1
|
Teicholz N, Croft SM, Cuaranta I, Cucuzzella M, Glandt M, Griauzde DH, Jerome-Zapadka K, Kalayjian T, Murphy K, Nelson M, Shanahan C, Nishida JL, Oh RC, Parrella N, Saner EM, Sethi S, Volek JS, Williden M, Wolver S. Myths and Facts Regarding Low-Carbohydrate Diets. Nutrients 2025; 17:1047. [PMID: 40292478 PMCID: PMC11944661 DOI: 10.3390/nu17061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
As the prevalence of chronic diseases persists at epidemic proportions, health practitioners face ongoing challenges in providing effective lifestyle treatments for their patients. Even for those patients on GLP-1 agonists, nutrition counseling remains a crucial strategy for managing these conditions over the long term. This paper aims to address the concerns of patients and practitioners who are interested in a low-carbohydrate or ketogenic diet, but who have concerns about its efficacy, safety, and long-term viability. The authors of this paper are practitioners who have used this approach and researchers engaged in its study. The paper reflects our opinion and is not meant to review low-carbohydrate diets systematically. In addressing common concerns, we hope to show that this approach has been well researched and can no longer be seen as a "fad diet" with adverse health effects such as impaired renal function or increased risk of heart disease. We also address persistent questions about patient adherence, affordability, and environmental sustainability. This paper reflects our perspective as clinicians and researchers engaged in the study and application of low-carbohydrate dietary interventions. While the paper is not a systematic review, all factual claims are substantiated with citations from the peer-reviewed literature and the most rigorous and recent science. To our knowledge, this paper is the first to address potential misconceptions about low-carbohydrate and ketogenic diets comprehensively.
Collapse
Affiliation(s)
| | | | | | - Mark Cucuzzella
- Department of Family Medicine, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- Martinsburg Veterans Administration Hospital, Martinsburg, WV 25405, USA
| | | | - Dina H. Griauzde
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Karen Jerome-Zapadka
- Valley Gastroenterology Associates, Beaver Falls, PA 15010, USA
- Trajectory Health Partners, Mars, PA 16046, USA
| | - Tro Kalayjian
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT 06830, USA
| | - Kendrick Murphy
- Western North Carolina VA Health Care System, Asheville, NC 28805, USA
| | - Mark Nelson
- Independent Researcher, Chicago, IL 60174, USA
| | | | | | - Robert C. Oh
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Naomi Parrella
- Department of Family and Preventive Medicine, Rush Medical College, Chicago, IL 60612, USA
- Department of Surgery, Rush Medical College, Chicago, IL 60612, USA
| | - Erin M. Saner
- Department of Family & Community Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | - Susan Wolver
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Soto-Mota A, Flores-Jurado Y, Norwitz NG, Feldman D, Pereira MA, Danaei G, Ludwig DS. Increased low-density lipoprotein cholesterol on a low-carbohydrate diet in adults with normal but not high body weight: A meta-analysis. Am J Clin Nutr 2024; 119:740-747. [PMID: 38237807 DOI: 10.1016/j.ajcnut.2024.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Low-density lipoprotein (LDL) cholesterol change with consumption of a low-carbohydrate diet (LCD) is highly variable. Identifying the source of this heterogeneity could guide clinical decision-making. OBJECTIVES To evaluate LDL cholesterol change in randomized controlled trials involving LCDs, with a focus on body mass index (BMI) in kg/m2. METHODS Three electronic indexes (Pubmed, EBSCO, and Scielo) were searched for studies between 1 January, 2003 and 20 December, 2022. Two independent reviewers identified randomized controlled trials involving adults consuming <130 g/d carbohydrate and reporting BMI and LDL cholesterol change or equivalent data. Two investigators extracted relevant data, which were validated by other investigators. Data were analyzed using a random-effects model and contrasted with results of pooled individual participant data. RESULTS Forty-one trials with 1379 participants and a mean intervention duration of 19.4 wk were included. In a meta-regression accounting for 51.4% of the observed variability on LCDs, mean baseline BMI had a strong inverse association with LDL cholesterol change [β = -2.5 mg/dL/BMI unit, 95% confidence interval (CI): -3.7, -1.4], whereas saturated fat amount was not significantly associated with LDL cholesterol change. For trials with mean baseline BMI <25, LDL cholesterol increased by 41 mg/dL (95% CI: 19.6, 63.3) on the LCD. By contrast, for trials with a mean of BMI 25-<35, LDL cholesterol did not change, and for trials with a mean BMI ≥35, LDL cholesterol decreased by 7 mg/dL (95% CI: -12.1, -1.3). Using individual participant data, the relationship between BMI and LDL cholesterol change was not observed on higher-carbohydrate diets. CONCLUSIONS A substantial increase in LDL cholesterol is likely for individuals with low but not high BMI with consumption of an LCD, findings that may help guide individualized nutritional management of cardiovascular disease risk. As carbohydrate restriction tends to improve other lipid and nonlipid risk factors, the clinical significance of isolated LDL cholesterol elevation in this context warrants investigation. This trial was registered at PROSPERO as CRD42022299278.
Collapse
Affiliation(s)
- Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute for Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico; Tecnologico de Monterrey, School of Medicine, Mexico City, Mexico
| | - Yuscely Flores-Jurado
- Metabolic Diseases Research Unit, National Institute for Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico; National Autonomous University of Mexico, School of Medicine, Mexico City, Mexico
| | | | - David Feldman
- Citizen Science Foundation, Las Vegas, NV, United States
| | - Mark A Pereira
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, MN, United States
| | - Goodarz Danaei
- Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - David S Ludwig
- Harvard Medical School, Boston, MA, United States; Harvard T.H. Chan School of Public Health, Boston, MA, United States; New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, MA, United States.
| |
Collapse
|
3
|
Buga A, Harper DG, Sapper TN, Hyde PN, Fell B, Dickerson R, Stoner JT, Kackley ML, Crabtree CD, Decker DD, Robinson BT, Krystal G, Binzel K, Lustberg MB, Volek JS. Feasibility and metabolic outcomes of a well-formulated ketogenic diet as an adjuvant therapeutic intervention for women with stage IV metastatic breast cancer: The Keto-CARE trial. PLoS One 2024; 19:e0296523. [PMID: 38166036 PMCID: PMC10760925 DOI: 10.1371/journal.pone.0296523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
PURPOSE Ketogenic diets may positively influence cancer through pleiotropic mechanisms, but only a few small and short-term studies have addressed feasibility and efficacy in cancer patients. The primary goals of this study were to evaluate the feasibility and the sustained metabolic effects of a personalized well-formulated ketogenic diet (WFKD) designed to achieve consistent blood beta-hydroxybutyrate (βHB) >0.5 mM in women diagnosed with stage IV metastatic breast cancer (MBC) undergoing chemotherapy. METHODS Women (n = 20) were enrolled in a six month, two-phase, single-arm WFKD intervention (NCT03535701). Phase I was a highly-supervised, ad libitum, personalized WFKD, where women were provided with ketogenic-appropriate food daily for three months. Phase II transitioned women to a self-administered WFKD with ongoing coaching for an additional three months. Fasting capillary βHB and glucose were collected daily; weight, body composition, plasma insulin, and insulin resistance were collected at baseline, three and six months. RESULTS Capillary βHB indicated women achieved nutritional ketosis (Phase I mean: 0.8 mM (n = 15); Phase II mean: 0.7 mM (n = 9)). Body weight decreased 10% after three months, primarily from body fat. Fasting plasma glucose, plasma insulin, and insulin resistance also decreased significantly after three months (p < 0.01), an effect that persisted at six months. CONCLUSIONS Women diagnosed with MBC undergoing chemotherapy can safely achieve and maintain nutritional ketosis, while improving body composition and insulin resistance, out to six months.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - David G. Harper
- School of Kinesiology, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Parker N. Hyde
- Department of Kinesiology, University of North Georgia, Dahlonega, Georgia, United States of America
| | - Brandon Fell
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan Dickerson
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Justen T. Stoner
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher D. Crabtree
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Drew D. Decker
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Bradley T. Robinson
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katherine Binzel
- Department of Radiology, Wright Center of Innovation, The Ohio State University, Columbus, Ohio, United States of America
| | - Maryam B. Lustberg
- Breast Cancer Center, Smilow Cancer Hospital, Yale University, New Haven, Connecticut, United States of America
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
4
|
Currenti W, Losavio F, Quiete S, Alanazi AM, Messina G, Polito R, Ciolli F, Zappalà RS, Galvano F, Cincione RI. Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study. Nutrients 2023; 16:95. [PMID: 38201924 PMCID: PMC10781045 DOI: 10.3390/nu16010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION The worldwide prevalence of type 2 diabetes mellitus (T2DM) and obesity has been steadily increasing over the past four decades, with projections indicating a significant rise in the number of affected individuals by 2045. Therapeutic interventions in T2DM aim to control blood glucose levels and reduce the risk of complications. Dietary and lifestyle modifications play a crucial role in the management of T2DM and obesity. While conventional medical nutritional therapy (MNT) often promotes a high-carbohydrate, low-fat Mediterranean diet as an elective treatment, low-carbohydrate diets (LCDs), specifically those restricting carbohydrate intake to less than 130 g/day, have gained popularity due to their multifaceted benefits. Scientific research supports the efficacy of LCDs in improving glycemic control, weight loss, blood pressure, lipid profiles, and overall quality of life. However, sustaining these benefits over the long term remains challenging. This trial aimed to compare the effects of a Mediterranean diet vs. a low-carbohydrate diet (carbohydrate intake < 130 g/day) on overweight/obese patients with T2DM over a 16-week period. The study will evaluate the differential effects of these diets on glycemic regulation, weight reduction, lipid profile, and cardiovascular risk factors. METHODS The study population comprises 100 overweight/obese patients with poorly controlled T2DM. Anthropometric measurements, bioimpedance analysis, and blood chemistry assessments will be conducted at baseline and after the 16-week intervention period. Both dietary interventions were hypocaloric, with a focus on maintaining a 500 kcal/day energy deficit. RESULTS After 16 weeks, both diets had positive effects on various parameters, including weight loss, blood pressure, glucose control, lipid profile, and renal function. However, the low-carbohydrate diet appears to result in a greater reduction in BMI, blood pressure, waist circumference, glucose levels, lipid profiles, cardiovascular risk, renal markers, and overall metabolic parameters compared to the Mediterranean diet at the 16-week follow up. CONCLUSIONS These findings suggest that a low-carbohydrate diet may be more effective than a Mediterranean diet in promoting weight loss and improving various metabolic and cardiovascular risk factors in overweight/obese patients with T2DM. However, it is important to note that further research is needed to understand the clinical implications and long-term sustainability of these findings.
Collapse
Affiliation(s)
- Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Francesca Losavio
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (F.L.); (G.M.); (R.P.); (F.C.); (R.I.C.)
| | - Stefano Quiete
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Amer M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (F.L.); (G.M.); (R.P.); (F.C.); (R.I.C.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (F.L.); (G.M.); (R.P.); (F.C.); (R.I.C.)
| | - Fabiana Ciolli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (F.L.); (G.M.); (R.P.); (F.C.); (R.I.C.)
| | - Raffaela Simona Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (F.L.); (G.M.); (R.P.); (F.C.); (R.I.C.)
| |
Collapse
|
5
|
Field R, Field T, Pourkazemi F, Rooney K. Low-carbohydrate and ketogenic diets: a scoping review of neurological and inflammatory outcomes in human studies and their relevance to chronic pain. Nutr Res Rev 2023; 36:295-319. [PMID: 35438071 DOI: 10.1017/s0954422422000087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dietary restriction of carbohydrate has been demonstrated to be beneficial for nervous system dysfunction in animal models and may be beneficial for human chronic pain. The purpose of this review is to assess the impact of a low-carbohydrate/ketogenic diet on the adult nervous system function and inflammatory biomarkers to inform nutritional research for chronic pain. An electronic database search was carried out in May 2021. Publications were screened for prospective research with dietary carbohydrate intake <130 g per day and duration of ≥2 weeks. Studies were categorised into those reporting adult neurological outcomes to be extracted for analysis and those reporting other adult research outcomes. Both groups were screened again for reported inflammatory biomarkers. From 1548 studies, there were 847 studies included. Sixty-four reported neurological outcomes with 83% showing improvement. Five hundred and twenty-three studies had a different research focus (metabolic n = 394, sport/performance n = 51, cancer n = 33, general n = 30, neurological with non-neuro outcomes n = 12, or gastrointestinal n = 4). The second screen identified sixty-three studies reporting on inflammatory biomarkers, with 71% reporting a reduction in inflammation. The overall results suggest a favourable outcome on the nervous system and inflammatory biomarkers from a reduction in dietary carbohydrates. Both nervous system sensitisation and inflammation occur in chronic pain, and the results from this review indicate it may be improved by low-carbohydrate nutritional therapy. More clinical trials within this population are required to build on the few human trials that have been done.
