1
|
Wang X, Abu Bakar MH, Liqun S, Kassim MA, Shariff KA, Karunakaran T. Targeting metabolic diseases with celastrol: A comprehensive review of anti-inflammatory mechanisms and therapeutic potential. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119560. [PMID: 40015541 DOI: 10.1016/j.jep.2025.119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii is a traditional Chinese medicine used to treat rheumatic diseases, with properties such as clearing heat, detoxifying, dispelling wind, and relieving pain. In recent years, its active compound, celastrol, garnered significant attention for its potential therapeutic effects on metabolic diseases. Celastrol exhibits bioactivities such as regulating metabolic functions and anti-inflammatory effects, positioning it as a promising candidate for the treatment of obesity, diabetes, atherosclerosis (AS), and non-alcoholic fatty liver disease (NAFLD). AIM OF THE REVIEW This review aims to explore the pharmacological mechanisms of celastrol in metabolic diseases, focusing on its anti-inflammatory mechanisms and metabolic regulation effects, providing theoretical support for further investigation of its therapeutic potential in metabolic diseases. METHODS Literature was retrieved from PubMed, Web of Science, Scopus, Cochrane, and Google Scholar. This review primarily focuses on anti-inflammatory mechanisms of celastrol, its metabolic regulation, and toxicity studies, by systematically analyzing its effects in obesity, diabetes, AS, and NAFLD, providing scientific evidence for its potential clinical applications. RESULTS Celastrol regulates multiple signaling pathways, particularly inhibiting NF-κB and activating AMPK, reducing the production of pro-inflammatory cytokines and improving insulin sensitivity, enhancing its therapeutic potential in metabolic diseases. Additionally, celastrol regulates adipogenesis and energy metabolism by influencing key transcription factors such as PPARγ and SREBP-1c. Numerous studies highlight its role in alleviating oxidative stress and improving mitochondrial function, further enhancing its metabolic benefits. CONCLUSION In summary, celastrol holds great promise as a multi-target therapeutic agent for metabolic diseases, offering anti-inflammatory, metabolic regulatory, and antioxidative benefits. Despite these, challenges remain for the clinical application of celastrol due to its poor bioavailability and potential toxicity. Advanced formulation strategies and targeted delivery systems are urgently needed to overcome challenges related to bioavailability and clinical translation.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia; Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia.
| | - Song Liqun
- Department of Pharmacy, Taishan Vocational College of Nursing, 271099, Tai'an, Shandong, China
| | - Mohd Asyraf Kassim
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300, Penang, Malaysia
| | | |
Collapse
|
2
|
Koh WH, Lin LW, Lin TI, Liu CW, Chang LC, Lin IC, Wu MS, Tsai CC. Exploring the relaxation effects of Coptis chinensis and berberine on the lower esophageal sphincter: potential strategies for LES motility disorders. BMC Complement Med Ther 2024; 24:417. [PMID: 39696287 DOI: 10.1186/s12906-024-04720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Esophageal achalasia, a primary disorder impacting the lower esophageal sphincter (LES), presents symptoms such as dysphagia, regurgitation, chest pain, and weight loss. Traditional treatments, including calcium channel blockers and nitrates, offer limited relief, prompting exploration into alternative therapies. This study examines the efficacy of Traditional Chinese Medicine (TCM), focusing on Coptis chinensis (C. chinensis) and its principal component, berberine, for modulating LES relaxation, offering a new perspective on treatment possibilities. METHODS This research evaluated the impact of C. chinensis extract and berberine on the relaxation of LES contraction pre-induced by carbachol, observing the effects across different concentrations. We employed a series of inhibitors, including tetrodotoxin, ω-conotoxin GVIA, rolipram, vardenafil, KT5823, KT5720, NG-nitro-L-arginine, tetraethylammonium (TEA), apamine, iberiotoxin, and glibenclamide, to investigate the underlying mechanisms of berberine-induced LES relaxation. RESULTS Both C. chinensis extract and berberine induced significant, concentration-dependent relaxation of the LES. The relaxation effect of berberine was significantly reduced by TEA, indicating the involvement of potassium channels in this process. CONCLUSIONS This study demonstrates that C. chinensis and berberine significantly promote LES relaxation, primarily through potassium channel activation. These findings provide a foundation for further investigation of these compounds' potential therapeutic applications in esophageal motility disorders, such as achalasia.
Collapse
Affiliation(s)
- Wen-Harn Koh
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Li-Wei Lin
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ting-I Lin
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - Ching-Wen Liu
- Department of Senior Citizen Health Service and Management, Yuh-Ing Junior College of Health Care and Management, No. 15, Lane 420, Dachang 2nd Road, Kaohsiung City, 80776, Taiwan, R.O.C
| | - Li-Ching Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C
| | - I-Chun Lin
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Road, Niaosong District, Kaohsiung City, 83301, Taiwan, R.O.C
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Zhongshan S. Road, Zhongzheng District, Taipei City, 100225, Taiwan, R.O.C
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, I-Shou University, No. 1, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
- School of Medicine for International Students, College of Medicine, I-Shou University, No. 8, Yi-Da Road, Yan-Chao District, Kaohsiung City, 82445, Taiwan, R.O.C..
| |
Collapse
|
3
|
Chen X, Yang H, Shi L, Mao Y, Niu L, Wang J, Chen H, Jia J, Wang J, Xue J, Shen Y, Zheng C, Tian Y, Zheng Y. Self-Microemulsifying Drug Delivery System to Enhance Oral Bioavailability of Berberine Hydrochloride in Rats. Pharmaceutics 2024; 16:1116. [PMID: 39339154 PMCID: PMC11435259 DOI: 10.3390/pharmaceutics16091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Berberine hydrochloride (BH) is a versatile bioactive compound derived from the plants of the Berberis genus, known for its various pharmacological effects. However, its oral bioavailability is low due to its high hydrophilicity and limited permeability. To enhance its clinical efficacy and oral bioavailability, this study designed and prepared a BH-loaded self-microemulsifying drug delivery system (BH-SMEDDS), and characterized its in vitro and in vivo properties. Firstly, the optimal formulation of BH-SMEDDS was selected using solubility evaluations, pseudo-ternary phase diagrams, and particle size analysis. The formulation containing 55% Capmul MCM, 22.5% Kolliphor RH 40, and 22.5% 1,2-propanediol was developed. BH-SMEDDS exhibited stable physicochemical properties, with an average particle size of 47.2 ± 0.10 nm and a self-emulsification time of 26.02 ± 0.24 s. Moreover, in vitro dissolution studies showed significant improvements in BH release in simulated intestinal fluid, achieving 93.1 ± 2.3% release within 300 min. Meanwhile, BH-SMEDDS did not exhibit cytotoxic effects on the Caco-2 cells. Additionally, BH-SMEDDS achieved a 1.63-fold increase in oral bioavailability compared to commercial BH tablets. Therefore, SMEDDS presents a promising strategy for delivering BH with enhanced oral bioavailability, demonstrating significant potential for clinical application.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Haifeng Yang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Longyu Shi
- College of Life Sciences, China Pharmaceutical University, Nanjing 210009, China;
| | - Yujuan Mao
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Lin Niu
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jing Wang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Haifeng Chen
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jiping Jia
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jingxuan Wang
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Jiajie Xue
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.S.); (C.Z.)
| | - Chunli Zheng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.S.); (C.Z.)
