1
|
Fu M, Yoon KS, Ha J, Kang I, Choe W. Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Roles in Metabolic Health. Antioxidants (Basel) 2025; 14:203. [PMID: 40002389 PMCID: PMC11852089 DOI: 10.3390/antiox14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The interplay between oxidative stress and adipogenesis is a critical factor in the development of obesity and its associated metabolic disorders. Excessive reactive oxygen species (ROS) disrupt key transcription factors such as peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), impairing lipid metabolism, promoting adipocyte dysfunction, and exacerbating inflammation and insulin resistance. Antioxidants, classified as endogenous (e.g., glutathione, superoxide dismutase, and catalase) and exogenous (e.g., polyphenols, flavonoids, and vitamins C and E), are pivotal in mitigating these effects by restoring redox balance and preserving adipocyte functionality. Endogenous antioxidants neutralize ROS and safeguard cellular structures; however, under heightened oxidative stress, these defenses are often insufficient, necessitating dietary supplementation. Exogenous antioxidants derived from plant-based sources, such as polyphenols and vitamins, act through direct ROS scavenging, upregulation of endogenous antioxidant enzymes, and modulation of key signaling pathways like nuclear factor kappa B (NF-κB) and PPARγ, reducing lipid peroxidation, inflammation, and adipocyte dysfunction. Furthermore, they influence epigenetic regulation and transcriptional networks to restore adipocyte differentiation and limit lipid accumulation. Antioxidant-rich diets, including the Mediterranean diet, are strongly associated with improved metabolic health, reduced obesity rates, and enhanced insulin sensitivity. Advances in personalized antioxidant therapies, guided by biomarkers of oxidative stress and supported by novel delivery systems, present promising avenues for optimizing therapeutic interventions. This review, "Crosstalk Between Antioxidants and Adipogenesis: Mechanistic Pathways and Their Role in Metabolic Health", highlights the mechanistic pathways by which antioxidants regulate oxidative stress and adipogenesis to enhance metabolic health.
Collapse
Affiliation(s)
- Minghao Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.F.); (K.-S.Y.); (J.H.); (I.K.)
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Al-Khalaifah HS, Ibrahim D, Kamel AES, Al-Nasser A, Abdelwarith AA, Roushdy EM, Sheraiba NI, Shafik BM, El-Badry SM, Younis EM, Mamdouh M, Yassin EMM, Davies SJ, Kishawy ATY. Enhancing impact of dietary nano formulated quercetin on laying performance: egg quality, oxidative stability of stored eggs, intestinal immune and antioxidants related genes expression. BMC Vet Res 2024; 20:494. [PMID: 39472914 PMCID: PMC11520861 DOI: 10.1186/s12917-024-04327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Nutritional interventions with natural antioxidants can provide a pragmatic solution for modifying hens' performance and maintaining oxidative stability of eggs during storage. Quercetin is the most abundant flavonoids with potent antioxidant and immune stimulant activities. The concept of incorporating of quercetin, as potent antioxidant and immunostimulant, into effective nano-carriers (QNPs) has promoted their bioavailability and stability thus, their effectiveness for the first time were assessed on laying hens' performance and immunity, eggs quality during storage. Four hundred 12-weeks-old Hy-line brown laying hens were distributed to four experimental groups: control group fed basal diets, and other 3 groups fed basal diets fortified with 100, 200 and 300 mg/kg QNPs for 60 weeks. RESULTS Laying performance and quality of laid eggs were improved as expressed by elevated laying rate, egg mass %, eggs weight and yolk weight in QNPs200 and 300. Fortification of QNPs300 remarkably decreased layers serum total cholesterol concurrently with decreased egg yolk saturated fatty acids and cholesterol while increased polyunsaturated fatty acids. Over- 45 days storage period, QNPs enhanced phospholipids, total phenolics and flavonoids, total antioxidant activity (T-AOC) simultaneous with decreased MDA content in eggs. Furthermore, enhanced immune response was detected in both in serum and intestine of QNPs fed hens as reflected by higher lysozymes activity, IgM, IgG and phagocytic index and demotion of NO together with AvBD 6-12, IL-10, IgM and ATg 5-7-12 upregulation and downregulation of IL-1β and TNF-α especially at QNPs200 and 300. Intestinal redox balance was modified via decreasing H2O2 and MDA simultaneous with upregulation of catalase, SOD, GSH-Px, HO-1 and NQO1 in groups fed higher doses of QNPs. CONCLUSIONS QNPs supplementation provides a new nutritional strategy towards increasing hen performance, fortification of eggs with natural antioxidants that prevents egg quality deterioration during storage.
Collapse
Affiliation(s)
- Hanan S Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Asmaa El-Sayed Kamel
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | | | - Elshimaa M Roushdy
- Department of Animal Wealth Development, Animal Breeding, and Production, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Nagwa I Sheraiba
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Sadat city, 32897, Egypt
| | - Basant M Shafik
- Department of Animal Wealth Development, Animal and Poultry Production, Faculty of Veterinary Medicine, Benha University, P.O. Box 13736, Toukh city, Qalyubia, Egypt
| | - Sara M El-Badry
- Department of Animal Wealth Development, Veterinary Genetics & Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44519, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, 11451, Saudi Arabia
| | - Maha Mamdouh
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, P.O. Box 13736, Toukh city, Qalyubia, Egypt
| | - Engy Mohamed Mohamed Yassin
- Department of Biochemistry and molecular biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit (ANRU), Carna Research Station, College of Science and Engineering, Ryan Institute, University of Galway, Galway, Ireland
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig city, 44511, Egypt.
| |
Collapse
|
3
|
González-Garibay AS, Sandoval G, Torres-González OR, Bastidas-Ramírez BE, Sánchez-Hernández IM, Padilla-Camberos E. Agave-Laurate-Bioconjugated Fructans Decrease Hyperinsulinemia and Insulin Resistance, Whilst Increasing IL-10 in Rats with Metabolic Syndrome Induced by a High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1036. [PMID: 39204141 PMCID: PMC11357657 DOI: 10.3390/ph17081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic syndrome (MetS) comprises a cluster of metabolic risk factors, which include obesity, hypertriglyceridemia, high blood pressure, and insulin resistance. The purpose of this study was to evaluate the effects of laurate-bioconjugated fructans on pro- and anti-inflammatory cytokines in Wistar rats with MetS induced by a high-fat diet. Laurate-bioconjugated fructans were synthesized with agave fructans, immobilized lipase B, and vinyl laureate as the acylant. Groups were fed a standard diet (NORMAL), a high-fat diet (HFD), or a high-fat diet plus laurate-bioconjugated fructans (FL PREV) for 9 weeks. A fourth group received a high-fat diet for 6 weeks, followed by simultaneous exposure to a high-fat diet and laurate-bioconjugated fructans for 3 additional weeks (FL REV). The dose of laurate-bioconjugated fructans was 130 mg/kg. Laurate-bioconjugated fructans reduced food and energy intake, body weight, body mass index, abdominal circumference, adipose tissue, adipocyte area, serum triglycerides, insulin, insulin resistance, and C-reactive protein but they increased IL-10 protein serum levels and mRNA expression. The impact of laurate-bioconjugated fructans on zoometric and metabolic parameters supports their potential as therapeutic agents to improve obesity, obesity comorbidities, insulin resistance, type 2 diabetes mellitus, and MetS.
Collapse
Affiliation(s)
- Angélica Sofía González-Garibay
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Georgina Sandoval
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Omar Ricardo Torres-González
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramírez
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Iván Moisés Sánchez-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Eduardo Padilla-Camberos
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| |
Collapse
|
4
|
Ye P, Wang QH, Kong WY, Liu CS, Wang DD, Olatunji OJ, Li Y, Zuo J. White adipose tissue, a novel antirheumatic target: Clues from its secretory capability and adipectomy-based therapy. Br J Pharmacol 2024; 181:2774-2793. [PMID: 38644540 DOI: 10.1111/bph.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/28/2024] [Accepted: 02/19/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND AND PURPOSE White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.
Collapse
Affiliation(s)
- Peng Ye
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Qi-Hai Wang
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Wen-Ye Kong
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Chun-Sheng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Dan-Dan Wang
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | | | - Yan Li
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Jian Zuo
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, China
| |
Collapse
|
5
|
Lino M, Garcia-Martin R, Muñoz VR, Ruiz GP, Nawaz A, Brandão BB, Dreyfus J, Pan H, Kahn CR. Multi-step regulation of microRNA expression and secretion into small extracellular vesicles by insulin. Cell Rep 2024; 43:114491. [PMID: 39002127 PMCID: PMC11363058 DOI: 10.1016/j.celrep.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
Tissues release microRNAs (miRNAs) in small extracellular vesicles (sEVs) including exosomes, which can regulate gene expression in distal cells, thus acting as modulators of local and systemic metabolism. Here, we show that insulin regulates miRNA secretion into sEVs from 3T3-L1 adipocytes and that this process is differentially regulated from cellular expression. Thus, of the 53 miRNAs upregulated and 66 miRNAs downregulated by insulin in 3T3-L1 sEVs, only 12 were regulated in parallel in cells. Insulin regulated this process in part by phosphorylating hnRNPA1, causing it to bind to AU-rich motifs in miRNAs, mediating their secretion into sEVs. Importantly, 43% of insulin-regulated sEV-miRNAs are implicated in obesity and insulin resistance. These include let-7 and miR-103, which we show regulate insulin signaling in AML12 hepatocytes. Together, these findings demonstrate an important layer to insulin's regulation of adipose biology and provide a mechanism of tissue crosstalk in obesity and other hyperinsulinemic states.