Collapse
Affiliation(s)
- Rowena Field
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tara Field
- The New South Wales Ministry of Health (NSW Health), Sydney, Australia
| | | | - Kieron Rooney
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Lytrivi M, Gomes Da Silveira Cauduro C, Kibanda J, Kristanto P, Paesmans M, Cnop M. Impact of saturated compared with unsaturated dietary fat on insulin sensitivity, pancreatic β-cell function and glucose tolerance: a systematic review and meta-analysis of randomized, controlled trials. Am J Clin Nutr 2023; 118:739-753. [PMID: 37500058 DOI: 10.1016/j.ajcnut.2023.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND The impact of the dietary fat type on type 2 diabetes (T2D) remains unclear. OBJECTIVES We aimed to evaluate the effects of replacing dietary saturated fatty acids (SFA) with mono- or poly-unsaturated fatty acids (MUFA and PUFA, respectively) on insulin sensitivity, pancreatic β-cell function, and glucose tolerance, as surrogate endpoints for T2D. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials that replaced ≥5% of total energy intake provided by SFA with MUFA or PUFA and reported indexes of insulin sensitivity, β-cell function, and/or glucose tolerance. We searched MEDLINE, Scopus, and the Cochrane Library (CENTRAL) up to 9 January, 2023. Eligible interventions had to be isocaloric, with no significant difference in other macronutrients. Data were synthesized using random-effects model meta-analysis. RESULTS Of 6355 records identified, 10 parallel and 20 crossover trials with 1586 participants were included. The mean age of the participants was 42 years, 47% were male, mean body mass index (BMI; in kg/m2) was 26.8, median baseline fasting glucose was 5.13 mmol/L, and the median duration of interventions was 5 weeks. Replacing SFA with MUFA or PUFA had no significant effects on insulin sensitivity [standardized mean difference (SMD) SFA compared with MUFA: 0.01, 95% confidence interval (CI): -0.06 to 0.09, I2 = 0% and SMD SFA compared with PUFA: 0, 95% CI: -0.15 to 0.14, I2 = 0%]. Replacing SFA with MUFA did not significantly impact the β-cell function, evaluated by the disposition index (mean difference: -12, 95% CI: -158 to 133, I2=0%). Evidence on glucose tolerance (SFA compared with MUFA or PUFA) and on β-cell function when SFA were replaced with PUFA was scant. CONCLUSIONS Short-term substitution of saturated with unsaturated fat does not significantly affect insulin sensitivity nor β-cell function (the latter in the SFA compared with MUFA comparison). Future studies are needed to elucidate longer term effects of dietary fat saturation on glucose homeostasis. This trial was registered at PROSPERO as CRD42020178382.
Collapse
Affiliation(s)
- Maria Lytrivi
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium.
| | - Carolina Gomes Da Silveira Cauduro
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium; Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jésabelle Kibanda
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Miriam Cnop
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium; Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Jang T, Kim H, Kim T. Relationship between a Low-Carbohydrate, High-Fat Diet and Risk of Metabolic Syndrome in Korean Women. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:713-721. [PMID: 37551174 PMCID: PMC10404315 DOI: 10.18502/ijph.v52i4.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/21/2022] [Indexed: 08/09/2023]
Abstract
Background Prevalence of metabolic syndrome with aging is higher in women than in men, and it increases after menopause. Interventions to reduce the risk of metabolic syndrome in women are important. A low-carbohydrate, high-fat diet is effective in weight loss and improvement cardiovascular risk factors including abdominal circumference, blood pressure, and blood lipid profile. We aimed to determine the relationship between a low-carbohydrate, high-fat diet and the risk of metabolic syndrome in Korean women. Methods This cross-sectional study was conducted using secondary data from the 2014-2018 Korean National Health and Nutrition Examination Survey. Overall, 8,222 women aged >19 yr were included. The effect of a low-carbohydrate, high-fat diet on the risk of metabolic syndrome was analyzed by multiple logistic regression analysis using a complex sampling procedure. Results The diet significantly reduced the likelihood of metabolic syndrome development (P=0.044). In addition, regardless of the fat type, the diet significantly reduced the likelihood of low high-density lipoprotein cholesterolemia (low-carbohydrate, high-total fat, P=0.013; low-carbohydrate, high-unsaturated fat, P=0.006; low-carbohydrate, high-saturated fat, P=0.006). Conclusion A low-carbohydrate, high-fat diet is an important intervention that can reduce the risk of metabolic syndrome, and the reduced consumption of carbohydrates can decrease the risk of low high-density lipoprotein cholesterolemia regardless of fat type. Therefore, it is necessary to actively explore the potential of this diet, targeting Asians, including Koreans.
Collapse
Affiliation(s)
- Taejeong Jang
- College of Nursing, Woosuk University, 443, Samnye-ro, Samnye-eup, Wanju_Gun, Jeonbuk, South Korea
| | - Hyesun Kim
- Department of Nursing, Joongbu University, 201 Daehak-ro, Chubu-myeon, Geumsan-gun, Chungnam, South Korea
| | - Taehui Kim
- Department of Nursing, Joongbu University, 201 Daehak-ro, Chubu-myeon, Geumsan-gun, Chungnam, South Korea
| |
Collapse
|
8
|
Luo M, Guo J, Lu W, Fang X, Zhang R, Tang M, Luo Q, Liang W, Yu X, Hu C. The mediating role of maternal metabolites between lipids and adverse pregnancy outcomes of gestational diabetes mellitus. Front Med (Lausanne) 2022; 9:925602. [PMID: 36035400 PMCID: PMC9400014 DOI: 10.3389/fmed.2022.925602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy, and the demographics of pregnant women have changed in recent decades. GDM is a metabolic disease with short- and long-term adverse effects on both pregnant women and newborns. The metabolic changes and corresponding risk factors should be of great significance in understanding the pathological mechanism of GDM and reducing the incidence of adverse pregnancy outcomes in patients with GDM. The well-known GDM-associated lipids used in clinical tests, such as triglyceride (TG), are thought to play a major role in metabolic changes during GDM, which have a potential causal relationship with abnormal pregnancy outcomes of GDM. Therefore, this study analyzed the relationship between clinical lipid indicators, metabolic profiles, and abnormal pregnancy outcomes in GDM through mediation analysis. By constructing a metabolic atlas of 399 samples from GDM patients in different trimesters, we efficiently detected the key metabolites of adverse pregnancy outcomes and their mediating roles in bridging abnormal lipids and adverse pregnancy outcomes in patients with GDM. Our study confirmed that TG and total cholesterol were independent risk factors for adverse pregnancy outcomes in patients with GDM. Several key metabolites as mediators (e.g., gamma-linolenic acid, heptadecanoic acid, oleic acid, palmitic acid, and palmitoleic acid) have been identified as potential biomarkers for adverse pregnancy outcomes in patients with GDM. These metabolites mainly participate in the biosynthesis of unsaturated fatty acids, which may shed new light on the pathology of GDM and provide insights for further exploration of the molecular mechanisms underlying adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Mingjuan Luo
- Department of Endocrinology and Metabolism, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenqian Lu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Xiangnan Fang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Mengyang Tang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
| | - Qiong Luo
- Department of Obstetrics and Gynecology, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wei Liang
- Department of Endocrinology and Metabolism, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiangtian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- *Correspondence: Xiangtian Yu
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai, China
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Cheng Hu
| |
Collapse
|
9
|
Falkenhain K, Roach LA, McCreary S, McArthur E, Weiss EJ, Francois ME, Little JP. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the context of weight loss or weight maintenance: a systematic review and meta-analysis. Am J Clin Nutr 2021; 114:1455-1466. [PMID: 34159352 DOI: 10.1093/ajcn/nqab212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND LDL particle size and number (LDL-P) are emerging lipid risk factors. Nonsystematic reviews have suggested that diets lower in carbohydrates and higher in fats may result in increased LDL particle size when compared with higher-carbohydrate diets. OBJECTIVES This study aimed to systematically review available evidence and conduct meta-analyses of studies addressing the association of carbohydrate restriction with LDL particle size and LDL-P. METHODS We searched 6 electronic databases on 4 January, 2021 for randomized trials of any length that reported on dietary carbohydrate restriction (intervention) compared with higher carbohydrate intake (control). We calculated standardized mean differences (SMDs) in LDL particle size and LDL-P between the intervention and control groups of eligible studies, and pooled effect sizes using random-effects models. We performed prespecified subgroup analyses and examined the effect of potential explanatory factors. Internal validity and publication bias were assessed using Cochrane's risk-of-bias tool and funnel plots, respectively. Studies that could not be meta-analyzed were summarized qualitatively. RESULTS This review summarizes findings from 38 randomized trials including a total of 1785 participants. Carbohydrate-restricted dietary interventions were associated with an increase in LDL peak particle size (SMD = 0.50; 95% CI: 0.15, 0.86; P < 0.01) and a reduction in LDL-P (SMD = -0.24; 95% CI: -0.43, -0.06; P = 0.02). The effect of carbohydrate-restricted dietary interventions on LDL peak particle size appeared to be partially explained by differences in weight loss between intervention groups and exploratory analysis revealed a shift from small dense to larger LDL subclasses. No statistically significant association was found between carbohydrate-restricted dietary interventions and mean LDL particle size (SMD = 0.20; 95% CI: -0.29, 0.69; P = 0.37). CONCLUSIONS The available evidence indicates that dietary interventions restricted in carbohydrates increase LDL peak particle size and decrease the numbers of total and small LDL particles.This review was registered at www.crd.york.ac.uk/prospero/ as CRD42020188745.
Collapse
Affiliation(s)
- Kaja Falkenhain
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Lauren A Roach
- School of Medicine, Faculty of Science, Medicine, and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Sara McCreary
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Eric McArthur
- London Health Sciences Centre, London, Ontario, Canada
| | - Ethan J Weiss
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Monique E Francois
- School of Medicine, Faculty of Science, Medicine, and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
10
|
Volek JS, Phinney SD, Krauss RM, Johnson RJ, Saslow LR, Gower B, Yancy WS, King JC, Hecht FM, Teicholz N, Bistrian BR, Hamdy O. Alternative Dietary Patterns for Americans: Low-Carbohydrate Diets. Nutrients 2021; 13:3299. [PMID: 34684300 PMCID: PMC8537012 DOI: 10.3390/nu13103299] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
The decades-long dietary experiment embodied in the Dietary Guidelines for Americans (DGA) focused on limiting fat, especially saturated fat, and higher carbohydrate intake has coincided with rapidly escalating epidemics of obesity and type 2 diabetes (T2D) that are contributing to the progression of cardiovascular disease (CVD) and other diet-related chronic diseases. Moreover, the lack of flexibility in the DGA as it pertains to low carbohydrate approaches does not align with the contemporary trend toward precision nutrition. We argue that personalizing the level of dietary carbohydrate should be a high priority based on evidence that Americans have a wide spectrum of metabolic variability in their tolerance to high carbohydrate loads. Obesity, metabolic syndrome, and T2D are conditions strongly associated with insulin resistance, a condition exacerbated by increased dietary carbohydrate and improved by restricting carbohydrate. Low-carbohydrate diets are grounded across the time-span of human evolution, have well-established biochemical principles, and are now supported by multiple clinical trials in humans that demonstrate consistent improvements in multiple established risk factors associated with insulin resistance and cardiovascular disease. The American Diabetes Association (ADA) recently recognized a low carbohydrate eating pattern as an effective approach for patients with diabetes. Despite this evidence base, low-carbohydrate diets are not reflected in the DGA. As the DGA Dietary Patterns have not been demonstrated to be universally effective in addressing the needs of many Americans and recognizing the lack of widely available treatments for obesity, metabolic syndrome, and T2D that are safe, effective, and sustainable, the argument for an alternative, low-carbohydrate Dietary Pattern is all the more compelling.
