1
|
Guan C, Chen R, Wang Y. Inflammatory markers mediate association of AIP with kidney failure risk: data from National Health and Nutrition Examination Survey (NHANES) 2005-2018. Ren Fail 2025; 47:2486565. [PMID: 40230193 PMCID: PMC12001854 DOI: 10.1080/0886022x.2025.2486565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/16/2025] Open
Abstract
Dyslipidemia and inflammation often coexist in the progression of kidney failure, with the atherosclerosis index of plasma (AIP) serving as a valuable marker for monitoring dyslipidemia. This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey (NHANES) spanning 2005 to 2018, involving a total of 10,358 participants. AIP was calculated as the logarithmic ratio (base 10) of triglycerides to high-density lipoprotein cholesterol (log10[TG/HDL-C]), while kidney failure was assessed through self-reported physician diagnosis. Logistic regression models and restricted cubic splines (RCS) were utilized to examine the association between AIP and the risk of kidney failure, with additional subgroup analyses performed to explore potential interactions. Mediation analyses were conducted to investigate whether inflammatory markers mediated the relationship between AIP and kidney failure. In logistic regression, after adjusting for all covariates, AIP was found to be positively associated with the risk of kidney failure [OR = 1.74 (95% CI: 1.04-2.92)], and a linear relationship between AIP and kidney failure risk was observed (P-non-linear = 0.4050). Mediation analysis revealed that segmented neutrophils, eosinophils, and monocytes partially mediated the association between AIP and kidney failure, with mediation proportions of 19.65%, 2.44%, and 7.25%, respectively. These findings suggest that Higher AIP was associated with an increased risk of kidney failure, with segmented neutrophils, eosinophils, and monocytes serving as partial mediators. The results provide valuable insights into the role of inflammation in kidney failure and highlight potential avenues for its prevention.
Collapse
Affiliation(s)
- Chengjing Guan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ruixue Chen
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yu Wang
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Zhang Y, Han L, Ning Q, Zhang X, Zhang M, Peng J, Chen H, Zhao Z, Wang D. Gastrodin attenuates hypercholesterolaemia through regulating the PCSK9/LDLR signalling pathway by suppressing HNF-1α and activating FoxO3a. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156778. [PMID: 40279963 DOI: 10.1016/j.phymed.2025.156778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Hypercholesterolaemia is a prevalent etiological factor of cardiovascular diseases (CVDs). Gastrodin (Gas), the paramount active constituent in Gastrodia elata Bl., has lipid-lowering and anti-inflammatory properties for the treatment of CVDs. Nevertheless, the underlying mechanism responsible for hypolipidemic efficacy remains to be elucidated. The signalling pathwayof PCSK9/LDLR is a key signalling pathway that regulates cholesterol metabolism. PURPOSE This investigation elucidated whether Gas has an inhibitory effect on hypercholesterolaemia and whether this effect is associated with the regulation of the PCSK9/LDLR signalling pathway. METHODS We induced hypercholesterolaemia of mice by feeding them a high-fat diet (HFD) for 12 weeks to analyse the therapeutic effects and related pathways of Gas in vivo. In vitro, western blotting, qRT-PCR, molecular docking, and transfection were employed to verify the molecular mechanism of action of Gas in the treatment of hypercholesterolaemia. RESULTS Gas exhibited potent therapeutic effects against hypercholesterolaemia in HFD mice. Moreover, the HFD-induced hepatic lipid accumulation and liver damage were attenuated by Gas. Mechanistically, Gas decreased the expression of PCSK9 via inhibiting the JAK2/STAT3 signalling pathway to suppress HNF-1α and promote FoxO3a. In addition, Gas increased LDLR transcription via SREBP2 activation. CONCLUSION Collectively, our data provide new insights into the prevention and treatment of hyperlipidaemia by Gas.
Collapse
Affiliation(s)
- Yaowen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China
| | - Qiyuan Ning
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Xixi Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Menglian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China
| | - Hao Chen
- First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute for the Evaluation of the Efficacy and Safety of Chinese Medicines, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230011, China.
| |
Collapse
|
3
|
Laghezza A, Falbo E, Gilardi F, Thomas A, Brunetti L, Leuci R, Piemontese L, Tortorella P, Biswas A, Singh RP, Pattnaik AK, Jayaprakash V, Tambe S, Ca S, Wackerlig-Damle J, Paoli P, Loiodice F, Lavecchia A. A new potent and selective peroxisome proliferator-activated receptor alpha partial agonist displays anti-steatotic effects In vitro and behaves as a safe hypolipidemic and hypoglycemic agent in a diabetic mouse model. Eur J Med Chem 2025; 289:117494. [PMID: 40088662 DOI: 10.1016/j.ejmech.2025.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
A rational drug design approach led to the synthesis of three pairs of enantiomers derived from the peroxisome proliferator-activated receptor (PPAR) pan agonist AL29-26, identifying (S)-2 as a potent and selective PPARα partial agonist. Molecular docking and molecular dynamics simulations elucidated the binding modes of (S)-2 within the ligand-binding domains of PPARα and PPARγ. In vitro, (S)-2 demonstrated significant anti-steatotic effects, upregulating key PPARα target genes involved in lipid metabolism. In vivo, (S)-2 exhibited hypolipidemic and antihyperglycemic activity in a diabetic mouse model, outperforming fenofibrate in lowering blood glucose and lipid levels, while showing no toxicity in major organs (artery, kidney, liver, pancreas). The therapeutic effects of ((S)-2 were attributed to its PPARα selectivity, reduced activation of PPARγ, and mild protein tyrosine phosphatase 1B (PTP1B) inhibition. These findings highlight (S)-2 as a promising lead compound for the development of safer and more effective treatments for dyslipidemic type 2 diabetes.
Collapse
Affiliation(s)
- Antonio Laghezza
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro, 70125, Bari, Italy
| | - Emanuele Falbo
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli Federico II, 80131, Napoli, Italy
| | - Federica Gilardi
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne-Geneva, Switzerland
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne-Geneva, Switzerland
| | - Leonardo Brunetti
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro, 70125, Bari, Italy
| | - Rosalba Leuci
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro, 70125, Bari, Italy
| | - Luca Piemontese
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro, 70125, Bari, Italy
| | - Paolo Tortorella
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro, 70125, Bari, Italy
| | - Abanish Biswas
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ashok Kumar Pattnaik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suhas Tambe
- Adgyl Lifesciences Private Ltd, Bengaluru, Karnataka, 560058, India
| | - Sudeep Ca
- Bioanalytical Section, Eurofins Advinus Biopharma Services India Pvt Ltd., Bengaluru, Karnataka, 560058, India
| | - Judith Wackerlig-Damle
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090, Vienna, Austria
| | - Paolo Paoli
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Sezione di Scienze Biochimiche, Università degli Studi di Firenze, viale Morgagni 50, 50134, Firenze, Italy
| | - Fulvio Loiodice
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro, 70125, Bari, Italy.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli Federico II, 80131, Napoli, Italy.
| |
Collapse
|
4
|
Tamaki A, Kuroda M, Yonaha K, Ishiki Y, Uehara M, Nakayama Y, Honma KI, Chinen R, Uema T, Okamoto S, Miyoshi J, Kirinashizawa M, Sato K, Aohara T, Yamamoto M, Maezawa Y, Yokote K, Masuzaki H. A Rare Case of Autoimmune-Mediated Lecithin:Cholesterol Acyltransferase Insufficiency Manifesting as the Acute Onset of Extremely Hypo-High-Density Lipoprotein-Cholesterolemia and Spontaneous Improvement: A Case Report with a Review of the Literature. J Atheroscler Thromb 2025; 32:649-659. [PMID: 39662947 PMCID: PMC12055513 DOI: 10.5551/jat.65298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/20/2024] [Indexed: 12/13/2024] Open
Abstract
A 59-year-old Japanese woman was referred for an extremely low level of circulating high-density lipoprotein cholesterol (HDL-C). The serum HDL-C level had long been within the normal range but suddenly decreased asymptomatically to 7 mg/dL. She had no typical symptoms associated with familial lecithin, cholesterol acyltransferase deficiency (FLD), including proteinuria, anemia, and corneal opacity. The circulating level of ApoA-1 was also markedly decreased at 48 mg/dL, and the proportion of esterified cholesterol to free cholesterol was irregularly low at 26%. Whole-genome sequencing revealed no apparent pathological mutations in the LCAT gene. Notably, anti-LCAT antibodies were detected in the serum at 146±1.7 ng/mL, resulting in her being diagnosed with acquired LCAT insufficiency (ALCATI) caused by anti-LCAT antibodies. Five years after her HDL-C levels spontaneously decreased, they increased without any identifiable cause. To our knowledge, only six cases of ALCATI caused by anti-LCAT antibodies have been reported to date. In contrast to the present case, previously reported cases of ALCATI manifested proteinuria that improved with steroid therapy. The unique clinical course in the present case highlights the heterogeneity of ALCATI, warranting further research to clarify the molecular pathophysiology of FLD and ALCATI.
Collapse
Affiliation(s)
- Atsuko Tamaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University Hospital, Chiba University, Chiba, Japan
| | - Ken Yonaha
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yohei Ishiki
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Moriyuki Uehara
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiro Nakayama
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Ken-ichiro Honma
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Rei Chinen
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tsugumi Uema
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shiki Okamoto
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | | | | | | | | | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroaki Masuzaki
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
5
|
Saito T, George J, Ozaki K, Tsuchishima M, Tsutsumi M. Pemafibrate modulates peroxisome proliferator-activated receptor alpha and prevents alcohol-associated liver disease in rats. Mol Med 2025; 31:145. [PMID: 40263984 PMCID: PMC12012945 DOI: 10.1186/s10020-025-01210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) with steatosis or steatohepatitis that could progress to liver cirrhosis is a common problem in chronic alcohol consumption. Pemafibrate is a novel, highly specific peroxisome proliferator-activated receptor-α (PPARα) modulator, which regulates the expression of the target genes related to lipid and glucose metabolism. Here, we evaluated the effect of pemafibrate to prevent ALD and steatosis in rats. METHODS The animals were treated with liquid diet containing ethanol (36% of total calories) or an isocaloric carbohydrate diet for 4 weeks. Subsequently, both groups were fed with either 0.5% aqueous methylcellulose solution (MC) or MC containing 0.3 mg/kg body weight of pemafibrate orally twice a day along with the liquid diet for another 4 weeks. A set of animals were sacrificed at the 4th week before the start of pemafibrate treatment and the remaining animals at the end of 8 weeks. Blood and liver samples were collected for biochemical and histopathological evaluations. RESULTS Treatment with pemafibrate prevented inflammation and steatosis in the hepatic tissue. Furthermore, pemafibrate administration markedly increased hepatic NAD and NADH levels, reduced both serum and hepatic triglyceride levels, and upregulated the expression of molecules involved in lipid metabolism. CONCLUSIONS The results of the present study demonstrated that pemafibrate modulates target genes related to hepatic lipid metabolism and prevents deposition of fat globules in the liver during chronic alcohol feeding in rats. Therefore, pemafibrate could be used as a potent therapeutic agent to prevent steatosis and related adverse events in ALD.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Joseph George
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, 920-0293, Japan.
| | - Kazuaki Ozaki
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mutsumi Tsuchishima
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Mikihiro Tsutsumi
- Department of Hepatology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Uchinada, Ishikawa, 920-0293, Japan.
| |
Collapse
|
6
|
Pangeni R, Poudel S, Herz SM, Berkbigler G, Duerfeldt AS, Damaj MI, Xu Q. New PPARα Agonist A190-Loaded Microemulsion for Chemotherapy-Induced Peripheral Neuropathy. Mol Pharm 2025; 22:1641-1656. [PMID: 39879378 PMCID: PMC11881135 DOI: 10.1021/acs.molpharmaceut.4c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy. To address these limitations, an optimized oil-in-water (o/w) microemulsion formulation was developed using Box-Behnken design to enhance the solubility and intestinal permeability of A190. The A190 microemulsion exhibited physical stability with a droplet size of approximately 100 nm and a drug loading efficiency of greater than 95%. The effective and apparent permeability of A190 from the microemulsion was significantly higher compared to that of free A190 dispersion, respectively. Additionally, no significant impact on the cell viability was observed, indicating less toxicity and a good biocompatibility of the formulation components. The oral bioavailability of A190 microemulsion was approximately 5-fold higher compared to A190 dispersion, demonstrating the microemulsion's potential to greatly enhance the oral bioavailability of hydrophobic drugs. Furthermore, our findings reveal that orally administered A190 microemulsion effectively reduced CIPN-induced mechanical hypersensitivity, likely mediated through PPARα activation. A190 microemulsion was found to be equally effective at reducing the chronic inflammatory complete Freund's adjuvant-induced pain. These results underscore A190s potential as a nonopioid therapeutic candidate, utilizing a novel microemulsion formulation for the management of chemotherapy-induced neuropathic pain and chronic inflammatory pain.