Collapse
Affiliation(s)
- Marsel Lino
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ruben Garcia-Martin
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Vitor Rosetto Muñoz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gabriel Palermo Ruiz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Allah Nawaz
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bruna Brasil Brandão
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan Dreyfus
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hui Pan
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
6
|
Wang Y, Chen G, Xu M, Cui Y, He W, Zeng H, Zeng T, Cheng R, Li X. Caspase-1 Deficiency Modulates Adipogenesis through Atg7-Mediated Autophagy: An Inflammatory-Independent Mechanism. Biomolecules 2024; 14:501. [PMID: 38672517 PMCID: PMC11048440 DOI: 10.3390/biom14040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity stands as a significant risk factor for type 2 diabetes, hyperlipidemia, and cardiovascular diseases, intertwining increased inflammation and decreased adipogenesis with metabolic disorders. Studies have highlighted the correlation between Caspase-1 and inflammation in obesity, elucidating its essential role in the biological functions of adipose tissue. However, the impact of Caspase-1 on adipogenesis and the underlying mechanisms remain largely elusive. In our study, we observed a positive correlation between Caspase-1 expression and obesity and its association with adipogenesis. In vivo experiments revealed that, under normal diet conditions, Caspase-1 deficiency improved glucose homeostasis, stimulated subcutaneous adipose tissue expansion, and enhanced adipogenesis. Furthermore, our findings indicate that Caspase-1 deficiency promotes the expression of autophagy-related proteins and inhibits autophagy with 3-MA or CQ blocked Caspase-1 deficiency-induced adipogenesis in vitro. Notably, Caspase-1 deficiency promotes adipogenesis via Atg7-mediated autophagy activation. In addition, Caspase-1 deficiency resisted against high-fat diet-induced obesity and glucose intolerance. Our study proposes the downregulation of Caspase-1 as a promising strategy for mitigating obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Cheng
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
7
|
Wu Y, Ma Y. CCL2-CCR2 signaling axis in obesity and metabolic diseases. J Cell Physiol 2024; 239:e31192. [PMID: 38284280 DOI: 10.1002/jcp.31192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Obesity and metabolic diseases, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments, represent formidable global health challenges, bearing considerable implications for both morbidity and mortality rates. It has become increasingly evident that chronic, low-grade inflammation plays a pivotal role in the genesis and advancement of these conditions. The involvement of C-C chemokine ligand 2 (CCL2) and its corresponding receptor, C-C chemokine receptor 2 (CCR2), has been extensively documented in numerous inflammatory maladies. Recent evidence indicates that the CCL2/CCR2 pathway extends beyond immune cell recruitment and inflammation, exerting a notable influence on the genesis and progression of metabolic syndrome. The present review seeks to furnish a comprehensive exposition of the CCL2-CCR2 signaling axis within the context of obesity and metabolic disorders, elucidating its molecular mechanisms, functional roles, and therapeutic implications.
Collapse
Affiliation(s)
- Yue Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanchun Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Cheng Y, Ferdousi F, Foronda BA, Linh TN, Ganbold M, Yada A, Arimura T, Isoda H. A comparative transcriptomics analysis reveals ethylene glycol derivatives of squalene ameliorate excessive lipogenesis and inflammatory response in 3T3-L1 preadipocytes. Heliyon 2024; 10:e26867. [PMID: 38463791 PMCID: PMC10923669 DOI: 10.1016/j.heliyon.2024.e26867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Squalene (SQ) is a natural compound with anti-inflammatory, anti-cancer, and anti-oxidant effects, but due to its low solubility, its biological properties have been greatly underestimated. This study aims to explore the differences in gene expression patterns of four newly synthesized amphipathic ethylene glycol (EG) derivatives of SQ by whole-genome transcriptomics analysis using DNA microarray to examine the mRNA expression profile of adipocytes differentiated from 3T3-L1 cells treated with SQ and its EG derivatives. Enrichment analyses of the transcriptional data showed that compared with SQ, its EG derivatives exerted different, in most cases desirable, biological responses. EG derivatives showed increased enrichment of mitochondrial functions, lipid and glucose metabolism, and inflammatory response. Mono-, di-, and tetra-SQ showed higher enrichment of the cellular component-ribosome. Histological staining showed EG derivatives prevented excessive lipid accumulation. Additionally, mitochondrial transcription factors showed upregulation in tetra-SQ-treated cells. Notably, EG derivatives showed better anti-inflammatory effects. Further, gene-disease association analysis predicted substantial improvement in the bioactivities of SQ derivatives in metabolic diseases. Cluster analyses revealed di- and tetra-SQ had more functional similarities than others, reflected in their scanning electron microscopy images; both di- and tetra-SQ self-organized into similar sizes and shapes of vesicles, subsequently improving their cation binding activities. Protein-protein interaction networks further revealed that cation binding activity might explain a major part, if not all, of the differences observed in functional analyses. Altogether, the addition of EG derivatives may improve the biological responses of SQ and thus may enhance its health-promoting potential.
Collapse
Affiliation(s)
- Yu Cheng
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | | | - Tran Ngoc Linh
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Akira Yada
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Yan Z, Xu Y, Li K, Liu L. Association between high-density lipoprotein cholesterol and type 2 diabetes mellitus: dual evidence from NHANES database and Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1272314. [PMID: 38455653 PMCID: PMC10917910 DOI: 10.3389/fendo.2024.1272314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Background Low levels of high-density lipoprotein cholesterol (HDL-C) are commonly seen in patients with type 2 diabetes mellitus (T2DM). However, it is unclear whether there is an independent or causal link between HDL-C levels and T2DM. This study aims to address this gap by using the The National Health and Nutrition Examination Survey (NHANES) database and Mendelian randomization (MR) analysis. Materials and methods Data from the NHANES survey (2007-2018) with 9,420 participants were analyzed using specialized software. Logistic regression models and restricted cubic splines (RCS) were used to assess the relationship between HDL-C and T2DM incidence, while considering covariates. Genetic variants associated with HDL-C and T2DM were obtained from genome-wide association studies (GWAS), and Mendelian randomization (MR) was used to evaluate the causal relationship between HDL-C and T2DM. Various tests were conducted to assess pleiotropy and outliers. Results In the NHANES study, all groups, except the lowest quartile (Q1: 0.28-1.09 mmol/L], showed a significant association between HDL-C levels and reduced T2DM risk (all P < 0.001). After adjusting for covariates, the Q2 [odds ratio (OR) = 0.67, 95% confidence interval (CI): (0.57, 0.79)], Q3 [OR = 0.51, 95% CI: (0.40, 0.65)], and Q4 [OR = 0.29, 95% CI: (0.23, 0.36)] groups exhibited average reductions in T2DM risk of 23%, 49%, and 71%, respectively. In the sensitivity analysis incorporating other lipid levels, the Q4 group still demonstrates a 57% reduction in the risk of T2DM. The impact of HDL-C levels on T2DM varied with age (P for interaction = 0.006). RCS analysis showed a nonlinear decreasing trend in T2DM risk with increasing HDL-C levels (P = 0.003). In the MR analysis, HDL-C levels were also associated with reduced T2DM risk (OR = 0.69, 95% CI = 0.52-0.82; P = 1.41 × 10-13), and there was no evidence of pleiotropy or outliers. Conclusion This study provides evidence supporting a causal relationship between higher HDL-C levels and reduced T2DM risk. Further research is needed to explore interventions targeting HDL-C levels for reducing T2DM risk.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Yifeng Xu
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Keke Li
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Proença C, Freitas M, Rocha S, Ferreira de Oliveira JMP, Carvalho F, Fernandes E. Unravelling the Influence of Endocrine-Disrupting Chemicals on Obesity Pathophysiology Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:883-918. [PMID: 39287876 DOI: 10.1007/978-3-031-63657-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity represents a global health concern, affecting individuals of all age groups across the world. The prevalence of excess weight and obesity has escalated to pandemic proportions, leading to a substantial increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer. This chapter seeks to provide a comprehensive exploration of the pathways through which endocrine-disrupting chemicals can influence the pathophysiology of obesity. These mechanisms encompass aspects such as the regulation of food intake and appetite, intestinal fat absorption, lipid metabolism, and the modulation of inflammation. This knowledge may help to elucidate the role of exogenous molecules in both the aetiology and progression of obesity.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Léniz A, Fernández-Quintela A, Arranz S, Portune K, Tueros I, Arana E, Castaño L, Velasco O, Portillo MP. Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines 2023; 11:3320. [PMID: 38137540 PMCID: PMC10742039 DOI: 10.3390/biomedicines11123320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Adipokines, as well as the fatty acid profile of red blood cell (RBC) membranes, are known to play important roles in the development and progression of metabolic complications induced by obesity. Thus, the objective of this study is to compare the serum adipokine profile and the RBC membrane fatty acid profile of normal-weight and obese adults, and to analyze their relationship with serum biochemical parameters. METHODS An observational case-control study was performed in 75 normal-weight and obese adult subjects. Biochemical serum parameters, eight serum adipokines and the RBC membrane fatty acid profiles were measured. Associations between parameters were established using regression analysis. RESULTS Subjects with obesity showed increased levels of leptin, fibroblast growth factor 21 (FGF21) and overexpressed nephroblastoma (NOV/CCN3), decreased adiponectin, and similar levels of vaspin and chemerin compared to normal-weight subjects. Significant positive and negative correlations were found with triglycerides and high-density lipoprotein-cholesterol (HDL-c), respectively. An increase in the total ω-6 fatty acids in the RBC membrane fatty acid profiles in subjects with obesity was observed, because of higher levels of both dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA), and decreased total ω-3 fatty acids, mainly due to lower levels of docosahexaenoic acid (DHA). The ω-6/ω-3 ratio in the RBCs was significantly higher, suggesting an inflammatory status, as was also suggested by a reduced adiponectin level. A negative association between DGLA and adiponectin, and a positive association between DHA and serum triglycerides, was observed. CONCLUSIONS Important alterations in serum adipokine and RBC fatty acid profiles are found in subjects with obesity.
Collapse
Affiliation(s)
- Asier Léniz
- Vitoria-Gasteiz Nursing School, Osakidetza-Basque Health Service, 01009 Vitoria-Gasteiz, Spain;
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Alfredo Fernández-Quintela
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Spain; (S.A.)
| | - Eunate Arana
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
| | - Luis Castaño
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
- Department Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 48903 Barakaldo, Spain
- CIBER Rare Diseases (CIBERer), Institute of Health Carlos III, 48903 Barakaldo, Spain
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN), 48903 Barakaldo, Spain
| | - Olaia Velasco
- Hospital Universitario Cruces, BIOBIZKAIA Institute of Health, 48903 Barakaldo, Spain (O.V.)
- Department Pediatrics, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- CIBER Diabetes and Associated Metabolic Diseases (CIBERdem), Institute of Health Carlos III, 48903 Barakaldo, Spain
- CIBER Rare Diseases (CIBERer), Institute of Health Carlos III, 48903 Barakaldo, Spain
- European Reference Network on Rare Endocrine Conditions (ENDO-ERN), 48903 Barakaldo, Spain
| | - María P. Portillo
- BIOARABA Institute of Health, 01006 Vitoria-Gasteiz, Spain;
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
- Lucio Lascaray Research Centre, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain
- Department Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
12
|
Miles LA, Bai H, Chakrabarty S, Baik N, Zhang Y, Parmer RJ, Samad F. Overexpression of Plg-R KT protects against adipose dysfunction and dysregulation of glucose homeostasis in diet-induced obese mice. Adipocyte 2023; 12:2252729. [PMID: 37642146 PMCID: PMC10481882 DOI: 10.1080/21623945.2023.2252729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The plasminogen receptor, Plg-RKT, is a unique cell surface receptor that is broadly expressed in cells and tissues throughout the body. Plg-RKT localizes plasminogen on cell surfaces and promotes its activation to the broad-spectrum serine protease, plasmin. In this study, we show that overexpression of Plg-RKT protects mice from high fat diet (HFD)-induced adipose and metabolic dysfunction. During the first 10 weeks on the HFD, the body weights of mice that overexpressed Plg-RKT (Plg-RKT-OEX) were lower than those of control mice (CagRosaPlgRKT). After 10 weeks on the HFD, CagRosaPlgRKT and Plg-RKT-OEX mice had similar body weights. However, Plg-RKT-OEX mice showed a more metabolically favourable body composition phenotype. Plg-RKT-OEX mice also showed improved glucose tolerance and increased insulin sensitivity. We found that the improved metabolic functions of Plg-RKT-OEX mice were mechanistically associated with increased energy expenditure and activity, decreased proinflammatory adipose macrophages and decreased inflammation, elevated brown fat thermogenesis, and higher expression of adipose PPARγ and adiponectin. These findings suggest that Plg-RKT signalling promotes healthy adipose function via multiple mechanisms to defend against obesity-associated adverse metabolic phenotypes.