Collapse
Affiliation(s)
- Jeff S. Volek
- Department of Human Sciences, Ohio State University, Columbus, OH 43017, USA
| | | | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, CA 94143, USA;
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Laura R. Saslow
- Department of Behavior & Biological Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Barbara Gower
- Department of Nutrition Sciences, University of Alabama, Birmingham, AL 35233, USA;
| | - William S. Yancy
- Department of Medicine, Lifestyle and Weight Management Center, Duke University, Durham, NC 27705, USA;
| | - Janet C. King
- Department of Nutritional Sciences & Toxicology, University of California, Berkley, CA 94720, USA;
| | - Frederick M. Hecht
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94115, USA;
| | | | | | - Osama Hamdy
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
11
|
Effects of Palm Stearin versus Butter in the Context of Low-Carbohydrate/High-Fat and High-Carbohydrate/Low-Fat Diets on Circulating Lipids in a Controlled Feeding Study in Healthy Humans. Nutrients 2021; 13:nu13061944. [PMID: 34198888 PMCID: PMC8226735 DOI: 10.3390/nu13061944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Background. Foods rich in saturated fatty acids (SFAs) have been discouraged by virtue of their cholesterol-raising potential, but this effect is modulated by the food source and background level of carbohydrate. Objective. We aimed to compare the consumption of palm stearin (PS) versus butter on circulating cholesterol responses in the setting of both a low-carbohydrate/high-fat (LC/HF) and high-carbohydrate/low-fat (HC/LF) diet in healthy subjects. We also explored effects on plasma lipoprotein particle distribution and fatty acid composition. Methods. We performed a randomized, controlled-feeding, cross-over study that compared a PS- versus a Butter-based diet in a group of normocholesterolemic, non-obese adults. A controlled canola oil-based ‘Run-In’ diet preceded the experimental PS and Butter diets. All diets were eucaloric, provided for 3-weeks, and had the same macronutrient distribution but varied in primary fat source (40% of the total fat). The same Run-In and cross-over experiments were done in two separate groups who self-selected to either a LC/HF (n = 12) or a HC/LF (n = 12) diet track. The primary outcomes were low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein (HDL)-C, triglycerides, and LDL particle distribution. Results. Compared to PS, Butter resulted in higher LDL-C in both the LC/HF (13.4%, p = 0.003) and HC/LF (10.8%, p = 0.002) groups, which was primarily attributed to large LDL I and LDL IIa particles. There were no differences between PS and Butter in HDL-C, triglycerides, or small LDL particles. Oxidized LDL was lower after PS than Butter in LC/HF (p = 0.011), but not the HC/LF group. Conclusions. These results demonstrate that Butter raises LDL-C relative to PS in healthy normocholesterolemic adults regardless of background variations in carbohydrate and fat, an effect primarily attributed to larger cholesterol-rich LDL particles.
Collapse
|
12
|
Myette-Côté É, St-Pierre V, Beaulieu S, Castellano CA, Fortier M, Plourde M, Bocti C, Fulop T, Cunnane SC. The effect of a 6-month ketogenic medium-chain triglyceride supplement on plasma cardiometabolic and inflammatory markers in mild cognitive impairment. Prostaglandins Leukot Essent Fatty Acids 2021; 169:102236. [PMID: 33906081 DOI: 10.1016/j.plefa.2020.102236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mild cognitive impairment (MCI) is often accompanied by metabolic abnormalities and inflammation that might play a role in the development of cognitive impairment. The use of ketogenic medium-chain triglycerides (kMCT) to improve cognition in this population has shown promising results but remains controversial because of the potentially detrimental effect of elevated intake of saturated fatty acids on cardiovascular (CV) health and perhaps inflammatory processes. The primary aim of this secondary data analysis report is to describe changes in cardiometabolic markers and peripheral inflammation during a 6-month kMCT intervention in MCI. METHODS Thirty-nine participants with MCI completed the intervention of 30 g/day of either a kMCT drink or calorie-matched placebo (high-oleic acid) for 6 months. Plasma concentrations of cardiometabolic and inflammatory markers were collected before (fasting state) and after the intervention (2 h following the last drink). RESULTS A mixed model ANOVA analysis revealed a time by group interaction for ketones (P < 0.001), plasma 8:0 and 10:0 acids (both P < 0.001) and IL-8 (P = 0.002) with follow up comparison revealing a significant increase in the kMCT group (+48%, P = 0.005), (+3,800 and +4,900%, both P < 0.001) and (+147%, P < 0.001) respectively. A main effect of time was observed for insulin (P = 0.004), triglycerides (P = 0.011) and non-esterified fatty acids (P = 0.036). CONCLUSION Under these study conditions, 30 g/d of kMCT taken for six months and up to 2-hour before post-intervention testing had minimal effect on an extensive profile of circulating cardiometabolic and inflammatory markers as compared to a placebo calorie-matched drink. Our results support the safety kMCT supplementation in individuals with MCI. The clinical significance of the observed increase in circulating IL-8 levels is presently unknown and awaits future studies.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Valérie St-Pierre
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Sandrine Beaulieu
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Mélanie Fortier
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada
| | - Mélanie Plourde
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Bocti
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tamas Fulop
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
13
|
Hammoud R, Pannia E, Kubant R, Metherel A, Simonian R, Pausova Z, Anderson GH. High Choline Intake during Pregnancy Reduces Characteristics of the Metabolic Syndrome in Male Wistar Rat Offspring Fed a High Fat But Not a Normal Fat Post-Weaning Diet. Nutrients 2021; 13:nu13051438. [PMID: 33923230 PMCID: PMC8145686 DOI: 10.3390/nu13051438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal choline intakes are below recommendations, potentially impairing the child’s later-life metabolic health. This study aims to elucidate the interaction between the choline content of the gestational diet (GD) and fat content of the post-weaning diet (PWD) on metabolic phenotype of male Wistar rats. Pregnant Wistar rats were fed a standard rodent diet (AIN-93G) with either recommended choline (RC, 1 g/kg diet choline bitartrate) or high choline (HC, 2.5-fold). Male pups were weaned to either a normal (16%) fat (NF) or a high (45%) fat (HF) diet for 17 weeks. Body weight, visceral adiposity, food intake, energy expenditure, plasma hormones, triglycerides, and hepatic fatty acids were measured. HC-HF offspring had 7% lower body weight but not food intake, and lower adiposity, plasma triglycerides, and insulin resistance compared to RC-HF. They also had increased hepatic n-3 fatty acids and a reduced n-6/n-3 and C 18:1 n-9/C18:0 ratios. In contrast, HC-NF offspring had 6–8% higher cumulative food intake and body weight, as well as increased leptin and elevated hepatic C16:1 n-7/C16:0 ratio compared to RC-NF. Therefore, gestational choline supplementation associated with improved long-term regulation of several biomarkers of the metabolic syndrome in male Wistar rat offspring fed a HF, but not a NF, PWD.
Collapse
Affiliation(s)
- Rola Hammoud
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
| | - Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
| | - Adam Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
| | - Rebecca Simonian
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
| | - Zdenka Pausova
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - G. Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (R.H.); (E.P.); (R.K.); (A.M.); (R.S.); (Z.P.)
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +416-978-1832
| |
Collapse
|
14
|
Masino SA, Ruskin DN, Freedgood NR, Lindefeldt M, Dahlin M. Differential ketogenic diet-induced shift in CSF lipid/carbohydrate metabolome of pediatric epilepsy patients with optimal vs. no anticonvulsant response: a pilot study. Nutr Metab (Lond) 2021; 18:23. [PMID: 33648550 PMCID: PMC7923458 DOI: 10.1186/s12986-020-00524-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/21/2020] [Indexed: 02/02/2023] Open
Abstract
Background The low carbohydrate, high fat ketogenic diet can be an effective anticonvulsant treatment in some pediatric patients with pharmacoresistant epilepsy. Its mechanism(s) of action, however, remain uncertain. Direct sampling of cerebrospinal fluid before and during metabolic therapy may reveal key changes associated with differential clinical outcomes. We characterized the relationship between seizure responsiveness and changes in lipid and carbohydrate metabolites. Methods We performed metabolomic analysis of cerebrospinal fluid samples taken before and during ketogenic diet treatment in patients with optimal response (100% seizure remission) and patients with no response (no seizure improvement) to search for differential diet effects in hallmark metabolic compounds in these two groups. Optimal responders and non-responders were similar in age range and included males and females. Seizure types and the etiologies or syndromes of epilepsy varied but did not appear to differ systematically between responders and non-responders. Results Analysis showed a strong effect of ketogenic diet treatment on the cerebrospinal fluid metabolome. Longitudinal and between-subjects analyses revealed that many lipids and carbohydrates were changed significantly by ketogenic diet, with changes typically being of larger magnitude in responders. Notably, responders had more robust changes in glucose and the ketone bodies β-hydroxybutyrate and acetoacetate than non-responders; conversely, non-responders had significant increases in fructose and sorbose, which did not occur in responders. Conclusions The data suggest that a differential and stronger metabolic response to the ketogenic diet may predict a better anticonvulsant response, and such variability is likely due to inherent biological factors of individual patients. Strategies to boost the metabolic response may be beneficial.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA.
| | - Natalie R Freedgood
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - Marie Lindefeldt
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| | - Maria Dahlin
- Neuropediatric Department, Astrid Lindgren Children's Hospital, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Elisia I, Krystal G. The Pros and Cons of Low Carbohydrate and Ketogenic Diets in the Prevention and Treatment of Cancer. Front Nutr 2021; 8:634845. [PMID: 33718419 PMCID: PMC7946860 DOI: 10.3389/fnut.2021.634845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Ketogenic diets are low carbohydrate (CHO), high fat diets that are currently very popular for weight loss. Since cancer cells typically consume far more glucose than normal cells, low CHO diets are currently being considered as possible therapeutic regimens to manage cancer. However, our understanding of the safety and efficacy of such CHO-restricted diets in the prevention and treatment of cancer is still in its infancy. In this perspective we provide an overview of the current state of knowledge regarding the use of low CHO diets in the prevention and treatment of cancer. We also highlight the gaps in our knowledge regarding the potential usefulness of low CHO diets in cancer. While pre-clinical rodent studies have provided convincing evidence that CHO restriction may be effective in reducing cancer growth, there has not been sufficient attention given to the effect of these low CHO diets, that are often high in fats and low in soluble fiber, on inflammation. This is important, given that different fats have distinct effects on inflammation. As well, we demonstrate that short chain fatty acids, which are produced via the fermentation of fiber by our gut microbiome, have more anti-inflammatory properties than β-hydroxybutyrate, a ketone body produced during nutritional ketosis that is touted to have anti-inflammatory activity. Since chronic inflammation is strongly associated with cancer formation, defining the type of fats in low CHO diets may contribute to our understanding of whether these diets may work simply by reducing glucose bioavailability, or via modulation of inflammatory responses.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
16
|
Ruskin DN, Sturdevant IC, Wyss LS, Masino SA. Ketogenic diet effects on inflammatory allodynia and ongoing pain in rodents. Sci Rep 2021; 11:725. [PMID: 33436956 PMCID: PMC7804255 DOI: 10.1038/s41598-020-80727-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets are very low carbohydrate, high fat, moderate protein diets used to treat medication-resistant epilepsy. Growing evidence suggests that one of the ketogenic diet’s main mechanisms of action is reducing inflammation. Here, we examined the diet’s effects on experimental inflammatory pain in rodent models. Young adult rats and mice were placed on the ketogenic diet or maintained on control diet. After 3–4 weeks on their respective diets, complete Freund’s adjuvant (CFA) was injected in one hindpaw to induce inflammation; the contralateral paw was used as the control. Tactile sensitivity (von Frey) and indicators of spontaneous pain were quantified before and after CFA injection. Ketogenic diet treatment significantly reduced tactile allodynia in both rats and mice, though with a species-specific time course. There was a strong trend to reduced spontaneous pain in rats but not mice. These data suggest that ketogenic diets or other ketogenic treatments might be useful treatments for conditions involving inflammatory pain.
Collapse
Affiliation(s)
- David N Ruskin
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA.
| | - Isabella C Sturdevant
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| | - Livia S Wyss
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| | - Susan A Masino
- Neuroscience Program and Department of Psychology, Trinity College, 300 Summit St., Hartford, CT, 06106, USA
| |
Collapse
|
17
|
Steffen BT, Guan W, Ding J, Nomura SO, Weir NL, Tsai MY. Plasma omega-3 and saturated fatty acids are differentially related to pericardial adipose tissue volume across race/ethnicity: the Multi-ethnic Study of Atherosclerosis. Eur J Clin Nutr 2021; 75:1237-1244. [PMID: 33398103 PMCID: PMC8254815 DOI: 10.1038/s41430-020-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022]
Abstract
BACKGROUND: Pericardial adipose tissue (PAT) is a cardiometabolic risk factor influenced by race/ethnicity, inflammation, and metabolic dysfunction. Omega-3 fatty acids (FAs) and saturated FAs (SFAs) are known to affect these latter phenomena and may influence PAT accumulation. We aimed to determine whether plasma levels of these FAs are related to PAT volume and its rate of change over a median 3-year follow-up. METHODS: Cardiac computed tomography assessed PAT in 6,785 Multi-Ethnic Study of Atherosclerosis participants. Gas chromatography flame-ionization estimated plasma phospholipid fatty acids. Regression analyses estimated associations of FAs with PAT volume and its rate of change with adjustments for other risk factors. Race-interactions were tested. RESULTS: In cross-section, top tertiles of omega-3 FAs and odd-chained SFAs were associated with 2.8 and 4.93 cm3 lower PAT volumes, respectively; race/ethnicity was a significant modifying variable (p<0.002). Even-chained SFAs were associated with 3.5 cm3 greater PAT volume. With stratification by race/ethnicity, Chinese Americans in the top tertile of omega-3 FAs showed 10.5 cm3 greater PAT volume than those in the referent tertile. Black individuals in the top tertile of odd-chained SFAs showed 5.0 cm3 lower PAT compared to referents. Black and Chinese Americans in top tertiles of even-chained SFAs showed respective 3.7 and 5.9 cm3 greater PAT volumes compared to referents. Two associations were observed in prospective analyses among Caucasians; race interactions were non-significant. CONCLUSIONS: Cross-sectional and prospective findings provide inconclusive evidence as to whether plasma FAs are related to PAT in healthy individuals. Cohort studies with longer follow-up periods are warranted.