| | - Yu Tian
- School of Medicine, Shanghai University, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 201613, China
| | - Yi Zheng
- Department of Pharmaceutics, Jiangsu Agri-Animal Husbandry Vocational College, No. 8, Fenghuang East Road, Taizhou 225300, China; (X.C.); (H.Y.); (Y.M.); (L.N.); (J.W.); (H.C.); (J.J.); (J.W.); (J.X.)
| |
Collapse
|
4
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
A Brief Review of Natural Products with Urate Transporter 1 Inhibition for the Treatment of Hyperuricemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5419890. [PMID: 36337587 PMCID: PMC9635963 DOI: 10.1155/2022/5419890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
Hyperuricemia is a common disease caused by a high level of uric acid. Urate transporter 1 (URAT1) is an important protein and mediates approximately 90% of uric acid reabsorption. Therefore, the URAT1 inhibitor is a class of uricosuric medicines widely used in the clinic for the treatment of hyperuricemia. To find the new medicine with stronger URAT1 inhibition and lower toxicity, researchers have been exploring natural products. This study systematically summarizes the natural products with URAT1 inhibition. The results show that many natural products are potential URAT1 inhibitors, such as flavonoids, terpenoids, alkaloids, coumarins, stilbenes, and steroids, among which flavonoids are the most promising source of URAT1 inhibitors. It is worth noting that most studies have focused on finding natural products with inhibition of URAT1 and have not explored their activities and mechanisms toward URAT1. By reviewing the few existing studies of the structure-activity relationship and analyzing common features of natural products with URAT1 inhibition, we speculate that the rigid ring structure and negative charge may be the keys for natural products to produce URAT1 inhibition. In conclusion, natural products are potential URAT1 inhibitors, and exploring the mechanism of action and structure-activity relationship will be an important research direction in the future.
Collapse
|
6
|
Expatiating the Pharmacological and Nanotechnological Aspects of the Alkaloidal Drug Berberine: Current and Future Trends. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123705. [PMID: 35744831 PMCID: PMC9229453 DOI: 10.3390/molecules27123705] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer’s disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.
Collapse
|
7
|
Li J, Li J, Ni J, Zhang C, Jia J, Wu G, Sun H, Wang S. Berberine Relieves Metabolic Syndrome in Mice by Inhibiting Liver Inflammation Caused by a High-Fat Diet and Potential Association With Gut Microbiota. Front Microbiol 2022; 12:752512. [PMID: 35095784 PMCID: PMC8790126 DOI: 10.3389/fmicb.2021.752512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Whether berberine mediates its anti-inflammatory and blood sugar and lipid-lowering effects solely by adjusting the structure of the gut microbiota or by first directly regulating the expression of host pro-inflammatory proteins and activation of macrophages and subsequently acting on gut microbiota, is currently unclear. To clarify the mechanism of berberine-mediated regulation of metabolism, we constructed an obese mouse model using SPF-grade C57BL/6J male mice and conducted a systematic study of liver tissue pathology, inflammatory factor expression, and gut microbiota structure. We screened the gut microbiota targets of berberine and showed that the molecular mechanism of berberine-mediated treatment of metabolic syndrome involves the regulation of gut microbiota structure and the expression of inflammatory factors. Our results revealed that a high-fat diet (HFD) significantly changed mice gut microbiota, thereby probably increasing the level of toxins in the intestine, and triggered the host inflammatory response. The HFD also reduced the proportion of short-chain fatty acid (SCFA)-producing genes, thereby hindering mucosal immunity and cell nutrition, and increased the host inflammatory response and liver fat metabolism disorders. Further, berberine could improve the chronic HFD-induced inflammatory metabolic syndrome to some extent and effectively improved the metabolism of high-fat foods in mice, which correlated with the gut microbiota composition. Taken together, our study may improve our understanding of host-microbe interactions during the treatment of metabolic diseases and provide useful insights into the action mechanism of berberine.
Collapse
Affiliation(s)
- Jinjin Li
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Jialin Li
- Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, China
| | - Jiajia Ni
- Research and Development Center, Guangdong Meilikang Bio-Science Ltd., Dongguan, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - Caibo Zhang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Jianlei Jia
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Guoying Wu
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Hongzhao Sun
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Shuzhen Wang
- School of Life Sciences, Qilu Normal University, Jinan, China
| |
Collapse
|
8
|
Song L, Zhang J, Lai R, Li Q, Ju J, Xu H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front Pharmacol 2021; 12:675999. [PMID: 34054550 PMCID: PMC8155674 DOI: 10.3389/fphar.2021.675999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a complex chronic disease that occurs in the arterial wall. Oxidative stress plays a crucial role in the occurrence and progression of atherosclerotic plaques. The dominance of oxidative stress over antioxidative capacity generates excess reactive oxygen species, leading to dysfunctions of the endothelium and accelerating atherosclerotic plaque progression. Studies showed that Chinese herbal medicines and traditional Chinese medicine (TCM) might regulate oxidative stress; they have already been used to treat diseases related to atherosclerosis, including stroke and myocardial infarction. This review will summarize the mechanisms of oxidative stress in atherosclerosis and discuss studies of Chinese herbal medicines and TCM preparations treating atherosclerosis, aiming to increase understanding of TCM and stimulate research for new drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Ali F, Alom S, Zaman MK. Berberine: A Comprehensive Review on its Isolation,
Biosynthesis, Chemistry and Pharmacology. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2548-2560. [DOI: 10.14233/ajchem.2021.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The isoquinoline compounds from alkaloidal class have been excellent source of important
phytoconstituents having wide range of pharmacological activities. Berberine is a protoberberine
alkaloidal compound obtained from Berberis genus plants which belongs to family Barberidaceae.
Due to its unique structural properties, berberine and its derivatives has been exploited extensively for
its potential uses in various pharmacological targets such as cancer, inflammation, diabetes,
gastrointestinal disorder, viral and microbial infections, neurological disorder like Alzheimer, anxiety,
schizophrenia, depression, etc. This review illustrates the updated information on berberine with respect
to its isolation, biosynthesis, chemical synthesis, structural modification and pharmacological activities.
An extensive literature search were carried out in various search engine like PubMed, Google Scholars,
Research Gate and SCOPUS by using keywords like Berberine, protoberberine alkaloids, isoquinoline
derivatives, pharmacological effects, etc. Prephenic acid is the starting material for biosynthesis of
berberine. Structural modifications lead to generation of various potential derivatives, which earn
patents by researchers. Besides toxicities, the complications of low solubility and bioavailability should
be eliminated. To improve its safety, efficacy and selectivity the berberine should be carefully derivatized.