Collapse
Affiliation(s)
- Lindsey A. Miles
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Hongdong Bai
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Sagarika Chakrabarty
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| | - Nagyung Baik
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Yuqing Zhang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Robert J. Parmer
- Department of Medicine, Veterans Administration San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fahumiya Samad
- Department of Cell Biology, San Diego Biomedical Research Institute, San Diego, CA, USA
| |
Collapse
|
13
|
Vasella M, Wolf S, Francis EC, Grieb G, Pfister P, Reid G, Bernhagen J, Lindenblatt N, Gousopoulos E, Kim BS. Involvement of the Macrophage Migration Inhibitory Factor (MIF) in Lipedema. Metabolites 2023; 13:1105. [PMID: 37887430 PMCID: PMC10608777 DOI: 10.3390/metabo13101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Lipedema is a chronic disorder that mainly affects women. It is often misdiagnosed, and its etiology remains unknown. Recent research indicates an accumulation of macrophages and a shift in macrophage polarization in lipedema. One known protein superfamily that contributes to macrophage accumulation and polarization is the macrophage migration inhibitory factor (MIF) family. MIF-1 and MIF-2 are ubiquitously expressed and also regulate inflammatory processes in adipose tissue. In this study, the expression of MIF-1, MIF-2 and CD74-a common receptor for both cytokines-was analyzed in tissue samples of 11 lipedema and 11 BMI-matched, age-matched and anatomically matched control patients using qPCR and immunohistochemistry (IHC). The mRNA expression of MIF-1 (mean 1.256; SD 0.303; p = 0.0485) and CD74 (mean 1.514; SD 0.397; p = 0.0097) were significantly elevated in lipedema patients, while MIF-2 expression was unaffected (mean 1.004; SD 0.358; p = 0.9718). The IHC analysis corroborated the results for CD74 expression on a cellular level. In conclusion, our results provide first evidence for a potential involvement of the MIF family, presumably via the MIF-1-CD74 axis, in lipedema.
Collapse
Affiliation(s)
- Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Stefan Wolf
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Eamon C. Francis
- Department of Plastic and Reconstructive Surgery, Guys and St Thomas Trust, London SE1 7EH, UK
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, 14089 Berlin, Germany
- Department of Plastic Surgery, Hand Surgery and Burn Center, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Pablo Pfister
- Department of Surgery, Stadtspital Zürich Triemli, 8063 Zurich, Switzerland
| | - Gregory Reid
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Diseases, 80802 Munich, Germany
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
14
|
Yuan X, Lu H, Hu Y, Yang Z, Jin X, Qi Z. The Effect of Various Temperatures on the Inflammatory Profile of Fat Graft Storage: An Experimental Study. J Craniofac Surg 2023; 34:2217-2221. [PMID: 37365693 PMCID: PMC10521794 DOI: 10.1097/scs.0000000000009500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fat tissue has been widely used as a filler material during plastic surgery, but unpredictable fat retention remains a significant concern. Fat tissue is vulnerable to ischemia and hypoxia, but it always has waiting time before injection in the operation theater. Apart from transferring fat tissue as quickly as possible after harvesting, washing the aspirate with cool normal saline is often used. However, the mechanisms of cool temperature acting on adipose tissue have yet to be fully elucidated. Herein, this study aims to explore the effect of preservation at different temperatures on the inflammatory profile of adipose tissue. Inguinal adipose tissue of rats was collected and cultured in vitro under 4°C, 10°C, and room temperature for 2 hours. The proportion of damaged adipocytes and an array of cytokines were determined. We observed that the damage rate of the adipocyte membrane was slightly higher at room temperature, but there was no significant difference, while we noticed increased IL-6 and MCP-1 levels in adipose tissue at room temperature ( P <0.01). The 4°C and 10°C cool temperatures may offer protection against proinflammatory states during the adipose tissue preserved in vitro.
Collapse
|
15
|
Palacios-Marin I, Serra D, Jimenez-Chillarón J, Herrero L, Todorčević M. Adipose Tissue Dynamics: Cellular and Lipid Turnover in Health and Disease. Nutrients 2023; 15:3968. [PMID: 37764752 PMCID: PMC10535304 DOI: 10.3390/nu15183968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The alarming increase in obesity and its related metabolic health complications, such as type 2 diabetes, has evolved into a global pandemic. Obesity is mainly characterized by excessive accumulation of adipose tissue, primarily due to an imbalance between energy intake and expenditure. Prolonged positive energy balance leads to the expansion of existing adipocytes (hypertrophy) and/or an increase in preadipocyte and adipocyte number (hyperplasia) to accommodate excess energy intake. However, obesity is not solely defined by increases in adipocyte size and number. The turnover of adipose tissue cells also plays a crucial role in the development and progression of obesity. Cell turnover encompasses the processes of cell proliferation, differentiation, and apoptosis, which collectively regulate the overall cell population within adipose tissue. Lipid turnover represents another critical factor that influences how adipose tissue stores and releases energy. Our understanding of adipose tissue lipid turnover in humans remains limited due to the slow rate of turnover and methodological constraints. Nonetheless, disturbances in lipid metabolism are strongly associated with altered adipose tissue lipid turnover. In obesity, there is a decreased rate of triglyceride removal (lipolysis followed by oxidation), leading to the accumulation of triglycerides over time. This review provides a comprehensive summary of findings from both in vitro and in vivo methods used to study the turnover of adipose cells and lipids in metabolic health and disease. Understanding the mechanisms underlying cellular and lipid turnover in obesity is essential for developing strategies to mitigate the adverse effects of excess adiposity.
Collapse
Affiliation(s)
- Ivonne Palacios-Marin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Josep Jimenez-Chillarón
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Esplugues, E-08950 Barcelona, Spain
- Department of Physiological Sciences, School of Medicine, University of Barcelona, E-08907 L’Hospitalet, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marijana Todorčević
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
16
|
Zhu T, Yang S, Mauro TM, Man MQ. Association of Epidermal Biophysical Properties with Obesity and Its Implications. Skin Pharmacol Physiol 2023; 36:165-173. [PMID: 37640014 DOI: 10.1159/000533587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obesity is a condition defined by an excess amount of body fat, with body mass index (BMI) of 30 and higher. It is associated with a number of other medical conditions, including insulin resistance, diabetes mellitus, and cardiovascular diseases, as well as dyslipidemia, and it is also associated with several cutaneous disorders such as atopic dermatitis, psoriasis, intertriginous dermatitis, acanthosis nigricans and skin infections. SUMMARY Evidence suggests a link between obesity and epidermal dysfunction. Generally, individuals with obesity display higher transepidermal water loss rate and lower stratum corneum hydration levels, although no association of obesity with epidermal dysfunction has been documented. Results of skin surface pH are controversial. But study demonstrated a positive correlation of BMI with skin surface pH on both the forearm and the shin in males, suggesting that the changes in epidermal function vary with gender in individuals with obesity. KEY MESSAGES This review summarizes the association between obesity and epidermal function, and discusses possible underlying mechanisms. Individuals with obesity exhibit poor epidermal permeability barrier and lower stratum corneum hydration levels. Because of the pathogenic role of compromised epidermal function in inflammation, which is also linked to obesity, improvement in epidermal function could benefit individuals with obesity, particularly those with abnormalities in epidermal function.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuyun Yang
- Department of Dermatology, The People's Hospital of Baoshan, Baoshan, China
| | - Theodora M Mauro
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
| | - Mao-Qiang Man
- Department of Dermatology, Veterans Affairs Medical Center San Francisco, University of California San Francisco, San Francisco, California, USA
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
González A, Conceição E, Teixeira JA, Nobre C. In vitro models as a tool to study the role of gut microbiota in obesity. Crit Rev Food Sci Nutr 2023; 64:10912-10923. [PMID: 37403775 DOI: 10.1080/10408398.2023.2232022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Obesity, a highly prevalent condition worldwide that leads to the development of multiple metabolic diseases, has been related to gut microbial dysbiosis. To understand this correlation, in vivo models have been extremely useful. However, its use is limited by associated ethical concerns, high costs, low representativeness, and low reproducibility. Therefore, new and improved in vitro models have been developed in recent years, representing a promising tool in the study of the role of gut microbiota modulation in weight management and metabolic health. This review aims to provide an update on the main findings obtained in vitro regarding gut microbiota modulation with probiotics, and food compounds, and its interaction with the host metabolism, associated with obesity. Available in vitro colon models currently used to study obesity are discussed, including batch and dynamic fermentation systems, and models that allow the study of microbiota-host interactions using cell cultures. In vitro models have demonstrated that homeostatic microbiota may help overcome obesity by producing satiety-related neurotransmitters and metabolites that protect the gut barrier and improve the metabolic activity of adipose tissue. In vitro models may be the key to finding new treatments for obesity-related disorders.
Collapse
Affiliation(s)
- Abigail González
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Eva Conceição
- CIPsi - Psychology Research Centre, University of Minho Campus de Gualtar, Braga, Portugal
| | - José António Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Portugal
| | - Clarisse Nobre
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Portugal
| |
Collapse
|
18
|
Yang S, Zhu T, Wakefield JS, Mauro TM, Elias PM, Man MQ. Link between obesity and atopic dermatitis: Does obesity predispose to atopic dermatitis, or vice versa? Exp Dermatol 2023; 32:975-985. [PMID: 37029451 PMCID: PMC10524376 DOI: 10.1111/exd.14801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/11/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Two serious health conditions, obesity and atopic dermatitis (AD), share some pathological features such as insulin resistance, leptin resistance and inflammation, and a growing body of evidence suggests a link between obesity and AD. Obesity predisposes an individual to and/or worsens AD, whereas AD increases the risk of obesity. Obesity and AD's interactions are mediated by cytokines, chemokines and immune cells. Obese individuals with AD are more resistant to anti-inflammatory therapy, while weight loss can alleviate AD. In this review, we summarize the evidence linking AD and obesity. We also discuss the pathogenic role of obesity in AD, and vice versa. Because of the connection between these two conditions, mitigation of one could possibly prevent the development of or alleviate the other condition. Effective management of AD and weight loss can enhance the wellness of individuals with both of these conditions. However, proper clinical studies are warranted to validate this speculation.