Collapse
Affiliation(s)
- Rudra Pangeni
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Surendra Poudel
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
| | - Sara M. Herz
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Grant Berkbigler
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Adam S. Duerfeldt
- Department
of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - M. Imad Damaj
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Qingguo Xu
- Department
of Pharmaceutics, School of Pharmacy, Virginia
Commonwealth University, Richmond, Virginia 23298, United States
- Departments
of Ophthalmology, Pediatrics, Biomedical Engineering, and Massey Cancer
Center, Center for Pharmaceutical Engineering, and Center for Drug
Discovery, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
7
|
Xie Z, Xin J, Huang C, Liao C. Drugs targeting peroxisome proliferator-activated receptors. Drug Discov Today 2025; 30:104318. [PMID: 39986646 DOI: 10.1016/j.drudis.2025.104318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
The year 2024 witnessed the accelerated approvals of two peroxisome proliferator-activated receptor (PPAR) agonists for the treatment of primary biliary cholangitis (PBC). PPARs, including three isoforms (PPARα, PPARγ, and PPARδ), are therapeutic targets generating considerable debate yet also seeing significant advances in their successful targeting. Currently, selective PPAR agonists are used to manage hyperlipidemia, type 2 diabetes mellitus (T2DM), and PBC, and dual/pan-PPAR agonists have been developed to address various disorders. In this review, we summarize the PPAR agonists approved globally, and their pros and cons as therapeutic agents for various diseases, with a particular focus on those agonists marketed since 2010.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiwei Xin
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chuping Huang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
8
|
Huang JXF, Yousaf A, Moon J, Ahmed R, Uppal K, Pemminati S. Recent Advances in the Management of Dyslipidemia: A Systematic Review. Cureus 2025; 17:e81034. [PMID: 40264627 PMCID: PMC12013775 DOI: 10.7759/cureus.81034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/24/2025] Open
Abstract
Dyslipidemia refers to abnormal levels of lipids in the bloodstream, typically exhibiting an increased pattern. Total cholesterol, high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and triglycerides (TGs) are all contributing factors to this disorder. This leads to an increased risk of atherosclerosis and cardiovascular diseases, such as coronary artery disease, which elevates the likelihood of morbidity. Dyslipidemia can be managed via the use of numerous classes of drugs and treatments. The conventional pharmacological agents comprising 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, selective cholesterol absorption inhibitors, proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), bile acid sequestrants, monoclonal antibodies, and nutritional supplementation, such as inhibitors of cholesterol synthesis and absorption, and promoters of LDL-C excretion, are also discussed. Furthermore, conventional pharmacological treatment of dyslipidemia may elicit a variety of adverse side effects that are detrimental to the quality of life of the user. These side effects include muscle pain, weakness, liver enzyme elevations, and hyperglycemia. This systematic review further analyzes the pharmacological actions of novel lipid-lowering agents such as adenosine triphosphate-citrate lyase inhibitors (ACLi), selective peroxisome proliferator-activated receptor alpha (PPARα) modulators, cholesteryl ester transfer protein inhibitors (CETPi), antisense oligonucleotides (ASO), and angiopoietin-like protein 3 inhibitors (ANGPTL3i) as well as their efficacy in treating dyslipidemia while sparing the user of potentially severe side effects. Compared to existing treatments, novel therapies have shown significantly greater effectiveness in managing dyslipidemia-related lipid profiles and exhibit fewer systemic adverse effects. Some of the recent therapies discussed are alternative treatments that offer patients promising efficacy and improved tolerability. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to ensure a robust and transparent search process, aiming to minimize bias and maximize the retrieval of pertinent studies for review. Thus, this systematic review provides an overview of current and novel treatments for dyslipidemia, describing their efficacy, mechanism of action, safety, and side effects. As experimental investigations and clinical research progress, there is a possibility that a combination of newly tested medications and traditional ones may emerge as a promising treatment option for dyslipidemia in the future.
Collapse
Affiliation(s)
- Jacky Xiao Feng Huang
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Adil Yousaf
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Julie Moon
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Ramiz Ahmed
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Krishma Uppal
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| | - Sudhakar Pemminati
- Department of Biomedical Education, California Health Sciences University College of Osteopathic Medicine, Clovis, USA
| |
Collapse
|
9
|
Saito S, Cao DY, Bernstein EA, Shibata T, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is an essential factor in enhanced macrophage immune function induced by angiotensin-converting enzyme. Cell Mol Immunol 2025; 22:243-259. [PMID: 39910334 PMCID: PMC11868401 DOI: 10.1038/s41423-025-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Increased expression of angiotensin-converting enzyme (ACE) by myeloid lineage cells strongly increases the immune activity of these cells, as observed in ACE10/10 mice, which exhibit a marked increase in antitumor and antibactericidal immunity. We report that peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that regulates genes critical for lipid metabolism, is a key molecule in the enhanced macrophage function induced by ACE. Here, we used a Cre-LoxP approach with LysM-Cre to create a modified ACE10/10 mouse line in which macrophages continue to generate abundant ACE but in which monocyte and macrophage PPARα expression is selectively suppressed. These mice, termed A10-PPARα-Cre, have significantly increased growth of B16-F10 tumors compared with ACE10/10 mice with Cre expression. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-expressing macrophages, resulting in reduced tumor antigen-specific CD8+ T-cell generation. Additionally, the elevated bactericidal resistance typical of ACE10/10 mice was significantly reduced in A10-PPARα-Cre mice, such that these mice resembled WT mice in their resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection. THP-1 cells expressing increased ACE (termed THP-1-ACE) constitute a human macrophage model with increased PPARα that shows enhanced cytotoxicity against tumor cells and better phagocytosis and killing of MRSA. RNA silencing of PPARα in THP-1-ACE cells reduced both tumor cell death and bacterial phagocytosis and clearance. In contrast, the in vivo administration of pemafibrate, a specific agonist of PPARα, to WT and A10-PPARα-Cre mice reduced B16-F10 tumor growth by 24.5% and 25.8%, respectively, but pemafibrate reduced tumors by 57.8% in ACE10/10 mice. With pemafibrate, the number of antitumor CD8+ T cells was significantly lower in A10-PPARα-Cre mice than in ACE10/10 mice. We conclude that PPARα is important in the immune system of myeloid cells, including wild-type cells, and that its increased expression by ACE-expressing macrophages in ACE10/10 mice is indispensable for ACE-dependent functional upregulation of macrophages in both mice and human cells.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aoi O Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aleksandr B Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erika E Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Jennifer E Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Li P, Jiang W. A New Insight on Atherosclerosis Mechanism and Lipid-Lowering Drugs. Rev Cardiovasc Med 2025; 26:25321. [PMID: 40160588 PMCID: PMC11951287 DOI: 10.31083/rcm25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 04/02/2025] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease primarily affecting large and medium-sized arteries, involving complex pathological mechanisms such as inflammatory responses, lipid metabolism disorders and vascular plaque formation. In recent years, several emerging research hotspots have appeared in the field of atherosclerosis, including gut microbiota, pyroptosis, ferroptosis, autophagy, cuproptosis, exosomes and non-coding RNA. Traditional lipid-lowering drugs play a crucial role in the treatment of AS but are not able to significantly reverse the pathological changes. This article aims to summarize the latest research progress in the pathogenesis of AS and the diagnosis and treatment of the disease by comprehensively analyzing relevant literature mainly from the past five years. Additionally, the mechanisms of action and research advances of statins, cholesterol absorption inhibitors, fibrates and novel lipid-lowering drugs are reviewed to provide new insights into the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Penghui Li
- Binhai New Area Hospital of TCM, 300000 Tianjin, China
| | - Wei Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300000 Tianjin, China
| |
Collapse
|
11
|
Ghannam IAY, Hassan RM, Abdel-Maksoud MS. Peroxisome proliferator-activated receptors (PPARs) agonists as promising neurotherapeutics. Bioorg Chem 2025; 156:108226. [PMID: 39908735 DOI: 10.1016/j.bioorg.2025.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
Neurodegenerative disorders are characterized by a continuous neurons loss resulting in a wide range of pathogenesis affecting the motor impairment. Several strategies are outlined for therapeutics of synthetic and natural PPARs agonists in some neurological disorders; Parkinson's disease (PD), Alzheimer's disease (AD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The aim of this review is to provide a recent update of the previously reported studies, and reviews dealing with the medicinal chemistry of PPARs and their agonists, and to highlight the outstanding advances in the development of both synthetic compounds including; PPARα agonists (fibrates), PPARγ agonists (thiazolidindiones), and PPARβ/δ agonists either as sole or dual acting PPAR full or pan agonists, in addition to the natural phytochemicals; acids, cannabinoids, and flavonoids for their different neuroprotection effects in the previously mentioned neurodegenerative disorders (PD, AD, MS, ALS, and HD). Moreover, this review reports the diverse pre-clinical and clinical studies of PPARs agonists in the neurodegenerative diseases via cellular, and animal models and human.
