1
|
Hong S, Choi SK, Wie JH, Shin JE, Jo YS, Kim YH, Kang BS, Kim O, Won S, Yoon HJ, Kim HS, Park IY, Yang M, Ko HS. Effects of Endocrine Disrupting Chemicals on Fetal Weight: Exposure Monitoring Among Mothers with Gestational Diabetes Mellitus and Their Fetuses. Int J Mol Sci 2025; 26:4226. [PMID: 40362466 PMCID: PMC12071538 DOI: 10.3390/ijms26094226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Gestational diabetes mellitus (GDM) requires lifestyle changes that may alter exposure to endocrine-disrupting chemicals (EDCs). This study aimed to assess maternal and fetal exposure to EDCs-including bisphenol-A (BPA), monoethyl phthalate (MEP), and perfluorooctanoic acid (PFOA)-during the COVID-19 pandemic and to evaluate their association with fetal birthweight. Maternal urine (second and third trimester) and paired cord blood samples were analyzed from 58 GDM and 118 non-GDM pregnancies using UPLC-MS/MS. Significant correlations were found between maternal urine and cord blood levels of BPA and MEP. Cord blood BPA levels were significantly lower in GDM mothers (0.35 vs. 0.72 μg/L, p < 0.05), suggesting reduced exposure due to dietary interventions. However, maternal urinary BPA levels in GDM pregnancies were positively associated with fetal birthweight (β = 2.69, p < 0.05), indicating increased susceptibility to obesogenic effects. PFOA was present in all cord blood but only 41% of maternal urine samples. These findings underscore the dual impact of GDM-related lifestyle changes: reduced EDC transfer to the fetus, yet persistent metabolic vulnerability.
Collapse
Affiliation(s)
- Subeen Hong
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sae Kyung Choi
- Department of Obstetrics and Gynecology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Ha Wie
- Department of Obstetrics and Gynecology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae Eun Shin
- Department of Obstetrics and Gynecology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yun Sung Jo
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yeon Hee Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Soo Kang
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Oyoung Kim
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sangeun Won
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hee Ju Yoon
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyeon Soo Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In Yang Park
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Mihi Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
- Goodbeing Center Co., Ltd., Seoul 04310, Republic of Korea
| | - Hyun Sun Ko
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Golshahi F, Iqbal Z, Madani ZH, Zamanpour Z, Sahebdel B, Saedi N, Khanjani S, Golshahi J, Shirazi M, Rashidian P, Parsaei M. Comparing umbilical cord arterial blood gas findings in pregnancies with and without gestational diabetes mellitus following elective cesarean section: a multicenter retrospective cohort study in Iran. BMC Pregnancy Childbirth 2025; 25:412. [PMID: 40200200 PMCID: PMC11980337 DOI: 10.1186/s12884-025-07522-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is linked to adverse fetal outcomes like macrosomia and neonatal hypoglycemia, with its global incidence increasing. While prior research indicates GDM may impair placental function and fetal oxygen delivery, direct evidence is limited. This study compares umbilical cord arterial blood gas measurements in pregnancies with and without GDM. METHODS This retrospective study analyzed medical records from four hospitals in Tehran, Rasht, Ahvaz, and Isfahan in Iran, focusing on term singleton pregnancies (gestational age ≥ 37 weeks) that underwent elective cesarean sections between January and July 2024. Exclusions included maternal age < 18 or > 45 years, pre-existing diabetes, thyroid, hypertensive, malignant, metabolic, or autoimmune disorders, intrauterine growth restriction, hypertensive disorders of pregnancy, and substance use during pregnancy. GDM was diagnosed using a 75-gram oral glucose tolerance test at 24-28 weeks. Primary outcomes included umbilical cord arterial blood gas measures (potential of hydrogen [pH], partial pressure of carbon dioxide [PCO2], partial pressure of oxygen [PO2], bicarbonate [HCO3], and base deficit). The neonatal outcomes were measured as secondary outcomes. Statistical analyses utilized Chi-square, Fisher's exact, and independent t-tests. RESULTS Data from 430 pregnancies, including 87 with GDM, were analyzed. Pregnancies with GDM showed significantly lower pH (7.33 ± 0.08 vs. 7.36 ± 0.06, P-value = 0.006) and greater base deficit (-1.82 ± 3.79 vs. -0.50 ± 2.74 mEq/L, P-value = 0.003). However, no significant between-group differences were observed in PCO2, PO2, or HCO3 (P-value > 0.05). Furthermore, we observed no significant differences in the mean birthweight, 1-minute, or 5-minute Apgar scores (P-values > 0.05), while neonates in the GDM group required more resuscitation (28.7% vs. 12.0%, P-value < 0.001) and neonatal intensive care unit admissions (34.5% vs. 16.9%, P-value < 0.001). CONCLUSIONS Pregnancies with GDM showed higher umbilical cord blood acidity, indicating impaired placental function and reduced fetal oxygenation. These findings underscore the need for enhanced monitoring, such as regular fetal surveillance and close glycemic control, along with timely interventions like early neonatal resuscitation protocols and preparedness for neonatal intensive care unit admissions, to mitigate impaired fetal oxygenation in GDM. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Fatemeh Golshahi
- Department of Ob & Gyn, Fellowship of Maternal-Fetal Medicine, Fetal & Neonatal Research Center, Yas Hospital Complex, Tehran University of Medical Sciences, Maternal, Tehran, Iran
| | - Zufa Iqbal
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hamidi Madani
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zeynab Zamanpour
- Department of Obstetrics and Gynecology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrokh Sahebdel
- Department of Ob & Gyn, Fellowship of Maternal-Fetal Medicine, Fetal & Neonatal Research Center, Yas Hospital Complex, Tehran University of Medical Sciences, Maternal, Tehran, Iran
| | - Nafiseh Saedi
- Department of Ob & Gyn, Fellowship of Maternal-Fetal Medicine, Fetal & Neonatal Research Center, Yas Hospital Complex, Tehran University of Medical Sciences, Maternal, Tehran, Iran
| | - Somayeh Khanjani
- Department of Obstetrics and Gynecology, Shahid Beheshti Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Golshahi
- Isfahan Cardiovascular Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Shirazi
- Department of Ob & Gyn, Fellowship of Maternal-Fetal Medicine, Fetal & Neonatal Research Center, Yas Hospital Complex, Tehran University of Medical Sciences, Maternal, Tehran, Iran
| | - Pegah Rashidian
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, 1419733141, Tehran, Iran.
| | - Mohammadamin Parsaei
- Breastfeeding Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.
| |
Collapse
|
3
|
Joshi N, Joshi S. Fatty acid metabolism in the placentae of gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102682. [PMID: 40209642 DOI: 10.1016/j.plefa.2025.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM), a metabolic complication during pregnancy is increasing rapidly. It exerts various short and long term effects on the mother and the child. Nonetheless, the mechanisms underlying the pathophysiology of GDM are still not clear. Placenta is a key 'programming' agent and any impairment in placental structure and function may hamper the fetal growth and development. Omega-3 and omega-6 fatty acids are key nutrients involved in placental and fetal development. The fatty acids transport from maternal circulation towards the fetus depends on the fatty acid status of the mother, fatty acid metabolism of the placenta and placental transport of fatty acids. Alteration in any of these could influence the fatty acids transport towards the fetus thereby affecting the fetal brain development and leading to impairment in cognitive function in the off-spring. We propose a role for placental fatty acid metabolism in influencing fetal growth and development which in turn can have an impact on cognitive development of the offspring born to GDM women.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
4
|
Niu Y, Wang Y, Han X, Ouyang G, Xiao H, Liu C, Li Y. Association between embryo transfer season and the risks of hypertensive disorders of pregnancy and gestational diabetes mellitus. J Assist Reprod Genet 2025; 42:1297-1308. [PMID: 39966211 PMCID: PMC12055679 DOI: 10.1007/s10815-025-03426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
PURPOSE To explore the impact of seasonal variations on the risks of hypertensive disorders of pregnancy (HDP) and gestational diabetes mellitus (GDM) in women who undergo in vitro fertilization (IVF) treatment. METHODS We retrospectively included a total of 21,469 women who achieved singleton delivery during their first cycles of IVF, the risks of HDP and GDM were compared in different seasonal groups according to the time of embryo transfer and the time of oocyte retrieval. RESULTS After adjustment via multivariable logistic regression, women who underwent embryo transfer in spring with the expected date of confinement in winter had a higher risk of HDP (4.9% vs. 3.8%; adjusted odds ratio (aOR), 1.34; 95% confidence interval (CI), 1.09-1.64; P = 0.005) than those underwent embryo transfer in winter with the expected date of confinement in autumn. There were no seasonal variations in the risk of HDP according to the time of oocyte retrieval or in the risk of GDM regardless of the time of embryo transfer or the time of oocyte retrieval. After subgroup analysis, the seasonal variations in the risk of HDP remained in frozen embryo transfer (FET) cycles but not in fresh embryo transfer (FreET) cycles. CONCLUSIONS The risk of HDP was increased in women who underwent embryo transfer in spring compared to those who underwent embryo transfer in winter. The risk of HDP is more likely to be affected by the season at the time of embryo transfer in FET cycles compared to FreET cycles.
Collapse
Affiliation(s)
- Yue Niu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Xinwei Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Gege Ouyang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Huiying Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Chendan Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Barrozo ER, Racusin DA, Jochum MD, Garcia BT, Suter MA, Delbeccaro M, Shope C, Antony K, Aagaard KM. Discrete placental gene expression signatures accompany diabetic disease classifications during pregnancy. Am J Obstet Gynecol 2025; 232:326.e1-326.e15. [PMID: 38763341 DOI: 10.1016/j.ajog.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Gestational diabetes mellitus affects up to 10% of pregnancies and is classified into subtypes gestational diabetes subtype A1 (GDMA1) (managed by lifestyle modifications) and gestational diabetes subtype A2 (GDMA2) (requiring medication). However, whether these subtypes are distinct clinical entities or more reflective of an extended spectrum of normal pregnancy endocrine physiology remains unclear. OBJECTIVE Integrated bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and spatial transcriptomics harbors the potential to reveal disease gene signatures in subsets of cells and tissue microenvironments. We aimed to combine these high-resolution technologies with rigorous classification of diabetes subtypes in pregnancy. We hypothesized that differences between preexisting type 2 and gestational diabetes subtypes would be associated with altered gene expression profiles in specific placental cell populations. STUDY DESIGN In a large case-cohort design, we compared validated cases of GDMA1, GDMA2, and type 2 diabetes mellitus (T2DM) to healthy controls by bulk RNA-seq (n=54). Quantitative analyses with reverse transcription and quantitative PCR of presumptive genes of significant interest were undertaken in an independent and nonoverlapping validation cohort of similarly well-characterized cases and controls (n=122). Additional integrated analyses of term placental single-cell, single-nuclei, and spatial transcriptomics data enabled us to determine the cellular subpopulations and niches that aligned with the GDMA1, GDMA2, and T2DM gene expression signatures at higher resolution and with greater confidence. RESULTS Dimensional reduction of the bulk RNA-seq data revealed that the most common source of placental gene expression variation was the diabetic disease subtype. Relative to controls, we found 2052 unique and significantly differentially expressed genes (-22 thresholds; q<0.05 Wald Test) among GDMA1 placental specimens, 267 among GDMA2, and 1520 among T2DM. Several candidate marker genes (chorionic somatomammotropin hormone 1 [CSH1], period circadian regulator 1 [PER1], phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta [PIK3CB], forkhead box O1 [FOXO1], epidermal growth factor receptor [EGFR], interleukin 2 receptor subunit beta [IL2RB], superoxide dismutase 3 [SOD3], dedicator of cytokinesis 5 [DOCK5], suppressor of glucose, and autophagy associated 1 [SOGA1]) were validated in an independent and nonoverlapping validation cohort (q<0.05 Tukey). Functional enrichment revealed the pathways and genes most impacted for each diabetes subtype, and the degree of proximal similarity to other subclassifications. Surprisingly, GDMA1 and T2DM placental signatures were more alike by virtue of increased expression of chromatin remodeling and epigenetic regulation genes, while albumin was the top marker for GDMA2 with increased expression of placental genes in the wound healing pathway. Assessment of these gene signatures in single-cell, single-nuclei, and spatial transcriptomics data revealed high specificity and variability by placental cell and microarchitecture types. For example, at the cellular and spatial (eg, microarchitectural) levels, distinguishing features were observed in extravillous trophoblasts (GDMA1) and macrophages (GDMA2). Lastly, we utilized these data to train and evaluate 4 machine learning models to estimate our confidence in predicting the control or diabetes status of placental transcriptome specimens with no available clinical metadata. CONCLUSION Consistent with the distinct association of perinatal outcome risk, placentae from GDMA1, GDMA2, and T2DM-affected pregnancies harbor unique gene signatures that can be further distinguished by altered placental cellular subtypes and microarchitectural niches.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Diana A Racusin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Michael D Jochum
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Brandon T Garcia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX; Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Melanie Delbeccaro
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Cynthia Shope
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kathleen Antony
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX.