Collapse
Affiliation(s)
- Farak Ali
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Shahnaz Alom
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Md Kamaruz Zaman
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| |
Collapse
|
10
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
11
|
Sharif H, Akash MSH, Rehman K, Irshad K, Imran I. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds. J Food Biochem 2020; 44:e13449. [PMID: 32851658 DOI: 10.1111/jfbc.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Under physiological conditions, endothelial cells act as protective barrier which prevents direct contact of blood with circulating factors via production of tissue plasminogen activator. Risk factors of metabolic disorders are responsible to induce endothelial dysfunction and may consequently lead to prognosis of atherosclerosis. This article summarizes the process of atherosclerosis which involves number of sequences including formation and interaction of AGE-RAGE, activation of polyol pathway, protein kinase C, and hexosamine-mediated pathway. All these mechanisms can lead to the development of oxidative stress which may further aggravate condition. Different pharmacological interventions are being used to treat atherosclerosis, however, these might be associated with mild to severe side effects. Therefore, plant-based bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are attaining recent focus. By understanding process of development and mechanisms involved in atherosclerotic plaque formation, these bioactive compounds can be better option for future therapeutic interventions for atherosclerosis treatment. PRACTICAL APPLICATIONS: Atherosclerosis is one of major underlying disorders of cardiovascular diseases which occur through multiple mechanisms and is associated with metabolic disorders. Conventional therapeutic interventions are not only used to treat atherosclerosis, but are also commonly associated with mild to severe side effects. Therefore, nowadays, bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are preferred. By understanding mechanisms involved in atherosclerotic plaque formation, bioactive compounds can be better understood for treatment of atherosclerosis. In this manuscript, we have focused on treatment strategies of atherosclerosis using bioactive compounds notably alkaloids and flavonoids having diverse pharmacological and therapeutic potentials with special focus on the mechanism of action of these bioactive compounds suitable for treatment of atherosclerosis. This manuscript will provide the scientific insights of bioactive compounds to researchers who are working in the area of drug discovery and development to control pathogenesis and development of atherosclerosis and its associated cardiometabolic disorders.
Collapse
Affiliation(s)
- Hina Sharif
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
12
|
Cheng C, Li Z, Zhang M, Chen D. Jateorhizine alleviates insulin resistance by promoting adipolysis and glucose uptake in adipocytes. J Recept Signal Transduct Res 2020; 41:255-262. [PMID: 32808837 DOI: 10.1080/10799893.2020.1806319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Jateorhizine (Jat) can reduce blood glucose in diabetic mice, but there are few studies on its role in insulin resistance (IR). This study analyzed the effect of Jat on adipocytes, so as to provide an evidence for the clinical application of Jat. MDI was used to differentiate preadipocytes into adipocytes and induce IR cell models. Different concentrations of Jat (1, 5, 10, 20 μmol/L) were added into undifferentiated and differentiated cells. The cell viability was detected using MTT method. Oil red O staining was performed to observe the lipid formation in cells. Adipolysis method was used to detect the release of glycerol in cell culture medium. The level of 2-DG in cells was detected by glucose uptake assay based on insulin treatment. The expression of adipose transcription factors and IRS2/p-PI3K/p-AKT/GLUT4 signaling pathway was analyzed by western blot (WB) analysis. Neither the activity of differentiated nor undifferentiated preadipocytes was affected by the addition of Jat. There was numerous lipid formation in cells induced by MDI, which was decreased visibly by Jat. Jat reduced the expression levels of MDI-induced elevated levels of PPARγ, C/EBPα, FABP4, perilipin and FAS, as well as increased the release of glycerol in adipocytes. Moreover, Jat further enhanced the 2-DG uptake in MDI-induced adipocytes, and activated the IRS2/p-PI3K/p-AKT/GLUT4 signaling pathway. In general, the role of Jat in adipocytes was concentration-dependent. Jat can not only promote adipolysis, but also increase the glucose uptake in adipocytes, which might be a potential therapy for IR.
Collapse
Affiliation(s)
- Changqin Cheng
- Departement of Endocrinology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiyong Li
- Departement of Endocrinology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Departement of Endocrinology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Dezhi Chen
- Departement of Endocrinology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Wang L, Deng L, Lin N, Shi Y, Chen J, Zhou Y, Chen D, Liu S, Li C. Berberine inhibits proliferation and apoptosis of vascular smooth muscle cells induced by mechanical stretch via the PDI/ERS and MAPK pathways. Life Sci 2020; 259:118253. [PMID: 32795536 DOI: 10.1016/j.lfs.2020.118253] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
AIMS We recently demonstrated that mechanical stretch increases the proliferation and apoptosis of vascular smooth muscle cells (VSMCs) by activating the protein disulfide isomerase (PDI) redox system, thus accelerating atherosclerotic lesion formation in the transplanted vein. At present, there are no efficient intervention measures to prevent this phenomenon. Berberine inhibits pathological vascular remodeling caused by hypertension, but the underlying mechanism is controversial. Herein, we investigate the role of berberine and the underlying mechanism of its effects on mechanical stretch-induced VSMC proliferation and apoptosis. MAIN METHODS Mouse VSMCs cultivated on flexible membranes were pretreated for 1 h with one of the following substances: berberine, PDI inhibitor bacitracin, MAPK inhibitors, or ERS inhibitor 4-PBA. VSMCs were then subjected to mechanical stretch. Immunofluorescence and western blot were used to detect proliferation and apoptosis, as well as to analyze signaling pathways in VSMCs. KEY FINDINGS Our results showed that berberine inhibits the PDI-endoplasmic reticulum stress system, thereby attenuating the simultaneous increase of VSMC proliferation and apoptosis in response to mechanical stretch. Interestingly, MAPK inhibitors PD98059, SP600125, and SB202190 significantly reduced the activation of ERS signaling cascades, and their combination with berberine had additive effects. The ERS inhibitor 4-PBA reduced PDI activation and ERS signaling, but not MAPK phosphorylation. Moreover, caspase-3 and caspase-12 were downregulated by berberine. SIGNIFICANCE These results illustrate a novel mechanism of action of berberine that has practical implications. Our data provide important insights for the prevention and treatment of vascular remodeling and diseases caused by mechanical stretching during hypertension.
Collapse
Affiliation(s)
- Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Ning Lin
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yi Shi
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
14
|
Xu X, Pan Y, Xu B, Yan Y, Yin B, Wang Y, Hu S, Ma L. Effects of Cortex Phellodendri extract on post-weaning piglets diarrhoea. Vet Med Sci 2020; 6:901-909. [PMID: 32585771 PMCID: PMC7738706 DOI: 10.1002/vms3.304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The diarrhoea incidence rate is often high among weaning piglets. In light of the fact that Cortex phellodendri has long been used to treat diarrhoea in China, this study aimed to evaluate the effects of Cortex Phellodendri Extract (CPE) on diarrhoea in weaning piglets and the mechanism behind such effects. In the first trial, 36 diarrhoeal weaning piglets were randomly divided into three groups. The control group was injected with 20 mg oxytetracycline/kg BW, while the two treatment groups were orally administered with 10 mg and 20 mg CPE/kg BW respectively. In the second trial, 96 weaning piglets were randomly divided into two groups. The control group was fed basal diet, while 300 mg CPE/kg BW was added to the diet of the treatment group. The pathogenic bacteria were then isolated and identified from the diarrhoeal faecal samples. Cell adhesion and RT‐PCR tests were used to investigate the effect of CPE on the adhesion of pathogenic bacteria to IPEC‐J2 cells. 16S rDNA‐based high‐throughput sequencing was used to analyse faecal microflora. The results showed that CPE reduced the diarrhoea incidence rate (p < 0.05) and diarrhoea index (p < 0.05) compared to control group, and increased the richness and evenness of weaning piglets’ gut microbiota. Escherichia coli (E. coil) was identified as the causative organism. Cell adhesion and RT‐PCR tests suggested that CPE reduced the adhesion of E. coli to IPEC‐J2 cells (p < 0.05) and the expression of fae and faeG gene (p < 0.05) responsible for encoding E. coli fimbriae protein.
Collapse
Affiliation(s)
- Xiaofan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxin Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoyang Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yiqin Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Boqi Yin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanqing Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuxin Hu
- Hubei New Agricultural Technology Company, Wuhan, China
| | - Libao Ma
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease. Cent Nerv Syst Agents Med Chem 2020; 19:154-170. [PMID: 31429696 DOI: 10.2174/1871524919666190820160053] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer's disease.