Collapse
Affiliation(s)
- Shuyun Yang
- Department of Dermatology, The People’s Hospital of Baoshan, Yunnan, China
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Tingting Zhu
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Joan S. Wakefield
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Peter M. Elias
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
| | - Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center San Francisco, and Department of Dermatology, University of California San Francisco, CA, USA
- Dermatology Hospital, Southern Medical University, Guangdong 510091, China
| |
Collapse
|
19
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
20
|
Zhu M, Ouyang J, Zhou F, Zhao C, Zhu W, Liu C, Huang P, Li J, Tang J, Zhang Z, Huang J, Wu M, Wang K, Liu Z. Polysaccharides from Fu brick tea ameliorate obesity by modulating gut microbiota and gut microbiota-related short chain fatty acid and amino acid metabolism. J Nutr Biochem 2023; 118:109356. [PMID: 37087075 DOI: 10.1016/j.jnutbio.2023.109356] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Fu brick tea (FBT) is a traditional tea manufactured by solid-state fermentation of tea leaves (Camellia sinensis). Although anti-obesity effects have been reported for FBT, the associated role of FBT polysaccharides (PSs) and the underlying mechanisms remain unknown. In this study, we found that FBTPSs inhibited obesity, hyperlipidemia, and inflammation; improved intestinal barrier function; and alleviated gut microbiota dysbiosis in high-fat diet-fed rats. Akkermansia muciniphila, Bacteroides, Parasutterella, Desulfovibrio, and Blautia were the core microbes regulated by FBTPSs. FBTPSs regulated the production of gut microbiota-related metabolites, including short-chain fatty acids (SCFAs), branched-chain amino acids, and aromatic amino acids throughout the development of obesity, and regulated the SCFA-GPR signaling pathway. FBTPS-treated fecal microbiota transplant ameliorated obesity, alleviated gut microbiota dysbiosis, and improved gut microbiota-associated metabolites, suggesting that the anti-obesity effect of FBTPSs was gut microbiota-dependent. FBTPSs may serve as novel prebiotic agents for the treatment of obesity and dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Mingzhi Zhu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Ouyang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Fang Zhou
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Chenjie Zhao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Wan Zhu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Chunfang Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Peifang Huang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Jiafeng Li
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Junwei Tang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhang Zhang
- China Tea (Hunan) Anhua 1st Factory Co., Ltd., Yiyang, 413500, China
| | - Jianan Huang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Kunbo Wang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Zhonghua Liu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China..
| |
Collapse
|
21
|
Santillana N, Astudillo-Guerrero C, D’Espessailles A, Cruz G. White Adipose Tissue Dysfunction: Pathophysiology and Emergent Measurements. Nutrients 2023; 15:nu15071722. [PMID: 37049561 PMCID: PMC10096946 DOI: 10.3390/nu15071722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
White adipose tissue (AT) dysfunction plays an important role in the development of cardiometabolic alterations associated with obesity. AT dysfunction is characterized by the loss of the expansion capacity of the AT, an increment in adipocyte hypertrophy, and changes in the secretion profile of adipose cells, associated with accumulation of macrophages and inflammation. Since not all people with an excess of adiposity develop comorbidities, it is necessary to find simple tools that can evidence AT dysfunction and allow the detection of those people with the potential to develop metabolic alterations. This review focuses on the current pathophysiological mechanisms of white AT dysfunction and emerging measurements to assess its functionality.
Collapse
Affiliation(s)
- Natalia Santillana
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8380453, Chile
| | - Camila Astudillo-Guerrero
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Amanda D’Espessailles
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
22
|
Liu Q, Li C, Deng B, Gao P, Wang L, Li Y, Shiri M, Alkaifi F, Zhao J, Stephens JM, Simintiras CA, Francis J, Sun J, Fu X. Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell Rep 2023; 42:112166. [PMID: 36857185 PMCID: PMC10208561 DOI: 10.1016/j.celrep.2023.112166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/01/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Distinct locations of different white adipose depots suggest anatomy-specific developmental regulation, a relatively understudied concept. Here, we report a population of Tcf21 lineage cells (Tcf21 LCs) present exclusively in visceral adipose tissue (VAT) that dynamically contributes to VAT development and expansion. During development, the Tcf21 lineage gives rise to adipocytes. In adult mice, Tcf21 LCs transform into a fibrotic or quiescent state. Multiomics analyses show consistent gene expression and chromatin accessibility changes in Tcf21 LC, based on which we constructed a gene-regulatory network governing Tcf21 LC activities. Furthermore, single-cell RNA sequencing (scRNA-seq) identifies the heterogeneity of Tcf21 LCs. Loss of Tcf21 promotes the adipogenesis and developmental progress of Tcf21 LCs, leading to improved metabolic health in the context of diet-induced obesity. Mechanistic studies show that the inhibitory effect of Tcf21 on adipogenesis is at least partially mediated via Dlk1 expression accentuation.
Collapse
Affiliation(s)
- Qianglin Liu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Chaoyang Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Buhao Deng
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; Department of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peidong Gao
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Leshan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Yuxia Li
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA
| | - Mohammad Shiri
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Fozi Alkaifi
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Junxing Zhao
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA; Department of Animal Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jiangwen Sun
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA.
| | - Xing Fu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
23
|
Sánchez-Aguilar M, Ibarra-Lara L, Cano-Martínez A, Soria-Castro E, Castrejón-Téllez V, Pavón N, Osorio-Yáñez C, Díaz-Díaz E, Rubio-Ruíz ME. PPAR Alpha Activation by Clofibrate Alleviates Ischemia/Reperfusion Injury in Metabolic Syndrome Rats by Decreasing Cardiac Inflammation and Remodeling and by Regulating the Atrial Natriuretic Peptide Compensatory Response. Int J Mol Sci 2023; 24:ijms24065321. [PMID: 36982395 PMCID: PMC10049157 DOI: 10.3390/ijms24065321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs’ signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.
Collapse
Affiliation(s)
- María Sánchez-Aguilar
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Luz Ibarra-Lara
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
| | - Natalia Pavón
- Department of Pharmacology, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (M.S.-A.); (L.I.-L.); (N.P.)
| | - Citlalli Osorio-Yáñez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, Ciudad de México 04510, Mexico;
- Laboratorio de Fisiología Cardiovascular y Transplante Renal, Unidad de Investigación UNAM-INCICH, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y de la Nutrición “Salvador Zubirán”, Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico;
| | - María Esther Rubio-Ruíz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (A.C.-M.); (V.C.-T.)
- Correspondence:
| |
Collapse
|
24
|
Knocking Down CDKN2A in 3D hiPSC-Derived Brown Adipose Progenitors Potentiates Differentiation, Oxidative Metabolism and Browning Process. Cells 2023; 12:cells12060870. [PMID: 36980212 PMCID: PMC10047013 DOI: 10.3390/cells12060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any cell type, making them a relevant tool for therapeutic purposes such as cell-based therapies. In particular, they show great promise for obesity treatment as they represent an unlimited source of brown/beige adipose progenitors (hiPSC-BAPs). However, the low brown/beige adipocyte differentiation potential in 2D cultures represents a strong limitation for clinical use. In adipose tissue, besides its cell cycle regulator functions, the cyclin-dependent kinase inhibitor 2A (CDKN2A) locus modulates the commitment of stem cells to the brown-like type fate, mature adipocyte energy metabolism and the browning of adipose tissue. Here, using a new method of hiPSC-BAPs 3D culture, via the formation of an organoid-like structure, we silenced CDKN2A expression during hiPSC-BAP adipogenic differentiation and observed that knocking down CDKN2A potentiates adipogenesis, oxidative metabolism and the browning process, resulting in brown-like adipocytes by promoting UCP1 expression and beiging markers. Our results suggest that modulating CDKN2A levels could be relevant for hiPSC-BAPs cell-based therapies.
Collapse
|
25
|
Jia TT, Zhang Y, Hou JT, Niu H, Wang S. H 2S-based fluorescent imaging for pathophysiological processes. Front Chem 2023; 11:1126309. [PMID: 36778034 PMCID: PMC9911449 DOI: 10.3389/fchem.2023.1126309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Hydrogen sulfide (H2S), as an important endogenous signaling molecule, plays a vital role in many physiological processes. The abnormal behaviors of hydrogen sulfide in organisms may lead to various pathophysiological processes. Monitoring the changes in hydrogen sulfide is helpful for pre-warning and treating these pathophysiological processes. Fluorescence imaging techniques can be used to observe changes in the concentration of analytes in organisms in real-time. Therefore, employing fluorescent probes imaging to investigate the behaviors of hydrogen sulfide in pathophysiological processes is vital. This paper reviews the design strategy and sensing mechanisms of hydrogen sulfide-based fluorescent probes, focusing on imaging applications in various pathophysiological processes, including neurodegenerative diseases, inflammation, apoptosis, oxidative stress, organ injury, and diabetes. This review not only demonstrates the specific value of hydrogen sulfide fluorescent probes in preclinical studies but also illuminates the potential application in clinical diagnostics.