| |
Collapse
|
6
|
Molitierno R, Imparato A, Iavazzo N, Salzillo C, Marzullo A, Laganà AS, Etrusco A, Agrifoglio V, D’Amato A, Renata E, Vastarella MG, De Franciscis P, La Verde M. Microscopic changes and gross morphology of placenta in women affected by gestational diabetes mellitus in dietary treatment: A systematic review. Open Med (Wars) 2025; 20:20251142. [PMID: 39958976 PMCID: PMC11826244 DOI: 10.1515/med-2025-1142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 02/18/2025] Open
Abstract
Introduction/objective Gestational diabetes mellitus (GDM) influences adverse maternal and fetal outcomes. Nutritional therapy and exercise are the first steps to maintain normal glucose levels. During pregnancy, metabolic status influences placental development. Methods This systematic review focused only on the morphology of the placenta and its microscopic changes in GMD under dietary therapy. A systematic search was performed on the main databases from inception to September 2024 (PROSPERO ID: CRD42024581621). Only original articles on GDM in diet and exercise treatment that reported at least one outcome of interest (microscopic features and macroscopic morphology of the placenta) were included. Results A total of 716 studies were identified, and nine met the inclusion criteria. The analysis confirmed that despite dietary control, some morphological changes in the placenta, including villus immaturity, chorangiosis, and fibrinoid necrosis, occurred at a different rate. In addition, the included studies reported an increase in placental weight in the diet-controlled GDM group. Conclusion Therefore, the results of the present qualitative analysis show that pregnant women with diet-controlled GDM, despite adequate glycemic control, abnormal placental development may persist. Our findings remark on the importance of the correct diet-managed GDM pregnancy monitoring due to the placental morphology abnormalities related to GMD.
Collapse
Affiliation(s)
- Rossella Molitierno
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Amalia Imparato
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Nicola Iavazzo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Cecilia Salzillo
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124Bari, Italy
- Department of Experimental Medicine, PhD Course in Public Health, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Andrea Marzullo
- Department of Precision and Regenerative Medicine and Ionian Area, Pathology Unit, University of Bari “Aldo Moro”, 70124Bari, Italy
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, University of Palermo, 90127Palermo, Italy
| | - Andrea Etrusco
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, University of Palermo, 90127Palermo, Italy
| | - Vittorio Agrifoglio
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, University of Palermo, 90127Palermo, Italy
| | - Antonio D’Amato
- Department of Interdisciplinary Medicine (DIM), Unit of Obstetrics and Gynecology, University of Bari “Aldo Moro”, Policlinico of Bari, 70124Bari, Italy
| | - Esposito Renata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, 81100, Italy
| | - Maria Giovanna Vastarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| | - Marco La Verde
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138Naples, Italy
| |
Collapse
|
7
|
Wang F, Zhu Y, Shu H, Zhang X, Duan L, Man D, Wang Y. Astragaloside IV alleviates GDM via regulating gut microbiota and gut microbiota metabolomic. Front Pharmacol 2025; 15:1431240. [PMID: 39885928 PMCID: PMC11780255 DOI: 10.3389/fphar.2024.1431240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025] Open
Abstract
Background Gestational diabetes mellitus (GDM), a severe pregnancy disorder, is a temporary form of diabetes that occurs during gestation. Astragaloside IV (AS IV), a natural and effective composition of Astragalus membranaceus, shows pharmacological effects against diabetes. On the contrary, the effects of AS IV on GDM development are still not clear. This study aims to investigate the role of AS IV in alleviating GDM in rats and determine whether AS IV exerts its anti-GDM properties through the regulation of gut microbiota and metabolite modulation. Methods There were six pregnant SD rats in each of the four groups. First, the GDM model was induced by the streptozotocin (STZ, 45 mg/kg) injection on gestational days (GDs) 1-4, and AS IV intervention (10 mg/kg/d) was administered from 6 days before pregnancy until delivery. The measurements of relevant indicators pertaining to GDM symptoms and reproductive outcomes, along with the 16S rRNA sequencing data and LC-MS-based metabolomic profiles, were assessed across all groups. Results After the 25-day intervention, the GDM model + AS IV group showed significantly decreased fasting blood glucose levels (p = 0.0003), mean insulin levels (p = 0.0001), and insulin resistance index (p = 0.0001). AS IV treatment also decreased the malformation rate (p = 0.0373) and increased the average fetal weight (p = 0.0020) of GDM rats. Compared to the control rats, GDM rats showed a significantly higher abundance of Blautia and Anaerobiospirillum. However, the dramatically elevated abundance of these microorganisms was markedly decreased by AS IV treatment. In contrast, compared to GDM rats without treatment, GDM rats treated with AS IV showed a significantly higher abundance of bacteria (p < 0.05), such as Methanobrevibacter, Dubosiella, and Romboutsia, which are beneficial to the rats. Additionally, we observed dramatically elevated production of metabolites, such as N-acetyl-l-leucine and lithocholic acid, after AS IV treatment through metabolomics analysis (p < 0.05). Furthermore, significant associations between most genera of gut bacteria and the altered levels of the metabolites connected to gut microbiota were also discovered. Conclusion Our study demonstrated that AS IV could be an effective nutritional intervention strategy for targeting gut microbiota and metabolome profiles in GDM and provided experimental evidence supporting the use of AS IV to treat GDM.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanping Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
8
|
Zhang Q, Yuan X, Luan X, Lei T, Li Y, Chu W, Yao Q, Baker PN, Qi H, Li H. GLUT1 exacerbates trophoblast ferroptosis by modulating AMPK/ACC mediated lipid metabolism and promotes gestational diabetes mellitus associated fetal growth restriction. Mol Med 2024; 30:257. [PMID: 39707215 DOI: 10.1186/s10020-024-01028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has been associated with several fetal complications, such as macrosomia and fetal growth restriction (FGR). Infants from GDM associated FGR are at increased risk for adult-onset obesity and associated metabolic disorders. However, the underlying mechanisms of GDM associated FGR remain to be explored. METHODS We analyzed placentas from GDM patients with FGR for ferroptosis markers and GLUT1 expression. High glucose conditions were established by adding different concentrations of D-Glucose to the 1640 cell culture medium. RSL3 were used to test ferroptosis sensitivity in trophoblast cells. GLUT1 was inhibited using siRNA or its inhibitor WZB117 to assess its impact on ferroptosis inhibition in HTR8/SVneo cell line. Mechanistic studies explored the effects of GLUT1 on AMPK and ACC phosphorylation, which in turn impacted lipid metabolism and ferroptosis. In mouse models, streptozotocin (STZ)-induced GDM was treated with WZB117 and the ferroptosis inhibitor liproxstatin-1 (Lip-1). Finally, AMPK and ACC phosphorylation levels were evaluated in GDM patient samples. RESULTS In this study, placentas from GDM patients with FGR showed signs of ferroptosis and upregulation of GLUT1. In cell models, high glucose conditions sensitized trophoblast cells to ferroptosis and induced GLUT1 expression. Interestingly, GLUT1 inhibition significantly suppressed ferroptosis in trophoblast cells under high glucose conditions. Mechanistically, elevated GLUT1 inhibited AMPK phosphorylation and reduced ACC phosphorylation, thereby promoting lipid synthesis and facilitating ferroptosis. In pregnant mice, STZ-induced hyperglycemia led to FGR, and treatment with either the GLUT1 inhibitor WZB117 or the ferroptosis inhibitor Lip-1 alleviated the FGR phenotype. Moreover, in vivo elevation of GLUT1 increased ferroptosis markers, decreased AMPK/ACC phosphorylation, and resulted in altered lipid metabolism, which likely contributed to the observed phenotype. Finally, placental samples from GDM patients showed reduced AMPK and ACC phosphorylation. CONCLUSIONS Our findings suggest a potential role of ferroptosis in GDM associated FGR and indicate that the dysregulated GLUT1-AMPK-ACC axis may be involved in the pathogenesis of GDM associated FGR in clinicals.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xi Yuan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojin Luan
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ting Lei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yiran Li
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Chu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qi Yao
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Philip N Baker
- College of Life Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Hui Li
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Gong J, Xu W, Chen Y, Chen S, Wu Y, Chen Y, Li Y, He Y, Yu H, Xie L. Maternal Gestational Diabetes Mellitus and High-Fat Diet Influenced Hepatic Polyunsaturated Fatty Acids Profile in the Offspring of C57BL/6J Mice. Mol Nutr Food Res 2024; 68:e2400386. [PMID: 39246092 DOI: 10.1002/mnfr.202400386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/04/2024] [Indexed: 09/10/2024]
Abstract
SCOPE This research examines the effects of maternal high-fat (HF) diet and gestational diabetes mellitus (GDM) on offspring lipid metabolism and polyunsaturated fatty acids (PUFA) profile. METHODS AND RESULTS GDM is induced using the insulin receptor antagonist S961. Weaning offspring are categorized into HF-GDM, HF-CON, NC-GDM, and NC-CON groups based on maternal diet or GDM. Adult offspring are then grouped into NC-CON-NC, NC-CON-HF, NC-GDM-NC, NC-GDM-HF, HF-CON-NC, HF-CON-HF, HF-GDM-NC, and HF-GDM-HF according to dietary patterns. Gas chromatography determines PUFA composition. Western blot assesses PI3K/Akt signaling pathway-related protein expression. Feeding a normal chow diet until adulthood improves the distribution of hepatic PUFA during weaning across the four groups. PI3K expression is upregulated during weaning in HF-CON and HF-GDM, particularly in HF-CON-NC and HF-GDM-NC, compared to NC-CON-NC during adulthood. Akt expression increases in NC-GDM-NC after weaning with a normal diet. The hepatic PUFA profile in HF-CON-HF significantly distinguishes among the maternal generation health groups. Maternal HF diet exacerbates the combined impact of maternal GDM and offspring HF diet on hepatic PUFA and PI3K/Akt signaling pathway-related proteins during adulthood. CONCLUSIONS Early exposure to HF diets and GDM affects hepatic PUFA profiles and PI3K/Akt signaling pathway protein expression in male offspring during weaning and adulthood.
Collapse
Affiliation(s)
- JiaYu Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - WenHui Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - YiFei Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - ShuTong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - YanYan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - YiRu Chen
- Clinical Nutrition Department, Third Hospital of Jilin University, Changchun City, Jilin Province, 130032, China
| | - YueTing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - Yuan He
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - HaiTao Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun City, Jilin Province, 130021, China
| |
Collapse
|
10
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
11
|
Jung AR, Seo Y, Lee J, Hwang JG, Yun S, Lee DT. Recent Findings on Exercise Therapy for Blood Glucose Management in Patients with Gestational Diabetes. J Clin Med 2024; 13:5004. [PMID: 39274217 PMCID: PMC11396605 DOI: 10.3390/jcm13175004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Inadequate management of blood glucose levels in gestational diabetes mellitus (GDM) poses risks for both pregnant women and the developing fetus. Attaining appropriate blood glucose control is crucial to mitigate potential adverse outcomes. This study aimed to consolidate the latest guidelines from representative professional societies, providing insights into exercise therapy for GDM patients and suggesting potential avenues for future research. The review was conducted with up-to-date exercise guidelines from prominent societies, such as the American College of Obstetricians and Gynecologists (ACOG), the Society of Obstetricians and Gynecologists of Canada (SOGC), the Canadian Society for Exercise Physiology (CSEP), the American College of Sports Medicine, the American Diabetes Association (ADA), and the Korean Diabetes Association. The ACOG and SOGC/CSEP recommend 150 min of low to moderate intensity exercise, 3-4 times a week, combining aerobic and resistance exercises. All guidelines advise against activities involving sudden directional changes, physical contact, a risk of falling, and exercises performed lying down. Despite cautions from the ADA and ACOG on blood glucose fluctuations during physical activity, the lack of specific methods and recommendations from other societies reveals a notable gap in evidence-based guidelines for GDM. For effective and safe blood glucose management in GDM patients, further research should be conducted on the exercise-related precautions outlined for GDM patients. Establishing ample evidence would facilitate the development of customized exercise guidelines for GDM patients.