Collapse
Affiliation(s)
- Anurag K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Santosh K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Manmath K Nandi
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Maurya
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal K Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
16
|
de Souza P, da Silva LM, de Andrade SF, Gasparotto Junior A. Recent Advances in the Knowledge of Naturally-derived Bioactive Compounds as Modulating Agents of the Renin-angiotensin-aldosterone System: Therapeutic Benefits in Cardiovascular Diseases. Curr Pharm Des 2020; 25:670-684. [PMID: 30931846 DOI: 10.2174/1381612825666190329122443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND One of the biggest challenges to public health worldwide is to reduce the number of events and deaths related to the cardiovascular diseases. Numerous approaches have been applied to reach this goal, and drug treatment intervention has been indispensable along with an effective strategy for reducing both cardiovascular morbidity and mortality. Renin-angiotensin-aldosterone system (RAAS) blockade is currently one of the most important targets of cardiovascular drug therapy. Many studies have proven the valuable properties of naturally-derived bioactive compounds to treat cardiovascular diseases. METHODS The goal of this review, therefore, is to discuss the recent developments related to medicinal properties about natural compounds as modulating agents of the RAAS, which have made them an attractive alternative to be available to supplement the current therapy options. RESULTS Data has shown that bioactive compounds isolated from several natural products act either by inhibiting the angiotensin-converting enzyme or directly by modulating the AT1 receptors of angiotensin II, which consequently changes the entire classical axis of this system. CONCLUSION While there are a few evidence about the positive actions of different classes of secondary metabolites for the treatment of cardiovascular and renal diseases, data is scarce about the clinical assays established to demonstrate their value in humans.
Collapse
Affiliation(s)
- Priscila de Souza
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Luisa M da Silva
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Sérgio F de Andrade
- Programa de Pos-Graduacao em Ciencias Farmaceuticas, Nucleo de Investigacoes Quimico-Farmaceuticas (NIQFAR), Universidade do Vale do Itajai (UNIVALI), Rua Uruguai, 458, 88302-901 Itajai, SC, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratorio de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciencias da Saude, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
17
|
Kong WJ, Vernieri C, Foiani M, Jiang JD. Berberine in the treatment of metabolism-related chronic diseases: A drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol Ther 2020; 209:107496. [PMID: 32001311 DOI: 10.1016/j.pharmthera.2020.107496] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022]
Abstract
Berberine (BBR) is a multi-target drug (MTD) that has proven effective in the treatment of metabolism-related chronic diseases (CDs). However, the mode of action (MOA) of BBR remains to be clarified. At a cellular level, the inhibitory effect of BBR on mitochondrial enzymes is probably responsible for many of its biological activities, including the activation of low-density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK) and insulin receptor (InsR); these biological activities contribute to ameliorate peripheral blood metabolic profiles, e.g. by reducing plasma lipids and glucose levels, thus improving signs and symptoms of metabolic disorders. In this perspective, BBR acts as a targeted therapy. However, it also exerts pleiotropic systemic activities on some root causes of CDs that include antioxidant / anti-inflammatory effects and modifications of gut microbiota composition and metabolism, which may also contribute to its disease-modifying effects. After reviewing the different MOA of BBR, here we propose that BBR acts through a drug-cloud (dCloud) mechanism, as different to a drug-target effect. The dCloud here is defined as a group of terminal molecular events induced by the drug (or/and related metabolites), as well as the network connections among them. In this scenario, the therapeutic efficacy of BBR is the result of its dCloud effect acting on symptoms/signs as well as on root causes of the diseases. The dCloud concept is applicable to other established MTDs, such as aspirin, metformin, statins as well as to nutrient starvation, thus providing a novel instrument for the design of effective therapies against multifactorial metabolism-related CDs.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China
| | - Claudio Vernieri
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | - Marco Foiani
- Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; University of Milan, Italy.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China; State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China.
| |
Collapse
|
18
|
Mortazavi H, Nikfar B, Esmaeili SA, Rafieenia F, Saburi E, Chaichian S, Heidari Gorji MA, Momtazi-Borojeni AA. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur J Med Chem 2019; 187:111951. [PMID: 31821990 DOI: 10.1016/j.ejmech.2019.111951] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Gynaecological disorders, such as cervical, ovarian, and endometrial cancers are the second most prevalent cancer types in women worldwide. Therapeutic approaches for gynaecological cancers involve chemotherapy, radiation, and surgery. However, lifespan is not improved, and novel medications are required. Among various phytochemicals, berberine, a well-known natural product, has been shown to be a promising cancer chemopreventive agent. Pharmacokinetics, safety, and efficacy of berberine have been investigated in the several experiments against numerous diseases. Here, we aimed to provide a literature review from available published investigations showing the anticancer effects of berberine and its various synthetic analogues against gynaecological disorders, including cervical, ovarian, and endometrial cancers. In conclusion, berberine has been found to efficiently inhibit viability, proliferation, and migration of cancer cells, mainly, via induction of apoptosis by both mitochondrial dependent and -independent pathways. Additionally, structural modification of berberine showed that berberine analogues can improve its antitumor effects against gynaecological cancers.
Collapse
Affiliation(s)
- Hamed Mortazavi
- Geriatric Care Research Center, Department of Geriatric Nursing, School of Nursing and Midwifery, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rafieenia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Heidari Gorji
- Diabetes Research Center, Department of Medical-Surgical Nursing, Nasibeh Faculty of Nursing and Midwifery, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran; Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
20
|
Rezaee R, Monemi A, SadeghiBonjar MA, Hashemzaei M. Berberine Alleviates Paclitaxel-Induced Neuropathy. J Pharmacopuncture 2019; 22:90-94. [PMID: 31338248 PMCID: PMC6645340 DOI: 10.3831/kpi.2019.22.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/11/2019] [Accepted: 03/21/2019] [Indexed: 01/23/2023] Open
Abstract
Objectives Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.
Collapse
Affiliation(s)
- Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Aristotle University of Thessaloniki, Department of Chemical Engineering, Environmental Engineering Laboratory, University Campus, Thessaloniki 54124, Greece.,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th km Thessaloniki-Thermi, Greece
| | - Alireza Monemi
- Students research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Amin SadeghiBonjar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
21
|
Sóvári D, Kormos A, Demeter O, Dancsó A, Keserű GM, Milen M, Ábrányi-Balogh P. Synthesis and fluorescent properties of boroisoquinolines, a new family of fluorophores. RSC Adv 2018; 8:38598-38605. [PMID: 35559080 PMCID: PMC9090577 DOI: 10.1039/c8ra08241c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 11/21/2022] Open
Abstract
First representatives of a new family of isoquinolines, so called boroisoquinolines, were synthesized and characterized. The synthesis was based on the insertion of the difluoroboranyl group into the 1-methylidene-3,4-dihydroisoquinoline core. The optimization of the 2-difluoroboranyl-3,4-dihydroisoquinoline-1(2H)-ylidene core led to efficient fluorescence in a range of 400-600 nm with outstanding (>100 nm) Stokes shifts. The compounds might be suitable for reversible or irreversible labelling of proteins, particularly the cannabinoid receptor CB2.