Collapse
Affiliation(s)
- Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Okamoto A, Yokokawa H, Nagamine T, Goto K, Fukuda H, Hisaoka T, Naito T. Effect and safety of pemafibrate for patients with type 2 diabetes mellitus and hypertriglyceridemia: a retrospective analysis of clinical data. BMC Endocr Disord 2025; 25:34. [PMID: 39934815 PMCID: PMC11812250 DOI: 10.1186/s12902-025-01872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVES Fibrates are suitable for the treatment of patients with high triglyceride (TG) levels. Although pemafibrate (PEMA) has been reported to have beneficial and pleiotropic actions, clinical examinations of the efficacy of PEMA for Japanese patients with hypertriglyceridemia are still limited in actual clinical settings. The aim was to evaluate the efficacy of PEMA by analyzing data from diabetic patients treated with PEMA in clinical practice. METHODS Patients with type 2 diabetes mellitus and hypertriglyceridemia who were started on PEMA for at least 3 months were included in the analysis. Changes in lipid metabolism, liver function, renal function, and blood tests from before to after 3 months of PEMA treatment were evaluated. RESULTS A total of 100 eligible patients were included in the analysis (72 males, mean age 52.9 years). TG levels decreased significantly, and high-density lipoprotein cholesterol levels increased significantly after 3 months of therapy. Low-density lipoprotein cholesterol levels were not significantly changed. Liver-related parameters showed a significant decrease. In addition, a significant decrease in creatinine levels was found in patients switching from other fibrates. There were no severe adverse events. CONCLUSION PEMA showed beneficial effects on lipid metabolism and liver function. The improvement of lipid metabolism was found in patients switching from other fibrates. It is possible that PEMA may improve lipid metabolism in patients with hypertriglyceridemia. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Aki Okamoto
- OKM Okamoto Internal Medicine Clinic, Tokyo, Japan
| | - Hirohide Yokokawa
- Department of General Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Tomoko Nagamine
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kento Goto
- Department of General Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroshi Fukuda
- Department of General Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Teruhiko Hisaoka
- Department of General Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
13
|
Fujioka Y. The Clinical Implication of Pemafibrate, a Novel Selective PPARα Modulator. J Atheroscler Thromb 2025; 32:120-121. [PMID: 39537152 PMCID: PMC11802243 DOI: 10.5551/jat.ed275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
14
|
Li X, Li ZF, Wu NQ. Remnant Cholesterol and Residual Risk of Atherosclerotic Cardiovascular Disease. Rev Cardiovasc Med 2025; 26:25985. [PMID: 40026498 PMCID: PMC11868899 DOI: 10.31083/rcm25985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 03/05/2025] Open
Abstract
Remnant cholesterol (RC) is increasingly recognized as a key target in the treatment of atherosclerotic cardiovascular disease (ASCVD), addressing much of the residual risk that persists despite standard therapies. However, integrating RC into clinical practice remains challenging. Key issues, such as the development of accessible RC measurement methods, the identification of safe and effective medications, the determination of optimal target levels, and the creation of RC-based risk stratification strategies, require further investigation. This article explores the complex role of RC in ASCVD development, including its definition, metabolic pathways, and its association with both the overall risk and residual risk of ASCVD in primary and secondary prevention. It also examines the effect of current lipid-lowering therapies on RC levels and their influence on cardiovascular outcomes. Recent research has highlighted promising advancements in therapies aimed at lowering RC, which show potential for reducing major adverse cardiovascular events (MACEs). Inhibitors such as angiopoietin-like protein 3 (ANGPTL3), apolipoprotein C-III (apoCIII), and proprotein convertase subtilisin/kexin type 9 (PCSK9) have demonstrated their ability to modulate RC and reduce MACEs by targeting specific proteins involved in RC synthesis and metabolism. There is a pressing need for larger randomized controlled trials to clarify the role of RC in relevant patient populations. The development of targeted RC-lowering therapies holds the promise of significantly reducing the high rates of morbidity and mortality associated with ASCVD.
Collapse
Affiliation(s)
- Xi Li
- Cardiometabolic Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, 100037 Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, 100037 Beijing, China
| | - Na-Qiong Wu
- Cardiometabolic Center, FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science, 100037 Beijing, China
| |
Collapse
|
15
|
Paraskevaidis I, Kourek C, Tsougos E. Chronic Coronary Artery Disease: Wall Disease vs. Lumenopathy. Biomolecules 2025; 15:201. [PMID: 40001504 PMCID: PMC11852618 DOI: 10.3390/biom15020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Acute and chronic coronary artery disease (CAD) are interconnected, representing two facets of the same condition. Chronic CAD exhibits a dynamic nature, manifesting as stable or acute ischemia, or both. Myocardial ischemia can be transient and reversible. The genesis of CAD involves diverse anatomical and functional mechanisms, including endothelial dysfunction, arteriolar remodeling, capillary rarefaction, and perivascular fibrosis, though no single factor explains its heterogeneity. Chronic CAD is often stable but may present as symptomatic or asymptomatic (e.g., in diabetes) and affect various coronary compartments (epicardial or microcirculation). This complexity necessitates a reappraisal of our approach, as pathophysiological mechanisms vary and often overlap. A comprehensive exploration of these mechanisms using advanced diagnostic techniques can aid in identifying the dynamic processes underlying CAD. The disease may present as obstructive or non-obstructive, stable or unstable, underscoring its diversity. The primary source of CAD lies in the arterial wall, emphasizing the need for research on its components, such as the endothelium and vascular smooth muscle cells, and factors disrupting arterial homeostasis. Shifting focus from arterial luminal status to the arterial wall can provide insights into the genesis of atheromatous plaques, enabling earlier interventions to prevent their development and progression.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece;
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| | - Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Elias Tsougos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece;
| |
Collapse
|
16
|
Lv Z, Zhang Y, Lu M, Wang Z, Nong X, Wen G, Zhang W. cRGD-platelet@MnO/MSN@PPARα/LXRα Nanoparticles Improve Atherosclerosis in Rats by Inhibiting Inflammation and Reducing Blood Lipid. Curr Pharm Biotechnol 2025; 26:740-753. [PMID: 39225219 DOI: 10.2174/0113892010314993240819065655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/25/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Atherosclerosis (AS) is an inflammatory disease of arterial intima driven by lipids. Liver X receptor alpha (LXRα) and peroxisome proliferator-activated receptor alpha (PPARα) agonists are limited in the treatment of AS due to their off-target effects and serious side effects. Therefore, this study was designed to construct a novel nanoparticle (NP) and evaluate its mechanism of action on inflammation inhibition and lipid reduction in AS. METHODS We synthesized cRGD-platelet@MnO/MSN@PPARα/LXRα NPs (cRGD-platelet- NPs) and confirmed their size, safety, and targeting ability through various tests, including dynamic light scattering and immunofluorescence. In vivo and in vitro experiments assessed cell proliferation, apoptosis, inflammation, and plaque formation. Finally, the NF-κB signaling pathway expression in rat aorta was determined using a western blot. RESULTS The synthesis of cRGD-platelet-NPs was successful; the particle size was approximately 150 nm, and the PDI was below 0.3. They could be successfully absorbed by cells, exhibiting high safety in vivo and in vitro. The cRGD-platelet-NPs successfully reduced plaque formation, improved lipid profiles by lowering LDL-cholesterol, total cholesterol, and triglycerides, and raised HDL-cholesterol levels. Additionally, they decreased inflammatory markers in the serum and aortic tissue, suggesting reduced inflammation. Immunohistochemistry and western blot analyses indicated that these NPs could not only promote M2 macrophage polarization but also suppress the NF-κB signaling pathway. CONCLUSION The newly developed cRGD-platelet-NPs with high safety are a promising approach to AS treatment, which can regulate ABCA1, reduce the formation of AS plaques, and enhance cholesterol efflux. The mechanism may involve the suppression of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zheng Lv
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Yupeng Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Mengke Lu
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Ziyi Wang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Xiaoyue Nong
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| | - Guoliang Wen
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, China
| |
Collapse
|
17
|
Abdel-Dayem SIA, Otify AM, Iannotti FA, Saber FR, Moriello AS, Giovannuzzi S, Świątek Ł, Bonardi A, Gratteri P, Skalicka-Woźniak K, Supuran CT. Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors. Bioorg Chem 2025; 154:108032. [PMID: 39672074 DOI: 10.1016/j.bioorg.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO2 hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Asmaa M Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt.
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy.
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland.
| | - Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
18
|
Ohguro H, Nishikiori N, Sato T, Watanabe M, Higashide M, Furuhashi M. Pemafibrate Induces a Low Level of PPARα Agonist-Stimulated mRNA Expression of ANGPTL4 in ARPE19 Cell. Bioengineering (Basel) 2024; 11:1247. [PMID: 39768065 PMCID: PMC11673482 DOI: 10.3390/bioengineering11121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
To elucidate the unidentified roles of a selective peroxisome proliferator-activated receptor α (PPARα) agonist, pemafibrate (Pema), on the pathogenesis of retinal ischemic diseases (RID)s, the pharmacological effects of Pema on the retinal pigment epithelium (RPE), which is involved in the pathogenesis of RID, were compared with the pharmacological effects of the non-fibrate PPARα agonist GW7647 (GW). For this purpose, the human RPE cell line ARPE19 that was untreated (NT) or treated with Pema or GW was subjected to Seahorse cellular metabolic analysis and RNA sequencing analysis. Real-time cellular metabolic function analysis revealed that pharmacological effects of the PPARα agonist actions on essential metabolic functions in RPE cells were substantially different between Pema-treated cells and GW-treated cells. RNA sequencing analysis revealed the following differentially expressed genes (DEGs): (1) NT vs. Pema-treated cells, 37 substantially upregulated and 72 substantially downregulated DEGs; (2) NT vs. GW-treated cells, 32 substantially upregulated and 54 substantially downregulated DEGs; and (3) Pema vs. GW, 67 substantially upregulated and 51 markedly downregulated DEGs. Gene ontology (GO) analysis and ingenuity pathway analysis (IPA) showed several overlaps or differences in biological functions and pathways estimated by the DEGs between NT and Pema-treated cells and between NT and GW-treated cells, presumably due to common PPARα agonist actions or unspecific off-target effects to each. For further estimation, overlaps of DEGs among different pairs of comparisons (NT vs. Pema, NT vs. GW, and Pema vs. GW) were listed up. Angiopoietin-like 4 (ANGPTL4), which has been shown to cause deterioration of RID, was the only DEG identified as a common significantly upregulated DEG in all three pairs of comparisons, suggesting that ANGPTL4 was upregulated by the PPARα agonist action but that its levels were substantially lower in Pema-treated cells than in GW-treated cells. In qPCR analysis, such lower efficacy for upregulation of the mRNA expression of ANGPTL4 by Pema than by GW was confirmed, in addition to substantial upregulation of the mRNA expression of HIF1α by both agonists. However, different Pema and GW-induced effects on mRNA expression of HIF1α (Pema, no change; GW, significantly downregulated) and mRNA expression of ANGPTL4 (Pema, significantly upregulated; GW, significantly downregulated) were observed in HepG2 cells, a human hepatocyte cell line. The results of this study suggest that actions of the PPARα agonists Pema and GW are significantly organ-specific and that lower upregulation of mRNA expression of the DR-worsening factor ANGPTL4 by Pema than by GW in ARPE19 cells may minimize the risk for development of RID.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan;
| |
Collapse
|
19
|
Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8421-8443. [PMID: 38861011 DOI: 10.1007/s00210-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), more appropriately known as metabolic (dysfunction) associated fatty liver disease (MAFLD), a prevalent condition in type 2 diabetes mellitus (T2DM) patients, is a complex condition involving hepatic lipid accumulation, inflammation, and liver fibrosis. The gut-liver axis is closely linked to metabolic dysfunction, insulin resistance, inflammation, and oxidative stress that are leading to the cooccurrence of MAFLD and T2DM cardiovascular diseases (CVDs). The purpose of this review is to raise awareness about the role of the gut-liver axis in the progression of MAFLD, T2DM and CVDs with a critical analysis of available treatment options for T2DM and MAFLD and their impact on cardiovascular health. This study analysed over 100 articles on this topic, using online searches and predefined keywords, to understand and summarise published research. Numerous studies have shown a strong correlation between gut dysfunction, particularly the gut microbiota and its metabolites, and the occurrence and progression of MAFLD and type 2 diabetes mellitus (T2DM). Herein, this article also examines the impact of the gut-liver axis on MAFLD, T2DM, and related complications, focusing on the role of gut microbiota dysbiosis in insulin resistance, T2DM and obesity-related cardiovascular complications. The study suggests potential treatment targets for MAFLD linked to T2DM, focusing on cardiovascular outcomes and the molecular mechanism of the gut-liver axis, as gut microbiota dysbiosis contributes to obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
20
|
Papafaklis MI, Koros R, Tsigkas G, Karanasos A, Moulias A, Davlouros P. Reversal of Atherosclerotic Plaque Growth and Vulnerability: Effects of Lipid-Modifying and Anti-Inflammatory Therapeutic Agents. Biomedicines 2024; 12:2435. [PMID: 39595002 PMCID: PMC11591594 DOI: 10.3390/biomedicines12112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Atherosclerotic plaque development constitutes the primary substrate of coronary artery disease (CAD) and is the outcome of an intricate process involving endothelial damage, inflammation, and lipid retention. The clinical efficacy of many lipid-lowering therapies in patients with CAD has been well established. Over the past few decades, a substantial and significant advance regarding the use of invasive and non-invasive imaging modalities has been observed. Numerous studies have been conducted using these imaging techniques and have investigated the changes in morphology (e.g., atheroma volume) and composition (e.g., lipid burden, fibrous cap thickness, macrophage accumulation) at the plaque level that explain the improved clinical outcomes by various pharmacological interventions. Lipid-lowering agents, such as statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, demonstrate direct effects on plaque volume and composition that enhance plaque stabilization and/or regression beyond the reduction of low-density lipoproteins. An increasing amount of clinical research is also focused on the role of inflammation in plaque vulnerability and future adverse cardiac events. Consequently, there is a pressing need to explore therapeutic strategies that are capable of disrupting the inflammatory response as well as reducing atheroma burden and modifying high-risk plaque characteristics. This review provides a comprehensive analysis of the current evidence regarding the effects of traditional and novel therapeutic strategies targeting modification of the lipid profile and inflammatory processes on reversing plaque growth and attenuating vulnerable features, thereby promoting plaque stabilization and passivation.