Collapse
Affiliation(s)
- Brian T Steffen
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Jingzhong Ding
- Department of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Sarah O Nomura
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Natalie L Weir
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Neves GS, Lunardi MS, Lin K, Rieger DK, Ribeiro LC, Moreira JD. Ketogenic diet, seizure control, and cardiometabolic risk in adult patients with pharmacoresistant epilepsy: a review. Nutr Rev 2020; 79:931-944. [PMID: 33230563 DOI: 10.1093/nutrit/nuaa112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pharmacoresistant epilepsy causes serious deleterious effects on the patient's health and quality of life. For this condition, a ketogenic diet (KD) is a treatment option. The KD is a general term for a set of diets that contain high amounts of fat and low content of carbohydrates. The most prominent KD treatments are classical KD (4:1 ratio of fat to carbohydrate), modified Atkins diet (2:1 to 1:1 ratio), medium-chain triglycerides KD (with medium-chain triglyceride as a part of the fat content), and low glycemic index KD (using low glycemic carbohydrates). KD has been widely prescribed for children with epilepsy but not for adult patients. One of the main concerns about adult use of KD is its cardiovascular risk associated with high-fat and cholesterol intake. Therefore, this narrative review provides comprehensive information of the current literature on the effects of KD on lipid profile, glycemic-control biomarkers, and other cardiometabolic risk factors in adult patients with pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Gabriela S Neves
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Mariana S Lunardi
- Postgraduate Program in Medical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Katia Lin
- Postgraduate Program in Medical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Débora Kurrle Rieger
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Letícia C Ribeiro
- Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| | - Júlia D Moreira
- Postgraduate Program in Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Department of Nutrition, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.,Translational Nutrition Neuroscience Working Group, CNPq Directory of Research Groups, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
19
|
Effect of a 90 g/day low-carbohydrate diet on glycaemic control, small, dense low-density lipoprotein and carotid intima-media thickness in type 2 diabetic patients: An 18-month randomised controlled trial. PLoS One 2020; 15:e0240158. [PMID: 33017456 PMCID: PMC7535044 DOI: 10.1371/journal.pone.0240158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Aim This study explored the effect of a moderate (90 g/d) low-carbohydrate diet (LCD) in type 2 diabetes patients over 18 months. Methods Ninety-two poorly controlled type 2 diabetes patients aged 20–80 years with HbA1c ≥7.5% (58 mmol/mol) in the previous three months were randomly assigned to a 90 g/d LCD r traditional diabetic diet (TDD). The primary outcomes were glycaemic control status and change in medication effect score (MES). The secondary outcomes were lipid profiles, small, dense low-density lipoprotein (sdLDL), serum creatinine, microalbuminuria and carotid intima-media thickness (IMT). Results A total of 85 (92.4%) patients completed 18 months of the trial. At the end of the study, the LCD and TDD group consumed 88.0±29.9 g and 151.1±29.8 g of carbohydrates, respectively (p < 0.05). The 18-month mean change from baseline was statistically significant for the HbA1c (-1.6±0.3 vs. -1.0±0.3%), 2-h glucose (-94.4±20.8 vs. -18.7±25.7 mg/dl), MES (-0.42±0.32 vs. -0.05±0.24), weight (-2.8±1.8 vs. -0.7±0.7 kg), waist circumference (-5.7±2.7 vs. -1.9±1.4 cm), hip circumference (-6.1±1.8 vs. -2.9±1.7 cm) and blood pressure (-8.3±4.6/-5.0±3 vs. 1.6±0.5/2.5±1.6 mmHg) between the LCD and TDD groups (p<0.05). The 18-month mean change from baseline was not significantly different in lipid profiles, sdLDL, serum creatinine, microalbuminuria, alanine aminotransferase (ALT) and carotid IMT between the groups. Conclusions A moderate (90 g/d) LCD showed better glycaemic control with decreasing MES, lowering blood pressure, decreasing weight, waist and hip circumference without adverse effects on lipid profiles, sdLDL, serum creatinine, microalbuminuria, ALT and carotid IMT than TDD for type 2 diabetic patients.
Collapse
|
20
|
Ludwig DS. The Ketogenic Diet: Evidence for Optimism but High-Quality Research Needed. J Nutr 2020; 150:1354-1359. [PMID: 31825066 PMCID: PMC7269727 DOI: 10.1093/jn/nxz308] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/23/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
For >50 y, dietary guidelines in the United States have focused on reducing intakes of saturated and total fat. However, rates of obesity and diabetes rose markedly throughout this period, with potentially catastrophic implications for public health and the economy. Recently, ketogenic diets have received substantial attention from the general public and nutrition research community. These very-low-carbohydrate diets, with fat comprising >70% of calories, have been dismissed as fads. However, they have a long history in clinical medicine and human evolution. Ketogenic diets appear to be more effective than low-fat diets for treatment of obesity and diabetes. In addition to the reductions in blood glucose and insulin achievable through carbohydrate restriction, chronic ketosis might confer unique metabolic benefits of relevance to cancer, neurodegenerative conditions, and other diseases associated with insulin resistance. Based on available evidence, a well-formulated ketogenic diet does not appear to have major safety concerns for the general public and can be considered a first-line approach for obesity and diabetes. High-quality clinical trials of ketogenic diets will be needed to assess important questions about their long-term effects and full potential in clinical medicine.
Collapse
Affiliation(s)
- David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Sotos-Prieto M, Christophi C, Black A, Furtado JD, Song Y, Magiatis P, Papakonstantinou A, Melliou E, Moffatt S, Kales SN. Assessing Validity of Self-Reported Dietary Intake within a Mediterranean Diet Cluster Randomized Controlled Trial among US Firefighters. Nutrients 2019; 11:E2250. [PMID: 31546768 PMCID: PMC6769698 DOI: 10.3390/nu11092250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Collecting dietary intake data is associated with challenges due to the subjective nature of self-administered instruments. Biomarkers may objectively estimate the consumption of specific dietary items or help assess compliance in dietary intervention studies. Our aim was to use a panel of plasma and urine biomarkers to assess the validity of self-reported dietary intake using a modified Mediterranean Diet Scale (mMDS) among firefighters participating in Feeding America's Bravest (FAB), an MD cluster-randomized controlled trial. In our nested biomarker pilot study, participants were randomly selected from both the MD intervention group (n = 24) and the control group (n = 24) after 12-months of dietary intervention. At baseline data collection for the pilot study (t = 12-months of FAB), participants in the control group crossed-over to receive the MD intervention (active intervention) for 6-months. Participants in the intervention group continued in a self-sustained continuation phase (SSP) of the intervention. Food frequency questionnaires (FFQ), 13-item-mMDS questionnaires, 40 plasma fatty acids, inflammatory biomarkers and urinary hydroxytyrosol and tyrosol were analyzed at both time points. Spearman's correlation, t-tests and linear regression coefficients were calculated using SAS software. Overall, the mMDS derived from the FFQ was highly correlated with the specific 13-domain-mMDS (r = 0.74). The concordance between the two questionnaires for low and high adherence to MD was high for all the participants in the parent trial (κ = 0.76). After 6 months of intervention in the pilot study, plasma saturated fatty acid decreased in both groups (active intervention: -1.3 ± 1.7; p = 0.002; SSP: -1.12 ± 1.90; p = 0.014) and oleic acid improved in the SSP (p = 0.013). Intake of olive oil was positively associated with plasma omega-3 (p = 0.004) and negatively with TNF-α (p < 0.001) at baseline. Choosing olive oil as a type of fat was also associated with higher levels of plasma omega-3 (p = 0.019) at baseline and lower TNF-α (p = 0.023) at follow up. Intake of red and processed meats were associated with lower serum omega-3 (p = 0.04) and fish consumption was associated with lower IL-6 at baseline (p = 0.022). The overall mMDS was associated with an increase in plasma omega-3 (p = 0.021). Good correlation was found between nutrient intake from the FFQ and the corresponding plasma biomarkers (omega-3, EPA and DHA). In this MD randomized controlled trial, some key plasma biomarkers were significantly associated with key MD diet components and the overall mMDS supporting the validity of the mMDS questionnaire as well as compliance with the intervention.
Collapse
Affiliation(s)
- Mercedes Sotos-Prieto
- Department of Environmental Health, Harvard University T.H Chan School of Public Health, Boston, MA 02215, USA.
- Division of Food and Nutrition Sciences, School of Applied Health Sciences and Wellness and Diabetes Institute, Ohio University, Athens, OH 45701, USA.
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 28029 Madrid, Spain.
- Department of Nutrition, Harvard T.H Chan School, Boston, MA 02115, USA.
| | - Costas Christophi
- Department of Environmental Health, Harvard University T.H Chan School of Public Health, Boston, MA 02215, USA.
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 30 Archbishop Kyprianou Str., Lemesos 3036, Cyprus.
| | - Alicen Black
- Division of Food and Nutrition Sciences, School of Applied Health Sciences and Wellness and Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Jeremy D Furtado
- Department of Nutrition, Harvard T.H Chan School, Boston, MA 02115, USA.
| | - Yiqing Song
- Department of Epidemiology Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA.
| | - Prokopios Magiatis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 157 71, Greece.
| | - Aikaterini Papakonstantinou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 157 71, Greece.
| | - Eleni Melliou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 157 71, Greece.
| | - Steven Moffatt
- National Institute for Public Safety Health, Indianapolis, IN 324 E New York Street, Indianapolis, IN 46204, USA.
| | - Stefanos N Kales
- Department of Environmental Health, Harvard University T.H Chan School of Public Health, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Dietary Neuroketotherapeutics for Alzheimer's Disease: An Evidence Update and the Potential Role for Diet Quality. Nutrients 2019; 11:nu11081910. [PMID: 31443216 PMCID: PMC6722814 DOI: 10.3390/nu11081910] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with growing prevalence as the global population ages. Currently available treatments for AD have minimal efficacy and there are no proven treatments for its prodrome, mild cognitive impairment (MCI). AD etiology is not well understood and various hypotheses of disease pathogenesis are currently under investigation. A consistent hallmark in patients with AD is reduced brain glucose utilization; however, evidence suggests that brain ketone metabolism remains unimpaired, thus, there is a great deal of increased interest in the potential value of ketone-inducing therapies for the treatment of AD (neuroketotherapeutics; NKT). The goal of this review was to discuss dietary NKT approaches and mechanisms by which they exert a possible therapeutic benefit, update the evidence available on NKTs in AD and consider a potential role of diet quality in the clinical use of dietary NKTs. Whether NKTs affect AD symptoms through the restoration of bioenergetics, the direct and indirect modulation of antioxidant and inflammation pathways, or both, preliminary positive evidence suggests that further study of dietary NKTs as a disease-modifying treatment in AD is warranted.