Collapse
Affiliation(s)
- Dénes Sóvári
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Medicinal Chemistry Research Group 1519 Budapest POB 286 Hungary +36 1 3826961
| | - Attila Kormos
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Chemical Biology Research Group 1519 Budapest POB 286 Hungary
| | - Orsolya Demeter
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Chemical Biology Research Group 1519 Budapest POB 286 Hungary
| | - András Dancsó
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development 1475 Budapest POB 100 Hungary
| | - György Miklós Keserű
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Medicinal Chemistry Research Group 1519 Budapest POB 286 Hungary +36 1 3826961
| | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development 1475 Budapest POB 100 Hungary
| | - Péter Ábrányi-Balogh
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Institute of Organic Chemistry, Medicinal Chemistry Research Group 1519 Budapest POB 286 Hungary +36 1 3826961
| |
Collapse
|
22
|
Plant dipeptidyl peptidase-IV inhibitors as antidiabetic agents: a brief review. Future Med Chem 2018; 10:1229-1239. [PMID: 29749760 DOI: 10.4155/fmc-2017-0235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is an increasing public health problem in the world. Type 2 diabetes is the most common type of diabetes whose complications contribute to its high death rate. It seriously impacts healthcare systems and patients' quality of life. Therefore, effective measures and new treatment strategies are needed to solve this increasingly serious global problem. In recent years, inhibition of dipeptidyl peptidase IV (DPP-IV) has emerged as a new treatment option for Type 2 diabetes. This article reviews various plant DPP-IV inhibitors that showed inhibition toward enzyme as a major target for the management of Type 2 diabetes. These studies can contribute to the future development of DPP-IV inhibitors as drugs.
Collapse
|
23
|
Qiu H, Wu Y, Wang Q, Liu C, Xue L, Wang H, Wu Q, Jiang Q. Effect of berberine on PPAR α-NO signalling pathway in vascular smooth muscle cell proliferation induced by angiotensin IV. PHARMACEUTICAL BIOLOGY 2017; 55:227-232. [PMID: 27927051 PMCID: PMC6130450 DOI: 10.1080/13880209.2016.1257642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/28/2016] [Accepted: 11/02/2016] [Indexed: 05/26/2023]
Abstract
CONTEXT The available treatments for the abnormal proliferation of vascular smooth muscle cells (VSMCs) are still dismal. Berberine has been demonstrated to possess extensive medicine activity, yet relatively little is known about its effect on VSMCs proliferation. Many studies showed that PPARα and NO participated in the process of VSMCs proliferation. OBJECTIVE To evaluate the effect of berberine and its possible influence on PPARα-NO pathway in angiotensin IV-stimulated VSMCs. MATERIALS AND METHODS The primary VSMCs were cultured with the tissue explants method, and the proliferation was characterized by MTT and protein content. Protein and mRNA expression were measured by Western blot and real-time RT-PCR, respectively. NO synthase (NOS) activity was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. RESULTS Angiotensin IV (0.1 nmol/L)-induced VSMCs proliferation was evidenced by increasing the optical density at A490 and total protein content (p < 0.01), which was inhibited by berberine (10, 30 and 100 μmol/L) in a concentration-dependent manner (p < 0.05). Angiotensin IV decreased the expression of PPARα at mRNA and protein level (p < 0.05), which occurred in parallel with declining eNOS mRNA expression, NOS activity and NO concentration (p < 0.01). Berberine at 30 μmol/L reversed the effects of angiotensin IV in VSMCs (p < 0.05), which were abolished by MK 886 (0.3 μmol/L) (p < 0.05). DISCUSSION AND CONCLUSION The results support the therapeutic effects of berberine on angiotensin IV-induced proliferation in cultured VSMCs at least partially through targeting the PPARα-NO signalling pathway.
Collapse
MESH Headings
- Angiotensin II/analogs & derivatives
- Angiotensin II/pharmacology
- Animals
- Berberine/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Indoles/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- PPAR alpha/agonists
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Primary Cell Culture
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Yang Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Quanhua Wang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Changqing Liu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Lai Xue
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Hong Wang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| | - Qin Wu
- Department of Pharmacology, Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, P.R. China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
24
|
Ayati SH, Fazeli B, Momtazi-Borojeni AA, Cicero AFG, Pirro M, Sahebkar A. Regulatory effects of berberine on microRNome in Cancer and other conditions. Crit Rev Oncol Hematol 2017; 116:147-158. [PMID: 28693796 DOI: 10.1016/j.critrevonc.2017.05.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid found in different plant families such as Berberidaceae, Ranunculaceae, and Papaveraceae. BBR is well-known for its anti-inflammatory, lipid-modifying, anticancer, anti-diabetic, antibacterial, antiparasitic and fungicide activities. Multiple pharmacological actions of BBR stem from different molecular targets of this phytochemical. MicroRNAs (miRs) are single-stranded, evolutionary conserved, small non-coding RNA molecules with a length of 19-23 nucleotides that are involved in RNA silencing and post-transcriptional regulation of gene expression through binding to the 3'-untranslated region (3'UTR) of target mRNA. MiRs emerged as important regulatory elements in almost all biological processes like cell proliferation, apoptosis, differentiation and organogenesis, and numerous human diseases such as cancer and diabetes. BBR was shown to regulate the expression of miRs in several diseases. Here, we reviewed the target miRs of BBR and the relevance of their modulation for the potential treatment of serious human diseases like multiple myeloma, hepatocellular carcinoma, colorectal cancer, gastric cancer, ovarian cancer and glioblastoma. The role of miR regulation in the putative anti-diabetic effects of BBR is discussed, as well.
Collapse
Affiliation(s)
- Seyed Hasan Ayati
- Immunology Research Center, Department of Immunology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Badrieh Fazeli
- Department of Biology, Faculty of Science, Isfahan University, Isfahan, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Via Albertoni 15, Bologna, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| |
Collapse
|
25
|
Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed Pharmacother 2017; 92:207-214. [DOI: 10.1016/j.biopha.2017.05.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 02/05/2023] Open
|
26
|
Wang K, Feng X, Chai L, Cao S, Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 2017; 49:139-157. [DOI: 10.1080/03602532.2017.1306544] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kun Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Liwei Chai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Shijie Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
27
|
Synthesis and anti-inflammatory effects of a series of novel 9-O-substituted berberine derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Luiza Andreazza N, Vevert-Bizet C, Bourg-Heckly G, Sureau F, José Salvador M, Bonneau S. Berberine as a photosensitizing agent for antitumoral photodynamic therapy: Insights into its association to low density lipoproteins. Int J Pharm 2016; 510:240-9. [DOI: 10.1016/j.ijpharm.2016.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 01/30/2023]
|
30
|
Lin CS, Liu PY, Lian CH, Lin CH, Lai JH, Ho LJ, Yang SP, Cheng SM. Gentiana scabra Reduces SR-A Expression and Oxidized-LDL Uptake in Human Macrophages. ACTA CARDIOLOGICA SINICA 2016; 32:460-6. [PMID: 27471359 DOI: 10.6515/acs20150416a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Macrophages can imbibe low-density lipoprotein (LDL) through scavenger receptors to become foam cells, which is critical in the initiation and progression of atherosclerosis. Mounting evidence suggests that the anti-inflammatory nature of Chinese herbs have the capacity to halt the complex mechanisms underlying atherosclerosis. This study examined the effects of Chinese herbs on foam cell formation. METHODS Chinese herbs were obtained from the Sun Ten pharmaceutic company. Using oxidized LDL (OxLDL) uptake and a cell toxicity assay, we screened more than 30 types of Chinese herbs. Western blotting was used to determine expressions of scavenger receptors (SRs) and extracellular-signal-regulated kinase (ERK) activities. RESULTS We found that Gentiana scabra reduced oxidized LDL uptake effectively in THP-1 macrophages (p < 0.05 vs. OxLDL treated control). Moreover, treatment with Gentiana scabra in THP-1 macrophages resulted in decreased expression of scavenger receptor- A (SR-A) (p < 0.05 vs. control). Molecular investigation revealed that Gentiana scabra inhibited SR-A protein expression, possibly by regulating ERK signaling pathways (p < 0.05 vs. control). CONCLUSIONS By regulating SR-A expression, Gentiana scabra reduced oxidized LDL uptake in human macrophages. These results support the potential use of Gentiana scabra in treating atherosclerosis.