Collapse
Affiliation(s)
- Michail I. Papafaklis
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | - Rafail Koros
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | - Grigorios Tsigkas
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | - Antonios Karanasos
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| | | | - Periklis Davlouros
- Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Cardiology Division, University Hospital of Patras, 26504 Rio, Greece
| |
Collapse
|
21
|
Zeng Z, Xiao G, Liu Y, Wu M, Wei X, Xie C, Wu G, Jia D, Li Y, Li S, Bi X. Metabolomics and network pharmacology reveal partial insights into the hypolipidemic mechanisms of ferulic acid in a dyslipidemia mouse model. Front Pharmacol 2024; 15:1466114. [PMID: 39372201 PMCID: PMC11453126 DOI: 10.3389/fphar.2024.1466114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Hyperlipidemia is a condition characterized by abnormal levels of lipids and lipoproteins in the plasma, posing significant health risks. Ferulic acid (FA) is an organic acid with therapeutic properties for diabetes and hyperlipidemia. Methods To explore biomarkers for FA treatment of hyperlipidemia and elucidate the mechanisms of lipid-lowering-related changes in metabolic pathways by metabolomics and network pharmacology. Initially, a hyperlipidemic mouse model induced by triton WR-1339 was established to evaluate the therapeutic effects of FA. Subsequently, serum metabolomics was utilized to identify differential metabolites, and metabolic pathway analysis was performed using MetaboAnalyst 6.0. Thirdly, network pharmacology was employed to identify potential targets of FA for hyperlipidemia. Finally, the compound-target-metabolite (C-T-M) network obtained core targets and validated them with molecular docking. Results Biochemical analysis and histological examination showed that FA had lipid-lowering effects on hyperlipidemic mice. It identified 31 potential biomarkers for FA against hyperlipidemia by metabolomics involving lipid and amino acid metabolism. Lipid and atherosclerosis signaling pathways were identified as the key signaling pathways of FA against hyperlipidemia by KEGG analysis. Conjoint analysis showed that FA against hyperlipidemia was associated with 18 core targets and six biomarkers. Molecular docking results showed that FA has a high binding affinity to these core targets. Discussion Through the synergy of network pharmacology and metabolomics, this study provides insights into how FA regulates endogenous metabolites, underscoring its promise as a treatment for hyperlipidemia.
Collapse
Affiliation(s)
- Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanlin Xiao
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Yanchang Liu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minshan Wu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingqin Wei
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Canhui Xie
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangying Wu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dezheng Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yangxue Li
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Sumei Li
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoli Bi
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine/Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
23
|
Bashir B, Schofield J, Downie P, France M, Ashcroft DM, Wright AK, Romeo S, Gouni-Berthold I, Maan A, Durrington PN, Soran H. Beyond LDL-C: unravelling the residual atherosclerotic cardiovascular disease risk landscape-focus on hypertriglyceridaemia. Front Cardiovasc Med 2024; 11:1389106. [PMID: 39171323 PMCID: PMC11335737 DOI: 10.3389/fcvm.2024.1389106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Aims Historically, atherosclerotic cardiovascular disease (ASCVD) risk profile mitigation has had a predominant focus on low density lipoprotein cholesterol (LDL-C). In this narrative review we explore the residual ASCVD risk profile beyond LDL-C with a focus on hypertriglyceridaemia, recent clinical trials of therapeutics targeting hypertriglyceridaemia and novel modalities addressing other residual ASCVD risk factors. Findings Hypertriglyceridaemia remains a significant ASCVD risk despite low LDL-C in statin or proprotein convertase subtilisin/kexin type 9 inhibitor-treated patients. Large population-based observational studies have consistently demonstrated an association between hypertriglyceridaemia with ASCVD. This relationship is complicated by the co-existence of low high-density lipoprotein cholesterol. Despite significantly improving atherogenic dyslipidaemia, the most recent clinical trial outcome has cast doubt on the utility of pharmacologically lowering triglyceride concentrations using fibrates. On the other hand, purified eicosapentaenoic acid (EPA), but not in combination with docosahexaenoic acid (DHA), has produced favourable ASCVD outcomes. The outcome of these trials suggests alternate pathways involved in ASCVD risk modulation. Several other pharmacotherapies have been proposed to address other ASCVD risk factors targeting inflammation, thrombotic and metabolic factors. Implications Hypertriglyceridaemia poses a significant residual ASCVD risk in patients already on LDL-C lowering therapy. Results from pharmacologically lowering triglyceride are conflicting. The role of fibrates and combination of EPA and DHA is under question but there is now convincing evidence of ASCVD risk reduction with pure EPA in a subgroup of patients with hypertriglyceridaemia. Clinical guidelines should be updated in line with recent clinical trials evidence. Novel agents targeting non-conventional ASCVD risks need further evaluation.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- NIHR/Wellcome Trust Clinical Research Facility, Manchester, United Kingdom
| | - Jonathan Schofield
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Paul Downie
- Department of Clinical Biochemistry, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Michael France
- Department of Clinical Biochemistry, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, United Kingdom
| | - Darren M. Ashcroft
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alison K. Wright
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ioanna Gouni-Berthold
- Centre for Endocrinology, Diabetes and Preventive Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Akhlaq Maan
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Paul N. Durrington
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Handrean Soran
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- NIHR/Wellcome Trust Clinical Research Facility, Manchester, United Kingdom
| |
Collapse
|
24
|
Bentanachs R, Miró L, Sánchez RM, Ramírez-Carrasco P, Amat C, Alegret M, Pérez A, Roglans N, Laguna JC. Pemafibrate abrogates SLD in a rat experimental dietary model, inducing a shift in fecal bile acids and microbiota composition. Biomed Pharmacother 2024; 177:117067. [PMID: 38943989 DOI: 10.1016/j.biopha.2024.117067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND AND AIMS Drugs resolving steatotic liver disease (SLD) could prevent the evolution of metabolic dysfunction associated SLD (MASLD) to more aggressive forms but must show not only efficacy, but also a high safety profile. Repurposing of drugs in clinical use, such as pemafibrate and mirabegron, could facilitate the finding of an effective and safe drug-treatment for SLD. APPROACH AND RESULTS The SLD High Fat High Fructose (HFHFr) rat model develops steatosis without the influence of other metabolic disturbances, such as obesity, inflammation, or type 2 diabetes. Further, liver fatty acids are provided, as in human pathology, both from dietary origin and de novo lipid synthesis. We used the HFHFr model to evaluate the efficacy of pemafibrate and mirabegron, alone or in combination, in the resolution of SLD, analyzing zoometric, biochemical, histological, transcriptomic, fecal metabolomic and microbiome data. We provide evidence showing that pemafibrate, but not mirabegron, completely reverted liver steatosis, due to a direct effect on liver PPARα-driven fatty acid catabolism, without changes in total energy consumption, subcutaneous, perigonadal and brown fat, blood lipids and body weight. Moreover, pemafibrate treatment showed a neutral effect on whole-body glucose metabolism, but deeply modified fecal bile acid composition and microbiota. CONCLUSIONS Pemafibrate administration reverts liver steatosis in the HFHFr dietary rat SLD model without altering parameters related to metabolic or organ toxicity. Our results strongly support further clinical research to reposition pemafibrate for the treatment of SLD/MASLD.
Collapse
Affiliation(s)
- Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona 08028, Spain.
| | - Rosa M Sánchez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Patricia Ramírez-Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain.
| | - Concepció Amat
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona 08028, Spain.
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Anna Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Institute for Nutrition and Food Safety Research INSA-UB, University of Barcelona, Barcelona 08028, Spain.
| | - Núria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| | - Juan C Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Av. Joan XXIII 27-31, Barcelona 08028, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain; Institute of Biomedicine IBUB, University of Barcelona, Barcelona 08028, Spain.
| |
Collapse
|
25
|
Hassan M, Al-Obaidi H, Karrick M, Merza N, Nawras Y, Saab O, Al-Obaidi AD, Merza F, Hashim HT, Al Zubaidi K, Al-Sabbagh D, Matbachi R, Noori Z, Amatul-Raheem H, Mansur S, Al Najafi O, Algodi M, Al Hamdany T, Kobeissy A. Effect of Pemafibrate on the Lipid Profile, Liver Function, and Liver Fibrosis Among Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease. Gastroenterology Res 2024; 17:159-174. [PMID: 39247710 PMCID: PMC11379042 DOI: 10.14740/gr1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are prevalent conditions linked to obesity and metabolic disturbances, with potential complications such as cirrhosis and cardiovascular risks. This systematic review and meta-analysis aimed to evaluate the efficacy of pemafibrate, a drug targeting fat and sugar metabolism genes, in treating patients with MASLD/MASH. Methods Databases such as MEDLINE, Web of Science, Cochrane Library, and Scopus were searched until September 2023 to identify relevant studies. Selected studies underwent a thorough quality assessment using tools like Risk of Bias 2 tool (ROB-2) and the National Institutes of Health (NIH) Quality Assessment Tools. Comprehensive meta-analysis software was used for statistical evaluations, with a focus on lipid profiles, liver function tests, and fibrosis measurements. Results A total of 13 studies were included; 10 of them were included in the quantitative analysis. Our findings showed that pemafibrate significantly decreased low-density lipoprotein cholesterol (LDL-C) (effect size (ES) = -9.61 mg/dL, 95% confidence interval (CI): -14.15 to -5.08), increased high-density lipoprotein cholesterol (HDL-C) (ES = 3.15 mg/dL, 95% CI: 1.53 to 4.78), and reduced triglycerides (TG) (ES = -85.98 mg/dL, 95% CI: -96.61 to -75.36). Additionally, pemafibrate showed a marked reduction in liver enzyme levels, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (GGT), and alkaline phosphatase (ALP), with significant effect sizes and P values. For liver stiffness outcomes, pemafibrate decreased AST to platelet ratio index (APRI) (ES = -0.180, 95% CI: -0.221 to -0.138). Conclusions Pemafibrate, with its enhanced efficacy and safety profile, presents as a pivotal agent in MASLD/MASH treatment. Its lipid-regulating properties, coupled with its beneficial effects on liver inflammation markers, position it as a potentially invaluable therapeutic option.