Collapse
|
23
|
Tay J, de Bock MI, Mayer-Davis EJ. Low-carbohydrate diets in type 2 diabetes. Lancet Diabetes Endocrinol 2019; 7:331-333. [PMID: 30658909 DOI: 10.1016/s2213-8587(18)30368-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Jeannie Tay
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; Agency for Science, Technology and Research, Singapore
| | - Martin I de Bock
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Elizabeth J Mayer-Davis
- Department of Nutrition and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Taylor MK, Swerdlow RH, Burns JM, Sullivan DK. An Experimental Ketogenic Diet for Alzheimer Disease Was Nutritionally Dense and Rich in Vegetables and Avocado. Curr Dev Nutr 2019; 3:nzz003. [PMID: 30931426 PMCID: PMC6435445 DOI: 10.1093/cdn/nzz003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The ketogenic diet (KD) has gained interest as a potential therapy for numerous conditions; however, studies rarely report the food and micronutrient profile of the diet. OBJECTIVE The aim of this study was to report changes in food selection and nutritional quality from the baseline diet (BD) to a KD therapy in participants with Alzheimer disease (AD). METHODS Fifteen AD patients participated in a single-arm clinical trial to assess the feasibility of a 3-mo KD intervention. A registered dietitian instructed participant study partners to assist participants with a self-selected, nutritionally dense KD. We collected food and nutrient intake via monthly 3-d food records. Serum β-hydroxybutyrate was measured within 48 h of each 3-d food record to assess ketosis status. Food records before KD initiation characterized the BD. Food records during the intervention coincident with the most robust ketosis characterized the KD. Principal components analysis identified foods affiliated with the BD and KD. Mean food and nutrient intake change was tested by the Kruskal-Wallis test for variance with significance set at P ≤ 0.025. RESULTS Ten participants adhered to the KD. Study partners provided complete food records for 6 KD-adherent individuals. The KD was characterized by increased medium-chain triglyceride (MCT) oil, nonstarchy vegetables, butter, eggs, olive oil, avocados, and nuts and seeds with practical elimination of potatoes, grains, red meat, sugar-sweetened beverages, and desserts. Fruit intake, including avocado, was similar between diets. Nonstarchy vegetable intake increased from 1.2 servings/d to 4.3 servings/d (P < 0.01) on the KD. Micronutrient intake was similar between diets, meeting Dietary Reference Intakes for most nutrients. Between diets, the KD was associated with increased intake of choline and vitamin K and decreased intake of manganese and fiber. CONCLUSION As a potential therapy in AD, the KD can be nutritionally dense with high intake of vegetables and substantial variety. This trial was registered at clinicaltrials.gov as NCT03690193.
Collapse
Affiliation(s)
- Matthew K Taylor
- Alzheimer's Disease Center, University of Kansas, Fairway, KS
- Department of Dietetics and Nutrition University of Kansas Medical Center, Kansas City, KS
| | - Russell H Swerdlow
- Alzheimer's Disease Center, University of Kansas, Fairway, KS
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
| | - Jeffrey M Burns
- Alzheimer's Disease Center, University of Kansas, Fairway, KS
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS
| | - Debra K Sullivan
- Alzheimer's Disease Center, University of Kansas, Fairway, KS
- Department of Dietetics and Nutrition University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to review current literature on nutritional ketosis within the context of weight management and metabolic syndrome, namely, insulin resistance, lipid profile, cardiovascular disease risk, and development of non-alcoholic fatty liver disease. We provide background on the mechanism of ketogenesis and describe nutritional ketosis. RECENT FINDINGS Nutritional ketosis has been found to improve metabolic and inflammatory markers, including lipids, HbA1c, high-sensitivity CRP, fasting insulin and glucose levels, and aid in weight management. We discuss these findings and elaborate on potential mechanisms of ketones for promoting weight loss, decreasing hunger, and increasing satiety. Humans have evolved with the capacity for metabolic flexibility and the ability to use ketones for fuel. During states of low dietary carbohydrate intake, insulin levels remain low and ketogenesis takes place. These conditions promote breakdown of excess fat stores, sparing of lean muscle, and improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Victoria M Gershuni
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Stephanie L Yan
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Valentina Medici
- Division of Gastroenterology, University of California Davis, Davis, CA, USA
| |
Collapse
|
26
|
Hallberg SJ, McKenzie AL, Williams PT, Bhanpuri NH, Peters AL, Campbell WW, Hazbun TL, Volk BM, McCarter JP, Phinney SD, Volek JS. Effectiveness and Safety of a Novel Care Model for the Management of Type 2 Diabetes at 1 Year: An Open-Label, Non-Randomized, Controlled Study. Diabetes Ther 2018; 9:583-612. [PMID: 29417495 PMCID: PMC6104272 DOI: 10.1007/s13300-018-0373-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Carbohydrate restriction markedly improves glycemic control in patients with type 2 diabetes (T2D) but necessitates prompt medication changes. Therefore, we assessed the effectiveness and safety of a novel care model providing continuous remote care with medication management based on biometric feedback combined with the metabolic approach of nutritional ketosis for T2D management. METHODS We conducted an open-label, non-randomized, controlled, before-and-after 1-year study of this continuous care intervention (CCI) and usual care (UC). Primary outcomes were glycosylated hemoglobin (HbA1c), weight, and medication use. Secondary outcomes included fasting serum glucose and insulin, HOMA-IR, blood lipids and lipoproteins, liver and kidney function markers, and high-sensitivity C-reactive protein (hsCRP). RESULTS 349 adults with T2D enrolled: CCI: n = 262 [mean (SD); 54 (8) years, 116.5 (25.9) kg, 40.4 (8.8) kg m2, 92% obese, 88% prescribed T2D medication]; UC: n = 87 (52 (10) years, 105.6 (22.15) kg, 36.72 (7.26) kg m2, 82% obese, 87% prescribed T2D medication]. 218 participants (83%) remained enrolled in the CCI at 1 year. Intention-to-treat analysis of the CCI (mean ± SE) revealed HbA1c declined from 59.6 ± 1.0 to 45.2 ± 0.8 mmol mol-1 (7.6 ± 0.09% to 6.3 ± 0.07%, P < 1.0 × 10-16), weight declined 13.8 ± 0.71 kg (P < 1.0 × 10-16), and T2D medication prescription other than metformin declined from 56.9 ± 3.1% to 29.7 ± 3.0% (P < 1.0 × 10-16). Insulin therapy was reduced or eliminated in 94% of users; sulfonylureas were entirely eliminated in the CCI. No adverse events were attributed to the CCI. Additional CCI 1-year effects were HOMA-IR - 55% (P = 3.2 × 10-5), hsCRP - 39% (P < 1.0 × 10-16), triglycerides - 24% (P < 1.0 × 10-16), HDL-cholesterol + 18% (P < 1.0 × 10-16), and LDL-cholesterol + 10% (P = 5.1 × 10-5); serum creatinine and liver enzymes (ALT, AST, and ALP) declined (P ≤ 0.0001), and apolipoprotein B was unchanged (P = 0.37). UC participants had no significant changes in biomarkers or T2D medication prescription at 1 year. CONCLUSIONS These results demonstrate that a novel metabolic and continuous remote care model can support adults with T2D to safely improve HbA1c, weight, and other biomarkers while reducing diabetes medication use. CLINICALTRIALS. GOV IDENTIFIER NCT02519309. FUNDING Virta Health Corp.
Collapse
Affiliation(s)
- Sarah J Hallberg
- Medically Supervised Weight Loss, Indiana University Health Arnett, Lafayette, IN, USA
- Virta Health, San Francisco, CA, USA
| | | | | | | | - Anne L Peters
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Tamara L Hazbun
- Medically Supervised Weight Loss, Indiana University Health Arnett, Lafayette, IN, USA
| | | | - James P McCarter
- Virta Health, San Francisco, CA, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Jeff S Volek
- Virta Health, San Francisco, CA, USA
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Lemos BS, Medina-Vera I, Blesso CN, Fernandez ML. Intake of 3 Eggs per Day When Compared to a Choline Bitartrate Supplement, Downregulates Cholesterol Synthesis without Changing the LDL/HDL Ratio. Nutrients 2018; 10:nu10020258. [PMID: 29495288 PMCID: PMC5852834 DOI: 10.3390/nu10020258] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/08/2018] [Accepted: 02/17/2018] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease (CVD) risk is associated with high concentrations of low-density lipoprotein cholesterol (LDL-C). The impact of dietary cholesterol on plasma lipid concentrations still remains a concern. The effects of egg intake in comparison to choline bitartrate supplement was studied in a young, healthy population. Thirty participants were enrolled for a 13-week intervention. After a 2-week run-in period, subjects were randomized to consume either 3 eggs/day or a choline bitartrate supplement (~400 mg choline for both treatments) for 4-weeks each. After a 3-week washout period, they were allocated to the alternate treatment. Dietary records, plasma lipids, apolipoproteins (apo) concentrations, and peripheral blood mononuclear cell expression of regulatory genes for cholesterol homeostasis were assessed at the end of each intervention. Dietary intakes of saturated and monounsaturated fat were higher with the consumption of eggs compared to the choline period. In addition, higher plasma concentrations of total cholesterol (7.5%), high density lipoprotein cholesterol (HDL-C) (5%) and LDL-C (8.1%) were observed with egg consumption (p < 0.01), while no change was seen in LDL-C/HDL-C ratio, a key marker of heart disease risk. Compared to choline supplementation, intake of eggs resulted in higher concentrations of plasma apoA-I (8%) and apoE (17%) with no changes in apoB. Sterol regulatory element-binding protein 2 and 3-hydroxy-3-methylglutaryl-CoA reductase expression were lower with egg consumption by 18% and 31%, respectively (p < 0.05), suggesting a compensation to the increased dietary cholesterol load. Therefore, dietary cholesterol from eggs appears to regulate endogenous synthesis of cholesterol in such a way that the LDL-C/HDL-C ratio is maintained.
Collapse
Affiliation(s)
- Bruno S Lemos
- Department of Nutritional Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| | - Isabel Medina-Vera
- Departamento de Metodologia de Investigacion, Instituto Nacional de Pediatria, CD Mexico 04530, Mexico.
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| |
Collapse
|
28
|
Combe N, Henry O, Lopez C, Vaysse C, Fonseca I, Ribaud D, Driss F, Simon N, Le Guillou C, Mendy F. Hospital Diet Enriched With Rapeseed or Sunflower Oils Is Associated With a Decrease in Plasma 16:1n-7 and Some Metabolic Disorders in the Elderly. Lipids 2018; 53:145-155. [PMID: 29394449 DOI: 10.1002/lipd.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/06/2022]
Abstract
We recently demonstrated that the prevalence of dysglycemia was high among hospitalized elderly people who were fed a low fat diet (27.7% of energy) and was positively associated with plasma 16:1n-7, an indicator of de novo lipogenesis (DNL). Fatty acids in the DNL pathway have been shown to be associated with a higher risk of metabolic syndrome (MetS). The purpose of this study was to investigate the potential beneficial effects of fat enrichment (up to 34.1%en) of the hospital diet in 111 patients (30 men and 81 women, 84 ± 7 years) during 6 weeks. Based on gender, they were randomly given a diet supplemented either with rapeseed oil (RO) or with sunflower oil (SO). Fatty acids of cholesteryl esters and erythrocyte phospholipids and markers of metabolic disorders were evaluated before and after dietary intervention. Both enriched diets significantly, and to a similar extent, decreased (1) the overall prevalence of dysglycemia (by 25-33%) and MetS (by 31-43%) and (2) plasma 16:1n-7 mol% in men and women. Dysglycemia prevalence adjusted by the diets was reduced in men versus baseline; no change was found in women. Enrichment of the diet with RO or SO resulted in a difference in fatty acid compositions, that is, EPA (mol%) and the omega-3 index increased with RO, while proportions of 18:1n-7, 18:1n-9, and EPA decreased with SO. These findings highlight the need for adequate fat intake in the elderly. For supplementation of the hospital diet, RO, which led to a higher proportion of circulating n-3 polyunsaturated fatty acids (PUFA) and is known to be beneficial, may be preferred to SO.
Collapse
Affiliation(s)
- Nicole Combe
- ITERG, Unité de Nutrition, Métabolisme & Santé, Université Bordeaux 2, 33076 Bordeaux, France
| | - Olivier Henry
- Groupe Hospitalier Henri Mondor, Hôpital Emile Roux, 94450 Limeil-Brévannes, France
| | - Carlos Lopez
- Institut de l'Elevage, 149 rue de Bercy, 75595 Paris, France
| | - Carole Vaysse
- ITERG, Unité de Nutrition, Métabolisme & Santé, Université Bordeaux 2, 33076 Bordeaux, France
| | - Isabelle Fonseca
- Groupe Hospitalier Henri Mondor, Hôpital Emile Roux, 94450 Limeil-Brévannes, France
| | - Danièle Ribaud
- Institut de l'Elevage, 149 rue de Bercy, 75595 Paris, France
| | - Fathi Driss
- Laboratoire d'Hormonologie/Géné. Mol., Hôpital Bichat, Claude Bernard, Paris, France
| | - Noëmie Simon
- Terres Univia, 11 rue de Monceau, 75008 Paris, France
| | | | | |
Collapse
|
29
|
Da Silva MS, Bilodeau JF, Julien P, Rudkowska I. Dietary fats and F 2-isoprostanes: A review of the clinical evidence. Crit Rev Food Sci Nutr 2018; 57:3929-3941. [PMID: 27438347 DOI: 10.1080/10408398.2016.1196646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evidence supports that a high dietary fat intake increases oxidative stress and the risk of diet-induced metabolic disorders such as obesity, diabetes and cardiovascular diseases. F2-isoprostanes (F2-isoP) are formed by the non-enzymatic oxidation of arachidonic acid and are widely used as reliable biomarkers of oxidative stress in clinical studies. Dietary fats may influence F2-isoP levels, as they (1) are metabolic substrates for their formation, (2) modify the lipid composition of tissues, and (3) affect the plasma lipoprotein concentrations which are involved in F2-isoP transport. This review examined the latest clinical evidence on how dietary fats can affect blood circulation and excretion of F2-isoP in individuals with healthy or deteriorated metabolic profiles. Clinical studies reported that saturated or monounsaturated fat-rich diets did not affect F2-isoP levels in adults with healthy or deteriorated metabolic profiles. Though, ω-3 polyunsaturated fatty acids decreased F2-isoP levels in numerous studies, whereas trans-fatty acids raised F2-isoP excretion. Yet, the reported heterogeneous results reveal important considerations, such as the health status of the participants, the biological fluids used to determine F2-isoP, the analytical methods employed and the specific F2-isoP isomers detected. Therefore, future clinical studies should be designed in order to consider these issues in the studies of the effects of fat intake on oxidative stress.