Collapse
Affiliation(s)
- Chin-Sheng Lin
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pang-Yen Liu
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chen-Hao Lian
- Division of General Laboratory, Ministry of Health and Welfare, KinMen Hospital, Kinmen
| | | | - Jenn-Haung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
31
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
32
|
Abstract
Berberine, an important protoberberine isoquinoline alkaloid, has several pharmacological activities, including antimicrobial, glucose- and cholesterol-lowering, antitumoral, and immunomodulatory properties. Substantial studies suggest that berberine may be beneficial to Alzheimer's disease (AD) by limiting the pathogenesis of extracellular amyloid plaques and intracellular neurofibrillary tangles. Increasing evidence has indicated that berberine exerts a protective role in atherosclerosis related to lipid- and glucose-lowering properties, implicating that berberine has the potential to inhibit these risk factors for AD. This review also attempts to discuss the pharmacological basis through which berberine may retard oxidative stress and neuroinflammation to exhibit its protective role in AD. Accordingly, berberine might be considered a potential therapeutic approach to prevent or delay the process of AD. However, more detailed investigations along with a safety assessment of berberine are warranted to clarify the role of berberine in limiting these risk factors and AD-related pathologies.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
33
|
Vieira S, Castelli S, Falconi M, Takarada J, Fiorillo G, Buzzetti F, Lombardi P, Desideri A. Role of 13-(di)phenylalkyl berberine derivatives in the modulation of the activity of human topoisomerase IB. Int J Biol Macromol 2015; 77:68-75. [PMID: 25783020 DOI: 10.1016/j.ijbiomac.2015.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
Abstract
Topoisomerases IB are anticancer and antimicrobial targets whose inhibition by several natural and non-natural compounds has been documented. The inhibition effect by berberine and some 13-(di)phenylalkyl berberine derivatives has been tested towards human topoisomerase IB. Derivatives belonging to the 13-diphenylalkyl series display an efficient inhibition of the DNA relaxation and cleavage step, that increases upon pre-incubation with the enzyme. The religation step of the enzyme catalytic cycle is not affected by compounds and only slightly upon pre-incubation. The binding of the protein to the DNA substrate occurs also in the presence of the compounds, as monitored by a DNA shift assay, indicating that the compounds are not able to inhibit the formation of the enzyme-DNA complex but that they act as catalytic inhibitors.
Collapse
Affiliation(s)
- Sara Vieira
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Silvia Castelli
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Mattia Falconi
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Jéssica Takarada
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Gaetano Fiorillo
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, Italy
| | - Franco Buzzetti
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, Italy
| | - Alessandro Desideri
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
34
|
Shukla S, Rizvi F, Raisuddin S, Kakkar P. FoxO proteins' nuclear retention and BH3-only protein Bim induction evoke mitochondrial dysfunction-mediated apoptosis in berberine-treated HepG2 cells. Free Radic Biol Med 2014; 76:185-99. [PMID: 25128467 DOI: 10.1016/j.freeradbiomed.2014.07.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/16/2022]
Abstract
Mammalian forkhead-box family members belonging to the 'O' category (FoxO) manipulate a plethora of genes modulating a wide array of cellular functions including cell cycle regulation, apoptosis, DNA damage repair, and energy metabolism. FoxO overexpression and nuclear accumulation have been reported to show correlation with hindered tumor growth in vitro and size in vivo, while FoxO's downregulation via phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway has been linked with tumor promotion. In this study, we have explored for the first time intervention of berberine, a plant-derived isoquinoline alkaloid, with FoxO family proteins in hepatoma cells. We observed that berberine significantly upregulated the mRNA expression of both FoxO1 and FoxO3a. Their phosphorylation-mediated cytoplasmic sequestration followed by degradation was prevented by berberine-induced downmodulation of the PI3K/Akt/mTOR pathway which promoted FoxO nuclear retention. PTEN, a tumor suppressor gene and negative regulator of the PI3K/Akt axis, was upregulated while phosphorylation of its Ser380 residue (possible mechanism of PTEN degradation) was significantly decreased in treated HepG2 cells. Exposure to berberine induced a significant increase in transcriptional activity of FoxO, as shown by GFP reporter assay. FoxO transcription factors effectively heightened BH3-only protein Bim expression, which in turn, being a direct activator of proapoptotic protein Bax, altered Bax/Bcl-2 ratio, culminating into mitochondrial dysfunction, caspases activation, and DNA fragmentation. The pivotal role of Bim in berberine-mediated cytotoxicity was further corroborated by knockdown experiments where Bim-silencing partially restored HepG2 cell viability during berberine exposure. In addition, a correlation between oxidative overload and FoxO's nuclear accumulation via JNK activation was evident as berberine treatment led to a pronounced increase in JNK phosphorylation together with enhanced ROS generation, lipid peroxidation, decreased activities of superoxide dismutase and catalase, and diminished glutathione levels. Thus, our findings suggest that the antiproliferative effect of berberine may in part be due to mitochondria-mediated apoptosis with Bim acting as a pivotal downstream factor of FoxO-induced transcriptional activation.
Collapse
Affiliation(s)
- Shatrunajay Shukla
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Fatima Rizvi
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Poonam Kakkar
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, India.
| |
Collapse
|
35
|
Wang L, Wei D, Han X, Zhang W, Fan C, Zhang J, Mo C, Yang M, Li J, Wang Z, Zhou Q, Xiao H. The Combinational Effect of Vincristine and Berberine on Growth Inhibition and Apoptosis Induction in Hepatoma Cells. J Cell Biochem 2014; 115:721-30. [PMID: 24243568 DOI: 10.1002/jcb.24715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/06/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Ling Wang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Dandan Wei
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Xiaojuan Han
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Wei Zhang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Chengzhong Fan
- Department of Radiology; West China Hospital; Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Jie Zhang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Chunfen Mo
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Ming Yang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Junhong Li
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Zhe Wang
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Qin Zhou
- Core Facility of Genetically Engineered Mice; West China Hospital; Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| | - Hengyi Xiao
- Lab for Aging Research; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University; Keyuan 4-1 Gaopeng Avenue High-tech Zone Chengdu 610041 People's Republic of China
| |
Collapse
|
36
|
Mediterranean Diet and Red Yeast Rice Supplementation for the Management of Hyperlipidemia in Statin-Intolerant Patients with or without Type 2 Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:743473. [PMID: 24454511 PMCID: PMC3884966 DOI: 10.1155/2013/743473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/05/2013] [Indexed: 01/06/2023]
Abstract
Lipid profile could be modified by Mediterranean diet (MD) and by red yeast rice (RYR). We assessed the lipid-lowering effects of MD alone or in combination with RYR on dyslipidemic statin-intolerant subjects, with or without type 2 diabetes, for 24 weeks. We evaluated the low-density lipoprotein (LDL) cholesterol level, total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, triglyceride, liver enzyme, and creatinine phosphokinase (CPK) levels. We studied 171 patients: 46 type 2 diabetic patients treated with MD alone (Group 1), 44 type 2 diabetic patients treated with MD associated with RYR (Group 2), 38 dyslipidemic patients treated with MD alone (Group 3), and 43 dyslipidemic patients treated with MD plus RYR (Group 4). The mean percentage changes in LDL cholesterol from the baseline were −7.34 ± 3.14% (P < 0.05) for Group 1; −21.02 ± 1.63% (P < 0.001) for Group 2; −12.47 ± 1.75% (P < 0.001) for Group 3; and −22 ± 2.19% (P < 0.001) for Group 4 with significant intergroup difference (Group 1 versus Group 2, P < 0.001; Group 3 versus Group 4, P > 0.05). No significant increase in AST, ALT, and CPK levels was observed in all groups. Our results indicate that MD alone is effective in reducing LDL cholesterol levels in statin-intolerant patients with a presumably low cardiovascular risk, but associating MD with the administration of RYR improves patients' LDL cholesterol levels more, and in patients with type 2 diabetes.