Collapse
Affiliation(s)
- Mona Hassan
- Gastroenterology and Hepatology Department, The University of Toledo, Toledo, OH, USA
| | - Hasan Al-Obaidi
- Internal Medicine Department, Jamaica Hospital Medicine Center, Queens, NY, USA
| | - Megan Karrick
- Gastroenterology and Hepatology Department, The University of Toledo, Toledo, OH, USA
| | - Nooraldin Merza
- Gastroenterology and Hepatology Department, The University of Toledo, Toledo, OH, USA
| | - Yusuf Nawras
- University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Omar Saab
- Internal Medicine Department, Cleveland Clinic, Cleveland, OH, USA
| | | | - Fatima Merza
- Department of Health and Human Services, University of Michigan, Dearborn, MI, USA
| | | | - Khalid Al Zubaidi
- Internal Medicine Department, University of Al-Mostansiryah College of Medicine, Baghdad, Iraq
| | - Daniah Al-Sabbagh
- Internal Medicine Department, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Rand Matbachi
- Internal Medicine Department, College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Zainab Noori
- Internal Medicine Department, University of Al-Mostansiryah College of Medicine, Baghdad, Iraq
| | | | - Sarmad Mansur
- Gastroenterology and Hepatology Department, The University of Toledo, Toledo, OH, USA
| | - Omer Al Najafi
- Internal Medicine Department, Zucker School of Medicine, Northwell Health at Mather Hospital, Hempstead, NY, USA
| | - Marwah Algodi
- Internal Medicine Department, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Tamarah Al Hamdany
- Department of Health and Human Services, University of Michigan, Dearborn, MI, USA
| | - Abdallah Kobeissy
- Gastroenterology and Hepatology Department, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
26
|
Fruchart JC, Fruchart-Najib J, Yamashita S, Libby P, Yokote K, Kodama T, Tomita Y, Ridker PM, Hermans MP, Zambon A. Lessons from PROMINENT and prospects for pemafibrate. Cardiovasc Diabetol 2024; 23:279. [PMID: 39080716 PMCID: PMC11288121 DOI: 10.1186/s12933-024-02305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/16/2024] [Indexed: 08/03/2024] Open
Abstract
The neutral result of the PROMINENT trial has led to questions about the future for pemafibrate. This commentary discusses possible reasons for the lack of benefit observed in the trial. There were, however, indicators suggesting therapeutic potential in microvascular ischaemic complications associated with peripheral artery disease, with subsequent analysis showing reduction in the incidence of lower extremity ischaemic ulceration or gangrene. Reassurance about the safety of pemafibrate, together with emerging data from PROMINENT and experimental studies, also suggest benefit with pemafibrate in non-alcoholic fatty liver disease (alternatively referred to as metabolic dysfunction-associated steatotic liver disease) and microangiopathy associated with diabetes, which merit further study.
Collapse
Affiliation(s)
- Jean-Charles Fruchart
- Residual Risk Reduction Initiative (R3i) Foundation, Picassoplatz 8, Basel, 4010, Switzerland.
| | - Jamila Fruchart-Najib
- Residual Risk Reduction Initiative (R3i) Foundation, Picassoplatz 8, Basel, 4010, Switzerland.
| | - Shizuya Yamashita
- Rinku General Medical Center, Izumisano, Osaka, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Peter Libby
- Brigham and Womens Hospital, Harvard Medical School, Boston, USA
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University, 1-8-1 Inohana, Chuo- ku, Chiba, 260-8670, Japan
| | - Tatsuhiko Kodama
- RCAST. University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Yohei Tomita
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Paul M Ridker
- Division of Cardiovascular Medicine, Center for Cardiovascular Disease Prevention, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel P Hermans
- Division of Endocrinology and Nutrition, Cliniques universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Alberto Zambon
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Geng J, Wu Y, Tian H, Dong J. Alleviation of High-Fat Diet-Induced Hyperlipidemia in Mice by Stachys sieboldii Miq. Huangjiu via the Modulation of Gut Microbiota Composition and Metabolic Function. Foods 2024; 13:2360. [PMID: 39123552 PMCID: PMC11312184 DOI: 10.3390/foods13152360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperlipidemia is a chronic disease that is difficult to cure, and long-term pharmacotherapy may have negative consequences. Dietary therapy is a very promising strategy, and Chinese rice wine (Huangjiu) will play an important role because of its many biologically active components. In this work, the alleviating effect of Stachys sieboldii Miq. Huangjiu (CSCHJ) on high-fat diet-induced hyperlipidemia in mice was investigated, which is brewed from the wheat Qu with the addition of Stachys sieboldii Miq. and contains 15.54 g/L of polysaccharides. The experimental results showed that CSCHJ inhibited appetite, reduced body weight and blood sugar levels, and downregulated the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) while concurrently upregulating high-density lipoprotein cholesterol (HDL-C) in the high-fat diet-induced hyperlipidemia mice. At the same time, it was discovered that alcohol worsens hyperlipidemia symptoms and related physiological markers, implying that CSCHJ polysaccharides may play a role in hyperlipidemia treatment. Through the assessment of organ indices, liver and kidney function, and tissue staining, CSCHJ demonstrated efficacy in repairing liver, kidney, and colon mucosal damage in hyperlipidemic mice. Furthermore, 16S rDNA sequencing and gas chromatography studies revealed that CSCHJ effectively restored the intestinal microbial structure and enhanced the quantity of fecal short-chain fatty acids (SCFAs) in hyperlipidemic mice. Therefore, the alleviating effect of CSCHJ on hyperlipidemia in mice may be attributed to its regulation of energy metabolism by repairing liver, kidney, and colon mucosal damage and restoring the gut microbiota structure, among other mechanisms. Overall, our findings provide evidence that CSCHJ contains active ingredients capable of alleviating hyperlipidemia, thereby laying a theoretical foundation for the extraction of bioactive substances from Huangjiu for future medical or dietary use.
Collapse
Affiliation(s)
- Jingzhang Geng
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
- School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an 710049, China
| | - Yunxia Wu
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Honglei Tian
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Jianwei Dong
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| |
Collapse
|
28
|
Nakamura A, Kagaya Y, Saito H, Kanazawa M, Sato K, Miura M, Kondo M, Endo H. Impact of pemafibrate on lipid profile and insulin resistance in hypertriglyceridemic patients with coronary artery disease and metabolic syndrome. Heart Vessels 2024; 39:486-495. [PMID: 38393377 DOI: 10.1007/s00380-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
This study examined the effects of pemafibrate, a selective peroxisome proliferator-activated receptor α agonist, on the serum biochemical parameters of male patients with coronary artery disease and metabolic syndrome (MetS). This was a post hoc analysis of a randomized, crossover study that treated hypertriglyceridemia with pemafibrate or bezafibrate for 24 weeks, followed by a crossover of another 24 weeks. Of the 60 patients enrolled in the study, 55 were male. Forty-one of 55 male patients were found to have MetS. In this sub-analysis, male patients with MetS (MetS group, n = 41) and those without MetS (non-MetS group, n = 14) were compared. The primary endpoint was a change in fasting serum triglyceride (TG) levels during pemafibrate therapy, and the secondary endpoints were changes in insulin resistance-related markers and liver function parameters. Serum TG levels significantly decreased (MetS group, from 266.6 to 148.0 mg/dL, p < 0.001; non-MetS group, from 203.9 to 97.6 mg/dL, p < 0.001); however, a percent change (%Change) was not significantly different between the groups (- 44.1% vs. - 51.6%, p = 0.084). Serum insulin levels and homeostasis model assessment of insulin resistance significantly decreased in the MetS group but not in the non-MetS group. %Change in liver enzyme levels was markedly decreased in the MetS group compared with that in the non-MetS group (alanine aminotransferase, - 25.1% vs. - 11.3%, p = 0.027; gamma-glutamyl transferase, - 45.8% vs. - 36.2%, p = 0.020). In conclusion, pemafibrate can effectively decrease TG levels in patients with MetS, and it may be a more efficient drug for improving insulin resistance and liver function in such patients.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan.