Collapse
Affiliation(s)
- Tong-Tong Jia
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Yuanyuan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Shan Wang
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Kim HJ, Kim DH, Um SH. The Novel Inhibitory Effect of YM976 on Adipocyte Differentiation. Cells 2023; 12:cells12020205. [PMID: 36672141 PMCID: PMC9856710 DOI: 10.3390/cells12020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The pyrimidine derivative YM976 (4-(3-chlorophenyl)-1,7-diethylpyrido(2,3-d)-pyrimidin-2(1H)-one) exerts anti-inflammatory and anti-asthmatic effects. Considering that accumulation of lipids in adipose tissue is accompanied by inflammation, we investigated whether YM976 affects adipocyte differentiation. We found that YM976 significantly decreased lipid accumulation without cytotoxicity and reduced the expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) as well as their lipogenic regulators including fatty acid synthase (FASN) and fatty acid-binding protein 4 (FABP4) in 3T3-L1 cells induced for differentiation. YM976 mainly inhibited the early stage of adipocyte differentiation. Furthermore, intracellular cAMP level was elevated by YM976 resulting in increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Conversely, decreasing the levels of AMPK or treatment with Compound C, an AMPK inhibitor, lessened the suppressive effects of YM976 on PPARγ transcriptional activity and adipogenesis. Thus, our results suggest YM976 as a novel potential compound for controlling lipid accumulation and formation of adipocytes in obesity.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pharmacology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sung Hee Um
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea
- Biomedical Institute for Convergence (BICS) at Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Jung HR, Oh Y, Jang D, Shin S, Lee SJ, Kim J, Lee SE, Oh J, Jang G, Kwon O, Lee Y, Lee HY, Cho SY. Gut bacteria-derived 3-phenylpropionylglycine mitigates adipocyte differentiation of 3T3-L1 cells by inhibiting adiponectin-PPAR pathway. Genes Genomics 2023; 45:71-81. [PMID: 36434390 DOI: 10.1007/s13258-022-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gut microbiota provide numerous types of metabolites that humans cannot produce and have a huge influence on the host metabolism. Accordingly, gut bacteria-derived metabolites can be employed as a resource to develop anti-obesity and metabolism-modulating drugs. OBJECTIVE This study aimed to examine the anti-adipogenic effect of 3-phenylpropionylglycine (PPG), which is a glycine conjugate of bacteria-derived 3-phenylpropionic acid (PPA). METHODS The effect of PPG on preadipocyte-to-adipocyte differentiation was evaluated in 3T3-L1 differentiation models and the degree of the differentiation was estimated by Oil red O staining. The molecular mechanisms of the PPG effect were investigated with transcriptome analyses using RNA-sequencing and quantitative real-time PCR. RESULTS PPG suppressed lipid droplet accumulation during the adipogenic differentiation of 3T3-L1 cells, which is attributed to down-regulation of lipogenic genes such as acetyl CoA carboxylase 1 (Acc1) and fatty acid synthase (Fasn). However, other chemicals with chemical structures similar to PPG, including cinnamoylglycine and hippuric acid, had little effect on the lipid accumulation of 3T3-L1 cells. In transcriptomic analysis, PPG suppressed the expression of adipogenesis and metabolism-related gene sets, which is highly associated with downregulation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Protein-protein association network analysis suggested adiponectin as a hub gene in the network of genes that were differentially expressed genes in response to PPG treatment. CONCLUSION PPG inhibits preadipocyte-to-adipocyte differentiation by suppressing the adiponectin-PPAR pathway. These data provide a potential candidate from bacteria-derived metabolites with anti-adipogenic effects.
Collapse
Affiliation(s)
- Hae Rim Jung
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yumi Oh
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soo-Jin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Giyong Jang
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Obin Kwon
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yeonmi Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea
| | - Hui-Young Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Republic of Korea.,Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
28
|
Li S, Zong X, Zhang L, Li L, Wu J. A chromatin accessibility landscape during early adipogenesis of human adipose-derived stem cells. Adipocyte 2022; 11:239-249. [PMID: 35435105 PMCID: PMC9037556 DOI: 10.1080/21623945.2022.2063015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Obesity has become a serious global public health problem; a deeper understanding of systemic change of chromatin accessibility during human adipogenesis contributes to conquering obesity and its related diseases. Here, we applied the ATAC-seq method to depict a high-quality genome‐wide time-resolved accessible chromatin atlas during adipogenesis of human adipose-derived stem cells (hASCs). Our data indicated that the chromatin accessibility drastic dynamically reformed during the adipogenesis of hASCs and 8 h may be the critical transition node of adipogenesis chromatin states from commitment phase to determination phase. Moreover, upon adipogenesis, we also found that the chromatin accessibility of regions related to anti-apoptotic, angiogenic and immunoregulatory gradually increased, which is beneficial to maintaining the health of adipose tissue (AT). Finally, the chromatin accessibility changed significantly in intronic regions of peroxisome proliferator‐activated receptor γ during adipogenesis, and these regions were rich in transcription factors binding motifs that were exposed for further regulation. Overall, we systematically analysed the complex change of chromatin accessibility occurring in the early stage of adipogenesis and deepened our understanding of human adipogenesis. Furthermore, we also provided a good reference data resource of genome‐wide chromatin accessibility for future studies on human adipogenesis.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Zong
- Division of achievements transformation, Development Center for Medical Science & Technology National Health Commission of the People’s Republic of China, Beijing, China
| | - Liheng Zhang
- Shanghai Jiayin Biotechnology Co., Ltd, Shanghai, China
| | - Luya Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, Beijing, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
- Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Popiolek-Kalisz J. The Impact of Dietary Flavonols on Central Obesity Parameters in Polish Adults. Nutrients 2022; 14:nu14235051. [PMID: 36501081 PMCID: PMC9739955 DOI: 10.3390/nu14235051] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Central obesity is defined as the excessive fat tissue located in abdominal region accompanied by systemic inflammation, which drives to cardiovascular disease. Flavonols are antioxidative agents present in food. The aim of this study was investigating the relationship between dietary flavonols intake and central obesity. Methods and results: 80 participants (40 central obese and 40 healthy controls) were administered a food frequency questionnaire dedicated to flavonols intake assessment. Body composition was measured with bioelectrical impedance analysis. The analysis showed significant differences between central obese participants and healthy controls in total flavonol (p = 0.005), quercetin (p = 0.003), kaempferol (p = 0.04) and isorhamnetin (p < 0.001) habitual intake. Among central obese participants, there was a moderate inverse correlation between fat mass (FM) and total flavonol (R = −0.378; 95% CI: −0.620 to −0.071; p = 0.02), quercetin (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03), kaempferol (R = −0.425; 95% CI: −0.653 to −0.127; p = 0.01) and myricetin intake (R = −0.352; 95% CI: −0.601 to −0.041; p = 0.03). BMI was inversely correlated with total flavonol (R = −0.330; 95% CI: −0.584 to −0.016; p = 0.04) and quercetin intake (R = −0.336; 95% CI: −0.589 to −0.023; p = 0.04). Waist circumference was inversely correlated with total flavonol (R = −0.328; 95% CI: −0.586 to −0.009; p = 0.04), quercetin (R = −0.322; 95% CI: −0.582 to −0.002; p = 0.048) and myricetin intake (R = −0.367; 95% CI: −0.615 to −0.054; p = 0.02). Among flavonols’ dietary sources, there was an inverse correlation between black tea consumption and FM (R: −0.511; 95% CI: −0.712 to −0.233; p < 0.001) and between coffee and waist circumference (R: −0.352; 95% CI: −0.604 to −0.036; p = 0.03) in central obese participants. Conclusions: The higher flavonol intake could play a protective role in abdominal obesity development. What is more, total and selected flavonol dietary intakes are inversely correlated with the parameters used for obesity assessment in central obese participants. The habitual consumption of products rich in flavonols, mainly tea and coffee, could possibly have a preventive role in abdominal obesity development.
Collapse
Affiliation(s)
- Joanna Popiolek-Kalisz
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, ul. Chodzki 7, 20-093 Lublin, Poland;
- Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, al. Krasnicka 100, 20-718 Lublin, Poland
| |
Collapse
|
30
|
Luo X, Ng C, He J, Yang M, Luo X, Herbert TP, Whitehead JP. Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes. Mol Cell Endocrinol 2022; 556:111740. [PMID: 35932980 DOI: 10.1016/j.mce.2022.111740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulation of adipose tissue involves increased cellular hypoxia, ER stress, and inflammation and altered adipokine production, contributing to the aetiology of obesity-related diseases including type 2 diabetes and cardiovascular disease. This study aimed to investigate the effects of Vitamin C supplementation on these processes in primary human preadipocytes and adipocytes. Treatment of preadipocytes and adipocytes with the proinflammatory cytokine TNFα and palmitic acid (PA), to mimic the obesogenic milieu, significantly increased markers of hypoxia, ER stress and inflammation and reduced secretion of high molecular weight (HMW) adiponectin. Importantly, Vitamin C abolished TNFα+PA induced hypoxia and significantly reduced the increases in ER stress and inflammation in both cell types. Vitamin C also significantly increased the secretion of HMW adiponectin from adipocytes. These findings indicate that Vitamin C can reduce obesity-associated cellular stress and thus provide a rationale for future investigations.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia; School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Choaping Ng
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jingjing He
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mengliu Yang
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - Xiao Luo
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | | | - Jonathan P Whitehead
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia; Department of Life Sciences, University of Lincoln, Lincolnshire, UK.
| |
Collapse
|
31
|
Das R, Giri J, K Paul P, Froelich N, Chinnadurai R, McCoy S, Bushman W, Galipeau J. A STAT5-Smad3 dyad regulates adipogenic plasticity of visceral adipose mesenchymal stromal cells during chronic inflammation. NPJ Regen Med 2022; 7:41. [PMID: 36045134 PMCID: PMC9433418 DOI: 10.1038/s41536-022-00244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Adipogenic differentiation of visceral adipose tissue-resident multipotent mesenchymal stromal cells (VA-MSC) into adipocytes is metabolically protective. Under chronic inflammatory stress, this neoadipogenesis process is suppressed by various pro-inflammatory cytokines and growth factors. However, the underlying mechanism(s) regulating VA-MSC plasticity remains largely unexplored. Using an adipogenic differentiation screen, we identified IFNγ and TGFβ as key inhibitors of primary human VA-MSC differentiation. Further studies using human and mouse VA-MSCs and a chronic high-fat diet-fed murine model revealed that IFNγ/JAK2-activated STAT5 transcription factor is a central regulator of VA-MSC differentiation under chronic inflammatory conditions. Furthermore, our results indicate that under such conditions, IFNγ-activated STAT5 and TGFβ-activated Smad3 physically interact via Smad4. This STAT5-Smad4-Smad3 complex plays a crucial role in preventing the early adipogenic commitment of VA-MSCs by suppressing key pro-adipogenic transcription factors, including CEBPδ, CEBPα, and PPARγ. Genetic or pharmacological disruption of IFNγ-TGFβ synergy by inhibiting either STAT5 or Smad3 rescued adipogenesis under chronic inflammatory stress. Overall, our study delineates a central mechanism of MSC plasticity regulation by the convergence of multiple inflammatory signaling pathways.
Collapse
Affiliation(s)
- Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jayeeta Giri
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Nicole Froelich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Raghavan Chinnadurai
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Medicine, Mercer University, Savannah, GA, 31404, USA
| | - Sara McCoy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Wade Bushman
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
32
|
Zhang W, Jia X, Xu Y, Xie Q, Zhu M, Zhang H, Zhao Z, Hao J, Li H, Du J, Liu Y, Liu WH, Ma X, Hung W, Feng H, Li H. Effects of Coix Seed Extract, Bifidobacterium BPL1, and Their Combination on the Glycolipid Metabolism in Obese Mice. Front Nutr 2022; 9:939423. [PMID: 35923203 PMCID: PMC9341295 DOI: 10.3389/fnut.2022.939423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism via different modes of action. We tested the effects of CSE, Bifidobacterium BPL1, and their combination to determine their effects on glycolipid metabolism in obese mice. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. Obese mice were selected and divided into four groups: the model control group and three intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31 g, vs. HFD mice 42.23 g) and epididymal (lower about 0.37 g, vs. HFD mice 2.5 g) and perirenal fat content (lower about 0.47 g, vs. HFD mice 0.884 g); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. CSE, BPL1 and their combination can effectively control the weight gain in obese mice, reduce fat content, and regulate blood lipids and abnormal blood sugar. These results may be related to reduce the chronic inflammatory states, improve energy metabolism, exercise, relieve insulin sensitivity, and reduce lipid synthesis via the intervention of CSE, BPL1 and their combination. Compared with the single use of CSE alone, the combination of CSE + BPL1 can better exert the regulation function of intestinal flora, and change in the abundance of bacteria that could improve the level of inflammatory factors, such as increasing Bifidobacterium, reducing Lactococcus. Compared with the use of BPL1 alone, the combination of CSE and BPL1 can better regulate pancreatic islet and improve blood sugar. CSE may act directly on body tissues to exert anti-inflammatory effects. BPL1 and CSE + BPL1 may improve the structure and function of the intestinal flora, and reduce tissue inflammation.