Collapse
Affiliation(s)
- Marine S Da Silva
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,c Department of Kinesiology, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Jean-François Bilodeau
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,b Department of Medicine, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Pierre Julien
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,b Department of Medicine, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Iwona Rudkowska
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,c Department of Kinesiology, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| |
Collapse
|
30
|
Elamin M, Ruskin DN, Masino SA, Sacchetti P. Ketone-Based Metabolic Therapy: Is Increased NAD + a Primary Mechanism? Front Mol Neurosci 2017; 10:377. [PMID: 29184484 PMCID: PMC5694488 DOI: 10.3389/fnmol.2017.00377] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
The ketogenic diet’s (KD) anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s) of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD), a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes) associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.
Collapse
Affiliation(s)
- Marwa Elamin
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| | - David N Ruskin
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Susan A Masino
- Neuroscience Program and Psychology Department, Trinity College, Hartford, CT, United States
| | - Paola Sacchetti
- Neuroscience Program, Department of Biology, University of Hartford, West Hartford, CT, United States
| |
Collapse
|
31
|
Noakes TD, Windt J. Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review. Br J Sports Med 2017; 51:133-139. [PMID: 28053201 DOI: 10.1136/bjsports-2016-096491] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2016] [Indexed: 12/15/2022]
Abstract
Low-carbohydrate high-fat (LCHF) diets are a highly contentious current topic in nutrition. This narrative review aims to provide clinicians with a broad overview of the effects of LCHF diets on body weight, glycaemic control and cardiovascular risk factors while addressing some common concerns and misconceptions. Blood total cholesterol and LDL-cholesterol concentrations show a variable, highly individual response to LCHF diets, and should be monitored in patients adhering to this diet. In contrast, available evidence from clinical and preclinical studies indicates that LCHF diets consistently improve all other markers of cardiovascular risk-lowering elevated blood glucose, insulin, triglyceride, ApoB and saturated fat (especially palmitoleic acid) concentrations, reducing small dense LDL particle numbers, glycated haemoglobin (HbA1c) levels, blood pressure and body weight while increasing low HDL-cholesterol concentrations and reversing non-alcoholic fatty liver disease (NAFLD). This particular combination of favourable modifications to all these risk factors is a benefit unique to LCHF diets. These effects are likely due in part to reduced hunger and decreased ad libitum calorie intake common to low-carbohydrate diets, allied to a reduction in hyperinsulinaemia, and reversal of NAFLD. Although LCHF diets may not be suitable for everyone, available evidence shows this eating plan to be a safe and efficacious dietary option to be considered. LCHF diets may also be particularly beneficial in patients with atherogenic dyslipidaemia, insulin resistance, and the frequently associated NAFLD.
Collapse
Affiliation(s)
- Timothy David Noakes
- Department of Human Biology, University of Cape Town, Sports Science Institute of South Africa, Newlands, Cape Town, South Africa
| | - Johann Windt
- Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Hip Health and Mobility, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
McKenzie AL, Hallberg SJ, Creighton BC, Volk BM, Link TM, Abner MK, Glon RM, McCarter JP, Volek JS, Phinney SD. A Novel Intervention Including Individualized Nutritional Recommendations Reduces Hemoglobin A1c Level, Medication Use, and Weight in Type 2 Diabetes. JMIR Diabetes 2017; 2:e5. [PMID: 30291062 PMCID: PMC6238887 DOI: 10.2196/diabetes.6981] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/12/2017] [Accepted: 02/11/2017] [Indexed: 01/14/2023] Open
Abstract
Background Type 2 diabetes (T2D) is typically managed with a reduced fat diet plus glucose-lowering medications, the latter often promoting weight gain. Objective We evaluated whether individuals with T2D could be taught by either on-site group or remote means to sustain adequate carbohydrate restriction to achieve nutritional ketosis as part of a comprehensive intervention, thereby improving glycemic control, decreasing medication use, and allowing clinically relevant weight loss. Methods This study was a nonrandomized, parallel arm, outpatient intervention. Adults with T2D (N=262; mean age 54, SD 8, years; mean body mass index 41, SD 8, kg·m−2; 66.8% (175/262) women) were enrolled in an outpatient protocol providing intensive nutrition and behavioral counseling, digital coaching and education platform, and physician-guided medication management. A total of 238 participants completed the first 10 weeks. Body weight, capillary blood glucose, and beta-hydroxybutyrate (BOHB) levels were recorded daily using a mobile interface. Hemoglobin A1c (HbA1c) and related biomarkers of T2D were evaluated at baseline and 10-week follow-up. Results Baseline HbA1c level was 7.6% (SD 1.5%) and only 52/262 (19.8%) participants had an HbA1c level of <6.5%. After 10 weeks, HbA1c level was reduced by 1.0% (SD 1.1%; 95% CI 0.9% to 1.1%, P<.001), and the percentage of individuals with an HbA1c level of <6.5% increased to 56.1% (147/262). The majority of participants (234/262, 89.3%) were taking at least one diabetes medication at baseline. By 10 weeks, 133/234 (56.8%) individuals had one or more diabetes medications reduced or eliminated. At follow-up, 47.7% of participants (125/262) achieved an HbA1c level of <6.5% while taking metformin only (n=86) or no diabetes medications (n=39). Mean body mass reduction was 7.2% (SD 3.7%; 95% CI 5.8% to 7.7%, P<.001) from baseline (117, SD 26, kg). Mean BOHB over 10 weeks was 0.6 (SD 0.6) mmol·L−1 indicating consistent carbohydrate restriction. Post hoc comparison of the remote versus on-site means of education revealed no effect of delivery method on change in HbA1c (F1,260=1.503, P=.22). Conclusions These initial results indicate that an individualized program delivered and supported remotely that incorporates nutritional ketosis can be highly effective in improving glycemic control and weight loss in adults with T2D while significantly decreasing medication use.
Collapse
Affiliation(s)
| | - Sarah J Hallberg
- Virta Health, San Francisco, CA, United States.,Indiana University Health Arnett, Medically Supervised Weight Loss, Lafayette, IN, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chiu S, Williams PT, Krauss RM. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial. PLoS One 2017; 12:e0170664. [PMID: 28166253 PMCID: PMC5293238 DOI: 10.1371/journal.pone.0170664] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Previous studies have shown that increases in LDL-cholesterol resulting from substitution of dietary saturated fat for carbohydrate or unsaturated fat are due primarily to increases in large cholesterol-enriched LDL, with minimal changes in small, dense LDL particles and apolipoprotein B. However, individuals can differ by their LDL particle distribution, and it is possible that this may influence LDL subclass response. OBJECTIVE The objective of this study was to test whether the reported effects of saturated fat apply to individuals with atherogenic dyslipidemia as characterized by a preponderance of small LDL particles (LDL phenotype B). METHODS Fifty-three phenotype B men and postmenopausal women consumed a baseline diet (55%E carbohydrate, 15%E protein, 30%E fat, 8%E saturated fat) for 3 weeks, after which they were randomized to either a moderate carbohydrate, very high saturated fat diet (HSF; 39%E carbohydrate, 25%E protein, 36%E fat, 18%E saturated fat) or low saturated fat diet (LSF; 37%E carbohydrate, 25%E protein, 37%E fat, 9%E saturated fat) for 3 weeks. RESULTS Compared to the LSF diet, consumption of the HSF diet resulted in significantly greater increases from baseline (% change; 95% CI) in plasma concentrations of apolipoprotein B (HSF vs. LSF: 9.5; 3.6 to 15.7 vs. -6.8; -11.7 to -1.76; p = 0.0003) and medium (8.8; -1.3 to 20.0 vs. -7.3; -15.7 to 2.0; p = 0.03), small (6.1; -10.3 to 25.6 vs. -20.8; -32.8 to -6.7; p = 0.02), and total LDL (3.6; -3.2 to 11.0 vs. -7.9; -13.9 to -1.5; p = 0.03) particles, with no differences in change of large and very small LDL concentrations. As expected, total-cholesterol (11.0; 6.5 to 15.7 vs. -5.7; -9.4 to -1.8; p<0.0001) and LDL-cholesterol (16.7; 7.9 to 26.2 vs. -8.7; -15.4 to -1.4; p = 0.0001) also increased with increased saturated fat intake. CONCLUSIONS Because medium and small LDL particles are more highly associated with cardiovascular disease than are larger LDL, the present results suggest that very high saturated fat intake may increase cardiovascular disease risk in phenotype B individuals. This trial was registered at clinicaltrials.gov (NCT00895141). TRIAL REGISTRATION Clinicaltrials.gov NCT00895141.
Collapse
Affiliation(s)
- Sally Chiu
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Paul T. Williams
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|
34
|
Kurti SP, Emerson SR, Rosenkranz SK, Teeman CS, Emerson EM, Cull BJ, Smith JR, Harms CA. Post-prandial systemic 8-isoprostane increases after consumption of moderate and high-fat meals in insufficiently active males. Nutr Res 2017; 39:61-68. [PMID: 28385290 DOI: 10.1016/j.nutres.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 01/19/2023]
Abstract
A single high-fat meal (HFM) leads to an increase in triglycerides and oxidative stress. Oxidative stress can be assessed via 8-isoprostane generation, which is associated with the development of asthma and cardiovascular disease. No previous research has investigated whether airway and systemic 8-isoprostane increases postprandially in nonasthmatic participants according to the energy and fat content of a meal. Our purpose was to assess airway and systemic 8-isoprostane after a HFM and a true-to-life moderate-fat meal (MFM). We hypothesized that airway and systemic 8-isoprostane would increase after a HFM and a MFM, with the greatest increase in the HFM condition. Eight nonasthmatic men (25.8±6.9years) completed the HFM and MFM trials in a randomized crossover design. After a 10-hour fast, participants consumed either a HFM (71.13kJ/kg body mass, 60% fat, 23% CHO) or a MFM (35.56kJ/kg body mass, 30% fat, 52% CHO). Exhaled breath condensate to assess airway 8-isoprostane was collected at baseline and at 3 and 6hours postmeal. Venous blood samples were collected at baseline and hourly until 6hours postmeal to assess triglycerides, and every 3hours for systemic 8-isoprostane. Airway 8-isoprostane responses were not significant as a main effect of time (P=.072), between conditions (P=.365), or between time and condition (P=.319) postmeal. Systemic 8-isoprostane increased over time (P<.001), but not between conditions (P=.124) or between time and condition (P=.649) postmeal. Triglyceride incremental area under the curve was different in the HFM compared to the MFM condition (P=.013). After a HFM and a MFM, 8-isoprostane increases systemically; however, airway 8-isoprostane does not change.
