.1407182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Scutellaria baicalensis Georgi is a medicinal herb with a rich history of use in traditional Chinese medicine. This review concentrates on the chemical constituents of Scutellaria baicalensis Georgi, with a particular emphasis on flavonoids such as baicalin, baicalein, and wogonin. Additionally, it examines the effects of probiotic fermentation on the plant's chemical profile and pharmacological actions. Evidence suggests that probiotic fermentation markedly modifies the bioactive components of Scutellaria baicalensis Georgi, thereby augmenting its medicinal potency. The paper delves into the mechanisms by which the primary active constituents of Scutellaria baicalensis Georgi are altered during fermentation and how these changes influence its pharmacological properties. This review aims to lay a theoretical groundwork for the clinical utilization of Scutellaria baicalensis Georgi and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
42
|
Wang T, Wang S, Jia X, Li C, Ma X, Tong H, Liu M, Li L. Baicalein alleviates cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155558. [PMID: 38547614 DOI: 10.1016/j.phymed.2024.155558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Shuang Wang
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Xihui Jia
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Xiaoran Ma
- School of Medicine, Qing dao Binhai University, Qingdao, China
| | - Huimin Tong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | - Meng Liu
- Department of Biochemistry, School of Basic Medical, Qingdao University, Qingdao, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China.
| |
Collapse
|
43
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
44
|
Bernasinska-Slomczewska J, Hikisz P, Pieniazek A, Koceva-Chyla A. Baicalin and Baicalein Enhance Cytotoxicity, Proapoptotic Activity, and Genotoxicity of Doxorubicin and Docetaxel in MCF-7 Breast Cancer Cells. Molecules 2024; 29:2503. [PMID: 38893380 PMCID: PMC11173533 DOI: 10.3390/molecules29112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancer is a major health concern and the leading cause of death among women worldwide. Standard treatment often involves surgery, radiotherapy, and chemotherapy, but these come with side effects and limitations. Researchers are exploring natural compounds like baicalin and baicalein, derived from the Scutellaria baicalensis plant, as potential complementary therapies. This study investigated the effects of baicalin and baicalein on the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel, commonly used chemotherapeutic drugs for breast cancer. The analysis included breast cancer cells (MCF-7) and human endothelial cells (HUVEC-ST), to assess potential effects on healthy tissues. We have found that baicalin and baicalein demonstrated cytotoxicity towards both cell lines, with more potent effects observed in baicalein. Both flavonoids, baicalin (167 µmol/L) and baicalein (95 µmol/L), synergistically enhanced the cytotoxic, proapoptotic, and genotoxic activity of doxorubicin and docetaxel in breast cancer cells. In comparison, their effects on endothelial cells were mixed and depended on concentration and time. The results suggest that baicalin and baicalein might be promising complementary agents to improve the efficacy of doxorubicin and docetaxel anticancer activity. However, further research is needed to validate their safety and efficacy in clinical trials.
Collapse
Affiliation(s)
- Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland; (P.H.); (A.P.)
| | - Aneta Koceva-Chyla
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Lodz, Poland;
| |
Collapse
|
45
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
46
|
Cho J, Hong E, Kim Y, Song J, Ju YH, Kim H, Lee H, Kim H, Nam M. Baicalin and baicalein from Scutellaria baicalensis Georgi alleviate aberrant neuronal suppression mediated by GABA from reactive astrocytes. CNS Neurosci Ther 2024; 30:e14740. [PMID: 38715318 PMCID: PMC11076983 DOI: 10.1111/cns.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.