Collapse
Affiliation(s)
- Ah Reum Jung
- Exercise Physiology Laboratory, Kookmin University, Seoul 02707, Republic of Korea
| | - Yongsuk Seo
- Exercise Physiology Laboratory, Kookmin University, Seoul 02707, Republic of Korea
| | - Jooyoung Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul 02707, Republic of Korea
| | - Jae Gu Hwang
- Exercise Physiology Laboratory, Kookmin University, Seoul 02707, Republic of Korea
| | - Somi Yun
- Exercise Physiology Laboratory, Kookmin University, Seoul 02707, Republic of Korea
| | - Dae Taek Lee
- Exercise Physiology Laboratory, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
12
|
Yildiz EG, Tanacan A, Okutucu G, Bastemur AG, Ipek G, Sahin D. Can System Inflammation Response Index or Systemic Immune Inflammation Index predict gestational diabetes mellitus in the first trimester? A prospective observational study. Int J Gynaecol Obstet 2024; 166:837-843. [PMID: 38426227 DOI: 10.1002/ijgo.15442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To evaluate System Inflammation Response Index (SIRI) and Systemic Immune Inflammation Index (SII), which are the inflammatory indices, for the prediction of gestational diabetes mellitus (GDM) in the first trimester. METHODS This was a prospective observational study conducted in a tertiary center from April 2023 to September 2023. Ninety-four pregnant women with gestational diabetes and 107 healthy pregnant women were included. The two groups were compared according to first-trimester SIRI and SII values. A receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cut-off levels of SII and SIRI in predicting GDM. RESULTS Significantly higher first-trimester SII and SIRI values were present in the gestational diabetes group (P < 0.001). Optimal cut-off values in the prediction of gestational diabetes were found to be 1.58 (area under the curve [AUC] 0.71, 67% sensitivity, 65% specificity, 95% confidence interval [CI] 0.64-0.78, P < 0.001) and 875 (AUC 0.70, 66% sensitivity, 65% specificity, 95% CI 0.63-0.77, P < 0.001) for SIRI and SII, respectively. Neutrophil counts, mean platelet volume (MPW), neutrophil to lymphocyte ratio (NLR), and red cell distribution width (RDW) were significantly higher in the GDM group (P < 0.001, P = 0.02, P = 0.01, P < 0.01, respectively). CONCLUSION Novel inflammatory indices SII and SIRI may be useful in the prediction of GDM in the first trimester, but their utility in the prediction of insulin requirement is questionable. They may be used as additional tools in routine clinical practice.
Collapse
Affiliation(s)
- Esra Gulen Yildiz
- Division of Perinatology, Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Atakan Tanacan
- Division of Perinatology, Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Gulcan Okutucu
- Division of Perinatology, Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Ayse Gulcin Bastemur
- Division of Perinatology, Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Goksun Ipek
- Division of Perinatology, Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| | - Dilek Sahin
- Division of Perinatology, Department of Obstetrics and Gynecology, Ankara City Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
13
|
He Y, Yang X, Wu N. TGF β1, SNAIL2, and PAPP-A Expression in Placenta of Gestational Diabetes Mellitus Patients. J Diabetes Res 2024; 2024:1386469. [PMID: 39109165 PMCID: PMC11303042 DOI: 10.1155/2024/1386469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 09/17/2024] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is a pregnancy-related diabetic condition that may cause serious complications. However, its pathogenesis remains unclear. Placental damage due to GDM may lead to several health issues that cannot be ignored. Thus, we aimed to identify the mechanisms underlying GDM by screening differentially expressed genes (DEGs) related to vascular endothelial cells in the GDM databases and verify the expression of these DEGs in the placentas of women afflicted by GDM. Methods: We used GDM microarray datasets integrated from the Gene Expression Omnibus (GEO) database. Functional annotation and protein-protein interaction (PPI) analyses were used to screen DEGs. Placental tissues from 20 pregnant women with GDM and 20 healthy pregnant women were collected, and differential gene expression in the placental tissues was verified via qRT-PCR, western blotting, and immunofluorescence. Results: Bioinformatics analysis revealed three significant DEGs: SNAIL2, PAPP-A, and TGFβ1. These genes were all predicted to be underexpressed in patients with GDM. The results of qRT-PCR, western blot, and immunofluorescence analyses indicated that SNAIL2 and PAPP-A in the placenta tissue of patients with GDM were significantly underexpressed. However, TGFβ1 in the placenta tissues of GDM was significantly overexpressed. Conclusion: SNAIL2, TGFβ1, and PAPP-A may affect the placentas of pregnant women with GDM, warranting further investigation.
Collapse
Affiliation(s)
- Yujing He
- Department of EndocrinologyShengjing Hospital of China Medical University, Shenyang 110004, China
- School of Life ScienceLiaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Xiyao Yang
- Department of EndocrinologyShengjing Hospital of China Medical University, Shenyang 110004, China
| | - Na Wu
- Department of EndocrinologyShengjing Hospital of China Medical University, Shenyang 110004, China
- Department of PediatricsShengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
14
|
Hivert MF, Backman H, Benhalima K, Catalano P, Desoye G, Immanuel J, McKinlay CJD, Meek CL, Nolan CJ, Ram U, Sweeting A, Simmons D, Jawerbaum A. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024; 404:158-174. [PMID: 38909619 DOI: 10.1016/s0140-6736(24)00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.
Collapse
Affiliation(s)
- Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Helena Backman
- Faculty of Medicine and Health, Department of Obstetrics and Gynecology, Örebro University, Örebro, Sweden
| | - Katrien Benhalima
- Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Catalano
- Maternal Infant Research Institute, Obstetrics and Gynecology Research, Tufts Medical Center, Boston, MA, USA; School of Medicine, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jincy Immanuel
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Institute for Women's Health, College of Nursing, Texas Woman's University, Denton, TX, USA
| | - Christopher J D McKinlay
- Department of Paediatrics Child and Youth Health, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Claire L Meek
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Department of Endocrinology, Canberra Health Services, Woden, ACT, Australia
| | - Uma Ram
- Department of Obstetrics and Gynecology, Seethapathy Clinic and Hospital, Chennai, Tamilnadu, India
| | - Arianne Sweeting
- Department of Endocrinology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - David Simmons
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina; Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Wei J, Dong T, Chen M, Luo X, Mi Y. Unique Ultrastructural Alterations in the Placenta Associated With Macrosomia Induced by Gestational Diabetes Mellitus. MATERNAL-FETAL MEDICINE 2024; 6:164-172. [PMID: 40406284 PMCID: PMC12087899 DOI: 10.1097/fm9.0000000000000240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2025] Open
Abstract
Objective To investigate the morphological and ultrastructural alterations in placentas from pregnancies with gestational diabetes mellitus (GDM)-induced macrosomia, term nondiabetic macrosomia, and normal pregnancies. Methods Sixty full-term placentas were collected, and clinical data along with informed consent were obtained from pregnant women who underwent regular visit checks and delivered their newborns in Northwest Women's and Children's Hospital between May and December 2022. Placentas were divided into three equal groups: normal pregnancy (control group), nondiabetic macrosomia group, and macrosomia complicated with GDM (diabetic macrosomia) group. Gross morphological data of placentas were recorded, and placental samples were processed for examination of ultrastructural and stereological changes using transmission electron microscopy. Analysis of variance and chi-squared test were used to examine the differences among the three groups for continuous and categorical variables, respectively. Results The baseline characteristics of mothers and neonates did not differ across the three groups, except for a significantly higher birth weight in the diabetic macrosomia group (4172.00 ± 151.20 g vs. 3192.00 ± 328.70 g, P < 0.001) and nondiabetic macrosomia group (4138.00 ± 115.20 g vs. 3192.00 ± 328.70 g, P < 0.001) compared with control group. Examination of the placentas revealed that placental weight was also highest in the diabetic macrosomia group compared with control group (810.00 ± 15.81 g vs. 490.00 ± 51.48 g, P < 0.001) and nondiabetic macrosomia group (810.00 ± 15.81 g vs. 684.00 ± 62.69 g, P < 0.001), but the ratio of neonatal birth weight to placental weight (BW/PW) was significantly lower in the diabetic macrosomia group compared with that in the control group (5.15 ± 0.19 vs. 6.54 ± 0.63, P < 0.001) and nondiabetic macrosomia group (5.15 ± 0.19 vs. 6.09 ± 0.52, P < 0.001) group. In contrast, the BW/PW ratio in nondiabetic macrosomia did not differ significantly from that in the control group. Distinct ultrastructural changes in terminal villi and stereological alterations in microvilli were observed in the diabetic macrosomia group, including changes in the appearance of cytoplasmic organelles and the fetal capillary endothelium and thickness of the vasculo-syncytial membrane and basal membrane. Conclusion Significant ultrastructural and stereological alterations were discovered in the placentas from pregnant women with macrosomia induced by GDM. These alterations may be the response of the placenta to the hyperglycemia condition encountered during pregnancies complicated with GDM.
Collapse
Affiliation(s)
- Junxiang Wei
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an 710061, China
| | - Tianyu Dong
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an 710061, China
| | - Mingxia Chen
- Laboratory of Electron Microscope, Health Science Center of Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center of Xi’an Jiaotong University, Xi’an 710049, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an 710061, China
| |
Collapse
|
16
|
Ip PNP, Nguyen-Hoang L, Chaemsaithong P, Guo J, Wang X, Sahota DS, Chung JPW, Poon LCY. Ultrasonographic placental parameters at 11-13+6 weeks' gestation in the prediction of complications in pregnancy after assisted reproductive technology. Taiwan J Obstet Gynecol 2024; 63:341-349. [PMID: 38802197 DOI: 10.1016/j.tjog.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE To evaluate the performance of maternal factors, biophysical and biochemical markers at 11-13 + 6 weeks' gestation in the prediction of gestational diabetes mellitus with or without large for gestational age (GDM ± LGA) fetus and great obstetrical syndromes (GOS) among singleton pregnancy following in-vitro fertilisation (IVF)/embryo transfer (ET). MATERIALS AND METHODS A prospective cohort study was conducted between December 2017 and January 2020 including patients who underwent IVF/ET. Maternal mean arterial pressure (MAP), ultrasound markers including placental volume, vascularisation index (VI), flow index (FI) and vascularisation flow index (VFI), mean uterine artery pulsatility index (mUtPI) and biochemical markers including placental growth factor (PlGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) were measured at 11-13 + 6 weeks' gestation. Logistic regression analysis was performed to determine the significant predictors of complications. RESULTS Among 123 included pregnancies, 38 (30.9%) had GDM ± LGA fetus and 28 (22.8%) had GOS. The median maternal height and body mass index were significantly higher in women with GDM ± LGA fetus. Multivariate logistic regression analysis demonstrated that in the prediction of GDM ± LGA fetus and GOS, there were significant independent contributions from FI MoM (area under curve (AUROC) of 0.610, 95% CI 0.492-0.727; p = 0.062) and MAP MoM (AUROC of 0.645, 95% CI 0.510-0.779; p = 0.026), respectively. CONCLUSION FI and MAP are independent predictors for GDM ± LGA fetus and GOS, respectively. However, they have low predictive value. There is a need to identify more specific novel biomarkers in differentiating IVF/ET pregnancies that are at a higher risk of developing complications.