Collapse
|
37
|
Yao J, Kong W, Jiang J. Learning from berberine: Treating chronic diseases through multiple targets. SCIENCE CHINA-LIFE SCIENCES 2013; 58:854-9. [PMID: 24174332 DOI: 10.1007/s11427-013-4568-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022]
Abstract
Although advances have been made, chemotherapy for chronic, multifactorial diseases such as cancers, Alzheimer's disease, cardiovascular diseases and diabetes is far from satisfactory. Agents with different mechanisms of action are required. The botanic compound berberine (BBR) has been used as an over-the-counter antibacterial for diarrhea in China for many decades. Recent clinical studies have shown that BBR may be therapeutic in various types of chronic diseases. This review addresses BBR's molecular mechanisms of action and clinical efficacy and safety in patients with type 2 diabetes, hyperlipidemia, heart diseases, cancers and inflammation. One of the advantages of BBR is its multiple-target effects in each of these diseases. The therapeutic efficacy of BBR may reflect a synergistic regulation of these targets, resulting in a comprehensive effect against these various chronic disorders. The safety of BBR may be due to its harmonious distribution into those targets. Although the single-target concept is still the principle for drug discovery and research, this review emphasizes the concept of a multiple target strategy, which may be an important approach toward the successful treatment of multifactorial chronic diseases.
Collapse
Affiliation(s)
- Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430023, China
| | - WeiJia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - JianDong Jiang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
38
|
Bandyopadhyay S, Patra PH, Mahanti A, Mondal DK, Dandapat P, Bandyopadhyay S, Samanta I, Lodh C, Bera AK, Bhattacharyya D, Sarkar M, Baruah KK. Potential antibacterial activity of berberine against multi drug resistant enterovirulent Escherichia coli isolated from yaks (Poephagus grunniens) with haemorrhagic diarrhoea. ASIAN PAC J TROP MED 2013; 6:315-9. [PMID: 23608335 DOI: 10.1016/s1995-7645(13)60063-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/15/2012] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To evaluate the antimicrobial efficacy of berberine, a plant alkaloid. METHODS Five multi-drug resistant (MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the study. Antibacterial activity of berberine was evaluated by broth dilution and disc diffusion methods. The binding kinetics of berberine to DNA and protein was also enumerated. RESULTS For both categories of enterovirulent Escherichia coli (E. coli) isolates, berberine displayed the antibacterial effect in a dose dependent manner. The MIC(50) of berberine chloride for STEC/EPEC isolates varied from 2.07 μM to 3.6 μM with a mean of (2.95 ± 0.33) μM where as for ETEC strains it varied from 1.75 to 1.96 μM with a mean of (1.87 ± 0.03) μM. Berberine bind more tightly with double helix DNA with Bmax and Kd of (24.68±2.62) and (357.8±57.8), respectively. Berberine reacted with protein in comparatively loose manner with Bmax and Kd of (18.9±3.83) and (286.2±113.6), respectively. CONCLUSIONS The results indicate clearly that berberine may serve as a good antibacterial against multi drug resistant E. coli.
Collapse
Affiliation(s)
- Samiran Bandyopadhyay
- Indian Veterinary Research Institute, Eastern Regional Station, 37, Belgachia Road, Kolkata-37, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3716-22. [DOI: 10.1016/j.msec.2013.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/19/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022]
|
40
|
Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother 2013; 57:6016-27. [PMID: 24060867 DOI: 10.1128/aac.00499-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It was found in our previous study that berberine (BBR) and fluconazole (FLC) used concomitantly exhibited a synergism against FLC-resistant Candida albicans in vitro. The aim of the present study was to clarify how BBR and FLC worked synergistically and the underlying mechanism. Antifungal time-kill curves indicated that the synergistic effect of the two drugs was BBR dose dependent rather than FLC dose dependent. In addition, we found that BBR accumulated in C. albicans cells, especially in the nucleus, and resulted in cell cycle arrest and significant change in the transcription of cell cycle-related genes. Besides BBR, other DNA intercalators, including methylene blue, sanguinarine, and acridine orange, were all found to synergize with FLC against FLC-resistant C. albicans. Detection of intracellular BBR accumulation by fluorescence measurement showed that FLC played a role in increasing intracellular BBR concentration, probably due to its effect in disrupting the fungal cell membrane. Similar to the case with FLC, other antifungal agents acting on the cell membrane were able to synergize with BBR. Interestingly, we found that the efflux of intracellular BBR was FLC independent but strongly glucose dependent and associated with the drug efflux pump Cdr2p. These results suggest that BBR plays a major antifungal role in the synergism of FLC and BBR, while FLC plays a role in increasing the intracellular BBR concentration.
Collapse
|
41
|
Gao Y, Zhou H, Zhao H, Feng X, Feng J, Li Y, Zhang H, Lu H, Qian Q, Yu X, Zhang N, Yu J, Ni Q, Pan M. Clinical Research of Traditional Chinese Medical Intervention on Impaired Glucose Tolerance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:21-32. [PMID: 23336504 DOI: 10.1142/s0192415x1350002x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To identify a safe and effective Impaired Glucose Tolerance (IGT) intervention program using Traditional Chinese Medicine (TCM) supported by Standard Health Care Advice (SHCA) for the evidence-based TCM intervention in IGT and evidence-based prevention of type 2 diabetes. A total of 510 IGT patients were randomly assigned into either control or TCM intervention group (255 patients for each group). The control group received standard health care according to SHCA. The intervention group also received TCM intervention in addition to standard health care. The study was conducted over a three-year follow-up. At the end of three years follow-up, accumulative incidence and average annual incidence rate of diabetes in the control group was 43.86% and 14.62% respectively. Accumulative incidence and average annual incidence rate of diabetes in the TCM intervention group was 22.17% and 7.39% respectively. Compared with the control treatment, TCM intervention can reduce the relative risk of IGT patients progressing to type 2 diabetes by 49.45% and absolute risk by 21.69%. In the TCM intervention group, oral glucose tolerance test (OGTT), 2 h glucose, glycated hemoglobin, insulin resistance and body mass index were all significantly improved when compared to the control group. No significant side effect was observed during the follow-up in the TCM group. The SHCA-supported TCM intervention can reduce the conversion rate of IGT to diabetes and improve insulin resistance; therefore, it is a safe and effective IGT intervention strategy.