Collapse
Affiliation(s)
- Wei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yuhan Xu
- School of Public Health, Xiamen University, Xiamen, China
| | - Qiaoling Xie
- School of Public Health, Xiamen University, Xiamen, China
| | - Meizhen Zhu
- School of Public Health, Xiamen University, Xiamen, China
| | - Hesong Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haoqiu Li
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jinrui Du
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yan Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Xia Ma
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Weilian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Red Rice Bran Extract Attenuates Adipogenesis and Inflammation on White Adipose Tissues in High-Fat Diet-Induced Obese Mice. Foods 2022; 11:foods11131865. [PMID: 35804681 PMCID: PMC9266166 DOI: 10.3390/foods11131865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Red rice bran extract (RRBE) has been reported to have the potential for in vitro metabolic modulation and anti-inflammatory properties. However, little is known about the molecular mechanisms of these potentials in adipose tissue. This study aimed to evaluate the in vivo anti-adipogenic, anti-hypertrophic, and anti-inflammatory activities of RRBE and its major bioactive compounds in mice. After six weeks of consuming either a low-fat diet or a high-fat diet (HFD), 32 mice with initial body weights of 20.76 ± 0.24 g were randomly divided into four groups; the four groups were fed a low-fat diet, a HFD, a HFD plus 0.5 g/kg of RRBE, or a HFD plus 1 g/kg of RRBE, respectively. The 6-week treatment using RRBE reduced HFD-induced adipocyte hypertrophy, lipid accumulation, and inflammation in intra-abdominal epididymal white adipose tissue (p < 0.05) without causing significant changes in body and adipose tissue weight, which reductions were accompanied by the down-regulated expression of adipogenic and lipid metabolism genes, including CCAAT/enhancer-binding protein-alpha, sterol regulatory element-binding protein-1c, and hormone-sensitive lipase (p < 0.05), as well as inflammatory genes, including macrophage marker F4/80, nuclear factor-kappa B p65, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, and inducible nitric oxide synthase (p < 0.05), in adipose tissue. Furthermore, RRBE significantly decreased serum tumor necrosis factor-alpha levels (p < 0.05). Bioactive compound analyses revealed the presence of phenolics, flavonoids, anthocyanins, and proanthocyanidins in these extracts. Collectively, this study demonstrates that RRBE effectively attenuates HFD-induced pathological adipose tissue remodeling by suppressing adipogenesis, lipid dysmetabolism, and inflammation. Therefore, RRBE may emerge as one of the alternative food products to be used against obesity-associated adipose tissue dysfunction.
Collapse
|
34
|
Wang S, Zhou H, Zhao C, He H. Effect of Exercise Training on Body Composition and Inflammatory Cytokine Levels in Overweight and Obese Individuals: A Systematic Review and Network Meta-Analysis. Front Immunol 2022; 13:921085. [PMID: 35812437 PMCID: PMC9260601 DOI: 10.3389/fimmu.2022.921085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022] Open
Abstract
ObjectiveThis study aimed to compare and rank the effectiveness of aerobic exercise (AE), resistance training (RT), combined aerobic and resistance training (CT), and high-intensity interval training (HIIT) on body composition and inflammatory cytokine levels in overweight and obese individuals by using network meta-analysis (NMA).MethodsWe searched the PubMed, Cochrane, Embase, Web of Science, and EBSCO databases to identify randomized controlled trials investigating the effects of exercise training on inflammatory cytokines in overweight and obese patients. The retrieval period was from inception to November 2021. Two reviewers independently screened the retrieved articles, extracted the pertinent data, and assessed the risk of bias of the included studies; then, they used Stata 16.0 and Review Manager 5.3 to perform an NMA.ResultsA total of 38 studies involving 1317 patients were included in this study. The results of the NMA indicated that AE had the greatest effect on weight loss (SUCRA=78.3; SMD=−0.51, 95% CI: −0.70, −0.33); CT had the greatest effect on reducing body mass index (SUCRA=70.7; SMD=−0.46, 95% CI: −0.81, −0.10), waist circumference (SUCRA=93.4; SMD=−1.86, 95% CI: −2.80, −0.93), percentage body fat (SUCRA=79.6; SMD=−1.38, 95% CI: −2.29, −0.48), interleukin-6 level (SUCRA=86.4; SMD=−1.98, 95% CI: −3.87, −0.09), and tumor necrosis factor-α level (SUCRA=79.4; SMD=−2.08, 95% CI: −3.75, −0.42); AE (SMD=0.51, 95% CI: −1.68, 2.69), RT (SMD=0.15, 95% CI: −3.01, 3.32), CT (SMD=1.78, 95% CI: −1.35, 4.92), and HIIT (SMD=2.29, 95% CI: −1.27, 5.86) did not significantly increase the adiponectin level.ConclusionThe current results suggest that CT is the best exercise modality for improving body composition and inflammatory status in overweight and obese individuals. More rigorous randomized control trials are needed for further validation.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42022303165.
Collapse
Affiliation(s)
- Shengya Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Huayi Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Changtao Zhao
- Department of Physical Health and Arts Education, Ministry of Education, Beijing, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- *Correspondence: Hui He,
| |
Collapse
|
35
|
Amevor FK, Cui Z, Du X, Ning Z, Deng X, Xu D, Shu G, Wu Y, Cao X, Shuo W, Tian Y, Li D, Wang Y, Zhang Y, Du X, Zhu Q, Han X, Zhao X. Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 2022; 13:860889. [PMID: 35386687 PMCID: PMC8977514 DOI: 10.3389/fimmu.2022.860889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1β), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Shuo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
36
|
Hammami I, Ben Ali R, Nahdi A, Boussada M, Mahjoub R, Bibi A, El May MV. Kefir milk consumption decreases sperm alterations due to the high-fat diet in adult male rats. Andrologia 2022; 54:1631-1642. [PMID: 35396733 DOI: 10.1111/and.14428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022] Open
Abstract
Over the past decades, an increase of male infertility through the decrease of sperm count has been noted. It has been suggested that environmental factors and lifestyle could a negative impact over sperm quality. Among these factors, the consumption of foods high in fat, which leads to overweight and obesity, can negatively influence fertility. The present study was designed to highlight the protective effect of Kefir, natural probiotic, against the decline in sperm quality related to fat high diet. Thirty adult rats were divided into four groups: Control (1 ml/100 g of body weight (bw) of semi-shimmed cow milk), KM (1 ml/100 g bw of Kefir milk), HFD (1 ml/100 g bw of semi-shimmed cow milk + high-fat diet) and KM/HFD (1 ml/100 g bw Kefir milk + high-fat diet). After 60 days of treatment, sperm quality, biochemical assays of lipids profil, blood cell count and histological examination in testis were assessed. The results described an improved of sperm density (64.28 106 ml vs 54.14 106 ml), viability (70.50% vs 55.33%), mobility (65.40% vs 63.60%) and morphological abnormalities (52% vs 25%) in the KM/HFD group compared to HFD group. In the same group, the lipid profil (Triglycerides (128.39 mg/dl vs 102.85 mg/dl), C-LDL (13.65 mg/dl vs 15.32 mg/dl) and C-HDL (23.21 mg/dl vs 19.15 mg/dl)) was corrected compared to HFD group. The histological observation of testis revealed a normal spermatogenesis compared to seminiferous tubules of HFD group, which showed a serious disruption and damage of testicular epithelium exerted by the high-fat diet. These findings corroborated the previous beneficial effect of Kefir and brought new insights into its beneficial effect against deteriorated spermatogenesis in obese adult rats.
Collapse
Affiliation(s)
- Imen Hammami
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Ridha Ben Ali
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Afef Nahdi
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Marwa Boussada
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Rahma Mahjoub
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Amina Bibi
- Laboratory of Clinic Biology, National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Michèle Véronique El May
- Research Unit 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El-Manar, Tunis, Tunisia
| |
Collapse
|
37
|
Primary cilia and their effects on immune cell functions and metabolism: a model. Trends Immunol 2022; 43:366-378. [DOI: 10.1016/j.it.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
38
|
Brasil Brandao B, Lino M, Kahn CR. Extracellular miRNAs as mediators of obesity-associated disease. J Physiol 2022; 600:1155-1169. [PMID: 34392542 PMCID: PMC8845532 DOI: 10.1113/jp280910] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular miRNAs are found in a variety of body fluids and mediate intercellular and interorgan communication, thus regulating gene expression and cellular metabolism. These miRNAs are secreted either in small vesicles/exosomes (sEV) or bound to proteins such as Argonaute and high-density lipoprotein. Both exosomal and protein-bound circulating miRNAs are altered in obesity. Although all tissues can contribute to changes in circulating miRNAs, adipose tissue itself is an important source of these miRNAs, especially those in sEVs. These are derived from both adipocytes and macrophages and participate in crosstalk between these cells, as well as peripheral tissues, including liver, skeletal muscle and pancreas, whose function may be impaired in obesity. Changes in levels of circulating miRNAs have also been linked to the beneficial effects induced by weight loss interventions, including diet, exercise and bariatric surgery, further indicating a role for these miRNAs as mediators of disease pathogenesis. Here, we review the role of circulating miRNAs in the pathophysiology of obesity and explore their potential use as biomarkers and in therapy of obesity-associated metabolic syndrome.
