1
|
Pal P, Sharma M, Gupta SK, Potdar MB, Belgamwar AV. miRNA-124 loaded extracellular vesicles encapsulated within hydrogel matrices for combating chemotherapy-induced neurodegeneration. Biochem Biophys Res Commun 2024; 734:150778. [PMID: 39368371 DOI: 10.1016/j.bbrc.2024.150778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Chemotherapy-induced neurodegeneration represents a significant challenge in cancer survivorship, manifesting in cognitive impairments that severely affect patients' quality of life. Emerging neuroregenerative therapies offer promise in mitigating these adverse effects, with miRNA-124 playing a pivotal role due to its critical functions in neural differentiation, neurogenesis, and neuroprotection. This review article delves into the innovative approach of using miRNA-124-loaded extracellular vesicles (EVs) encapsulated within hydrogel matrices as a targeted strategy for combating chemotherapy-induced neurodegeneration. We explore the biological underpinnings of miR-124 in neuroregeneration, detailing its mechanisms of action and therapeutic potential. The article further examines the roles and advantages of EVs as natural delivery systems for miRNAs and the application of hydrogel matrices in creating a sustained release environment conducive to neural tissue regeneration. By integrating these advanced materials and biological agents, we highlight a synergistic therapeutic strategy that leverages the bioactive properties of miR-124, the targeting capabilities of EVs, and the supportive framework of hydrogels. Preclinical studies and potential pathways to clinical translation are discussed, alongside the challenges, ethical considerations, and future directions in the field. This comprehensive review underscores the transformative potential of miR-124-loaded EVs in hydrogel matrices, offering insights into their development as a novel and integrative approach for addressing the complexities of chemotherapy-induced neurodegeneration.
Collapse
Affiliation(s)
- Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA; KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Mrugendra B Potdar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Aarti V Belgamwar
- Department of Pharmaceutics, Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| |
Collapse
|
2
|
Wang J, Jia C, Gao Q, Zhang J, Gu X. iASPP regulates neurite development by interacting with Spectrin proteins. Front Mol Neurosci 2023; 16:1154770. [PMID: 37284462 PMCID: PMC10240065 DOI: 10.3389/fnmol.2023.1154770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Since its discovery in 1999, a substantial body of research has shown that iASPP is highly expressed in various kinds of tumors, interacts with p53, and promotes cancer cell survival by antagonizing the apoptotic activity of p53. However, its role in neurodevelopment is still unknown. Methods We studied the role of iASPP in neuronal differentiation through different neuronal differentiation cellular models, combined with immunohistochemistry, RNA interference and gene overexpression, and studied the molecular mechanism involved in the regulation of neuronal development by iASPP through coimmunoprecipitation coupled with mass spectrometry (CoIP-MS) and coimmunoprecipitation (CoIP). Results In this study, we found that the expression of iASPP gradually decreased during neuronal development. iASPP silencing promotes neuronal differentiation, while its overexpression inhibited neurite differentiation in a variety of neuronal differentiation cellular models. iASPP associated with the cytoskeleton-related protein Sptan1 and dephosphorylated the serine residues in the last spectrin repeat domain of Sptan1 by recruiting PP1. The non-phosphorylated and phosphomimetic mutant form of Sptbn1 inhibited and promoted neuronal cell development respectively. Conclusion Overall, we demonstrate that iASPP suppressed neurite development by inhibiting phosphorylation of Sptbn1.
Collapse
Affiliation(s)
- Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chunhong Jia
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiong Gao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jiwen Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Molecular Mechanisms Involved in the Regulation of Neurodevelopment by miR-124. Mol Neurobiol 2023; 60:3569-3583. [PMID: 36840845 DOI: 10.1007/s12035-023-03271-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
miR-124 is a miRNA predominantly expressed in the nervous system and accounts for more than a quarter of the total miRNAs in the brain. It regulates neurogenesis, neuronal differentiation, neuronal maturation, and synapse formation and is the most important miRNA in the brain. Furthermore, emerging evidence has suggested miR-124 may be associated with the pathogenesis of various neurodevelopmental and neuropsychiatric disorders. Here, we provide an overview of the role of miR-124 in neurodevelopment and the underling mechanisms, and finally, we prospect the significance of miR-124 research to the field of neuroscience.