| | - Yuta Kagaya
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Hiroki Saito
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masanori Kanazawa
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Kenjiro Sato
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masanobu Miura
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Masateru Kondo
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| | - Hideaki Endo
- Department of Cardiology, Iwate Prefectural Central Hospital, 1-4-1 Ueda, Morioka, 020-0066, Japan
| |
Collapse
|
29
|
Wu ZJ, Zhao YY, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Combining fecal 16 S rRNA sequencing and spinal cord metabolomics analysis to explain the modulatory effect of PPARα on neuropathic pain. Brain Res Bull 2024; 211:110943. [PMID: 38614408 DOI: 10.1016/j.brainresbull.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
30
|
Doi T, Langsted A, Nordestgaard BG. Remnant cholesterol, LDL cholesterol, and apoB absolute mass changes explain results of the PROMINENT trial. Atherosclerosis 2024; 393:117556. [PMID: 38678642 DOI: 10.1016/j.atherosclerosis.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS The PROMINENT trial, a cardiovascular outcome trial of the triglyceride- and remnant cholesterol-lowering agent pemafibrate, has shown neutral results despite reduction in plasma triglycerides and remnant cholesterol. We tested the hypothesis that absolute mass changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B explain the results of the PROMINENT trial. METHODS Among 108,431 individuals from the Copenhagen General Population Study (CGPS), those who met the key inclusion criteria of the PROMINENT trial were analyzed to mimic the trial design. Endpoint atherosclerotic cardiovascular disease (ASCVD) was cardiovascular death, myocardial infarction, ischemic stroke, and coronary revascularization as defined in PROMINENT. RESULTS In the PROMINENT trial, treatment with pemafibrate resulted in -7 mg/dL (-0.18 mmol/L; -18 %) change in remnant cholesterol, +10 mg/dL (+0.26 mmol/L; +12 %) LDL cholesterol, and +5 mg/dL (+0.05 g/L; +5 %) apolipoprotein B. In the CGPS mimicking PROMINENT, the estimated hazard ratios for ASCVD were 0.97 (95 % confidence interval: 0.94-0.99) for a -7 mg/dL (-0.18 mmol/L) change in remnant cholesterol, 1.04 (1.01-1.07) for a +10 mg/dL (+0.26 mmol/L) change in LDL cholesterol, and 1.02 (1.01-1.03) for a +5 mg/dL (+0.05 g/L) change in apolipoprotein B. When combining absolute changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B, the estimated hazard ratio for ASCVD was 1.05 (0.96-1.14) in the CGPS mimicking PROMINENT compared to 1.03 (0.91-1.15) in the PROMINENT trial. CONCLUSIONS Absolute mass changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B can explain results of the PROMINENT trial. The 3 mg/dL (0.08 mmol/L) higher total atherogenic cholesterol together with 5 mg/dL (0.05 g/L) higher apolipoprotein B seem to explain the trend toward more ASCVD in the pemafibrate arm.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Goto H, Iseri K, Hida N. Fibrates and the risk of cardiovascular outcomes in chronic kidney disease patients. Nephrol Dial Transplant 2024; 39:1016-1022. [PMID: 38012115 PMCID: PMC11139516 DOI: 10.1093/ndt/gfad248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The high risk of major adverse cardiovascular events (MACE) in patients with chronic kidney disease (CKD) has been well described. However, the efficacy of fibrates on the risk of MACE in patients with CKD remains unclear. METHODS We conducted a nested case-control study using data from a large administrative database that included more than 1.5 million Japanese patients. We defined cases as CKD patients with incidences of MACE and matched them with controls based on age, sex, calendar year of cohort entry and CKD stage. Fibrate exposure timing was categorized as current, recent or past. A conditional logistic regression analysis was used to investigate the association between fibrate use and the risk of MACE. RESULTS Our study included 47 490 patients with CKD, with 15 830 MACE identified during a median follow-up of 9.4 months. The numbers of fibrates used during the study period were 556 (3.5%) in the case group and 1109 (3.5%) in the control group. Fibrate use was significantly associated with a decreased risk of MACE [odds ratio (OR) 0.84; 95% confidence interval (CI) 0.75-0.94], particularly for current (OR 0.81; 95% CI 0.68-0.97) and recent use (OR 0.65; 95% CI 0.48-0.90). Regarding the class effect of fibrates, pemafibrate use, but not bezafibrate or fenofibrate use, was significantly associated with a decreased risk of MACE (OR 0.73; 95% CI 0.528-0.997). CONCLUSION Recent and current fibrate use, especially pemafibrate use, was associated with a reduced risk of MACE in patients with CKD. This suggests the potential benefits of continuous fibrate therapy and the possible superiority of pemafibrate over other fibrates. However, further investigations in different populations are required to confirm the generalizability of these findings.
Collapse
Affiliation(s)
- Hirohito Goto
- Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Kanagawa, Japan
- Department of Clinical Pharmacy, Division of Clinical Research and Development, School of Pharmacy, Showa University, Tokyo, Japan
| | - Ken Iseri
- Department of Clinical Pharmacy, Division of Clinical Research and Development, School of Pharmacy, Showa University, Tokyo, Japan
| | - Noriko Hida
- Department of Clinical Pharmacy, Division of Clinical Research and Development, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
32
|
Yamada-Shimizu M, Tamaki N, Kurosaki M, Uchihara N, Suzuki K, Tanaka Y, Miyamoto H, Ishido S, Nobusawa T, Matsumoto H, Keitoku T, Higuchi M, Takaura K, Tanaka S, Maeyashiki C, Yasui Y, Takahashi Y, Tsuchiya K, Nakanishi H, Izumi N. A Comparison of Alanine Aminotransferase Normalization between Pemafibrate and Bezafibrate in Patients with Nonalcoholic Fatty Liver Disease. Intern Med 2024; 63:1185-1190. [PMID: 37779070 PMCID: PMC11116030 DOI: 10.2169/internalmedicine.2248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Objective Pemafibrate is a recently developed selective peroxisome proliferator-activated receptor alpha modulator that can improve alanine aminotransferase (ALT) levels in patients with nonalcoholic fatty liver disease (NAFLD). However, the effectiveness of ALT normalization with pemafibrate and bezafibrate, a traditional fibrate, has not been compared. Methods In this retrospective study, we compared the effects of pemafibrate and bezafibrate on ALT normalization in patients with NAFLD. The primary endpoint was the ALT normalization rate at 12 months after administration. Patients Twenty and 14 patients with NAFLD receiving pemafibrate and bezafibrate, respectively, were included in this retrospective analysis. All patients had elevated ALT levels and dyslipidemia at entry. Results The ALT normalization rates at 3, 6, and 12 months were 40%, 55%, and 60% for pemafibrate and 14.3%, 28.6%, and 14.3% for bezafibrate, respectively. The ALT normalization rate at 12 months was significantly higher in patients treated with pemafibrate than in those treated with bezafibrate (p=0.01). Pemafibrate, when compared with bezafibrate, was shown to be a significant factor for ALT normalization in a multivariable analysis with an adjusted odds ratio (95% confidence interval) of 13.8 (1.6-115, p=0.01). Conclusion Pemafibrate is effective in ALT normalization in patients with NAFLD and may be used as a treatment for NAFLD.
Collapse
Affiliation(s)
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Naoki Uchihara
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Keito Suzuki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yuki Tanaka
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Haruka Miyamoto
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Shun Ishido
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Tsubasa Nobusawa
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Hiroaki Matsumoto
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Taisei Keitoku
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Mayu Higuchi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kenta Takaura
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Shohei Tanaka
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Chiaki Maeyashiki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yutaka Yasui
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Yuka Takahashi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Kaoru Tsuchiya
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Hiroyuki Nakanishi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Japan
| |
Collapse
|
33
|
Saito S, Cao D, Bernstein EA, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Shibata T, Ahmed F, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is essential factor in enhanced macrophage immune function induced by angiotensin converting enzyme. RESEARCH SQUARE 2024:rs.3.rs-4255086. [PMID: 38746124 PMCID: PMC11092867 DOI: 10.21203/rs.3.rs-4255086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE. The expression of PPARα, a transcription factor regulating fatty acid metabolism-associated gene expressions, was upregulated in ACE-overexpressing macrophages. To pinpoint the role of PPARα in the enhanced immune function of ACE-overexpressing macrophages, we established a line with myeloid lineage-selective PPARα depletion employing the Lysozyme 2 (LysM)-Cre system based on ACE 10/10 mice (named A10-PPARα-Cre). Interestingly, A10-PPARα-Cre mice exhibited larger B16-F10-originated tumors than original ACE 10/10 mice. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-overexpressing macrophages, resulting in reduced tumor antigen-specific CD8+ T cell activity. Additionally, the anti-bactericidal effect was also impaired in A10-PPARα-Cre mice, resulting in similar bacterial colonization to WT mice in Methicillin-Resistant Staphylococcus aureus (MRSA) infection. PPARα depletion downregulated phagocytic activity and bacteria killing in ACE-overexpressing macrophages. Moreover, THP-1-ACE-derived macrophages, as a human model, expressing upregulated PPARα exhibited enhanced cytotoxicity against B16-F10 cells and MRSA killing. These activities were further enhanced by the PPARα agonist, WY 14643, while abolished by the antagonist, GW6471, in THP-1-ACE cells. Thus, PPARα is an indispensable molecule in ACE-dependent functional upregulation of macrophages in both mice and humans.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ellen A. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aoi O. Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 3058577, Japan
| | - Aleksandr B. Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Erika E. Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Rua Botucatu, 862 terreo, Sao Paulo, 04023-062, Brazil
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Faizan Ahmed
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer E. Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
34
|
Wei G, Huang N, Li M, Guan F, Chen L, Liao Y, Xie X, Li Y, Su Z, Chen J, Liu Y. Tetrahydroberberine alleviates high-fat diet-induced hyperlipidemia in mice via augmenting lipoprotein assembly-induced clearance of low-density lipoprotein and intermediate-density lipoprotein. Eur J Pharmacol 2024; 968:176433. [PMID: 38369273 DOI: 10.1016/j.ejphar.2024.176433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The promotion of excess low-density lipoprotein (LDL) clearance stands as an effective clinical approach for treating hyperlipidemia. Tetrahydroberberine, a metabolite of berberine, exhibits superior bioavailability compared to berberine and demonstrates a pronounced hypolipidemic effect. Despite these characteristics, the impact of tetrahydroberberine on improving excessive LDL clearance in hyperlipidemia has remained unexplored. Thus, this study investigates the potential effects of tetrahydroberberine on high-fat diet-induced hyperlipidemia in mice. The findings reveal that tetrahydroberberine exerts a more potent lipid-lowering effect than berberine, particularly concerning LDL-cholesterol in hyperlipidemic mice. Notably, tetrahydroberberine significantly reduces serum levels of upstream lipoproteins, including intermediate-density lipoprotein (IDL) and very low-density lipoprotein, by promoting their conversion to LDL. This reduction is further facilitated by the upregulation of hepatic LDL receptor expression induced by tetrahydroberberine. Intriguingly, tetrahydroberberine enhances the apolipoprotein E (ApoE)/apolipoprotein B100 (ApoB100) ratio, influencing lipoprotein assembly in the serum. This effect is achieved through the activation of the efflux of ApoE-containing cholesterol in the liver. The ApoE/ApoB100 ratio exhibits a robust negative correlation with serum levels of LDL and IDL, indicating its potential as a diagnostic indicator for hyperlipidemia. Moreover, tetrahydroberberine enhances hepatic lipid clearance without inducing lipid accumulation in the liver and alleviates existing liver lipid content. Importantly, no apparent hepatorenal toxicity is observed following tetrahydroberberine treatment for hyperlipidemia. In summary, tetrahydroberberine demonstrates a positive impact against hyperlipidemia by modulating lipoprotein assembly-induced clearance of LDL and IDL. The ApoE/ApoB100 ratio emerges as a promising diagnostic indicator for hyperlipidemia, showcasing the potential clinical significance of tetrahydroberberine in lipid management.
Collapse
Affiliation(s)
- Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xingyu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
35
|
Ishida E, Horiguchi K, Matsumoto S, Ozawa A, Sekiguchi S, Yamada E. Influence of diet and body weight in treatment-resistant acquired partial lipodystrophy after hematopoietic stem cell transplantation and its potential for metabolic improvement. Diabetol Int 2024; 15:290-296. [PMID: 38524924 PMCID: PMC10959909 DOI: 10.1007/s13340-023-00674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/06/2023] [Indexed: 03/26/2024]
Abstract
Lipodystrophy is a rare disease characterized by various metabolic complications resulting from the complete or partial loss of adipose tissues and abnormal fat accumulation. Acquired lipodystrophy may occur due to certain drugs, autoimmunity or for unknown reasons. Recently, cases of acquired lipodystrophy after hematopoietic stem cell transplantation (HSCT) have been reported. Leptin administration, used recently to treat generalized lipodystrophy, effectively controlled metabolic complications; however, few reports demonstrated the effectiveness of leptin for acquired partial lipodystrophy. In this report, we present the case of a 17-year-old woman who developed insulin resistance, hypertriglyceridemia, and fatty liver after HSCT. Due to her thin gluteal fat and low blood adiponectin levels, her metabolic abnormalities were attributed to partial lipodystrophy. While both leptin and pemafibrate administration partially attenuated metabolic abnormalities, its effects were relatively limited, probably because the serum leptin levels were maintained, which is not likely in generalized lipodystrophy. Nevertheless, after she developed adjustment disorder and experienced weight loss, along with decreased food intake, her metabolic markers significantly improved. This case suggests the modest effect of leptin and permafibrate in partial lipodystrophy after HSCT, highlighting the importance of diet therapy in metreleptin treatment for acquired partial lipodystrophy.