Collapse
Affiliation(s)
- Bruna Brasil Brandao
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - Marsel Lino
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| | - C. Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
39
|
Okyere SK, Wen J, Cui Y, Xie L, Gao P, Zhang M, Wang J, Wang S, Ran Y, Ren Z, Hu Y. Bacillus toyonensis SAU-19 and SAU-20 Isolated From Ageratina adenophora Alleviates the Intestinal Structure and Integrity Damage Associated With Gut Dysbiosis in Mice Fed High Fat Diet. Front Microbiol 2022; 13:820236. [PMID: 35250935 PMCID: PMC8891614 DOI: 10.3389/fmicb.2022.820236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
This study was performed to identify potential probiotic endophytes from Ageratina adenophora and evaluate their ameliorating effects on gut injury and integrity damage associated with microbiota dysbiosis in mice fed high fat diet. Using morphological and biochemical tests, and 16S rRNA gene sequencing technique, two bacteria endophytes were identified as strains of Bacillus toyonensis and were named Bacillus toyonensis SAU-19 (GenBank No. MW287198) and Bacillus toyonensis SAU-20 (GenBank No. MW287199). Sixty (60) mice were divided into five groups, group 1 was the negative control fed normal diet (NS), group 2 was fed High fat diet (HF), Group 3 was fed High fat diet + 106 Lactobacillus rhamnosus (LGG), group 4 was fed High fat + 106 Bacillus toyonensis SAU-19 and group 5 fed High fat diet + 106 Bacillus toyonensis SAU-20. After 35 days, histological and immunohistochemistry examination were performed in the ileum tissues. Furthermore, DAO and antioxidants activities were measured in serum, mRNA expressions of tight junction proteins (occludin and ZO-1) and inflammation related cytokines (IL-1β, TFN-α, IL-2, IL-4, and IL-10) in the ileum tissues as well as sIgA levels and total bacteria (Escherichia coli, Salmonella, Staphylococcus, and Lactobacillus) in the small intestine and cecum content. The results showed an increase in the DAO activity, oxidative stress parameter (MDA), pro-inflammation cytokines (IL-1β, TFN-α, IL-2), reduce immunity (sIgA), and destroyed intestinal structure and integrity (reduce tight junction proteins) in the high fat diet group and this was associated with destruction of the gut microbiota composition (increasing pathogenic bacteria; E. coli, Salmonella, Staphylococcus and reducing beneficial bacteria, Lactobacillus spp.) in mice (P < 0.05). However, the administration of Bacillus toyonensis SAU-19 and SAU-20 reverted these effects. Our findings indicated that, Bacillus toyonensis SAU-19 and SAU-20 isolated from A. adenophora could prevent the excess weight gain from high fat diet feeding, improved antioxidant status and alleviated the intestine integrity damage as well as reduce the population of enteric bacteria such as E. coli, Salmonella, and S. aureus and increasing the population of beneficial bacteria such as Lactobacillus in the gut of mice fed high fat diet, therefore, can serve as a potential probiotics in humans and animals.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Gao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen, China
| |
Collapse
|
40
|
Razzaque MS. Salivary phosphate as a biomarker for human diseases. FASEB Bioadv 2022; 4:102-108. [PMID: 35141474 PMCID: PMC8814558 DOI: 10.1096/fba.2021-00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phosphate is a common ingredient of the daily consumed foods and is absorbed in the intestine and is excreted in the urine through the kidney to maintain the homeostatic balance. For adults, the Recommended Dietary Allowance (RDA) for phosphorus is around 700 mg/day. The change in dietary habits resulted in far more phosphate consumption (almost double) than the RDA, contributing to increased cardiovascular diseases, kidney diseases, and tumor formation. Due to a lack of clinical appreciation for the long-term consequences of chronic phosphate burden on non-communicable disorders, it is rapidly becoming a global health concern. The possible association between dysregulated phosphate metabolism and obesity is not studied in-depth, mainly because such an association is believed to be nonexistent. However, in the animal model of obesity, serum phosphate level was higher than their non-obese controls. In a similar observation line, significantly higher salivary phosphate levels were detected in obese children compared to normal-weight children. Of clinical importance, despite the significant increase of salivary phosphate levels in obese children, the plasma phosphate levels did not change in samples collected from the same group of children. Such disparity between plasma and saliva raised the possibility that human salivary phosphate levels may be an early biomarker of childhood obesity.
Collapse
Affiliation(s)
- Mohammed S. Razzaque
- Department of PathologyLake Erie College of Osteopathic MedicineEriePennsylvaniaUSA
| |
Collapse
|
41
|
A senescence stress secretome is a hallmark of therapy-related myeloid neoplasm stromal tissue occurring soon after cytotoxic exposure. Leukemia 2022; 36:2678-2689. [PMID: 36038666 PMCID: PMC9613466 DOI: 10.1038/s41375-022-01686-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022]
Abstract
Therapy-related myeloid neoplasm (tMN) is considered a direct consequence of DNA damage in hematopoietic stem cells. Despite increasing recognition that altered stroma can also drive leukemogenesis, the functional biology of the tMN microenvironment remains unknown. We performed multiomic (transcriptome, DNA damage response, cytokine secretome and functional profiling) characterization of bone marrow stromal cells from tMN patients. Critically, we also compared (i) patients with myeloid neoplasm and another cancer but without cytotoxic exposure, (ii) typical primary myeloid neoplasm, and (iii) age-matched controls to decipher the microenvironmental changes induced by cytotoxics vs. neoplasia. Strikingly, tMN exhibited a profoundly senescent phenotype with induction of CDKN1A and β-Galactosidase, defective phenotype, and proliferation. Moreover, tMN stroma showed delayed DNA repair and defective adipogenesis. Despite their dormant state, tMN stromal cells were metabolically highly active with a switch toward glycolysis and secreted multiple pro-inflammatory cytokines indicative of a senescent-secretory phenotype that inhibited adipogenesis. Critically, senolytics not only eliminated dormant cells, but also restored adipogenesis. Finally, sequential patient sampling showed senescence phenotypes are induced within months of cytotoxic exposure, well prior to the onset of secondary cancer. Our data underscores a role of senescence in the pathogenesis of tMN and provide a valuable resource for future therapeutics.
Collapse
|
42
|
Marques CG, Dos Santos Quaresma MVL, Nakamoto FP, Magalhães ACO, Lucin GA, Thomatieli-Santos RV. Does Modern Lifestyle Favor Neuroimmunometabolic Changes? A Path to Obesity. Front Nutr 2021; 8:705545. [PMID: 34621773 PMCID: PMC8490681 DOI: 10.3389/fnut.2021.705545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Factors linked to modern lifestyles, such as physical inactivity, Western diet, and poor sleep quality have been identified as key contributors to the positive energy balance (PEB). PEB rises adipose tissue hypertrophy and dysfunction over the years, affecting cells and tissues that are metabolically critical for energy homeostasis regulation, especially skeletal muscle, hypothalamic-pituitary-adrenal axis, and gut microbiota. It is known that the interaction among lifestyle factors and tissue metabolic dysfunction increases low-grade chronic systemic inflammation, leading to insulin resistance and other adverse metabolic disorders. Although immunometabolic mechanisms are widely discussed in obesity, neuroimmunoendocrine pathways have gained notoriety, as a link to neuroinflammation and central nervous system disorders. Hypothalamic inflammation has been associated with food intake dysregulation, which comprises homeostatic and non-homeostatic mechanisms, promoting eating behavior changes related to the obesity prevalence. The purpose of this review is to provide an updated and integrated perspective on the effects of Western diet, sleep debt, and physical exercise on the regulation of energy homeostasis and low-grade chronic systemic inflammation. Subsequently, we discuss the intersection between systemic inflammation and neuroinflammation and how it can contribute to energy imbalance, favoring obesity. Finally, we propose a model of interactions between systemic inflammation and neuroinflammation, providing new insights into preventive and therapeutic targets for obesity.
Collapse
Affiliation(s)
- Camila Guazzelli Marques
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Ana Carolina Oumatu Magalhães
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Nutrição, Centro Universitário São Camilo, São Paulo, Brazil
| | | | - Ronaldo Vagner Thomatieli-Santos
- Programa de Pós-graduação em Psicobiologia, Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
43
|
Gao X, Li Y, Ma Z, Jing J, Zhang Z, Liu Y, Ding Z. Obesity induces morphological and functional changes in female reproductive system through increases in NF-κB and MAPK signaling in mice. Reprod Biol Endocrinol 2021; 19:148. [PMID: 34560886 PMCID: PMC8462000 DOI: 10.1186/s12958-021-00833-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Recently, human infertility incidence is increasing in obese women causing it to become an emerging global health challenge requiring improved treatment. There is extensive evidence that obesity caused female reproductive dysfunction is accompanied by an endocrinological influence. Besides, systemic and tissue-specific chronic inflammatory status are common characteristics of obesity. However, the underlying molecular mechanism is unclear linking obesity to infertility or subfertility. METHODS To deal with this question, we created an obese mouse model through providing a high fat diet (HFD) and determined the fertility of the obese mice. The morphological alterations were evaluated in both the reproductive glands and tracts, such as uterus, ovary and oviduct. Furthermore, to explore the underlying mechanism of these functional changes, the expressions of pro-inflammatory cytokines as well as the activations of MAPK signaling and NF-κB signaling were detected in these reproductive tissues. RESULTS The obese females were successful construction and displayed subfertility. They accumulated lipid droplets and developed morphological alterations in each of their reproductive organs including uterus, ovary and oviduct. These pathological changes accompanied increases in pro-inflammatory cytokine expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in all of these sites. Such effects also accompanied increases in nuclear factor kappa B (NF-kB) expression and mitogen-activated protein kinase (MAPK) signaling pathway stimulation based on uniform time dependent increases in the NF-κB (p-NF-κB), JNK (p-JNK), ERK1/2 (p-ERK) and p38 (p-p38) phosphorylation status. CONCLUSIONS These HFD-induced increases in pro-inflammatory cytokine expression levels and NF-κB and MAPKs signaling pathway activation in reproductive organs support the notion that increases of adipocytes resident and inflammatory status are symptomatic of female fertility impairment in obese mice.
Collapse
Affiliation(s)
- Xiuxiu Gao
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangyang Li
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhuoyao Ma
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengqing Zhang
- Department of Medical Laboratory Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Sun JM, Ho CK, Gao Y, Chong CH, Zheng DN, Zhang YF, Yu L. Salvianolic acid-B improves fat graft survival by promoting proliferation and adipogenesis. Stem Cell Res Ther 2021; 12:507. [PMID: 34535194 PMCID: PMC8447755 DOI: 10.1186/s13287-021-02575-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Our previous study proved that Salvia miltiorrhiza could enhance fat graft survival by promoting adipogenesis. However, the effect of salvianolic acid B (Sal-B), the most abundant and bioactive water-soluble compound in Salvia miltiorrhiza, on fat graft survival has not yet been investigated. Objective This study aims to investigate whether salvianolic acid B could improve fat graft survival and promote preadipocyte differentiation. The underlying mechanism has also been studied. Methods In vivo, 0.2 ml of Coleman fat was transplanted into nude mice with salvianolic acid B. The grafts were evaluated by HE and IF at 2 and 4 weeks posttransplantation and by micro-CT at 4 weeks posttransplantation. In vitro, the adipogenesis and proliferative activities of salvianolic acid B were analyzed in cultured human adipose-derived stem cells (h-ADSCs) and 3T3-L1 cells to detect the mechanism by which salvianolic acid B affects graft survival. Results In vivo, the weights and volumes of the fat grafts in the Sal-B-treated groups were significantly higher than those of the fat grafts in the control group. In addition, higher fat integrity and more viable adipocytes were observed in the Sal-B-treated groups. In vitro, salvianolic acid B showed the ability to promote 3T3-L1 and h-ADSC proliferation and adipogenesis. Conclusions Our in vitro experiments demonstrated that salvianolic acid B can promote the proliferation of adipose stem cells and enhance the differentiation of adipose stem cells. Simultaneously, in vivo experiments showed that salvianolic acid B can improve the survival rate of fat transplantation. Therefore, our research shed light on the potential therapeutic usage of salvianolic acid B in improving the survival rate of fat transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02575-4.