Collapse
Affiliation(s)
- Patricia Nga Ping Ip
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Long Nguyen-Hoang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Jun Guo
- Department of Obstetrics and Gynaecology, Beijing Tongren Hospital, The Capital Medical University, Beijing, China
| | - Xueqin Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Daljit Singh Sahota
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liona Chiu Yee Poon
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Calvo MJ, Parra H, Santeliz R, Bautista J, Luzardo E, Villasmil N, Martínez MS, Chacín M, Cano C, Checa-Ros A, D'Marco L, Bermúdez V, De Sanctis JB. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:10-18. [PMID: 38812661 PMCID: PMC11132656 DOI: 10.17925/ee.2024.20.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 05/31/2024]
Abstract
During pregnancy, women undergo several metabolic changes to guarantee an adequate supply of glucose to the foetus. These metabolic modifications develop what is known as physiological insulin resistance. When this process is altered, however, gestational diabetes mellitus (GDM) occurs. GDM is a multifactorial disease, and genetic and environmental factors play a crucial role in its aetiopathogenesis. GDM has been linked to both macroscopic and molecular alterations in placental tissues that affect placental physiology. This review summarizes the role of the placenta in the development of GDM from a molecular perspective, including hormonal and pro-inflammatory changes. Inflammation and hormonal imbalance, the characteristics dominating the GDM microenvironment, are responsible for placental changes in size and vascularity, leading to dysregulation in maternal and foetal circulations and to complications in the newborn. In conclusion, since the hormonal mechanisms operating in GDM have not been fully elucidated, more research should be done to improve the quality of life of patients with GDM and their future children.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Eliana Luzardo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricamen Chacín
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Checa-Ros
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Luis D'Marco
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
18
|
Çelik AO, Günay B, Çoker GB, Ustabaşıoğlu FE, Ateş S, Tunçbilek N. Evaluation of placenta in patients with gestational diabetes using shear wave elastography and superb microvascular imaging. Acta Radiol 2024; 65:318-323. [PMID: 38111238 DOI: 10.1177/02841851231217201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a common disease, and the placenta shows various functional and morphological changes in these patients. Superb microvascular imaging (SMI) and shear wave elastography (SWE) are innovative ultrasound (US) methods that provide detailed information about tissue vascularization and elasticity. PURPOSE To evaluate placental changes in patients with GDM with SMI and SWE methods. MATERIAL AND METHODS For this case-control study, 20 healthy and 20 women with GDM were included. Women at >21 weeks of pregnancy were evaluated with SMI and SWE by two independent radiologists. Mean SMI values and mean SWE values from three different region of interest-based measurements were compared between the two groups. RESULTS We identified that the mean SMI and SWE value of the GDM group was found to be significantly higher than that of the control group (P = 0.002, P = 0.001 respectively). Using a receiver operating characteristic curve, the cutoff value of the SMI ratio, which maximizes the prediction of the presence of GDM, was 0.1234279750 (95% confidence interval [CI] = 0.625-0.920), the SWE cut-off value was 15.5 kPa (95% CI = 0.794-0.989). CONCLUSION We have demonstrated that evaluation with SMI and SWE might allow quantitative assessment of the morphological changes of placentas in women with GDM. We believe that the use of innovative methods such as SMI and SWE in addition to conventional US examinations in daily practice and studies will provide significant clinical benefits to patient management.
Collapse
Affiliation(s)
- Ahmet Onur Çelik
- Department of Radiology, Çanakkale Mehmet Akif Ersoy State Hospital, Çanakkale, Turkey
| | - Burak Günay
- Department of Radiology, Trakya University Faculty of Medicine, Turkey
| | - Gonca Büşra Çoker
- Department of Gynecology and Obstetrics, Trakya University Faculty of Medicine, Turkey
| | | | - Sinan Ateş
- Department of Gynecology and Obstetrics, Trakya University Faculty of Medicine, Turkey
| | - Nermin Tunçbilek
- Department of Radiology, Trakya University Faculty of Medicine, Turkey
| |
Collapse
|
19
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
20
|
Yao J, Chang X, He Q, Li H, Duan T, Wang K. Exosome enriched leucine-rich alpha-2-glycoprotein-1 and extracellular matrix protein 1 proteins induce abnormal placental angiogenesis in pregnant mice. Placenta 2023; 143:45-53. [PMID: 37804693 DOI: 10.1016/j.placenta.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Gestational Diabetes Mellitus (GDM) is characterized by a high risk of fetal macrosomia and placenta hypervascularization. Exosomes has been known participating in various physiological and pathological processes, including pro-angiogenic function. However, the effects of umbilical cord blood derived exosomes from cases of GDM (GDM-exo) on placental vascular network formation remain unclear. METHODS In the current study, we isolated and identified exosomes in umbilical cord blood from both normal (N-exo) and GDM pregnancies. Meanwhile, we investigated the effects of umbilical cord blood derived exosomes on placental angiogenesis both in vitro and in vivo. RESULTS Our data indicated that in a mouse model, the placenta and fetus weight were significantly higher in the ones administrated with GDM-exo when compared with N-exo. Meanwhile, GDM-exo significantly enhanced placental endothelial cells functions in both HUVEC and HPMEC endothelial cell models. Importantly, we explored two up-regulated proteins in GDM-exo, namely leucine-rich alpha-2-glycoprotein-1 (LRG1) and extracellular matrix protein 1 (ECM1) by proteome analysis, which performed largely pro-angiogenic function and probably resulted in hypervascularization in GDM placenta. DISCUSSION Thus, we proposed that abundant LRG1 and ECM1 enriched GDM-exo may take important roles in regulating pathological placental angiogenesis.
Collapse
Affiliation(s)
- Julei Yao
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Xinwen Chang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Qizhi He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Hua Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China
| | - Tao Duan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China.
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, PR China.
| |
Collapse
|
21
|
Jiao B, Wang Y, Li S, Lu J, Liu J, Xia J, Li Y, Xu J, Tian X, Qi B. Dissecting human placental cells heterogeneity in preeclampsia and gestational diabetes using single-cell sequencing. Mol Immunol 2023; 161:104-118. [PMID: 37572508 DOI: 10.1016/j.molimm.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are pregnancy-specific complications, which affect maternal health and fetal outcomes. Currently, clinical and pathological studies have shown that placenta homeostasis is affected by these two maternal diseases. In this study, we aimed to gain insight into the heterogeneous changes in cell types in placental tissue-isolated from cesarean section by single-cell sequencing, including those patients diagnosed with PE (n = 5), GDM (n = 5) and healthy control (n = 5). A total of 96,048 cells (PE: 31,672; GDM: 25,294; control: 39,082) were identified in six cell types, dominated by trophoblast cells and immune cells. In addition, trophoblast cells were divided into four subtypes, including cytotrophoblast cells (CTBs), villous cytotrophoblasts (VCTs), syncytiotrophoblast (STB), and extravillous trophoblasts (EVTs). Immune cells are divided into lymphocytes and macrophages, of which macrophages have 3 subtypes (decidual macrophages, Hofbauer cells and macrophages), and lymphocytes have 4 subtypes (BloodNK, T cells, plasma cells, and decidual natural killer cells). Meanwhile, we also proved the orderly differentiation sequence of CTB into VCT, then STB and EVT. By pair-wise analysis of the expression and enrichment of differentially expressed genes in trophoblast cells between PE, GDM and control, it was found that these cells were involved in immune, nutrient transfer, hormone and oxidative stress pathways. In addition, T cells and macrophages play an immune defense role in both PE and GDM. The proportion of CTB and EVT cells in placental tissue was confirmed by flow cytometry. Taken together, our results suggested that the human placenta is a dynamic heterogenous organ dominated by trophoblast and immune cells, which perform their respective roles and interact with other cells in the environment to maintain normal placental function.
Collapse
Affiliation(s)
- Bo Jiao
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yan Wang
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Shenghua Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jianan Lu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jian Liu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Ji Xia
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yisha Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Juanjuan Xu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Xiujuan Tian
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| | - Bangruo Qi
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| |
Collapse
|
22
|
Klöppel E, Souza MR, Barco VS, Gallego FQ, Sinzato YK, Corrente JE, Rodrigues T, Volpato GT, Damasceno DC. Calcium Supplementation on Glucose Tolerance, Oxidative Stress, and Reproductive Outcomes of Diabetic Rats and Their Offspring. Reprod Sci 2023; 30:2813-2828. [PMID: 37002533 DOI: 10.1007/s43032-023-01217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Diabetes mellitus increases the risk of obstetric complications, morbidity, and infant mortality. Controlled nutritional therapy with micronutrients has been employed. However, the effect of calcium (Ca2+) supplementation on diabetic pregnancy is unclear. We aimed to evaluate whether diabetic rats supplemented with Ca2+ during pregnancy present better glucose tolerance, redox status, embryonic and fetal development, newborn weight, and the prooxidant and antioxidant balance of male and female pups. For this, newborn rats received the beta-cytotoxic drug streptozotocin for inducing diabetes on the day of birth. In adulthood, these rats were mated and treated with Ca2+ twice a day from day 0 to day 20 of pregnancy. On day 17, the pregnant rats were submitted to the oral glucose tolerance test (OGTT). At the end of pregnancy, they were anesthetized and killed to collect blood and pancreas samples. The uterine horns were exposed for an evaluation of maternal reproductive outcomes and embryofetal development, and the offspring's liver samples were collected for redox status measurement. Nondiabetic and diabetic rats supplemented with Ca2+ showed no influence on glucose tolerance, redox status, insulin synthesis, serum calcium levels, and embryofetal losses. The reduced rate of newborns classified as adequate for gestational age (AGA) and higher rates of LGA (large) and small (LGA) newborns and higher -SH and GSH-Px antioxidant activities in female pups were observed in diabetic dams, regardless of supplementation. Thus, maternal supplementation caused no improvement in glucose tolerance, oxidative stress biomarkers, embryofetal growth and development, and antioxidants in pups from diabetic mothers.
Collapse
Affiliation(s)
- Eduardo Klöppel
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil
| | - Maysa Rocha Souza
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil
- Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso_UFMT, Mato Grosso State, Barra Do Garças, Brazil
| | - Vinícius Soares Barco
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo State, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo, SP, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil
- Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso_UFMT, Mato Grosso State, Barra Do Garças, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research On Gynecology and Obstetrics, Postgraduate Course On Tocogynecology, Botucatu Medical School, São Paulo State University_UNESP, Botucatu, São Paulo State, Brazil.
| |
Collapse
|
23
|
Qi W, Gundogan F, Gilligan J, Monte SDL. Dietary soy prevents fetal demise, intrauterine growth restriction, craniofacial dysmorphic features, and impairments in placentation linked to gestational alcohol exposure: Pivotal role of insulin and insulin-like growth factor signaling networks. Alcohol 2023; 110:65-81. [PMID: 36898643 PMCID: PMC10272094 DOI: 10.1016/j.alcohol.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Prenatal alcohol exposure can impair placentation and cause intrauterine growth restriction (IUGR), fetal demise, and fetal alcohol spectrum disorder (FASD). Previous studies showed that ethanol's inhibition of placental insulin and insulin-like growth factor, type 1 (IGF-1) signaling compromises trophoblastic cell motility and maternal vascular transformation at the implantation site. Since soy isolate supports insulin responsiveness, we hypothesized that dietary soy could be used to normalize placentation and fetal growth in an experimental model of FASD. METHODS Pregnant Long-Evans rat dams were fed with isocaloric liquid diets containing 0% or 8.2% ethanol (v/v) from gestation day (GD) 6. Dietary protein sources were either 100% soy isolate or 100% casein (standard). Gestational sacs were harvested on GD19 to evaluate fetal resorption, fetal growth parameters, and placental morphology. Placental insulin/IGF-1 signaling through Akt pathways was assessed using commercial bead-based multiplex enzyme-linked immunosorbent assays. RESULTS Dietary soy markedly reduced or prevented the ethanol-associated fetal loss, IUGR, FASD dysmorphic features, and impairments in placentation/maturation. Furthermore, ethanol's inhibitory effects on the placental glycogen cell population at the junctional zone, invasive trophoblast populations at the implantation site, maternal vascular transformation, and signaling through the insulin and IGF1 receptors, Akt and PRAS40 were largely abrogated by co-administration of soy. CONCLUSION Dietary soy may provide an economically feasible and accessible means of reducing adverse pregnancy outcomes linked to gestational ethanol exposure.