Collapse
Affiliation(s)
- Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Kazuhiko Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Shunichi Matsumoto
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Atsushi Ozawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Sho Sekiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| | - Eijiro Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8511 Japan
| |
Collapse
|
36
|
Komai M, Noda Y, Ikeda A, Kaneshiro N, Kamikubo Y, Sakurai T, Uehara T, Takasugi N. Nuclear SphK2/S1P signaling is a key regulator of ApoE production and Aβ uptake in astrocytes. J Lipid Res 2024; 65:100510. [PMID: 38280459 PMCID: PMC10907773 DOI: 10.1016/j.jlr.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The link between changes in astrocyte function and the pathological progression of Alzheimer's disease (AD) has attracted considerable attention. Interestingly, activated astrocytes in AD show abnormalities in their lipid content and metabolism. In particular, the expression of apolipoprotein E (ApoE), a lipid transporter, is decreased. Because ApoE has anti-inflammatory and amyloid β (Aβ)-metabolizing effects, the nuclear receptors, retinoid X receptor (RXR) and LXR, which are involved in ApoE expression, are considered promising therapeutic targets for AD. However, the therapeutic effects of agents targeting these receptors are limited or vary considerably among groups, indicating the involvement of an unknown pathological factor that modifies astrocyte and ApoE function. Here, we focused on the signaling lipid, sphingosine-1-phosphate (S1P), which is mainly produced by sphingosine kinase 2 (SphK2) in the brain. Using astrocyte models, we found that upregulation of SphK2/S1P signaling suppressed ApoE induction by both RXR and LXR agonists. We also found that SphK2 activation reduced RXR binding to the APOE promoter region in the nucleus, suggesting the nuclear function of SphK2/S1P. Intriguingly, suppression of SphK2 activity by RNA knockdown or specific inhibitors upregulated lipidated ApoE induction. Furthermore, the induced ApoE facilitates Aβ uptake in astrocytes. Together with our previous findings that SphK2 activity is upregulated in AD brain and promotes Aβ production in neurons, these results indicate that SphK2/S1P signaling is a promising multifunctional therapeutic target for AD that can modulate astrocyte function by stabilizing the effects of RXR and LXR agonists, and simultaneously regulate neuronal pathogenesis.
Collapse
Affiliation(s)
- Masato Komai
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Yuka Noda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Atsuya Ikeda
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nanaka Kaneshiro
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita, Okayama, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo, Tokyo, Japan.
| |
Collapse
|
37
|
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:281-290. [PMID: 38402906 DOI: 10.1080/17460441.2023.2292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Plasma lipidomics has emerged as a powerful tool in cardiovascular drug discovery by providing insights into disease mechanisms, identifying potential biomarkers for diagnosis and prognosis, and discovering novel targets for drug development. Widespread application of plasma lipidomics is hampered by technological limitations and standardization and requires a collaborative approach to maximize its use in cardiovascular drug discovery. AREAS COVERED This review provides an overview of the utility of plasma lipidomics in cardiovascular drug discovery and discusses the challenges and future perspectives of this rapidly evolving field. The authors discuss the role of lipidomics in understanding the molecular mechanisms of CVD, identifying novel biomarkers for diagnosis and prognosis, and discovering new therapeutic targets for drug development. Furthermore, they highlight the challenges faced in data analysis, standardization, and integration with other omics approaches and propose future directions for the field. EXPERT OPINION Plasma lipidomics holds great promise for improving the diagnosis, treatment, and prevention of CVD. While challenges remain in standardization and technology, ongoing research and collaboration among scientists and clinicians will undoubtedly help overcome these obstacles. As lipidomics evolves, its impact on cardiovascular drug discovery and clinical practice is expected to grow, ultimately benefiting patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Timothy Abrahams
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
38
|
Tanaka Y, Takagi R, Mitou S, Shimmura M, Hasegawa T, Amarume J, Shinohara M, Kageyama Y, Sasase T, Ohta T, Muramatsu SI, Kakehashi A, Kaburaki T. Protective Effect of Pemafibrate Treatment against Diabetic Retinopathy in Spontaneously Diabetic Torii Fatty Rats. Biol Pharm Bull 2024:b23-00872. [PMID: 38432946 DOI: 10.1248/bpb.b23-00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Diabetic retinopathy (DR) can cause visual impairment and blindness, and the increasing global prevalence of diabetes underscores the need for effective therapies to prevent and treat DR. Therefore, this study aimed to evaluate the protective effect of pemafibrate treatment against DR, using a Spontaneously Diabetic Torii (SDT) fatty rat model of obese type 2 diabetes. SDT fatty rats were fed either a diet supplemented with pemafibrate (0.3 mg/kg/day) for 16 weeks, starting at 8 weeks of age (Pf SDT fatty: study group), or normal chow (SDT fatty: controls). Normal chow was provided to Sprague-Dawley (SD) rats (SD: normal controls). Electroretinography (ERG) was performed at 8 and 24 weeks of age to evaluate the retinal neural function. After sacrifice, retinal thickness, number of retinal folds, and choroidal thickness were evaluated, and immunostaining was performed for aquaporin-4 (AQP4). No significant differences were noted in food consumption, body weight, or blood glucose level after pemafibrate administration. Triglyceride levels were reduced, and high-density lipoprotein cholesterol levels were increased. Extension of oscillatory potential (OP)1 and OP3 waves on ERG was suppressed in the Pf SDT fatty group. Retinal thickness at 1,500 microns from the optic disc improved in the Pf SDT fatty group. No significant improvements were noted in choroidal thickness or number of retinal folds. Quantitative analyses showed that AQP4-positive regions in the retinas were significantly larger in the Pf SDT fatty group than in the SDT fatty group. The findings suggest that pemafibrate treatment can exert protective effects against DR.
Collapse
Affiliation(s)
| | - Rina Takagi
- Department of Ophthalmology, Jichi Medical University
| | - Shingen Mitou
- Department of Ophthalmology, Jichi Medical University
| | | | | | | | | | | | - Tomohiko Sasase
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc
| | - Takeshi Ohta
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University
| | | | | |
Collapse
|
39
|
Shimizu Y, Hamada K, Guo T, Hasegawa C, Kuga Y, Takeda K, Yagi T, Koyama H, Takagi H, Aotani D, Kataoka H, Tanaka T. Role of PPARα in inflammatory response of C2C12 myotubes. Biochem Biophys Res Commun 2024; 694:149413. [PMID: 38141556 DOI: 10.1016/j.bbrc.2023.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Recent studies have shown a role of inflammation in muscle atrophy and sarcopenia. However, no anti-inflammatory pharmacotherapy has been established for the treatment of sarcopenia. Here, we investigate the potential role of PPARα and its ligands on inflammatory response and PGC-1α gene expression in LPS-treated C2C12 myotubes. Knockdown of PPARα, whose expression was upregulated upon differentiation, augmented IL-6 or TNFα gene expression. Conversely, PPARα overexpression or its activation by ligands suppressed 2-h LPS-induced cytokine expression, with pemafibrate attenuating NF-κB or STAT3 phosphorylation. Of note, reduction of PGC-1α gene expression by LPS treatment for 24 hours was partially reversed by fenofibrate. Our data demonstrate a critical inhibitory role of PPARα in inflammatory response of C2C12 myotubes and suggest a future possibility of PPARα ligands as a candidate for anti-inflammatory therapy against sarcopenia.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Keiko Hamada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tingting Guo
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Chie Hasegawa
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Yusuke Kuga
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Katsushi Takeda
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetology, Nagoya City University East Medical Center, 1-2-23 Wakamizu, Chikusa-ku, Nagoya, 464-8547, Japan
| | - Daisuke Aotani
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 457-8601, Japan.
| |
Collapse
|
40
|
Hafiane A. Adiponectin-mediated regulation of the adiponectin cascade in cardiovascular disease: Updates. Biochem Biophys Res Commun 2024; 694:149406. [PMID: 38134479 DOI: 10.1016/j.bbrc.2023.149406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The endocrine function of white adipose tissue is characterized by the synthesis of one its main hormones: adiponectin. Although the biological role of adiponectin has not been fully defined, clinical and experimental observations have shown that low plasma concentrations of adiponectin participate in the prevalence of insulin resistance and cardiovascular diseases, mainly in obese patients. Adiponectin also exerts its effects on the heart and blood vessels, thereby influencing their physiology. Studying the effects of adiponectin presents some complexities, primarily due to potential cross-interactions and interference with other pathways, such as the AdipoR1/R2 pathways. Under optimal conditions, the activation of the adiponectin cascade may involve signals such as AMPK and PPARα. Interestingly, these pathways may trigger similar responses, such as fatty acid oxidation. Understanding the downstream effectors of these pathways is crucial to comprehend the extent to which adiponectin signaling impacts metabolism. In this review, the aim is to explore the current mechanisms that regulate the adiponectin pathways. Additionally, updates on the major downstream factors involved in adiponectin signaling are provided, specifically in relation to metabolic syndrome and atherosclerosis.
Collapse
Affiliation(s)
- Anouar Hafiane
- Research Institute, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
41
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
42
|
Changizi Z, Kajbaf F, Moslehi A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J Clin Transl Hepatol 2023; 11:1542-1552. [PMID: 38161499 PMCID: PMC10752810 DOI: 10.14218/jcth.2023.00334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a superfamily of nuclear transcription receptors, consisting of PPARα, PPARγ, and PPARβ/δ, which are highly expressed in the liver. They control and modulate the expression of a large number of genes involved in metabolism and energy homeostasis, oxidative stress, inflammation, and even apoptosis in the liver. Therefore, they have critical roles in the pathophysiology of hepatic diseases. This review provides a general insight into the role of PPARs in liver diseases and some of their agonists in the clinic.
Collapse
Affiliation(s)
- Zahra Changizi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Kajbaf
- Veterinary Department, Faculty of Agriculture, Islamic Azad University, Shoushtar Branch, Shoushtar, Iran
| | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
43
|
Pu Y, Cheng CK, Zhang H, Luo JY, Wang L, Tomlinson B, Huang Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med Res Rev 2023; 43:2086-2114. [PMID: 37119045 DOI: 10.1002/med.21970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
The prevalence of cardiovascular disease (CVD) has been rising due to sedentary lifestyles and unhealthy dietary patterns. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor regulating multiple biological processes, such as lipid metabolism and inflammatory response critical to cardiovascular homeostasis. Healthy endothelial cells (ECs) lining the lumen of blood vessels maintains vascular homeostasis, where endothelial dysfunction associated with increased oxidative stress and inflammation triggers the pathogenesis of CVD. PPARα activation decreases endothelial inflammation and senescence, contributing to improved vascular function and reduced risk of atherosclerosis. Phenotypic switch and inflammation of vascular smooth muscle cells (VSMCs) exacerbate vascular dysfunction and atherogenesis, in which PPARα activation improves VSMC homeostasis. Different immune cells participate in the progression of vascular inflammation and atherosclerosis. PPARα in immune cells plays a critical role in immunological events, such as monocyte/macrophage adhesion and infiltration, macrophage polarization, dendritic cell (DC) embedment, T cell activation, and B cell differentiation. Cardiomyocyte dysfunction, a major risk factor for heart failure, can also be alleviated by PPARα activation through maintaining cardiac mitochondrial stability and inhibiting cardiac lipid accumulation, oxidative stress, inflammation, and fibrosis. This review discusses the current understanding and future perspectives on the role of PPARα in the regulation of the cardiovascular system as well as the clinical application of PPARα ligands.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, Christodorescu RM, Crawford C, Di Angelantonio E, Eliasson B, Espinola-Klein C, Fauchier L, Halle M, Herrington WG, Kautzky-Willer A, Lambrinou E, Lesiak M, Lettino M, McGuire DK, Mullens W, Rocca B, Sattar N. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023; 44:4043-4140. [PMID: 37622663 DOI: 10.1093/eurheartj/ehad192] [Citation(s) in RCA: 563] [Impact Index Per Article: 281.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
45
|
Fuior EV, Zvintzou E, Filippatos T, Giannatou K, Mparnia V, Simionescu M, Gafencu AV, Kypreos KE. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines 2023; 11:2696. [PMID: 37893070 PMCID: PMC10604751 DOI: 10.3390/biomedicines11102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.