Collapse
|
5
|
Shen B, Gao H, Zhang D, Yu H, Chen J, Huang S, Gu P, Zhong Y. miR-124-3p regulates the proliferation and differentiation of retinal progenitor cells through SEPT10. Cell Tissue Res 2023:10.1007/s00441-023-03750-0. [PMID: 36802303 DOI: 10.1007/s00441-023-03750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Retinal degenerative diseases such as glaucoma, retinitis pigmentosa, and age-related macular degeneration pose serious threats to human visual health due to lack of effective therapeutic approaches. In recent years, the transplantation of retinal progenitor cells (RPCs) has shown increasing promise in the treatment of these diseases; however, the application of RPC transplantation is limited by both their poor proliferation and their differentiation capabilities. Previous studies have shown that microRNAs (miRNA) act as essential mediators in the fate determination of stem/progenitor cells. In this study, we hypothesized that miR-124-3p plays a regulatory role in the fate of RPC determination by targeting Septin10 (SEPT10) in vitro. We observed that the overexpression of miR124-3p downregulates SEPT10 expression in RPCs, leading to reduced RPC proliferation and increased differentiation, specifically towards both neurons and ganglion cells. Conversely, antisense knockdown of miR-124-3p was shown to boost SEPT10 expression, enhance RPC proliferation, and attenuate differentiation. Moreover, overexpression of SEPT10 rescued miR-124-3p-caused proliferation deficiency while weakening the enhancement of miR-124-3p-induced-RPC differentiation. Results from this study show that miR-124-3p regulates RPC proliferation and differentiation by targeting SEPT10. Furthermore, our findings enable a more comprehensive understanding into the mechanisms of proliferation and differentiation of RPC fate determination. Ultimately, this study may be useful for helping researchers and clinicians to develop more promising and effective approaches to optimize the use of RPCs in treating retinal degeneration diseases.
Collapse
Affiliation(s)
- Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
6
|
Wang H, Wang Q, Xiao X, Luo X, Gao L. Clinical Trials of Non-Coding RNAs as Diagnostic and Therapeutic Biomarkers for Central Nervous System Injuries. Curr Neuropharmacol 2023; 21:2237-2246. [PMID: 36443964 PMCID: PMC10556392 DOI: 10.2174/1570159x21666221128090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Huiqing Wang
- Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Xiaolei Luo
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
7
|
Esteves M, Abreu R, Fernandes H, Serra-Almeida C, Martins PAT, Barão M, Cristóvão AC, Saraiva C, Ferreira R, Ferreira L, Bernardino L. MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's disease. Mol Ther 2022; 30:3176-3192. [PMID: 35689381 PMCID: PMC9552816 DOI: 10.1016/j.ymthe.2022.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/10/2022] [Accepted: 06/06/2022] [Indexed: 12/09/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra with no effective cure available. MicroRNA-124 has been regarded as a promising therapeutic entity for Parkinson's disease due to its pro-neurogenic and neuroprotective roles. However, its efficient delivery to the brain remains challenging. Here, we used umbilical cord blood mononuclear cell-derived extracellular vesicles as a biological vehicle to deliver microRNA (miR)-124-3p and evaluate its therapeutic effects in a mouse model of Parkinson's disease. In vitro, miR-124-3p-loaded small extracellular vesicles induced neuronal differentiation in subventricular zone neural stem cell cultures and protected N27 dopaminergic cells against 6-hydroxydopamine-induced toxicity. In vivo, intracerebroventricularly administered small extracellular vesicles were detected in the subventricular zone lining the lateral ventricles and in the striatum and substantia nigra, the brain regions most affected by the disease. Most importantly, although miR-124-3p-loaded small extracellular vesicles did not increase the number of new neurons in the 6-hydroxydopamine-lesioned striatum, the formulation protected dopaminergic neurons in the substantia nigra and striatal fibers, which fully counteracted motor behavior symptoms. Our findings reveal a novel promising therapeutic application of small extracellular vesicles as delivery agents for miR-124-3p in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Marta Esteves
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Ricardo Abreu
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht 6200, the Netherlands; CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Cantanhede, Portugal
| | - Hugo Fernandes
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Cantanhede, Portugal; Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Catarina Serra-Almeida
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Patrícia A T Martins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Cantanhede, Portugal
| | - Marta Barão
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Cantanhede, Portugal
| | - Ana Clara Cristóvão
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; Neurosov, UBImedical, EM506, University of Beira Interior, Covilhã, Portugal
| | - Cláudia Saraiva
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Raquel Ferreira
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Cantanhede, Portugal; Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
8
|
Gu X, Wang J, Jiang X. miR-124- and let-7-Mediated Reprogram of Human Fibroblasts into SST Interneurons. ACS Chem Neurosci 2022; 13:2755-2765. [PMID: 36074953 DOI: 10.1021/acschemneuro.2c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Many neurological disorders stem from defects in or the loss of specific neurons. Dysfunction of γ-aminobutyric acid (GABA)ergic interneurons may cause a variety of neurological and psychiatric disorders such as epilepsy, autism, Alzheimer's disease, and depression. Unlike other types of neurons, which can be generated relatively easily by direct reprogramming, it is difficult to generate GABAergic neurons by traditional methods. Neuronal transdifferentiation of fibroblasts mediated by nongenomic-integrated adenovirus has many advantages, but the efficiency is low, and there is a lack of studies using human cells as the initial materials. In this study, we explored the feasibility of the conversion of human fibroblasts into neurons through adenovirus-mediated gene expression and found that by introducing two microRNAs, miR-124 and let-7, together with several small chemical compounds, they can effectively generate GABAergic neuron-like cells from human neonatal fibroblasts without reverting to a progenitor cell stage. Most of these cells expressed neuronal markers and were all somatostatin (SST)-positive cells. Therefore, our study provides a relatively safe and efficient method to generate SST interneurons.