Collapse
Affiliation(s)
- Juyeong Cho
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Eun‐Bin Hong
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Young‐Sik Kim
- Department of Herbology, College of Korean MedicineWoosuk UniversityJeonju‐siRepublic of Korea
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Yeon Ha Ju
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Hyunjin Kim
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of KHU‐KIST Convergence Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Hyowon Lee
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Min‐Ho Nam
- Center for Brain Function, Brain Science InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of KHU‐KIST Convergence Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolUniversity of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
47
|
Mattioli LB, Frosini M, Corazza I, Fiorino S, Zippi M, Micucci M, Budriesi R. Long COVID-19 gastrointestinal related disorders and traditional Chinese medicine: A network target-based approach. Phytother Res 2024; 38:2323-2346. [PMID: 38421118 DOI: 10.1002/ptr.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The significant number of individuals impacted by the pandemic makes prolonged symptoms after COVID-19 a matter of considerable concern. These are numerous and affect multiple organ systems. According to the World Health Organization (WHO), prolonged gastrointestinal issues are a crucial part of post-COVID-19 syndrome. The resulting disruption of homeostasis underscores the need for a therapeutic approach based on compounds that can simultaneously affect more than one target/node. The present review aimed to check for nutraceuticals possessing multiple molecular mechanisms helpful in relieving Long COVID-19-specific gastrointestinal symptoms. Specific plants used in Keywords Chinese Medicine (TCM) expected to be included in the WHO Global Medical Compendium were selected based on the following criteria: (1) they are widely used in the Western world as natural remedies and complementary medicine adjuvants; (2) their import and trade are regulated by specific laws that ensure quality and safety (3) have the potential to be beneficial in alleviating intestinal issues associated with Long COVID-19. Searches were performed in PubMed, Elsevier, Google Scholar, Scopus, Science Direct, and ResearchGate up to 2023. Cinnamomum cassia, Glycyrrhiza uralensis, Magnolia officinalis, Poria cocos, Salvia miltiorrhiza, Scutellaria baicalensis, and Zingiber officinalis were identified as the most promising for their potential impact on inflammation and oxidative stress. Based on the molecular mechanisms of the phytocomplexes and isolated compounds of the considered plants, their clinical use may lead to benefits in gastrointestinal diseases associated with Long COVID-19, thanks to a multiorgan and multitarget approach.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Azienda USL, Budrio Hospital, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Parashar A, Jha D, Mehta V, Chauhan B, Ghosh P, Deb PK, Jaiswal M, Prajapati SK. Sonic hedgehog signalling pathway contributes in age-related disorders and Alzheimer's disease. Ageing Res Rev 2024; 96:102271. [PMID: 38492808 DOI: 10.1016/j.arr.2024.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is caused by the aging process and manifested by cognitive deficits and progressive memory loss. During aging, several conditions, including hypertension, diabetes, and cholesterol, have been identified as potential causes of AD by affecting Sonic hedgehog (Shh) signalling. In addition to being essential for cell differentiation and proliferation, Shh signalling is involved in tissue repair and the prevention of neurodegeneration. Neurogenesis is dependent on Shh signalling; inhibition of this pathway results in neurodegeneration. Several protein-protein interactions that are involved in Shh signalling are implicated in the pathophysiology of AD like overexpression of the protein nexin-1 inhibits the Shh pathway in AD. A protein called Growth Arrest Specific-1 works with another protein called cysteine dioxygenase (CDO) to boost Shh signalling. CDO is involved in the development of the central nervous system (CNS). Shh signalling strengthened the blood brain barrier and therefore prevent the entry of amyloid beta and other toxins to the brain from periphery. Further, several traditional remedies used for AD and dementia, including Epigallocatechin gallate, yokukansan, Lycium barbarum polysaccharides, salvianolic acid, and baicalin, are known to stimulate the Shh pathway. In this review, we elaborated that the Shh signalling exerts a substantial influence on the pathogenesis of AD. In this article, we have tried to explore the various possible connections between the Shh signalling and various known pathologies of AD.
Collapse
Affiliation(s)
- Arun Parashar
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India.