Collapse
Affiliation(s)
- Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Evangelia Zvintzou
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Theodosios Filippatos
- Internal Medicine Clinic, Department of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Katerina Giannatou
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Victoria Mparnia
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Kyriakos E. Kypreos
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
46
|
Yamamoto K, Ohta Y, Taguchi A, Akiyama M, Nakabayashi H, Nagao Y, Ryoko H, Wada Y, Yamamoto T, Yano M, Tanizawa Y. Effects of pemafibrate on left ventricular diastolic function in patients with type 2 diabetes mellitus: a pilot study. Diabetol Int 2023; 14:434-439. [PMID: 37781469 PMCID: PMC10533442 DOI: 10.1007/s13340-023-00645-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/14/2023] [Indexed: 10/03/2023]
Abstract
Aims/introduction Diabetic cardiomyopathy (DCM) is characterized predominantly by diastolic dysfunction. The multiple mechanisms underlying DCM include altered energy substrate utilization. Recent studies indicate that PPARα plays an important role in the pathogenesis of lipotoxic cardiomyopathy. Pemafibrate is known to be a selective PPARα modulator (SPPARMα). We thus investigated the effects of pemafibrate on cardiac diastolic function in patients with type 2 diabetes. Materials and methods Seventeen patients with type 2 diabetes (T2D) and hypertriglyceridemia were screened and treated with pemafibrate at a dose of 0.2 mg/day for 8-16 weeks. Fourteen patients were eligible for analysis. Echocardiography was used for assessment of diastolic function. Early diastolic filling velocity (E), late atrial filling velocity (A) and the E/A ratio were included in this study. Peak early diastolic annular velocities (e') were also assessed using color tissue Doppler images. The primary endpoints were changes in the ratio of E to A (E/A), e', and the ratio of E to e' (E/e') from baseline. Results Pemafibrate significantly increased average e' (7.24 ± 0.58 vs 7.94 ± 0.67, p = 0.019) and a significant reduction in E/e' (9.01 ± 0.94 vs 8.20 ± 0.91, p = 0.041). The increase in e' was significantly related to increases in fasting blood glucose (r = 0.607, p = 0.021) and non-esterified fatty acid (r = 0.592, p = 0.026). Conclusion Pemafibrate improved diastolic function in patients with T2D and hypertriglyceridemia, suggesting that PPARα activation by pemafibrate prevents the development of DCM at an early stage.
Collapse
Affiliation(s)
- Kaoru Yamamoto
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Yasuharu Ohta
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
- Department of Diabetes Research, School of Medicine, Yamaguchi University, Ube, Yamaguchi Japan
| | - Akihiko Taguchi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Masaru Akiyama
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Hiroko Nakabayashi
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Yuko Nagao
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Hatanaka Ryoko
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| | - Yasuaki Wada
- Division of Laboratory, Yamaguchi University Hospital, Ube, Yamaguchi Japan
| | - Takeshi Yamamoto
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi Japan
| |
Collapse
|
47
|
Fiorucci S, Sepe V, Biagioli M, Fiorillo B, Rapacciuolo P, Distrutti E, Zampella A. Development of bile acid activated receptors hybrid molecules for the treatment of inflammatory and metabolic disorders. Biochem Pharmacol 2023; 216:115776. [PMID: 37659739 DOI: 10.1016/j.bcp.2023.115776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Valentina Sepe
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, Naples I-80131, Italy
| |
Collapse
|
48
|
Li Y, Lv M, Shen M, Gu X, Zhang L, Liu X, Chen J, Gong L, Zuo Z. Identification of 3H-benzo[b] [1,4] diazepine derivatives as PPARα agonists by in silico studies and biochemical evaluation. J Biomol Struct Dyn 2023; 42:10256-10271. [PMID: 37702197 DOI: 10.1080/07391102.2023.2256867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, whose pathologic features include dysregulated glucose homeostasis and lipid accumulation. Peroxisome proliferators-activated receptor α (PPARα) is a key regulator of fatty acid metabolism and ketogenesis due to its regulatory pathways involve activating fatty acid uptake, accelerating fatty acid oxidation, inhibiting gluconeogenesis, and suppressing inflammation and fibrosis. Therefore, PPARα is considered as a potential target for the treatment of NAFLD and some agonists have entered clinical trials, which drove us to discover more novel PPARα agonists. In current work, new 3H-benzo[b] [1,4] diazepine PPARα agonists were identified from the ChemDiv database by pharmacophore modeling, molecular docking, derivative structure search, and bioassays, where compound LY-2 and its derivatives (LY-10∼LY-19) were discovered to promote the expression of PPARα downstream gene, carnitine palmitoyl transterase-1 α (cpt1α). Among these active compounds, the EC50 value of LY-2 against increasing cpt1α was 2.169 μΜ. Furthermore, the effect of LY-2 on cpt1α was weakened when PPARα knock down, which confirmed that it is a PPARα agonist again. Finally, the results from molecular dynamics simulations and binding free energy calculations showed that π-π stacking and hydrogen bonding interactions played key roles in the binding of LY-2 and PPARα protein and their complex maintained a stable structure to facilitate LY-2 to have a better binding affinity with PPARα protein. Taken together, compound LY-2 might be a novel lead compound for the development of potent PPARα agonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yue Li
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Mengjia Lv
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Shen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xi Gu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, China
| | - Jing Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
49
|
Khan MS, Ghumman GM, Baqi A, Shah J, Aziz M, Mir T, Tahir A, Katragadda S, Singh H, Taleb M, Ali SS. Efficacy of Pemafibrate Versus Fenofibrate Administration on Serum Lipid Levels in Patients with Dyslipidemia: Network Meta-Analysis and Systematic Review. Am J Cardiovasc Drugs 2023; 23:547-558. [PMID: 37524955 DOI: 10.1007/s40256-023-00593-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Pemafibrate is a novel fibrate class drug that is a highly potent and selective agonist of peroxisome proliferator-activated receptor α (PPARα). We performed the first ever network meta-analysis containing the largest ever group of patients to test the efficacy of pemafibrate in improving lipid levels compared with fenofibrate and placebo in patients with dyslipidemia. METHODS Potentially relevant clinical trials were identified in Medline, PubMed, Embase, clinicaltrials.gov, and Cochrane Controlled Trials registry. Nine randomized controlled trials met the inclusion criteria out of 40 potentially available articles. The primary effect outcome was a change in the levels of triglycerides (TG), high-density lipoproteins (HDL), or low-density lipoproteins (LDL) before and after the treatment. RESULTS A total of 12,359 subjects were included. The mean patient age was 54.73 (years), the mean ratio for female patients was 18.75%, and the mean examination period was 14.22 weeks. The dose for pemafibrate included in our study was 0.1, 0.2, or 0.4 mg twice daily, whereas the dose for fenofibrate was 100 mg/day. Data showed a significant reduction in TG and a mild increase in HDL levels across the pemafibrate group at different doses and fenofibrate 100 mg group (with greatest effect observed with pemafibrate 0.1 mg twice daily). A mild increase in LDL was also observed in all groups, but the increase in LDL in the 0.1 mg twice daily dose group was statistically insignificant. CONCLUSION Pemafibrate 0.1 mg twice daily dose led to highest reduction in TG levels and the highest increase in HDL levels compared with other doses of pemafibrate, fenofibrate, and placebo.
Collapse
Affiliation(s)
| | | | - Abdul Baqi
- Department of Internal Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Jay Shah
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Muhammad Aziz
- Department of Gastroenterology, University of Toledo, Toledo, OH, USA
| | - Tanveer Mir
- Department of Internal Medicine, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Ayesha Tahir
- Department of Internal Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Srinivas Katragadda
- Department of Internal Medicine, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Hemindermeet Singh
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Mohammed Taleb
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| | - Syed Sohail Ali
- Department of Cardiology, Mercy Saint Vincent Medical Center, Toledo, OH, USA
| |
Collapse
|
50
|
Klose G, Gouni-Berthold I, März W. [Primary disorders of lipid metabolism: their place in current dyslipidemia guidelines and treatment innovations]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023; 64:895-906. [PMID: 37280381 DOI: 10.1007/s00108-023-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/08/2023]
Abstract
According to current guidelines, the selection and intensity of lipid-effective therapies are based on the risk to be treated. The sole clinical categories of primary and secondary prevention of cardiovascular diseases result in over- and under-treatment, which may be a contributory cause of incomplete implementation of current guidelines in everyday practice. For the extent of benefit in cardiovascular outcome studies with lipid-lowering drugs, the importance of dyslipdemia for the pathogenesis of atherosclerosis-related diseases is crucial. Primary lipid metabolism disorders are characterized by life-long increased exposure to atherogenic lipoproteins. This article describes the relevance of new data for low density lipoprotein-effective therapy: inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), adenosine triphosphate (ATP) citrate lyase with bempedoic acid, and ANGPTL3 with special consideration of primary lipid metabolism disorders, which are insufficiently taken into account, or not taken into account at all, in current guidelines. This is due to their apparently low prevalence rate and thus the lack of large outcome studies. The authors also discuss the consequences of increased lipoprotein (a), which cannot be sufficiently reduced until the ongoing intervention studies examining antisense oligonucleotides and small interfering RNA (siRNA) against apolipoprotein (a) are completed. Another challenge in practice is the treatment of rare, massive hypertriglyceridemia, especially with the aim of preventing pancreatitis. For this purpose, the apolipoprotein C3 (ApoC3) antisense oligonucleotide volenasorsen is available, which binds to the mRNA for ApoC3 and lowers triglycerides by around three quarters.
Collapse
Affiliation(s)
- G Klose
- Praxis für Endokrinologie Dres. I. Van de Loo & K. Spieker, Gerold-Janssen-Str. 2A, 28359, Bremen, Deutschland.
| | - I Gouni-Berthold
- Poliklinik für Endokrinologie, Diabetes und Präventivmedizin, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln, Deutschland
| | - W März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
- Klinisches Institut für medizinische und chemische Labordiagnostik, Medizinische Universität Graz, Auenbruggerplatz 15, 8036, Graz, Österreich
- SYNLAB Akademie, SYNLAB Holding Deutschland GmbH, P5, 7, 68161, Mannheim, Deutschland
- SYNLAB Akademie, SYNLAB Holding Deutschland GmbH, Augsburg, Deutschland
| |
Collapse
|