Collapse
Affiliation(s)
- S P Kurti
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA; Physical Activity and Nutrition-Clinical Research Consortium, Kansas State University, Manhattan, KS 66506, USA.
| | - S R Emerson
- Physical Activity and Nutrition-Clinical Research Consortium, Kansas State University, Manhattan, KS 66506, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - S K Rosenkranz
- Physical Activity and Nutrition-Clinical Research Consortium, Kansas State University, Manhattan, KS 66506, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - C S Teeman
- Physical Activity and Nutrition-Clinical Research Consortium, Kansas State University, Manhattan, KS 66506, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - E M Emerson
- Physical Activity and Nutrition-Clinical Research Consortium, Kansas State University, Manhattan, KS 66506, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - B J Cull
- Physical Activity and Nutrition-Clinical Research Consortium, Kansas State University, Manhattan, KS 66506, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - J R Smith
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| | - C A Harms
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
35
|
Frigolet ME, Gutiérrez-Aguilar R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv Nutr 2017; 8:173S-181S. [PMID: 28096141 PMCID: PMC5227969 DOI: 10.3945/an.115.011130] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The monounsaturated fatty acid palmitoleate (palmitoleic acid) is one of the most abundant fatty acids in serum and tissues, particularly adipose tissue and liver. Its endogenous production by stearoyl-CoA desaturase 1 gives rise to its cis isoform, cis-palmitoleate. Although trans-palmitoleate is also synthesized in humans, it is mainly found as an exogenous source in ruminant fat and dairy products. Recently, palmitoleate was considered to be a lipokine based on evidence demonstrating its release from adipose tissue and its metabolic effects on distant organs. After this finding, research has been performed to determine whether palmitoleate has beneficial effects on metabolism and to elucidate the underlying mechanisms. Thus, the aim of this work was to review the current status of knowledge about palmitoleate, its metabolism, and its influence on metabolic abnormalities. Results have shown mixed cardiovascular effects, direct or inverse correlations with obesity, and hepatosteatosis, but a significant amelioration or prevention of insulin resistance and diabetes. Finally, the induction of palmitoleate release from adipose tissue, dietary intake, and its supplementation are all interventions with a potential impact on certain metabolic diseases.
Collapse
Affiliation(s)
- María E Frigolet
- Metabolic Diseases: Obesity and Diabetes Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; and
| | - Ruth Gutiérrez-Aguilar
- Metabolic Diseases: Obesity and Diabetes Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; and
- Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
36
|
Veum VL, Laupsa-Borge J, Eng Ø, Rostrup E, Larsen TH, Nordrehaug JE, Nygård OK, Sagen JV, Gudbrandsen OA, Dankel SN, Mellgren G. Visceral adiposity and metabolic syndrome after very high-fat and low-fat isocaloric diets: a randomized controlled trial. Am J Clin Nutr 2017; 105:85-99. [PMID: 27903520 DOI: 10.3945/ajcn.115.123463] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/28/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Different aspects of dietary pattern, including macronutrient and food profiles, may affect visceral fat mass and metabolic syndrome. OBJECTIVE We hypothesized that consuming energy primarily from carbohydrate or fat in diets with similar food profiles would differentially affect the ability to reverse visceral adiposity and metabolic syndrome. DESIGN Forty-six men (aged 30-50 y) with body mass index (in kg/m2) >29 and waist circumference >98 cm were randomly assigned to a very high-fat, low-carbohydrate (VHFLC; 73% of energy fat and 10% of energy carbohydrate) or low-fat, high-carbohydrate (LFHC; 30% of energy fat and 53% of energy carbohydrate) diet for 12 wk. The diets were equal in energy (8750 kJ/d), protein (17% of energy), and food profile, emphasizing low-processed, lower-glycemic foods. Fat mass was quantified with computed tomography imaging. RESULTS Recorded intake of carbohydrate and total and saturated fat in the LFHC and VHFLC groups were 51% and 11% of energy, 29% and 71% of energy, and 12% and 34% of energy, respectively, with no difference in protein and polyunsaturated fatty acids. Mean energy intake decreased by 22% and 14% in the LFHC and VHFLC groups. The diets similarly reduced waist circumference (11-13 cm), abdominal subcutaneous fat mass (1650-1850 cm3), visceral fat mass (1350-1650 cm3), and total body weight (11-12 kg). Both groups improved dyslipidemia, with reduced circulating triglycerides, but showed differential responses in total and low-density lipoprotein cholesterol (decreased in LFHC group only), and high-density lipoprotein cholesterol (increased in VHFLC group only). The groups showed similar reductions in insulin, insulin C-peptide, glycated hemoglobin, and homeostasis model assessment of insulin resistance. Notably, improvements in circulating metabolic markers in the VHFLC group mainly were observed first after 8 wk, in contrast to more acute and gradual effects in the LFHC group. CONCLUSIONS Consuming energy primarily as carbohydrate or fat for 3 mo did not differentially influence visceral fat and metabolic syndrome in a low-processed, lower-glycemic dietary context. Our data do not support the idea that dietary fat per se promotes ectopic adiposity and cardiometabolic syndrome in humans. This study was registered at clinicaltrials.gov as NCT01750021.
Collapse
Affiliation(s)
- Vivian L Veum
- Department of Clinical Science.,KG Jebsen Centre for Diabetes Research, Department of Clinical Science, and.,Hormone Laboratory and
| | - Johnny Laupsa-Borge
- Department of Clinical Science.,Hormone Laboratory and.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Terje H Larsen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | - Ottar K Nygård
- Department of Clinical Science.,KG Jebsen Centre for Diabetes Research, Department of Clinical Science, and.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jørn V Sagen
- Department of Clinical Science.,KG Jebsen Centre for Diabetes Research, Department of Clinical Science, and.,Hormone Laboratory and
| | | | - Simon N Dankel
- Department of Clinical Science, .,KG Jebsen Centre for Diabetes Research, Department of Clinical Science, and.,Hormone Laboratory and
| | - Gunnar Mellgren
- Department of Clinical Science, .,KG Jebsen Centre for Diabetes Research, Department of Clinical Science, and.,Hormone Laboratory and
| |
Collapse
|
37
|
Dietary Intake and Cardiovascular Risk Factors in Icelanders Following Voluntarily a Low Carbohydrate Diet. PLoS One 2016; 11:e0156655. [PMID: 27560647 PMCID: PMC4999201 DOI: 10.1371/journal.pone.0156655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
Background/Aim Most studies regarding low-carbohydrate diets (LCDs) have been intervention studies. The aim of the current study was to investigate dietary intake and cardiovascular risk factors among individuals who voluntarily follow a LCD. Methods A cross-sectional study was conducted (N = 54, 20–66yrs) in Reykjavik, Iceland. Participants recorded food intake for three days. Blood samples were analyzed for cardiovascular risk factors. Results Nearly half of the participants were obese and around 60% had been on a LCD for ≥ 6 months. Fifty percent claimed they had lost weight during the past month. The median intake of carbohydrate, protein and fat were 8%, 22% and 68% E (hereof 25% saturated fatty acids), respectively. The consumption of bread and wholegrain cereals was very low (<5g/day), including the intake of dietary fiber (11g/day). Median fruit intake was 12 g/day. Intake of red meat and meat products was double that of the general population or ~900 g/week. Median intake of vitamins and minerals were mostly higher than the estimated average requirements. Cardiovascular risk factors were mostly within normal range. Mean blood lipids were slightly elevated although the high density lipoprotein/total cholesterol ratio was normal. Conclusion Despite poor diet quality and high prevalence of obesity, individuals who voluntarily follow a LCD have cardiovascular risk factors mostly within reference range. These individuals consume very low amounts of carbohydrates and high amounts of fat and saturated fat acids. Intake of red meat and processed meat exceeds recommended intake. Very low intake of whole grain cereals and fruits results in low intake of fiber. Long term health implications need to be examined further in longitudinal studies.
Collapse
|
38
|
Biomarkers for nutrient intake with focus on alternative sampling techniques. GENES AND NUTRITION 2016; 11:12. [PMID: 27551313 PMCID: PMC4968438 DOI: 10.1186/s12263-016-0527-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Biomarkers of nutrient intake or nutrient status are important objective measures of foods/nutrients as one of the most important environmental factors people are exposed to. It is very difficult to obtain accurate data on individual food intake, and there is a large variation of nutrient composition of foods consumed in a population. Thus, it is difficult to obtain precise measures of exposure to different nutrients and thereby be able to understand the relationship between diet, health, and disease. This is the background for investing considerable resources in studying biomarkers of nutrients believed to be important in our foods. Modern technology with high sensitivity and specificity concerning many nutrient biomarkers has allowed an interesting development with analyses of very small amounts of blood or tissue material. In combination with non-professional collection of blood by finger-pricking and collection on filters or sticks, this may make collection of samples and analyses of biomarkers much more available for scientists as well as health professionals and even lay people in particular in relation to the marked trend of self-monitoring of body functions linked to mobile phone technology. Assuming standard operating procedures are used for collection, drying, transport, extraction, and analysis of samples, it turns out that many analytes of nutritional interest can be measured like metabolites, drugs, lipids, vitamins, minerals, and many types of peptides and proteins. The advantage of this alternative sampling technology is that non-professionals can collect, dry, and mail the samples; the samples can often be stored under room temperature in a dry atmosphere, requiring small amounts of blood. Another promising area is the potential relation between the microbiome and biomarkers that may be measured in feces as well as in blood.
Collapse
|
39
|
|
40
|
Morio B, Fardet A, Legrand P, Lecerf JM. Involvement of dietary saturated fats, from all sources or of dairy origin only, in insulin resistance and type 2 diabetes. Nutr Rev 2015; 74:33-47. [PMID: 26545916 DOI: 10.1093/nutrit/nuv043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reducing the consumption of saturated fatty acids to a level as low as possible is a European public health recommendation to reduce the risk of cardiovascular disease. The association between dietary intake of saturated fatty acids and development and management of type 2 diabetes mellitus (T2DM), however, is a matter of debate. A literature search was performed to identify prospective studies and clinical trials in humans that explored the association between dietary intake of saturated fatty acids and risk of insulin resistance and T2DM. Furthermore, to assess whether specific foods, and not just the saturated fatty acid content of the food matrix, can have differential effects on human health, the relationship between consumption of full-fat dairy products, a main source of dietary saturated fatty acids, and risk of insulin resistance and T2DM was studied. There is no evidence that dietary saturated fatty acids from varied food sources affect the risk of insulin resistance or T2DM, nor is intake of full-fat dairy products associated with this risk. These findings strongly suggest that future studies on the effects of dietary saturated fatty acids should take into account the complexity of the food matrix. Furthermore, communication on saturated fats and their health effects should be prudent and well informed.
Collapse
Affiliation(s)
- Béatrice Morio
- B. Morio is with the CarMeN Laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculty of Medicine Lyon - South, Oullins, France. B. Morio and A. Fardet are with the French National Institute for Agricultural Research (INRA), UMR1019 Human Nutrition, Center for Human Nutrition Research (CRNH) Auvergne, Clermont-Ferrand, France. P. Legrand is with the Biochemistry and Human Nutrition Laboratory, Agrocampus - French National Institute for Agricultural Research (INRA), Rennes, France. J-M. Lecerf is with the Nutrition Department, Pasteur Institute of Lille, Lille, France.
| | - Anthony Fardet
- B. Morio is with the CarMeN Laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculty of Medicine Lyon - South, Oullins, France. B. Morio and A. Fardet are with the French National Institute for Agricultural Research (INRA), UMR1019 Human Nutrition, Center for Human Nutrition Research (CRNH) Auvergne, Clermont-Ferrand, France. P. Legrand is with the Biochemistry and Human Nutrition Laboratory, Agrocampus - French National Institute for Agricultural Research (INRA), Rennes, France. J-M. Lecerf is with the Nutrition Department, Pasteur Institute of Lille, Lille, France
| | - Philippe Legrand
- B. Morio is with the CarMeN Laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculty of Medicine Lyon - South, Oullins, France. B. Morio and A. Fardet are with the French National Institute for Agricultural Research (INRA), UMR1019 Human Nutrition, Center for Human Nutrition Research (CRNH) Auvergne, Clermont-Ferrand, France. P. Legrand is with the Biochemistry and Human Nutrition Laboratory, Agrocampus - French National Institute for Agricultural Research (INRA), Rennes, France. J-M. Lecerf is with the Nutrition Department, Pasteur Institute of Lille, Lille, France
| | - Jean-Michel Lecerf
- B. Morio is with the CarMeN Laboratory (Inserm 1060, INRA 1397, INSA), University of Lyon, Faculty of Medicine Lyon - South, Oullins, France. B. Morio and A. Fardet are with the French National Institute for Agricultural Research (INRA), UMR1019 Human Nutrition, Center for Human Nutrition Research (CRNH) Auvergne, Clermont-Ferrand, France. P. Legrand is with the Biochemistry and Human Nutrition Laboratory, Agrocampus - French National Institute for Agricultural Research (INRA), Rennes, France. J-M. Lecerf is with the Nutrition Department, Pasteur Institute of Lille, Lille, France
| |
Collapse
|
41
|
Lee JJ, Lambert JE, Hovhannisyan Y, Ramos-Roman MA, Trombold JR, Wagner DA, Parks EJ. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am J Clin Nutr 2015; 101:34-43. [PMID: 25527748 PMCID: PMC4266891 DOI: 10.3945/ajcn.114.092262] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Biochemical evidence has linked the coordinate control of fatty acid (FA) synthesis with the activity of stearoyl-CoA desaturase-1 (SCD1). The ratio of 16:1n-7 to 16:0 [SCD1₁₆] in plasma triacylglycerol FA has been used as an index to reflect liver SCD1₁₆ activity and has been proposed as a biomarker of FA synthesis, although this use has not been validated by comparison with isotopically measured de novo lipogenesis (DNL(Meas)). OBJECTIVE We investigated plasma lipid 16:1n-7 and FA indexes of elongation and desaturation in relation to lipogenesis. DESIGN In this cross-sectional investigation of metabolism, 24 overweight adults, who were likely to have elevated DNL, consumed D2O for 10 d and had liver fat (LF) measured by magnetic resonance spectroscopy. Very-low-density lipoprotein (VLDL)-triacylglycerols and plasma free FA [nonesterified fatty acids (NEFAs)] were analyzed by using gas chromatography for the FA composition (molar percentage) and gas chromatography-mass spectrometry and gas chromatography-combustion isotope ratio mass spectrometry for deuterium enrichment. RESULTS In all subjects, VLDL-triacylglycerol 16:1n-7 was significantly (P < 0.01) related to DNL(Meas) (r = 0.56), liver fat (r = 0.53), and adipose insulin resistance (r = 0.56); similar positive relations were shown with the SCD1₁₆ index, and the pattern in NEFAs echoed that of VLDL-triacylglycerols. Compared with subjects with low LF (3.1 ± 2.7%; n = 11), subjects with high LF (18.4 ± 3.6%; n = 13) exhibited a 45% higher VLDL-triacylglycerol 16:1n-7 molar percentage (P < 0.01), 16% of subjects had lower 18:2n-6 (P = 0.01), and 27% of subjects had higher DNL as assessed by using a published DNL index (ratio of 16:0 to 18:2n-6; P = 0.03), which was isotopically confirmed by DNL(Meas) (increased 2.5-fold; P < 0.01). Compared with 16:0 in the diet, the low amount of dietary 16:1n-7 in VLDL-triacylglycerols corresponded to a stronger signal of elevated DNL. CONCLUSION The current data provide support for the use of the VLDL-triacylglycerol 16:1n-7 molar percentage as a biomarker for elevated liver fat when isotope use is not feasible; however, larger-scale confirmatory studies are needed.