Collapse
Affiliation(s)
- Xi Gu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510500, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, China
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350000, China
| | - Xiaodan Jiang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510500, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510500, China
| |
Collapse
|
9
|
Soto A, Nieto-Díaz M, Reigada D, Barreda-Manso MA, Muñoz-Galdeano T, Maza RM. miR-182-5p Regulates Nogo-A Expression and Promotes Neurite Outgrowth of Hippocampal Neurons In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15050529. [PMID: 35631355 PMCID: PMC9146179 DOI: 10.3390/ph15050529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nogo-A protein is a key myelin-associated inhibitor of axonal growth, regeneration, and plasticity in the central nervous system (CNS). Regulation of the Nogo-A/NgR1 pathway facilitates functional recovery and neural repair after spinal cord trauma and ischemic stroke. MicroRNAs are described as effective tools for the regulation of important processes in the CNS, such as neuronal differentiation, neuritogenesis, and plasticity. Our results show that miR-182-5p mimic specifically downregulates the expression of the luciferase reporter gene fused to the mouse Nogo-A 3′UTR, and Nogo-A protein expression in Neuro-2a and C6 cells. Finally, we observed that when rat primary hippocampal neurons are co-cultured with C6 cells transfected with miR-182-5p mimic, there is a promotion of the outgrowth of neuronal neurites in length. From all these data, we suggest that miR-182-5p may be a potential therapeutic tool for the promotion of axonal regeneration in different diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo M. Maza
- Correspondence: (M.N.-D.); (R.M.M.); Tel.: +34-92539-6834 (R.M.M.)
| |
Collapse
|
10
|
Walker SE, Senatore A, Carlone RL, Spencer GE. Context-Dependent Role of miR-124 in Retinoic Acid-Induced Growth Cone Attraction of Regenerating Motorneurons. Cell Mol Neurobiol 2022; 42:847-869. [PMID: 33094464 PMCID: PMC11441188 DOI: 10.1007/s10571-020-00982-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
During development and regeneration, growth cones at the tips of extending axons navigate through a complex environment to establish accurate connections with appropriate targets. Growth cones can respond rapidly to classical and non-classical guidance cues in their environment, often requiring local protein synthesis. In vertebrate growth cones, local protein synthesis in response to classical cues can require regulation by microRNAs (miRNAs), a class of small, conserved, non-coding RNAs that post-transcriptionally regulate gene expression. However, less is known of how miRNAs mediate growth cone responses to non-classical cues (such as retinoic acid (RA)), specifically in invertebrates. Here, we utilized adult regenerating invertebrate motorneurons to study miRNA regulation of growth cone attraction to RA, shown to require local protein synthesis. In situ hybridization revealed the presence of miR-124 in growth cones of regenerating ciliary motorneurons of the mollusc Lymnaea stagnalis. Changes in the spatiotemporal distribution of miR-124 occurred following application of RA, and dysregulation of miR-124 (with mimic injection), disrupted RA-induced growth cone turning in a time-dependent manner. This behavioural regulation by miR-124 was altered when the neurite was transected, and the growth cone completely separated from the soma. miR-124 did not, however, appear to be involved in growth cone attraction to serotonin, a response independent of local protein synthesis. Finally, we provide evidence that a downstream effector of RhoGTPases, ROCK, is a potential target of miR-124 during RA-induced growth cone responses. These data advance our current understanding of how microRNAs might mediate cue- and context-dependent behaviours during axon guidance.
Collapse
Affiliation(s)
- Sarah E Walker
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Adriano Senatore
- University of Toronto Mississauga, Mississauga, ON, L2L 1C6, Canada
| | - Robert L Carlone
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
11
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
13
|
You Q, Gong Q, Han YQ, Pi R, Du YJ, Dong SZ. Role of miR-124 in the regulation of retinoic acid-induced Neuro-2A cell differentiation. Neural Regen Res 2020; 15:1133-1139. [PMID: 31823894 PMCID: PMC7034285 DOI: 10.4103/1673-5374.270417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid can cause many types of cells, including mouse neuroblastoma Neuro-2A cells, to differentiate into neurons. However, it is still unknown whether microRNAs (miRNAs) play a role in this neuronal differentiation. To address this issue, real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2A cells. The results revealed that miR-124 and miR-9 were upregulated, while miR-125b was downregulated in retinoic acid-treated Neuro-2A cells. To identify the miRNA that may play a key role, miR-124 expression was regulated by transfection of miRNA mimics or inhibitors. Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth. Moreover, miR-124 overexpression alone caused Neuro-2A cells to differentiate into neurons, and its inhibitor could block this effect. These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2A cells.