Collapse
Affiliation(s)
- Wei Qi
- Liver Research Center of the Department of Medicine at Rhode Island Hospital, Providence, RI, 02905, US
| | - Fusun Gundogan
- Alpert Medical School at Brown University, Providence, RI, 02905, US; Women & Infants Hospital, Providence, RI, 02905, US
| | - Jeffrey Gilligan
- Liver Research Center of the Department of Medicine at Rhode Island Hospital, Providence, RI, 02905, US
| | - Suzanne de la Monte
- Liver Research Center of the Department of Medicine at Rhode Island Hospital, Providence, RI, 02905, US; Department of Pathology and Laboratory Medicine at Rhode Island Hospital, Providence, RI, 02905, USA; Alpert Medical School at Brown University, Providence, RI, 02905, US; Women & Infants Hospital, Providence, RI, 02905, US.
| |
Collapse
|
24
|
Atkins B, Kindinger L, Mahindra MP, Moatti Z, Siassakos D. Stillbirth: prevention and supportive bereavement care. BMJ MEDICINE 2023; 2:e000262. [PMID: 37564829 PMCID: PMC10410959 DOI: 10.1136/bmjmed-2022-000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/26/2023] [Indexed: 08/12/2023]
Abstract
Around half of the two million stillbirths occurring worldwide each year are preventable. This review compiles the most up-to-date evidence to inform stillbirth prevention. Many general maternal health interventions also reduce the risk of stillbirth, for example, antenatal care attendance. This review focuses on specific aspects of care: glucose metabolism, targeted aspirin prophylaxis, clotting and immune disorders, sleep positions, fetal movement monitoring, and preconception and interconception health. In the past few years, covid-19 infection during pregnancy has emerged as a risk factor for stillbirth, particularly among women who were not vaccinated. Alongside prevention, efforts to address stillbirth must include provision of high quality, supportive, and compassionate bereavement care to improve parents' wellbeing. A growing body of evidence suggests beneficial effects for parents who received supportive care and were offered choices such as mode of birth and the option to see and hold their baby. Staff need support to be able to care for parents effectively, yet, studies consistently highlight the scarcity of specific bereavement care training for healthcare providers. Action is urgently needed and is possible. Action must be taken with the evidence available now, in healthcare settings with high or low resources, to reduce stillbirths and improve training and care.
Collapse
Affiliation(s)
- Bethany Atkins
- Institute for Women's Health, University College London, London, UK
- National Institute for Health and Care Research, London, UK
| | - Lindsay Kindinger
- King Edward Memorial Hospital for Women Perth, Perth, WA, Australia
- Fiona Stanley Hospital, Perth, WA, Australia
| | | | | | | |
Collapse
|
25
|
Sharma N, Watkins OC, Chu AHY, Cutfield W, Godfrey KM, Yong HEJ, Chan SY. Myo-inositol: a potential prophylaxis against premature onset of labour and preterm birth. Nutr Res Rev 2023; 36:60-68. [PMID: 34526164 PMCID: PMC7614523 DOI: 10.1017/s0954422421000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production and secretion of pro-inflammatory chemocytokines that overall dampen the pro-labour uteroplacental environment responsible for labour onset and progress, thus reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anne H Y Chu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - W Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
26
|
Visiedo F, Vázquez-Fonseca L, Ábalos-Martínez J, Broullón-Molanes JR, Quintero-Prado R, Mateos RM, Bugatto F. Maternal elevated inflammation impairs placental fatty acids β-oxidation in women with gestational diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1146574. [PMID: 37214247 PMCID: PMC10196201 DOI: 10.3389/fendo.2023.1146574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction An adverse proinflammatory milieu contributes to abnormal cellular energy metabolism response. Gestational diabetes mellitus (GDM) is closely related to an altered maternal inflammatory status. However, its role on lipid metabolism regulation in human placenta has not yet been assessed. The aim of this study was to examine the impact of maternal circulating inflammatory mediators ([TNF]-α, [IL]-6, and Leptin) on placental fatty acid metabolism in GDM pregnancies. Methods Fasting maternal blood and placental tissues were collected at term deliveries from 37 pregnant women (17 control and 20 GDM). Molecular approach techniques as radiolabeled lipid tracers, ELISAs, immunohistochemistry and multianalyte immunoassay quantitative analysis, were used to quantify serum inflammatory factors' levels, to measure lipid metabolic parameters in placental villous samples (mitochondrial fatty acid oxidation [FAO] rate and lipid content [Triglycerides]), and to analyze their possible relationships. The effect of potential candidate cytokines on fatty acid metabolism in ex vivo placental explants culture following C-section a term was also examined. Results Maternal serum IL-6, TNF-α and leptin levels were significantly increased in GDM patients compared with control pregnant women (9,9±4,5 vs. 3,00±1,7; 4,5±2,8 vs. 2,1±1,3; and 10026,7±5628,8 vs. 5360,2±2499,9 pg/ml, respectively). Placental FAO capacity was significantly diminished (~30%; p<0.01), whereas triglyceride levels were three-fold higher (p<0.01) in full-term GDM placentas. Uniquely the maternal IL-6 levels showed an inverse and positive correlation with the ability to oxidize fatty acids and triglyceride amount in placenta, respectively (r= -0,602, p=0.005; r= 0,707, p=0.001). Additionally, an inverse correlation between placental FAO and triglycerides was also found (r=-0.683; p=0.001). Interestingly, we ex vivo demonstrated by using placental explant cultures that a prolonged exposure with IL-6 (10 ng/mL) resulted in a decline in the fatty acid oxidation rate (~25%; p=0.001), along to acute increase (2-fold times) in triglycerides accumulation (p=0.001), and in lipid neutral and lipid droplets deposits. Conclusions Enhanced maternal proinflammatory cytokines levels (essentially IL-6) is closely associated with an altered placental fatty acid metabolism in pregnancies with GDM, which may interfere with adequate delivery of maternal fat across the placenta to the fetus.
Collapse
Affiliation(s)
- Francisco Visiedo
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Luis Vázquez-Fonseca
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - Jessica Ábalos-Martínez
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
| | - J. Román Broullón-Molanes
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology “Puerta del Mar” University Hospital, University of Cádiz, Cádiz, Spain
- Area of Obstetrics and Gynaecology, Department of Child and Mother Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain
| | - Rocío Quintero-Prado
- Department of Obstetrics and Gynecology, Puerto Real University Hospital, Cadiz, Spain
| | - Rosa María Mateos
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, Cádiz, Spain
| | - Fernando Bugatto
- Inflammation and Metabolic Syndrome in Pregnancy Group (CO25), Biomedical Research and Innovation Institute of Cádiz (INiBICA), Cádiz, Spain
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology “Puerta del Mar” University Hospital, University of Cádiz, Cádiz, Spain
- Area of Obstetrics and Gynaecology, Department of Child and Mother Health and Radiology, School of Medicine, University of Cádiz, Cádiz, Spain
| |
Collapse
|
27
|
Liang X, Zhang J, Wang Y, Wu Y, Liu H, Feng W, Si Z, Sun R, Hao Z, Guo H, Li X, Xu T, Wang M, Nan Z, Lv Y, Shang X. Comparative study of microvascular structural changes in the gestational diabetic placenta. Diab Vasc Dis Res 2023; 20:14791641231173627. [PMID: 37186815 PMCID: PMC10192807 DOI: 10.1177/14791641231173627] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
AIMS Microvascular morphology and pathological changes in gestational diabetes mellitus (GDM) placentas and normal placentas were observed via vascular casting technology, electron microscopy, and pathological detection technology. Vascular structure and histological morphology changes in GDM placentas were examined to generate basic experimental data for the diagnosis and prognostic determination of GDM. METHODS This case-control study involving 60 placentas, 30 from healthy controls and 30 from patients with GDM. Differences in size, weight, volume, umbilical cord diameter, and gestational age were assessed. Histological changes in the placentas in the two groups were analyzed and compared. A placental vessel casting model was constructed using a self-setting dental powder technique, to compare the two groups. The placental cast microvessels of the two groups were compared using scanning electron microscopy. RESULTS There were no significant differences in maternal age or gestational age between the GDM group and the control group (p > .05). The size, weight, volume, and thickness of the placentas in the GDM group were significantly greater than those in the control group, as was umbilical cord diameter (p < .05). Immature villus, fibrinoid necrosis, calcification, and vascular thrombosis were significantly greater in the placental mass in the GDM group (p < .05). The terminal branches of the microvessels in diabetic placenta casts were sparse, with significantly fewer ends and lower villous volume (p < .05). CONCLUSION Gestational diabetes can cause gross and histological changes in the placenta, particularly placental microvascular changes.
Collapse
Affiliation(s)
- Xinyan Liang
- Postgraduate Training Base of
Xiangyang First People’s Hospital, Jinzhou Medical
University, Xiangyang, China
| | - Jiaqi Zhang
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
- Hubei Clinical Medical Research
Center for Accurate Diagnosis of fetal Complex
Malformations, Xiangyang, China
| | - Yu Wang
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
- Hubei Clinical Medical Research
Center for Accurate Diagnosis of fetal Complex
Malformations, Xiangyang, China
| | - You Wu
- Department of Medical Imaging, Changsha Medical
College, Changsha, China
| | - Hui Liu
- Department of Medical Imaging, Changsha Medical
College, Changsha, China
| | - Wei Feng
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
- Hubei Clinical Medical Research
Center for Accurate Diagnosis of fetal Complex
Malformations, Xiangyang, China
| | - Ziyi Si
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
- Hubei Clinical Medical Research
Center for Accurate Diagnosis of fetal Complex
Malformations, Xiangyang, China
| | - Ruige Sun
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
- Hubei Clinical Medical Research
Center for Accurate Diagnosis of fetal Complex
Malformations, Xiangyang, China
| | - Zizhou Hao
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
- Hubei Clinical Medical Research
Center for Accurate Diagnosis of fetal Complex
Malformations, Xiangyang, China
| | - Hongzhi Guo
- Postgraduate Training Base of
Xiangyang First People’s Hospital, Jinzhou Medical
University, Xiangyang, China
| | - Xue Li
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
| | - Tao Xu
- Department of Ultrasound, Xiangyang No.1 People’s Hospital,
Hubei University of Medicine, Xiangyang, China
| | - Mofeng Wang
- Postgraduate Training Base of
Xiangyang First People’s Hospital, Jinzhou Medical
University, Xiangyang, China
| | - Zhen Nan
- Postgraduate Training Base of
Xiangyang First People’s Hospital, Jinzhou Medical
University, Xiangyang, China
| | - Yang Lv
- Xiangyang Maternal and Child Health
Hospital, Xiangyang, China
| | - Xinan Shang
- Xiangzhou District People’s
Hospital, Xiangyang, China
| |
Collapse
|
28
|
Pape J, Levy J, von Wolff M. Hormone replacement cycles are associated with a higher risk of hypertensive disorders: Retrospective cohort study in singleton and twin pregnancies. BJOG 2023; 130:377-386. [PMID: 36371677 DOI: 10.1111/1471-0528.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To elaborate the associations of different cycle regimens (natural cycle [NC], stimulated cycle [SC], hormone replacement cycle [HRC]) on maternal and neonatal adverse pregnancy outcomes after frozen-thawed embryo transfers (FET). DESIGN Population-based registry study. SETTING Swiss IVF Registry. POPULATION OR SAMPLE Singleton (n = 4636) and twin (n = 544) live births after NC-FET (n = 776), SC-FET (n = 758) or HRC-FET (n = 3646) registered from 2014 to 2019. METHODS Fifteen pregnancy pathologies were modelled for singleton and twin pregnancies using mixed models adjusted for cycle regimen, delivery, fertilisation technique, chronic anovulation, age of mother and centre. MAIN OUTCOME MEASURES Maternal (vaginal bleeding, isolated arterial hypertension and pre-eclampsia) and neonatal (gestational age, birthweight, mode of delivery) adverse pregnancy outcomes. RESULTS In singleton pregnancies, the incidences of bleeding in first trimester, isolated hypertension and pre-eclampsia were highest in HRC-FET with doubled odds of bleeding in first trimester (adjusted odds ratio [aOR] 2.23; 95% CI 1.33-3.75), isolated hypertension (aOR 2.50; 95% CI 1.02-6.12) and pre-eclampsia (aOR 2.16; 95% CI 1.13-4.12) in HRC-FET vs. NC-FET and with doubled respectively sixfold odds of bleeding (aOR 2.08; 95% CI 1.03-4.21) and pre-eclampsia (6.02; 95% CI 1.38-26.24) in HRC-FET versus SC-FET. In twin pregnancies, the incidence of pre-eclampsia was highest in HRC-FET with numerically higher odds of pre-eclampsia in HRC-FET versus NC-FET and versus SC-FET. CONCLUSIONS Our data implied the highest maternal risks of hypertensive disorders in HRC-FET, therefore clinicians should prefer SC-FET or NC-FET if medically possible.