Collapse
Affiliation(s)
- Joseph J Lee
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| | - Jennifer E Lambert
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| | - Yelena Hovhannisyan
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| | - Maria A Ramos-Roman
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| | - Justin R Trombold
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| | - David A Wagner
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| | - Elizabeth J Parks
- From the Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX (JJL, JEL, YH, and JRT); the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX (MAR-R); Metabolic Solutions Inc., Nashua, NH (DAW); and the Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri, Columbia, MO (EJP)
| |
Collapse
|
42
|
Siri-Tarino PW, Chiu S, Bergeron N, Krauss RM. Saturated Fats Versus Polyunsaturated Fats Versus Carbohydrates for Cardiovascular Disease Prevention and Treatment. Annu Rev Nutr 2015; 35:517-43. [PMID: 26185980 PMCID: PMC4744652 DOI: 10.1146/annurev-nutr-071714-034449] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effects of saturated fatty acids (SFAs) on cardiovascular disease (CVD) risk are modulated by the nutrients that replace them and their food matrices. Replacement of SFAs with polyunsaturated fatty acids has been associated with reduced CVD risk, although there is heterogeneity in both fatty acid categories. In contrast, replacement of SFAs with carbohydrates, particularly sugar, has been associated with no improvement or even a worsening of CVD risk, at least in part through effects on atherogenic dyslipidemia, a cluster of traits including small, dense low-density lipoprotein particles. The effects of dietary SFAs on insulin sensitivity, inflammation, vascular function, and thrombosis are less clear. There is growing evidence that SFAs in the context of dairy foods, particularly fermented dairy products, have neutral or inverse associations with CVD. Overall dietary patterns emphasizing vegetables, fish, nuts, and whole versus processed grains form the basis of heart-healthy eating and should supersede a focus on macronutrient composition.
Collapse
Affiliation(s)
- Patty W. Siri-Tarino
- Atherosclerosis Research Program, Children’s Hospital Oakland Research Institute, Oakland, California 94609
| | - Sally Chiu
- Atherosclerosis Research Program, Children’s Hospital Oakland Research Institute, Oakland, California 94609
| | - Nathalie Bergeron
- Atherosclerosis Research Program, Children’s Hospital Oakland Research Institute, Oakland, California 94609
- College of Pharmacy, Touro University California, Vallejo, California 94594
| | - Ronald M. Krauss
- Atherosclerosis Research Program, Children’s Hospital Oakland Research Institute, Oakland, California 94609
| |
Collapse
|
43
|
Effects of step-wise increases in dietary carbohydrate on circulating saturated Fatty acids and palmitoleic Acid in adults with metabolic syndrome. PLoS One 2014; 9:e113605. [PMID: 25415333 PMCID: PMC4240601 DOI: 10.1371/journal.pone.0113605] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/26/2014] [Indexed: 02/01/2023] Open
Abstract
Recent meta-analyses have found no association between heart disease and dietary saturated fat; however, higher proportions of plasma saturated fatty acids (SFA) predict greater risk for developing type-2 diabetes and heart disease. These observations suggest a disconnect between dietary saturated fat and plasma SFA, but few controlled feeding studies have specifically examined how varying saturated fat intake across a broad range affects circulating SFA levels. Sixteen adults with metabolic syndrome (age 44.9±9.9 yr, BMI 37.9±6.3 kg/m2) were fed six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day) with concomitant decreases in total and saturated fat. Despite a distinct increase in saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate phase, there were no significant changes in the proportion of total SFA in any plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was significantly and uniformly reduced as carbohydrate intake decreased, and then gradually increased as dietary carbohydrate was re-introduced. The results show that dietary and plasma saturated fat are not related, and that increasing dietary carbohydrate across a range of intakes promotes incremental increases in plasma palmitoleic acid, a biomarker consistently associated with adverse health outcomes.
Collapse
|
44
|
Cervenka MC, Patton K, Eloyan A, Henry B, Kossoff EH. The impact of the modified Atkins diet on lipid profiles in adults with epilepsy. Nutr Neurosci 2014; 19:131-7. [DOI: 10.1179/1476830514y.0000000162] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, Accurso A, Frassetto L, Gower BA, McFarlane SI, Nielsen JV, Krarup T, Saslow L, Roth KS, Vernon MC, Volek JS, Wilshire GB, Dahlqvist A, Sundberg R, Childers A, Morrison K, Manninen AH, Dashti HM, Wood RJ, Wortman J, Worm N. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition 2014; 31:1-13. [PMID: 25287761 DOI: 10.1016/j.nut.2014.06.011] [Citation(s) in RCA: 528] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/28/2014] [Accepted: 06/28/2014] [Indexed: 12/16/2022]
Abstract
The inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications, in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndrome without significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns about the efficacy and safety are long term and conjectural rather than data driven. Dietary carbohydrate restriction reliably reduces high blood glucose, does not require weight loss (although is still best for weight loss), and leads to the reduction or elimination of medication. It has never shown side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least controversial results. The insistence on long-term randomized controlled trials as the only kind of data that will be accepted is without precedent in science. The seriousness of diabetes requires that we evaluate all of the evidence that is available. The 12 points are sufficiently compelling that we feel that the burden of proof rests with those who are opposed.
Collapse
Affiliation(s)
- Richard D Feinman
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York, USA.
| | - Wendy K Pogozelski
- Department of Chemistry, State University of New York Geneseo, Geneseo, NY, USA
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Copenhagen University, Denmark
| | | | - Eugene J Fine
- Department of Radiology (Nuclear Medicine), Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Anthony Accurso
- Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Lynda Frassetto
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barbara A Gower
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samy I McFarlane
- Departments of Medicine and Endocrinology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | | | - Thure Krarup
- Department of Endocrinology I, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Laura Saslow
- University of California San Francisco, San Francisco, CA, USA
| | - Karl S Roth
- Department of Pediatrics, Creighton University, Omaha, NE, USA
| | | | - Jeff S Volek
- Department of Human Sciences (Kinesiology Program) Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | - Hussain M Dashti
- Faculty of medicine, Department of Surgery, Kuwait university, Kuwait
| | | | - Jay Wortman
- First Nations Division, Vancouver, BC, Canada
| | - Nicolai Worm
- German University for Prevention and Health Care Management, Saarbrücken, Germany
| |
Collapse
|
46
|
Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr 2014; 68:973-9. [DOI: 10.1038/ejcn.2014.123] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
|
47
|
Chen Y, Hagopian K, Bibus D, Villalba JM, López-Lluch G, Navas P, Kim K, Ramsey JJ. The influence of dietary lipid composition on skeletal muscle mitochondria from mice following eight months of calorie restriction. Physiol Res 2013; 63:57-71. [PMID: 24182343 DOI: 10.33549/physiolres.932529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Calorie restriction (CR) has been shown to decrease reactive oxygen species (ROS) production and retard aging in a variety of species. It has been proposed that alterations in membrane saturation are central to these actions of CR. As a step towards testing this theory, mice were assigned to 4 dietary groups (control and 3 CR groups) and fed AIN-93G diets at 95 % (control) or 60 % (CR) of ad libitum for 8 months. To manipulate membrane composition, the primary dietary fats for the CR groups were soybean oil (also used in the control diet), fish oil or lard. Skeletal muscle mitochondrial lipid composition, proton leak, and H(2)O(2) production were measured. Phospholipid fatty acid composition in CR mice was altered in a manner that reflected the n-3 and n-6 fatty acid profiles of their respective dietary lipid sources. Dietary lipid composition did not alter proton leak kinetics between the CR groups. However, the capacity of mitochondrial complex III to produce ROS was decreased in the CR lard compared to the other CR groups. The results of this study indicate that dietary lipid composition can influence ROS production in muscle mitochondria of CR mice. It remains to be determined if lard or other dietary oils can maximize the CR-induced decreases in ROS production.
Collapse
Affiliation(s)
- Y Chen
- VM Molecular Biosciences, University of California, Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ballard KD, Quann EE, Kupchak BR, Volk BM, Kawiecki DM, Fernandez ML, Seip RL, Maresh CM, Kraemer WJ, Volek JS. Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins. Nutr Res 2013; 33:905-12. [PMID: 24176230 DOI: 10.1016/j.nutres.2013.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 11/25/2022]
Abstract
Statins positively impact plasma low-density lipoprotein cholesterol, inflammation and vascular endothelial function (VEF). Carbohydrate restricted diets (CRD) improve atherogenic dyslipidemia, and similar to statins, have been shown to favorably affect markers of inflammation and VEF. No studies have examined whether a CRD provides additional benefit beyond that achieved by habitual statin use. We hypothesized that a CRD (<50 g carbohydrate/d) for 6 weeks would improve lipid profiles and insulin sensitivity, reduce blood pressure, decrease cellular adhesion and inflammatory biomarkers, and augment VEF (flow-mediated dilation and forearm blood flow) in statin users. Participants (n = 21; 59.3 ± 9.3 y, 29.5 ± 3.0 kg/m(2)) decreased total caloric intake by approximately 415 kcal at 6 weeks (P < .001). Daily nutrient intakes at baseline (46/36/17% carb/fat/pro) and averaged across the intervention (11/58/28% carb/fat/pro) demonstrated dietary compliance, with carbohydrate intake at baseline nearly 5-fold greater than during the intervention (P < .001). Compared to baseline, both systolic and diastolic blood pressure decreased after 3 and 6 weeks (P < .01). Peak forearm blood flow, but not flow-mediated dilation, increased at week 6 compared to baseline and week 3 (P ≤ .03). Serum triglyceride, insulin, soluble E-Selectin and intracellular adhesion molecule-1 decreased (P < .01) from baseline at week 3, and this effect was maintained at week 6. In conclusion, these findings demonstrate that individuals undergoing statin therapy experience additional improvements in metabolic and vascular health from a 6 weeks CRD as evidenced by increased insulin sensitivity and resistance vessel endothelial function, and decreased blood pressure, triglycerides, and adhesion molecules.
Collapse
Affiliation(s)
- Kevin D Ballard
- Departments of Kinesiology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DJ, Muskiet FA. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem 2013; 24:1183-201. [DOI: 10.1016/j.jnutbio.2013.02.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/03/2013] [Accepted: 02/18/2013] [Indexed: 12/26/2022]
|
50
|
Rizzo M, Nikolic D, Banach M, Giglio RV, Patti AM, Di Bartolo V, Tamburello A, Zabbara A, Pecoraro G, Montalto G, Rizvi AA. The effects of liraglutide on glucose, inflammatory markers and lipoprotein metabolism: current knowledge and future perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|