Collapse
Affiliation(s)
- Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, China
- Beijing University of Chinese Traditional Medicine Subsidiary Dongfang Hospital, China
| | - Hui Zhou
- Beijing University of Chinese Traditional Medicine Subsidiary Dongfang Hospital, China
| | - Huiling Zhao
- Beijing University of Chinese Traditional Medicine, China
| | - Xingzhong Feng
- Beijing Shijitan Hospital, Capital Medical University, China
| | - Jianhua Feng
- The 2nd Hospital Affiliated to Shandong University of Traditional Chinese Medicine, China
| | | | - Hong Zhang
- The Chinese Traditional Medicine Hospital of Fangshan District, Beijing, China
| | - Hao Lu
- Shuguang Hospital Affiliated to Shanghai University TCM, China
| | - Qiuhai Qian
- The 1st Hospital Affiliated to Shandong University of Traditional Chinese Medicine, China
| | - Xiuchen Yu
- Dongzhimeng Hospital Affiliated to Beijing University of Chinese Medicine, China
| | | | - Jiangyi Yu
- Nanjing University of Chinese Medicine Affiliated Hospital, China
| | - Qing Ni
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, China
| | | |
Collapse
|
42
|
Stability-Indicating Validated HPLC Method for Analysis of Berberine Hydrochloride and Trimethoprim in Pharmaceutical Dosage Form. J CHEM-NY 2013. [DOI: 10.1155/2013/360812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A stability-indicating HPLC method was developed and validated for the determination of berberine hydrochloride and trimethoprim in pharmaceutical dosage form in the presence of degradation products. The proposed RP-HPLC method utilizes an Agilent TC-C18, 4.6 mm × 250 mm, 5 μm, column using a mobile phase consisting of acetonitrile-50 mM potassium dihydrogen phosphate (30 : 70, v/v, pH adjusted to 3 with orthophosphoric acid) at a flow rate of 1.0 mL/min and UV detection at 271 nm. The linearity of berberine hydrochloride and trimethoprim was in the range of 2 to 60 μg/mL (r=0.9996) and 1 to 30 μg/mL (r=0.9995), respectively. Repeatability and intermediate precisions were also determined with percentage relative standard deviation (% RSD) less than 2.0%. The limits of detection were found to be 9.8 ng/mL for berberine hydrochloride and 2.5 ng/mL for trimethoprim. The mean recoveries for berberine hydrochloride and trimethoprim were 99.8 and 98.8%, respectively. The stability of the two drugs was determined under different conditions and the proposed method has shown effective separation for their degradation products. And the proposed assays method can thus be considered stability-indicating.
Collapse
|
43
|
Galvez EM, Perez M, Domingo P, Nuñez D, Cebolla VL, Matt M, Pardo J. Pharmacological/Biological Effects of Berberine. NATURAL PRODUCTS 2013:1301-1329. [DOI: 10.1007/978-3-642-22144-6_182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Fan FL, Dart AM. Anti-inflammatory treatment in patients after percutaneous coronary intervention: another potential use for berberine? Clin Exp Pharmacol Physiol 2012; 39:404-5. [DOI: 10.1111/j.1440-1681.2012.05695.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Anthony M Dart
- BakerIDI Heart and Diabetes Institute and Heart Centre; Alfred Hospital; Melbourne; Victoria; Australia
| |
Collapse
|
45
|
Chou HC, Lu YC, Cheng CS, Chen YW, Lyu PC, Lin CW, Timms JF, Chan HL. Proteomic and redox-proteomic analysis of berberine-induced cytotoxicity in breast cancer cells. J Proteomics 2012; 75:3158-76. [PMID: 22522123 DOI: 10.1016/j.jprot.2012.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/30/2012] [Accepted: 03/08/2012] [Indexed: 01/06/2023]
Abstract
Berberine is a natural product isolated from herbal plants such as Rhizoma coptidis which has been shown to have anti-neoplastic properties. However, the effects of berberine on the behavior of breast cancers are largely unknown. To determine if berberine might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of berberine treatment on differential protein expression and redox regulation in human breast cancer cell line MCF-7 using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with mass spectrometry (MS). This study demonstrated that 96 and 22 protein features were significantly changed in protein expression and thiol reactivity, respectively and revealed that berberine-induced cytotoxicity in breast cancer cells involves dysregulation of protein folding, proteolysis, redox regulation, protein trafficking, cell signaling, electron transport, metabolism and centrosomal structure. Our work shows that this combined proteomic strategy provides a rapid method to study the molecular mechanisms of berberine-induced cytotoxicity in breast cancer cells. The identified targets may be useful for further evaluation as potential targets in breast cancer therapy.
Collapse
Affiliation(s)
- Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tan W, Li Y, Chen M, Wang Y. Berberine hydrochloride: anticancer activity and nanoparticulate delivery system. Int J Nanomedicine 2011; 6:1773-7. [PMID: 21931477 PMCID: PMC3173044 DOI: 10.2147/ijn.s22683] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Berberine hydrochloride is a conventional component in Chinese medicine, and is characterized by a diversity of pharmacological effects. However, due to its hydrophobic properties, along with poor stability and bioavailability, the application of berberine hydrochloride was hampered for a long time. In recent years, the pharmaceutical preparation of berberine hydrochloride has improved to achieve good prospects for clinical application, especially for novel nanoparticulate delivery systems. Moreover, anticancer activity and novel mechanisms have been explored, the chance of regulating glucose and lipid metabolism in cancer cells showing more potential than ever. Therefore, it is expected that appropriate pharmaceutical procedures could be applied to the enormous potential for anticancer efficacy, to give some new insights into anticancer drug preparation in Chinese medicine. METHODS AND RESULTS We accessed conventional databases, such as PubMed, Scope, and Web of Science, using "berberine hydrochloride", "anti-cancer mechanism", and "nanoparticulate delivery system" as search words, then summarized the progress in research, illustrating the need to explore reprogramming of cancer cell metabolism using nanoparticulate drug delivery systems. CONCLUSION With increasing research on regulation of cancer cell metabolism by berberine hydrochloride and troubleshooting of issues concerning nanoparticulate delivery preparation, berberine hydrochloride is likely to become a natural component of the nanoparticulate delivery systems used for cancer therapy. Meanwhile, the known mechanisms of berberine hydrochloride, such as decreased multidrug resistance and enhanced sensitivity of chemotherapeutic drugs, along with improvement in patient quality of life, could also provide new insights into cancer cell metabolism and nanoparticulate delivery preparation.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao Special Administrative Region, China
| |
Collapse
|
47
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011. [PMID: 21777476 DOI: 10.1186/1749-8546-6- 27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|
48
|
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, Gong J, Zhong Z, Xu Z, Dang Y, Guo J, Chen X, Wang Y. Anti-cancer natural products isolated from chinese medicinal herbs. Chin Med 2011; 6:27. [PMID: 21777476 PMCID: PMC3149025 DOI: 10.1186/1749-8546-6-27] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/22/2011] [Indexed: 02/06/2023] Open
Abstract
In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Rd., Binjiang Dist., Hangzhou 310053, Zhejiang, China
| | - Mingqing Huang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Rd., Shangjie University Town, Fuzhou 350108, Fujian, China
| | - Yingbo Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Guosheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Zengtao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yuanye Dang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Jiajie Guo
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macao SAR, China
| |
Collapse
|