Collapse
Affiliation(s)
- Janna Pape
- Division of Endocrinology and Reproductive Medicine, Inselspital, University Women's Hospital, Bern, Switzerland
| | - Jérémy Levy
- FIVNAT Statistician, Swiss Society for Reproductive Medicine, Aarau, Switzerland
| | - Michael von Wolff
- Division of Endocrinology and Reproductive Medicine, Inselspital, University Women's Hospital, Bern, Switzerland
| |
Collapse
|
29
|
Wang Z, Luo J, Zhang Y, Li J, Zhang J, Tian Y, Gao Y. High maternal glucose exacerbates the association between prenatal per- and polyfluoroalkyl substance exposure and reduced birth weight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160130. [PMID: 36372179 DOI: 10.1016/j.scitotenv.2022.160130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) exposure has been associated with reduced birth weight. However, the association may be complicated by glucose status due to PFAS impact on fetal growth and placental transport. OBJECTIVES To examine whether maternal glucose status modifies the association between prenatal PFAS exposure and birth weight z-score. METHODS We analyzed data of 1405 mother-child pairs from the prospective Shanghai Birth Cohort. Plasma concentrations of six PFAS were quantified in the first trimester. Fasting plasma glucose (FPG) was collected at 24-28 gestation weeks. A range of FPG cutoffs (4.9-5.4 mmol/L) covering current recommendations for gestational diabetes mellitus were used to define high and low FPG groups. Association between PFAS concentration and birth weight z-score was evaluated using multivariate linear regression in two FPG groups respectively, and the dose-response relationship was estimated with cutoffs ranging from low to high. We then used propensity score to counterbalance the effects of different PFAS concentrations between the high and low FPG groups, and run the regression again. RESULTS A doubling increase in concentrations of several PFAS was inversely associated with birth weight z-score. The association was more evident in high FPG groups and the magnitudes intensified when FPG cutoff increased. The strongest association was observed for PFOA, with the magnitude increased from -0.34 (95 % CI: -0.66, -0.03) for 5.0 mmol/L cutoff, to -0.41 (95 % CI: -0.77, -0.05) for 5.1 mmol/L cutoff, and further to -0.51 (95 % CI: -0.98, -0.03) for 5.3 mmol/L. Propensity score matching yielded similar results. CONCLUSIONS High maternal glucose level may increase the risk of reduced birth weight z-score related to prenatal PFAS exposure. Moreover, exploring the effects with different FPG cutoffs may contribute to providing intervention strategies for pregnant women with high PFAS exposure.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiajun Luo
- Institute for Population and Precision Health, the University of Chicago, Chicago, IL, USA
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Li
- Department of Clinical Medicine, Department of Clinical Epidemiology, Aarhus University, Denmark
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
Kedziora SM, Obermayer B, Sugulle M, Herse F, Kräker K, Haase N, Langmia IM, Müller DN, Staff AC, Beule D, Dechend R. Placental Transcriptome Profiling in Subtypes of Diabetic Pregnancies Is Strongly Confounded by Fetal Sex. Int J Mol Sci 2022; 23:ijms232315388. [PMID: 36499721 PMCID: PMC9740420 DOI: 10.3390/ijms232315388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The placenta is a temporary organ with a unique structure and function to ensure healthy fetal development. Placental dysfunction is involved in pre-eclampsia (PE), fetal growth restriction, preterm birth, and gestational diabetes mellitus (GDM). A diabetic state affects maternal and fetal health and may lead to functional alterations of placental metabolism, inflammation, hypoxia, and weight, amplifying the fetal stress. The placental molecular adaptations to the diabetic environment and the adaptive spatio-temporal consequences to elevated glucose or insulin are largely unknown (2). We aimed to identify gene expression signatures related to the diabetic placental pathology of placentas from women with diabetes mellitus. Human placenta samples (n = 77) consisting of healthy controls, women with either gestational diabetes mellitus (GDM), type 1 or type 2 diabetes, and women with GDM, type 1 or type 2 diabetes and superimposed PE were collected. Interestingly, gene expression differences quantified by total RNA sequencing were mainly driven by fetal sex rather than clinical diagnosis. Association of the principal components with a full set of clinical patient data identified fetal sex as the single main explanatory variable. Accordingly, placentas complicated by type 1 and type 2 diabetes showed only few differentially expressed genes, while possible effects of GDM and diabetic pregnancy complicated by PE were not identifiable in this cohort. We conclude that fetal sex has a prominent effect on the placental transcriptome, dominating and confounding gene expression signatures resulting from diabetes mellitus in settings of well-controlled diabetic disease. Our results support the notion of placenta as a sexual dimorphic organ.
Collapse
Affiliation(s)
- Sarah M. Kedziora
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Meryam Sugulle
- Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, 0424 Oslo, Norway
| | - Florian Herse
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
| | - Kristin Kräker
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Immaculate M. Langmia
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
| | - Dominik N. Müller
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, Berlin Institute of Health, 10178 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, 0424 Oslo, Norway
| | - Dieter Beule
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Core Unit Bioinformatics, 10117 Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité—Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, 10785 Berlin, Germany
- HELIOS Clinic, Department of Cardiology and Nephrology, 13125 Berlin, Germany
- Correspondence: ; Tel.: +49-30-4505-40301
| |
Collapse
|
31
|
Yao X, Huang S, Li Y, Ge Y, Zhang Z, Ning J, Yang X. Transgenerational effects of zinc, selenium and chromium supplementation on glucose homeostasis in female offspring of gestational diabetes rats. J Nutr Biochem 2022; 110:109131. [PMID: 36028097 DOI: 10.1016/j.jnutbio.2022.109131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Clinical studies have demonstrated that maternal gestational diabetes mellitus (GDM) increases the offspring's risk of developing glucose intolerance. Our previous study reported that co-supplementation with zinc, selenium, and chromium improved insulin resistance in diet-induced GDM rats. Here, Transgenerational effects of supplementation with zinc (10 mg/kg.bw), selenium (20 μg/kg.bw), and chromium (20 μg/kg.bw) in F1 female offspring of both zinc, selenium and chromium (ZnSeCr)-treated, and untreated GDM rats daily by gavage from weaning to the postpartum were investigated in the present study. Glucose homeostasis in the F1 female offspring of GDM at different stages were evaluated. Maternal GDM did increase the birth mass of newborn F1 female offspring, as well as the serum glucose and insulin levels. Zinc, selenium and chromium supplementation attenuated the GDM-induced mass gain, increased serum glucose and insulin levels in the female neonates. The high fat and sucrose (HFS) diet-fed GDM-F1 offspring developed GDM, with glucose intolerance, hyperglycemia and insulin resistance during pregnancy. Moreover, endoplasmic reticulum (ER) stress-related protein levels were increased and the activation of insulin signaling pathways were reduced in the liver of HFS-fed GDM-F1 offspring. Whereas glucose homeostasis in parallel with insulin sensitivity was normalized in the female offspring of GDM by supplementation both F0 dams and F1 offspring with zinc, selenium and chromium, not in those either F0 or F1 elements supplemented offspring. Therefore, we speculate that zinc, selenium and chromium supplementation may have a potential beneficial transgenerational effect on the glucose homeostasis in the female offspring of GDM.
Collapse
Affiliation(s)
- Xueqiong Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Ge
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, Guangdong, China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Bao Y, Zhang J, Liu Y, Wu L, Yang J. Identification of human placenta-derived circular RNAs and autophagy related circRNA-miRNA-mRNA regulatory network in gestational diabetes mellitus. Front Genet 2022; 13:1050906. [PMID: 36531251 PMCID: PMC9748685 DOI: 10.3389/fgene.2022.1050906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 09/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic and reproductive disease with serious risks and adverse health effects. However, the pathophysiological mechanism of GDM, especially the roles of circRNAs in its pathogenesis, is largely unknown. The objective of this study was to identify and investigate the roles of circRNAs in GDM. In the current study, placental circRNA expression profiles of normal controls and GDM patients were analyzed using high-throughput sequencing. Bioinformatics analysis identified a total of 4,955 circRNAs, of which 37 circRNAs were significantly deregulated in GDM placentas compared with NC placentas. GO and KEGG enrichment analyses demonstrated that metabolic process-associated terms and metabolic pathways that may be related to GDM were significantly enriched. The biological characteristics of placenta-derived circRNAs, such as their stability and RNase R resistance, were also validated Bioinformatics prediction. Moreover, we constructed the autophagy related circRNA-miRNA-mRNA regulatory network and further functional analysis revealed that the circCDH2-miR-33b-3p-ULK1 axis may be associated with autophagy in the placentas of GDM patients. Our study indicates that aberrant expression of circRNAs may play roles in autophagy in GDM placentas, providing new insights into GDM.