| | - Dhruv Jha
- Birla Institute of Technology, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh 171207, India
| | - Bonney Chauhan
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Pappu Ghosh
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | - Prashanta Kumar Deb
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan 173 212, India
| | | | | |
Collapse
|
49
|
Zhao W, Cui H, Liu K, Yang X, Xing S, Li W. Unveiling Anti-Diabetic Potential of Baicalin and Baicalein from Baikal Skullcap: LC-MS, In Silico, and In Vitro Studies. Int J Mol Sci 2024; 25:3654. [PMID: 38612466 PMCID: PMC11011639 DOI: 10.3390/ijms25073654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is marked by persistent hyperglycemia, insulin resistance, and pancreatic β-cell dysfunction, imposing substantial health burdens and elevating the risk of systemic complications and cardiovascular diseases. While the pathogenesis of diabetes remains elusive, a cyclical relationship between insulin resistance and inflammation is acknowledged, wherein inflammation exacerbates insulin resistance, perpetuating a deleterious cycle. Consequently, anti-inflammatory interventions offer a therapeutic avenue for T2DM management. In this study, a herb called Baikal skullcap, renowned for its repertoire of bioactive compounds with anti-inflammatory potential, is posited as a promising source for novel T2DM therapeutic strategies. Our study probed the anti-diabetic properties of compounds from Baikal skullcap via network pharmacology, molecular docking, and cellular assays, concentrating on their dual modulatory effects on diabetes through Protein Tyrosine Phosphatase 1B (PTP1B) enzyme inhibition and anti-inflammatory actions. We identified the major compounds in Baikal skullcap using liquid chromatography-mass spectrometry (LC-MS), highlighting six flavonoids, including the well-studied baicalein, as potent inhibitors of PTP1B. Furthermore, cellular experiments revealed that baicalin and baicalein exhibited enhanced anti-inflammatory responses compared to the active constituents of licorice, a known anti-inflammatory agent in TCM. Our findings confirmed that baicalin and baicalein mitigate diabetes via two distinct pathways: PTP1B inhibition and anti-inflammatory effects. Additionally, we have identified six flavonoid molecules with substantial potential for drug development, thereby augmenting the T2DM pharmacotherapeutic arsenal and promoting the integration of herb-derived treatments into modern pharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (W.Z.); (H.C.); (K.L.); (X.Y.)
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (W.Z.); (H.C.); (K.L.); (X.Y.)
| |
Collapse
|
50
|
Chen J, Kang J, Yuan S, O’Connell P, Zhang Z, Wang L, Liu J, Chen R. Exploring the Mechanisms of Traditional Chinese Herbal Therapy in Gastric Cancer: A Comprehensive Network Pharmacology Study of the Tiao-Yuan-Tong-Wei decoction. Pharmaceuticals (Basel) 2024; 17:414. [PMID: 38675376 PMCID: PMC11054859 DOI: 10.3390/ph17040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
The use of herbal medicine as an adjuvant therapy in the management of gastric cancer has yielded encouraging outcomes, notably in enhancing overall survival rates and extending periods of disease remission. Additionally, herbal medicines have demonstrated potential anti-metastatic effects in gastric cancer. Despite these promising findings, there remains a significant gap in our understanding regarding the precise pharmacological mechanisms, the identification of specific herbal compounds, and their safety and efficacy profiles in the context of gastric cancer therapy. In addressing this knowledge deficit, the present study proposes a comprehensive exploratory analysis of the Tiao-Yuan-Tong-Wei decoction (TYTW), utilizing an integrative approach combining system pharmacology and molecular docking techniques. This investigation aims to elucidate the pharmacological actions of TYTW in gastric pathologies. It is hypothesized that the therapeutic efficacy of TYTW in counteracting gastric diseases stems from its ability to modulate key signaling pathways, thereby influencing PIK3CA activity and exerting anti-inflammatory effects. This modulation is observed predominantly in pathways such as PI3K/AKT, MAPK, and those directly associated with gastric cancer. Furthermore, the study explores how TYTW's metabolites (agrimoniin, baicalin, corosolic acid, and luteolin) interact with molecular targets like AKT1, CASP3, ESR1, IL6, PIK3CA, and PTGS2, and their subsequent impact on these critical pathways and biological processes. Therefore, this study represents preliminary research on the anticancer molecular mechanism of TYTW by performing network pharmacology and providing theoretical evidence for further experimental investigations.
Collapse
Affiliation(s)
- Juan Chen
- Department of Gastroenterology, Beijing Nuclear Industry Hospital, Beijing 102413, China; (J.C.)
| | - Jingdong Kang
- Department of General Surgery, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
| | - Peter O’Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Zizhu Zhang
- Department of Gastroenterology, Beijing Nuclear Industry Hospital, Beijing 102413, China; (J.C.)
| | - Lina Wang
- Pharmacy Department, Beijing Water Resources Hospital, Beijing 100036, China
| | - Junying Liu
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, National Health Commission, Beijing 102308, China
| |
Collapse
|