Collapse
Affiliation(s)
- Jia-Ming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chia-Kang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Chio-Hou Chong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011
| | - Dan-Ning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Yi-Fan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| | - Li Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhi Zao Ju Road, Shanghai, People's Republic of China, 200011.
| |
Collapse
|
45
|
Ageratina adenophora Disrupts the Intestinal Structure and Immune Barrier Integrity in Rats. Toxins (Basel) 2021; 13:toxins13090651. [PMID: 34564656 PMCID: PMC8473231 DOI: 10.3390/toxins13090651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the effects of Ageratina adenophora on the intestines morphology and integrity in rat. Rats were randomly divided into two groups and were fed with 10 g/100 g body weight (BW) basal diet and 10 g/100 g BW experimental diet, which was a mixture of A. adenophora powder and basal diet in a 3:7 ratio. The feeding experiment lasted for 60 days. At days 28 and 60 of the experiment, eight rats/group/timepoint were randomly selected, weighed, and sacrificed, then blood and intestinal tissues were collected and stored for further analysis. The results showed that Ageratina adenophora caused pathological changes and injury in the intestine, elevated serum diamine oxidase (DAO), D-lactate (D-LA), and secretory immunoglobulin A (sIgA) levels, reduced occludin levels in intestinal tissues, as well as increased the count of intraepithelial leukocytes (IELs) and lamina propria leukocytes (LPLs) in the intestine (p < 0.05 or p < 0.01). In addition, the mRNA and protein (ELISA) expressions of pro-inflammation cytokines (IL-1β, IL-2, TNF-α, and IFN-ϒ) were elevated in the Ageratina adenophora treatment groups, whereas anti-inflammatory cytokines such as IL-4 and IL-10 were reduced (p < 0.01 or p < 0.05). Therefore, the results obtained in this study indicated that Ageratina adenophora impaired intestinal function in rats by damaging the intestine structure and integrity, and also triggered an inflammation immune response that led to intestinal immune barrier dysfunction.
Collapse
|
46
|
Sclerostin Depletion Induces Inflammation in the Bone Marrow of Mice. Int J Mol Sci 2021; 22:ijms22179111. [PMID: 34502021 PMCID: PMC8431516 DOI: 10.3390/ijms22179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/25/2023] Open
Abstract
Romosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost-/-) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost-/- mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost-/- chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost-/- BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost-/- mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.
Collapse
|
47
|
Suriano F, Vieira-Silva S, Falony G, Roumain M, Paquot A, Pelicaen R, Régnier M, Delzenne NM, Raes J, Muccioli GG, Van Hul M, Cani PD. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. MICROBIOME 2021; 9:147. [PMID: 34183063 PMCID: PMC8240277 DOI: 10.1186/s40168-021-01097-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Leptin-deficient ob/ob mice and leptin receptor-deficient db/db mice are commonly used mice models mimicking the conditions of obesity and type 2 diabetes development. However, although ob/ob and db/db mice are similarly gaining weight and developing massive obesity, db/db mice are more diabetic than ob/ob mice. It remains still unclear why targeting the same pathway-leptin signaling-leads to the development of two different phenotypes. Given that gut microbes dialogue with the host via different metabolites (e.g., short-chain fatty acids) but also contribute to the regulation of bile acids metabolism, we investigated whether inflammatory markers, bacterial components, bile acids, short-chain fatty acids, and gut microbes could contribute to explain the specific phenotype discriminating the onset of an obese and/or a diabetic state in ob/ob and db/db mice. RESULTS Six-week-old ob/ob and db/db mice were followed for 7 weeks; they had comparable body weight, fat mass, and lean mass gain, confirming their severely obese status. However, as expected, the glucose metabolism and the glucose-induced insulin secretion were significantly different between ob/ob and db/db mice. Strikingly, the fat distribution was different, with db/db mice having more subcutaneous and ob/ob mice having more epididymal fat. In addition, liver steatosis was more pronounced in the ob/ob mice than in db/db mice. We also found very distinct inflammatory profiles between ob/ob and db/db mice, with a more pronounced inflammatory tone in the liver for ob/ob mice as compared to a higher inflammatory tone in the (subcutaneous) adipose tissue for db/db mice. When analyzing the gut microbiota composition, we found that the quantity of 19 microbial taxa was in some way affected by the genotype. Furthermore, we also show that serum LPS concentration, hepatic bile acid content, and cecal short-chain fatty acid profiles were differently affected by the two genotypes. CONCLUSION Taken together, our results elucidate potential mechanisms implicated in the development of an obese or a diabetic state in two genetic models characterized by an altered leptin signaling. We propose that these differences could be linked to specific inflammatory tones, serum LPS concentration, bile acid metabolism, short-chain fatty acid profile, and gut microbiota composition. Video abstract.
Collapse
Affiliation(s)
- Francesco Suriano
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Gwen Falony
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Martin Roumain
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Rudy Pelicaen
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Marion Régnier
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB Center for Microbiology, KU Leuven, University of Leuven, Leuven, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200, Brussels, Belgium.
| |
Collapse
|
48
|
Senescence of donor cells impairs fat graft regeneration by suppressing adipogenesis and increasing expression of senescence-associated secretory phenotype factors. Stem Cell Res Ther 2021; 12:311. [PMID: 34051860 PMCID: PMC8164816 DOI: 10.1186/s13287-021-02383-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Fat grafting has been regarded as a promising approach for regenerative therapy. Given the rapidly aging population, better understanding of the effect of age on fat graft outcomes and the underlying mechanisms is urgently needed. Methods C57/BL6 mice [old (O, 18–20-month-old) and young (Y, 4-month-old)] were randomized to four fat graft groups [old-to-old (O-O), young-to-young (Y-Y), old-to-young (O-Y), and young-to-old (Y-O)]. Detailed cellular events before and after grafting were investigated by histological staining, RNA sequencing, and real-time polymerase chain reaction. The adipogenic differentiation potential of adipose-derived mesenchymal stem cells (AD-MSCs) from old or young donors was investigated in vitro. Additionally, adipogenesis of AD-MSCs derived from old recipients was evaluated in the culture supernatant of old or young donor fat tissue. Results After 12 weeks, the volume of fat grafts did not significantly differ between the O-O and O-Y groups or between the Y-Y and Y-O groups, but was significantly smaller in the O-O group than in the Y-O group and in the O-Y group than in the Y-Y group. Compared with fat tissue from young mice, senescence-associated secretory phenotype (SASP) factors were upregulated in fat tissue from old mice. Compared with the Y-O group, adipogenesis markers were downregulated in the O-O group, while SASP factors including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were upregulated. In vitro, AD-MSCs from old donors showed impaired adipogenesis compared with AD-MSCs from young donors. Additionally, compared with the culture supernatant of young donor fat tissue, the culture supernatant of old donor fat tissue significantly decreased adipogenesis of AD-MSCs derived from old recipients, which might be attributable to increased levels of SASP factors. Conclusions Age has detrimental effects on fat graft outcomes by suppressing adipogenesis of AD-MSCs and upregulating expression of SASP factors, and fat graft outcomes are more dependent on donor age than on recipient age. Thus, rejuvenating fat grafts from old donors or banking younger adipose tissue for later use may be potential approaches to improve fat graft outcomes in older adults. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02383-w.
Collapse
|
49
|
Muoio F, Panella S, Jossen V, Lindner M, Harder Y, Müller M, Eibl R, Tallone T. Human Adipose Stem Cells (hASCs) Grown on Biodegradable Microcarriers in Serum- and Xeno-Free Medium Preserve Their Undifferentiated Status. J Funct Biomater 2021; 12:jfb12020025. [PMID: 33923488 PMCID: PMC8167760 DOI: 10.3390/jfb12020025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Human adipose stem cells (hASCs) are promising candidates for cell-based therapies, but they need to be efficiently expanded in vitro as they cannot be harvested in sufficient quantities. Recently, dynamic bioreactor systems operated with microcarriers achieved considerable high cell densities. Thus, they are a viable alternative to static planar cultivation systems to obtain high numbers of clinical-grade hASCs. Nevertheless, the production of considerable biomass in a short time must not be achieved to the detriment of the cells' quality. To facilitate the scalable expansion of hASC, we have developed a new serum- and xeno-free medium (UrSuppe) and a biodegradable microcarrier (BR44). In this study, we investigated whether the culture of hASCs in defined serum-free conditions on microcarriers (3D) or on planar (2D) cell culture vessels may influence the expression of some marker genes linked with the immature degree or the differentiated status of the cells. Furthermore, we investigated whether the biomaterials, which form our biodegradable MCs, may affect cell behavior and differentiation. The results confirmed that the quality and the undifferentiated status of the hASCs are very well preserved when they grow on BR44 MCs in defined serum-free conditions. Indeed, the ASCs showed a gene expression profile more compatible with an undifferentiated status than the same cells grown under standard planar conditions.
Collapse
Affiliation(s)
- Francesco Muoio
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Stefano Panella
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
| | - Valentin Jossen
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | | | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, EOC, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | | | - Regine Eibl
- Institute of Chemistry & Biotechnology, Competence Center of Biochemical Engineering & Cell Cultivation Technique Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (V.J.); (R.E.)
| | - Tiziano Tallone
- Foundation for Cardiological Research and Education (FCRE), Cardiocentro Ticino Foundation, 6807 Taverne, Switzerland; (F.M.); (S.P.)
- Correspondence: ; Tel.: +41-91-805-38-85
| |
Collapse
|
50
|
van den Elsen LWJ, Verhasselt V. Human Milk Drives the Intimate Interplay Between Gut Immunity and Adipose Tissue for Healthy Growth. Front Immunol 2021; 12:645415. [PMID: 33912171 PMCID: PMC8071867 DOI: 10.3389/fimmu.2021.645415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023] Open
Abstract
As the physiological food for the developing child, human milk is expected to be the diet that is best adapted for infant growth needs. There is also accumulating evidence that breastfeeding influences long-term metabolic outcomes. This review covers the potential mechanisms by which human milk could regulate healthy growth. We focus on how human milk may act on adipose tissue development and its metabolic homeostasis. We also explore how specific human milk components may influence the interplay between the gut microbiota, gut mucosa immunity and adipose tissue. A deeper understanding of these interactions may lead to new preventative and therapeutic strategies for both undernutrition and other metabolic diseases and deserves further exploration.
Collapse
Affiliation(s)
| | - Valerie Verhasselt
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|