Collapse
Affiliation(s)
- Yindi Bao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Xiaogan Central Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Lianzhi Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center/Hubei Medical Clinical Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Desoye G, Carter AM. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol 2022; 18:593-607. [PMID: 35902735 DOI: 10.1038/s41574-022-00717-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Despite improvements in clinical management, pregnancies complicated by pre-existing diabetes mellitus, gestational diabetes mellitus or obesity carry substantial risks for parent and offspring. Some of the endocrine and metabolic changes in parent and fetus in diabetes mellitus and obesity lead to fetal oxygen deficit, mostly due to insulin-induced accelerated fetal metabolism. The human fetus deals with reduced oxygenation through a wide range of adaptive responses that act at various levels in the placenta as well as the fetus. These responses ensure adequate oxygen delivery to the fetus, increase the oxygen transport capacity of fetal blood and redistribute oxygen-rich blood to vital organs such as the brain and heart. The liver has a central role in adapting to reduced oxygenation by increasing its oxygen extraction and stimulating erythropoietin synthesis to increase haematocrit. The type of adaptive response depends on the onset and duration of hypoxia and the severity of the metabolic disturbance. In pregnancies characterized by diabetes mellitus or obesity, these adaptive systems come under additional strain owing to the increased maternal supply of glucose and resultant fetal hyperinsulinaemia, both of which stimulate oxidative metabolism. In the rare situation that the adaptive responses are overwhelmed, stillbirth can ensue.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
- Center for Pregnant Women with Diabetes, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Anthony M Carter
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
34
|
Jiang Y, Chen A, Kline D, Liu Q, Ma J, Wang Y, Zhang T, Qian J, Nelson L, Prasadan K, Hu B, Gittes GK, Xiao X. Polarized macrophages promote gestational beta cell growth through extracellular signal-regulated kinase 5 signalling. Diabetes Obes Metab 2022; 24:1721-1733. [PMID: 35546452 DOI: 10.1111/dom.14744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022]
Abstract
AIM To show that depletion of pancreatic macrophages impairs gestational beta cell proliferation and leads to glucose intolerance. MATERIALS AND METHODS Genetic animal models were applied to study the effects of depletion of pancreatic macrophges on gestational beta-cell proliferaiton and glucose response. The crosstalk between macrophages and beta-cells was studied in vivo using beta-cell-specific extracellular-signal-regulated kinase 5 (ERK5) knockout and epidermal growth receptor (EGFR) knockout mice, and in vitro using a co-culture system. RESULTS Beta cell-derived placental growth factor (PlGF) recruited naïve macrophages and polarized them towards an M2-like phenotype. These macrophages then secreted epidermal growth factor (EGF), which activated extracellular signal-regulated kinase 5 (ERK5) signalling in beta cells to promote gestational beta cell proliferation. On the other hand, activation of ERK5 signalling in beta cells likely, in turn, enhanced the production and secretion of PlGF by beta cells. CONCLUSIONS Our study shows a regulatory loop between macrophages and beta cells through PlGF/EGF/ERK5 signalling cascades to regulate gestational beta cell growth.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Diana Kline
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qun Liu
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jie Ma
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Wang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jieqi Qian
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura Nelson
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna Prasadan
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George K Gittes
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
35
|
Meyrueix LP, Gharaibeh R, Xue J, Brouwer C, Jones C, Adair L, Norris SA, Ideraabdullah F. Gestational diabetes mellitus placentas exhibit epimutations at placental development genes. Epigenetics 2022; 17:2157-2177. [DOI: 10.1080/15592294.2022.2111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Raad Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL, USA
| | - Jing Xue
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
| | - Cory Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
| | - Corbin Jones
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Adair
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
| | - Shane A. Norris
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Folami Ideraabdullah
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
36
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
Kim SY, Lee YJ, An SM, Kim MJ, Jeong JS, Kim DS, Lim Y, Jung EM, Kim SC, An BS. Dynamic regulation of lipid metabolism in the placenta of in vitro and in vivo models of Gestational Diabetes Mellitus. Biol Reprod 2022; 107:1311-1318. [PMID: 35932454 DOI: 10.1093/biolre/ioac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate lipid metabolism in the placenta of Gestational diabetes mellitus (GDM) individuals and to evaluate its effect on the fetus. We examined the expression of lipogenesis- and lipolysis-related proteins in the in vitro and in vivo GDM placenta models. The levels of sterol regulatory element binding protein-1c (SREBP-1c) were increased, and fat accumulated more during early hyperglycemia, indicating that lipogenesis was stimulated. When hyperglycemia was further extended, lipolysis was activated due to the phosphorylation of hormone-sensitive lipase (HSL) and expression of adipose triglyceride lipase (ATGL). In the animal model of GDM and in the placenta of GDM patients during the extended stage of GDM, the expression of SREBP-1c decreased and the deposition of fat increased. Similar to the results obtained in the in vitro study, lipolysis was enhanced in the animal and human placenta of extended GDM. These results suggest that fat synthesis may be stimulated by lipogenesis in the placenta when the blood glucose level is high. Subsequently, the accumulated fat can be degraded by lipolysis and more fat and its metabolites can be delivered to the fetus when the GDM condition is extended at the late stage of gestation. Imbalanced fat metabolism in the placenta and fetus of GDM patients can cause metabolic complications in the fetus, including fetal macrosomia, obesity, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- So Young Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Young Joo Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kyung Hee Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Min An
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Da Som Kim
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yong Lim
- Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, Republic of Korea
| | - Eui-Man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 Four Program), College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
38
|
ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells 2022; 11:cells11132057. [PMID: 35805141 PMCID: PMC9266233 DOI: 10.3390/cells11132057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The unbiased approaches of the last decade have enabled the collection of new data on the biology of annexin A1 (ANXA1) in a variety of scientific aspects, creating opportunities for new biomarkers and/or therapeutic purposes. ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The approaches presented here open pathways for reflection upon, and intrinsic clarification of, the modulating action of this protein in the response to genetic material damage, as well as its level of expression and cellular localization. The objective of this study is to arouse interest, with an emphasis on the mechanisms of nuclear translocation of ANXA1, which remain underexplored and may be beneficial in new inflammatory therapies.
Collapse
|
39
|
Zafaranieh S, Dieberger AM, Leopold-Posch B, Huppertz B, Granitzer S, Hengstschläger M, Gundacker C, Desoye G, van Poppel MNM, DALI Core Investigator Group. Physical Activity and Sedentary Time in Pregnancy: An Exploratory Study on Oxidative Stress Markers in the Placenta of Women with Obesity. Biomedicines 2022; 10:biomedicines10051069. [PMID: 35625806 PMCID: PMC9138298 DOI: 10.3390/biomedicines10051069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Regular moderate-to-vigorous physical activity (MVPA) and reduced sedentary time (ST) improve maternal glucose metabolism in pregnancy. More MVPA and less ST outside pregnancy increase antioxidant capacity, hence, are beneficial in preventing oxidative stress. The placenta is the first line of defense for the fetus from an adverse maternal environment, including oxidative stress. However, effects of MVPA and ST on oxidative stress markers in the placenta are unknown. The purpose of this study was to assess the association of MVPA and ST in pregnancy with oxidative stress markers in placentas of overweight/obese women (BMI ≥ 29 kg/m2). MVPA and ST were objectively measured with accelerometers at <20 weeks, 24−27 and 35−37 weeks of gestation. Using linear Bayesian multilevel models, the associations of MVPA and ST (mean and changes) with mRNA expression of a panel of 11 oxidative stress related markers were assessed in 96 women. MVPA was negatively correlated with HSP70 mRNA expression in a sex-independent manner and with GCLM expression only in placentas of female fetuses. ST was positively associated with HO-1 mRNA expression in placentas of male neonates. None of the other markers were associated with MVPA or ST. We speculate that increasing MVPA and reducing ST attenuates the oxidative stress state in placentas of obese pregnant women.
Collapse
Affiliation(s)
- Saghi Zafaranieh
- Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
| | - Anna M. Dieberger
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (A.M.D.); (B.L.-P.); (G.D.)
| | - Barbara Leopold-Posch
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (A.M.D.); (B.L.-P.); (G.D.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| | - Sebastian Granitzer
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria; (S.G.); (M.H.); (C.G.)
- Karl-Landsteiner Private University for Health Sciences, 3500 Krems, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria; (S.G.); (M.H.); (C.G.)
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria; (S.G.); (M.H.); (C.G.)
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (A.M.D.); (B.L.-P.); (G.D.)
| | - Mireille N. M. van Poppel
- Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
- Correspondence: ; Tel.: +43-(0)-316-380-2335
| | | |
Collapse
|
40
|
Du R, Wu N, Bai Y, Tang L, Li L. circMAP3K4 regulates insulin resistance in trophoblast cells during gestational diabetes mellitus by modulating the miR-6795-5p/PTPN1 axis. J Transl Med 2022; 20:180. [PMID: 35449053 PMCID: PMC9022258 DOI: 10.1186/s12967-022-03386-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Insulin resistance (IR) during gestational diabetes mellitus (GDM) has been linked to dysregulated insulin-PI3K/Akt pathway. A defective insulin-PI3K/Akt pathway and dysregulated circular RNA (circRNA) levels have been observed in the placentas of patients with GDM; however, the mechanisms underlying this association remain unclear. Methods circRNAs potentially associated with GDM were selected through bioinformatics analysis and initially identified by quantitative real-time PCR (qPCR) in 9 GDM patients and 9 healthy controls, of which circMAP3K4 was further validated in additional 84 samples by qPCR. circMAP3K4 identity and localization were verified. Pearson correlation analysis was applied to evaluate the correlation between circMAP3K4 expression in the placental tissues of GDM patients and IR-related indicators. An IR model of trophoblasts was constructed using glucosamine. Interactions between miR-6795-5p and circMAP3K4 or PTPN1 were confirmed using a dual-luciferase reporter assay. The circMAP3K4/miR-6795-5p/PTPN1 axis and key markers in the insulin-PI3K/Akt pathway in placentas and trophoblasts were evaluated through qRT-PCR, immunofluorescence, and western blotting. The role of circMAP3K4 in glucose metabolism and cell growth in trophoblasts was determined using the glucose uptake and CCK8 assay, respectively. Results circMAP3K4 was highly expressed in the placentas of patients with GDM and the IR trophoblast model; this was associated with a dysregulated insulin-PI3K/Akt pathway. circMAP3K4 in the placentas of GDM patients was positively correlated with weight gain during pregnancy and time-glucose area under the curve of OGTT. circMAP3K4 and PTPN1 could both bind to miR-6795-5p. miR-6795-5p and PTPN1 were downregulated and upregulated, respectively, in the placentas of GDM patients and the IR trophoblast model. circMAP3K4 silencing or miR-6795-5p overexpression partially reversed the decrease in glucose uptake, inhibition in cell growth, and downregulated IRS1 and Akt phosphorylation in IR-trophoblasts; this restoration was reversed upon co-transfection with an miR-6795-5p inhibitor or PTPN1. Conclusion circMAP3K4 could suppress the insulin-PI3K/Akt signaling pathway via miR-6795-5p/PTPN1 axis, probably contributing to GDM-related IR. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03386-8.
Collapse
Affiliation(s)
- Runyu Du
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Bai
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
41
|
Tocantins C, Diniz MS, Grilo LF, Pereira SP. The birth of cardiac disease: Mechanisms linking gestational diabetes mellitus and early onset of cardiovascular disease in offspring. WIREs Mech Dis 2022; 14:e1555. [PMID: 35304833 DOI: 10.1002/wsbm.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the biggest killer worldwide, composing a major economic burden for health care systems. Obesity and diabetes are dual epidemics on the rise and major risk factors predisposing for CVD. Increased obesity- and diabetes-related incidence is now observed among children, adolescents, and young adults. Gestational diabetes mellitus (GDM) is the most common metabolic pregnancy disorder, and its prevalence is rapidly increasing. During pregnancies complicated by GDM, the offspring are exposed to a compromised intrauterine environment characterized by hyperglycemic periods. Unfavorable in utero conditions at critical periods of fetal cardiac development can produce developmental adaptations that remodel the cardiovascular system in a way that can contribute to adult-onset of heart disease due to the programming during fetal life. Epidemiological studies have reported increased cardiovascular complications among GDM-descendants, highlighting the urgent need to investigate and understand the mechanisms modulated during fetal development of in utero GDM-exposed offspring that predispose an individual to increased CVD during life. In this manuscript, we overview previous studies in this area and gather evidence linking GDM and CVD development in the offspring, providing new insights on novel mechanisms contributing to offspring CVD programming by GDM, from the role of maternal-fetal interactions to their impact on fetal cardiovascular development, how the perpetuation of cardiac programming is maintained in postnatal life, and advance the intergenerational implications contributing to increased CVD premature origin. Understanding the perpetuation of CVD can be the first step to manage and reverse this leading cause of morbidity and mortality. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology Metabolic Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
42
|
Aldahmash WM, Alwasel SH, Aljerian K. Gestational diabetes mellitus induces placental vasculopathies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19860-19868. [PMID: 34725760 DOI: 10.1007/s11356-021-17267-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Gestational diabetes mellitus (GDM) poses significant long- and short-term risks to both the developing fetus and the mother. GDM can lead to maternal complications during pregnancy and increase the mother's risk of developing type 2 diabetes mellitus and cardiovascular disease later. The present study aimed to evaluate the maternal and fetal vasculopathies in the placenta of Saudi women with GDM. This prospective study examined 84 placentas from full-term pregnant women with no complications other than GDM; 40 placentas were collected from healthy women (controls), and 44 were collected from women diagnosed with GDM. The sampling took place in King Saud University Medical City, Riyadh, between January and August 2019. All placentas were histologically examined according to the Amsterdam Placental Workshop Group (2014, 2015). The results showed that the most common placental changes on the maternal side of the placenta in the GDM group were significant syncytial knots (77%), calcification (70%), villous agglutination (57%), decidual vasculopathy (43%), and retroplacental hemorrhage (34%). Placental infarction was the least common placental change in both groups. On the fetal side, vasculopathies included significant villous fibrinoid necrosis (70.5%), chorangiosis (50%), fibromuscular sclerosis (50%), and villous edema (38.6%). Significant villous fibrinoid necrosis, villous edema, and significant fibromuscular sclerosis were more prevalent in the GDM group. The present study concluded that gestational diabetes mellitus induces histopathological phenotypes in the full-term placenta. Increased decidual vasculopathy, syncytial knots, retroplacental hemorrhage, classification, villous agglutination, chorangiosis, villous edema, villous fibroid necrosis, and fibromuscular sclerosis may indicate GDM in the mother. Such findings in the placenta of a woman who has not been diagnosed with GDM increase the need for GDM examination in future pregnancies.
Collapse
Affiliation(s)
- Waleed M Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
43
|
Liao Y, Sun T, Jiang L, Zhao Z, Liu T, Qian Z, Sun Y, Zhang Y, Wu D. Detecting abnormal placental microvascular flow in maternal and fetal diseases based on flow-compensated and non-compensated intravoxel incoherent motion imaging. Placenta 2022; 119:17-23. [PMID: 35066307 DOI: 10.1016/j.placenta.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
44
|
da Silva Pereira MM, de Melo IMF, Braga VAÁ, Teixeira ÁAC, Wanderley-Teixeira V. Effect of swimming exercise, insulin-associated or not, on inflammatory cytokines, apoptosis, and collagen in diabetic rat placentas. Histochem Cell Biol 2022; 157:467-479. [PMID: 35022821 DOI: 10.1007/s00418-021-02069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
Physical exercise is an important therapeutic agent for women with diabetes during gestation. However, its histophysiological consequences for the placenta remain unclear. In this study, we evaluated the expression of VEGF-A, IL1ß, TNFα, and type I collagen in the placentas of diabetic rats subjected to a swimming program. Thirty rats were divided into the following groups: CG, pregnant nondiabetic rats; CEG, nondiabetic pregnant rats subjected to swimming; DG, pregnant diabetic rats; DEG, pregnant diabetic rats subjected to swimming; DIG, pregnant diabetic rats treated with insulin; DIEG, pregnant diabetic rats treated with insulin and subjected to swimming. Diabetes was induced using streptozotocin [50 mg/kg intraperitoneally (i.p.)], and insulin was administered at a dose of 5 U/day i.p. (2 U at 10 am and 3 U at 7 pm) in the DIG group; in the DIEG group, insulin was administered at a dose of only 2 U/day at 7 pm. The rats were sacrificed on the 20th day of gestation. There was an increase in the expression of IL-1β, TNF-α, VEGF-A, and type I collagen and a higher apoptotic index in the placentas of the DG and DEG groups, but there was a reduction in glycemia in the latter group. In the DIG and DIEG groups, the levels remained similar to those of the control; however, in these groups the reduction was more significant for all analyzed parameters. Therefore, in rats induced to diabetes during pregnancy, swimming, although reducing glycemic levels, did not prevent immunohistochemical changes in the placenta, suggesting the need for a multidisciplinary protocol associated with traditional pharmacological treatment.
Collapse
Affiliation(s)
- Mayra Maria da Silva Pereira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Ismaela Maria Ferreira de Melo
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Valeska Andrea Ático Braga
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Valéria Wanderley-Teixeira
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| |
Collapse
|
45
|
Hung TH, Wu CP, Chen SF. Differential Changes in Akt and AMPK Phosphorylation Regulating mTOR Activity in the Placentas of Pregnancies Complicated by Fetal Growth Restriction and Gestational Diabetes Mellitus With Large-For-Gestational Age Infants. Front Med (Lausanne) 2021; 8:788969. [PMID: 34938752 PMCID: PMC8685227 DOI: 10.3389/fmed.2021.788969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Dysregulation of placental mechanistic target of rapamycin (mTOR) activity has been implicated in the pathophysiology of pregnancies complicated by idiopathic fetal growth restriction (FGR) and gestational diabetes mellitus (GDM) with large-for-gestational-age (LGA) infants. However, the underlying mechanisms remain unclear. Methods: We obtained placentas from women with normal pregnancies (n = 11) and pregnancies complicated by FGR (n = 12) or GDM with LGA infants (n = 12) to compare the levels of total and phosphorylated forms of Akt, AMPK, TSC2, and mTOR among the three groups and used primary cytotrophoblast cells isolated from 30 normal term placentas to study the effects of oxygen–glucose deprivation (OGD) and increasing glucose concentrations on the changes of these factors in vitro. Results: Placentas from FGR pregnancies had lower phosphorylated Akt (p-Akt) levels (P < 0.05), higher p-AMPKα levels (P < 0.01), and lower mTOR phosphorylation (P < 0.05) compared to that of normal pregnant women. Conversely, women with GDM and LGA infants had higher p-Akt (P < 0.001), lower p-AMPKα (P < 0.05), and higher p-mTOR levels (P < 0.05) in the placentas than normal pregnant women. Furthermore, primary cytotrophoblast cells subjected to OGD had lower p-Akt and p-mTOR (both P < 0.05) and higher p-AMPKα levels (P < 0.05) than those cultured under standard conditions, but increasing glucose concentrations had opposite effects on the respective levels. Administering compound C, an AMPK inhibitor, did not significantly affect Akt phosphorylation but partially reversed mTOR phosphorylation. Administering LY294002, an Akt inhibitor, decreased p-mTOR levels, but did not change the levels of total and phosphorylated AMPKα. Conclusion: These results suggest that Akt and AMPK are involved in the regulation of trophoblast mTOR activity in the placentas of pregnancies complicated by FGR and GDM with LGA infants.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Pu Wu
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.,Graduate Institute of Biomedical Sciences, Department of Physiology and Pharmacology and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
46
|
Early Identification of the Maternal, Placental and Fetal Dialog in Gestational Diabetes and Its Prevention. REPRODUCTIVE MEDICINE 2021. [DOI: 10.3390/reprodmed3010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) complicates between 5 and 12% of pregnancies, with associated maternal, fetal, and neonatal complications. The ideal screening and diagnostic criteria to diagnose and treat GDM have not been established and, currently, diagnostic use with an oral glucose tolerance test occurs late in pregnancy and produces poor reproducibility. Therefore, in recent years, significant research has been undertaken to identify a first-trimester biomarker that can predict GDM later in pregnancy, enable early intervention, and reduce GDM-related adverse pregnancy outcomes. Possible biomarkers include glycemic markers (fasting glucose and hemoglobin A1c), adipocyte-derived markers (adiponectin and leptin), pregnancy-related markers (pregnancy-associated plasma protein-A and the placental growth factor), inflammatory markers (C-reactive protein and tumor necrosis factor-α), insulin resistance markers (sex hormone-binding globulin), and others. This review summarizes current data on first-trimester biomarkers, the advantages, and the limitations. Large multi-ethnic clinical trials and cost-effectiveness analyses are needed not only to build effective prediction models but also to validate their clinical use.
Collapse
|
47
|
Human Milk Oligosaccharides in Cord Blood Are Altered in Gestational Diabetes and Stimulate Feto-Placental Angiogenesis In Vitro. Nutrients 2021; 13:nu13124257. [PMID: 34959807 PMCID: PMC8705424 DOI: 10.3390/nu13124257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Human milk oligosaccharides (HMOs) are present in maternal serum during pregnancy and their composition is altered in gestational diabetes (GDM). HMOs are also in fetal cord blood and in contact with the feto-placental endothelium, potentially affecting its functions, such as angiogenesis. We hypothesized that cord blood HMOs are changed in GDM and contribute to increased feto-placental angiogenesis, hallmark of GDM. (2) Methods: Using HPLC, we quantified HMOs in cord blood of women with normal glucose tolerance (NGT, n = 25) or GDM (n = 26). We investigated in vitro angiogenesis using primary feto-placental endothelial cells (fpECs) from term placentas after healthy pregnancy (n = 10), in presence or absence of HMOs (100 µg/mL) isolated from human milk, 3′-sialyllactose (3′SL, 30 µg/mL) and lactose (glycan control) and determined network formation (Matrigel assay), proliferation (MTT assays), actin organization (F-actin staining), tube formation (fibrin tube formation assay) and sprouting (spheroid sprouting assay). (3) Results: 3′SL was higher in GDM cord blood. HMOs increased network formation, HMOs and 3’SL increased proliferation and F-actin staining. In fibrin assays, HMOs and 3’SL increased total tube length by 24% and 25% (p < 0.05), in spheroid assays, by 32% (p < 0.05) and 21% (p = 0.056), respectively. Lactose had no effect. (4) Conclusions: Our study suggests a novel role of HMOs in feto-placental angiogenesis and indicates a contribution of HMO composition to altered feto-placental vascularization in GDM.
Collapse
|
48
|
Hussain T, Murtaza G, Metwally E, Kalhoro DH, Kalhoro MS, Rahu BA, Sahito RGA, Yin Y, Yang H, Chughtai MI, Tan B. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediators Inflamm 2021; 2021:9962860. [PMID: 34616234 PMCID: PMC8490076 DOI: 10.1155/2021/9962860] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
It has been widely known that oxidative stress disrupts the balance between reactive oxygen species (ROS) and the antioxidant system in the body. During pregnancy, the physiological generation of ROS is involved in a variety of developmental processes ranging from oocyte maturation to luteolysis and embryo implantation. While abnormal overproduction of ROS disrupts these processes resulting in reproductive failure. In addition, excessive oxidative stress impairs maternal and placental functions and eventually results in fetal loss, IUGR, and gestational diabetes mellitus. Although some oxidative stress is inevitable during pregnancy, a balancing act between oxidant and antioxidant production is necessary at different stages of the pregnancy. The review aims to highlight the importance of maintaining oxidative and antioxidant balance throughout pregnancy. Furthermore, we highlight the role of oxidative stress in pregnancy-related diseases.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | - Baban Ali Rahu
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh 70050, Pakistan
| | | | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125 Hunan, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad 38000, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 Hunan, China
| |
Collapse
|
49
|
Mohd Idris MR, Nordin F, Mahdy ZA, Abd Wahid SF. Gestational Diabetes Mellitus in Pregnancy Increased Erythropoietin Level Affecting Differentiation Potency of Haematopoietic Stem Cell of Umbilical Cord Blood. Front Med (Lausanne) 2021; 8:727179. [PMID: 34490314 PMCID: PMC8416672 DOI: 10.3389/fmed.2021.727179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The in utero environment has many factors that can support cell differentiation. Cytokines, chemokines and growth factors play big roles in haematopoietic mechanisms. Some diseases like gestational diabetes mellitus (GDM) might affect the environment and haematopoietic stem cell (HSC) quality. The aim of this study is to investigate the adverse effects of GDM on umbilical cord blood (UCB) HSC in terms of differentiation potency including the UCB parameters used for banking and transplantation purposes. Methods: UCB-HSC was collected from 42 GDM and 38 normal pregnancies. UCB-HSC was isolated and further enriched using immuno-magnetic separation beads (MACS). The UCB-HSC were cultured in methylcellulose media to investigate the differentiation potency. The level of erythropoietin (EPO) and insulin in the UCB plasma was measured using enzyme linked immunoassay (ELISA) technique. Result: The UCB parameters; volume, total nucleated count (TNC) and total CD34+ cells were significantly reduced in the GDM group compared to the control group. The number of HSC progenitors' colonies were significantly reduced in the GDM group except for progenitor BFU-E, which was significantly increased (GDM = 94.19 ± 6.21, Control = 73.61 ± 2.73, p = 0.010). This data was associated with higher EPO level in GDM group. However, the insulin level in the GDM group was comparable to the Control group. Conclusion: Our results suggest that the changes in the in utero environment due to abnormalities during pregnancy such as GDM might affect the differentiation potency of UCB-HSC. These findings can be considered as an additional parameter for the inclusion and exclusion criteria for UCB banking, particularly for mothers with GDM.
Collapse
Affiliation(s)
- Mohd Razif Mohd Idris
- Cell Therapy Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Zaleha Abdullah Mahdy
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - S. Fadilah Abd Wahid
- Cell Therapy Centre, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|