Collapse
Affiliation(s)
- Qun You
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qiang Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu-Qiao Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi-Jie Du
- Department of Integrative Medicine, Huashan Hospital; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Su-Zhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
Cherone JM, Jorgji V, Burge CB. Cotargeting among microRNAs in the brain. Genome Res 2019; 29:1791-1804. [PMID: 31649056 PMCID: PMC6836737 DOI: 10.1101/gr.249201.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) play roles in diverse developmental and disease processes. Distinct miRNAs have hundreds to thousands of conserved mRNA binding sites but typically direct only modest repression via single sites. Cotargeting of individual mRNAs by different miRNAs could potentially achieve stronger and more complex patterns of repression. By comparing target sets of different miRNAs, we identified hundreds of pairs of miRNAs that share more mRNA targets than expected (often by twofold or more) relative to stringent controls. Genetic perturbations revealed a functional overlap in neuronal differentiation for the cotargeting pair miR-138/miR-137. Clustering of all cotargeting pairs revealed a group of nine predominantly brain-enriched miRNAs that share many targets. In reporter assays, subsets of these miRNAs together repressed gene expression by five- to 10-fold, often showing cooperative repression. Together, our results uncover an unexpected pattern in which combinations of miRNAs collaborate to robustly repress cotargets, and suggest important developmental roles for cotargeting.
Collapse
Affiliation(s)
- Jennifer M Cherone
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Vjola Jorgji
- Department of Biology, Wellesley College, Wellesley, Massachusetts 02481, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Gu X, Su X, Jia C, Lin L, Liu S, Zhang P, Wang X, Jiang X. Sprouty1 regulates neuritogenesis and survival of cortical neurons. J Cell Physiol 2018; 234:12847-12864. [PMID: 30569452 DOI: 10.1002/jcp.27949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2 A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
16
|
Kutsche LK, Gysi DM, Fallmann J, Lenk K, Petri R, Swiersy A, Klapper SD, Pircs K, Khattak S, Stadler PF, Jakobsson J, Nowick K, Busskamp V. Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis. Cell Syst 2018; 7:438-452.e8. [PMID: 30292704 PMCID: PMC6205824 DOI: 10.1016/j.cels.2018.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/12/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 has been assigned as a key player of neuronal differentiation via its complex but little understood regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human induced pluripotent stem cells. Upon neuronal induction, miR-124-deleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. Using RNA-induced-silencing-complex precipitation, we identified 98 high-confidence miR-124 targets, of which some directly led to decreased viability. By performing advanced transcription-factor-network analysis, we identified indirect miR-124 effects on apoptosis, neuronal subtype differentiation, and the regulation of previously uncharacterized zinc finger transcription factors. Our data emphasize the need for combined experimental- and system-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. miR-124 is not essential for neurogenesis from human iPSCs miR-124 regulation mediates neuroprotection and refines neuronal cell fates miRNA knockout characterization by experimental and advanced computational analyses Identification of 98 targets including the neuronal feature repressor ZNF787
Collapse
Affiliation(s)
- Lisa K Kutsche
- Technische Universität Dresden, DFG Research Center for Regenerative Therapies, Dresden 01307, Germany
| | - Deisy M Gysi
- Department of Computer Science, Bioinformatics Group, Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig 04107, Germany; Faculty of Mathematics and Computer Science, Swarm Intelligence and Complex Systems Group, University of Leipzig, Leipzig 04109, Germany; Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, Institute for Biology, Berlin 14195, Germany
| | - Joerg Fallmann
- Department of Computer Science, Bioinformatics Group, Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig 04107, Germany
| | - Kerstin Lenk
- Technische Universität Dresden, DFG Research Center for Regenerative Therapies, Dresden 01307, Germany
| | - Rebecca Petri
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lunds Universitet, Lund 22184, Sweden
| | - Anka Swiersy
- Technische Universität Dresden, DFG Research Center for Regenerative Therapies, Dresden 01307, Germany
| | - Simon D Klapper
- Technische Universität Dresden, DFG Research Center for Regenerative Therapies, Dresden 01307, Germany
| | - Karolina Pircs
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lunds Universitet, Lund 22184, Sweden
| | - Shahryar Khattak
- Technische Universität Dresden, DFG Research Center for Regenerative Therapies, Dresden 01307, Germany
| | - Peter F Stadler
- Department of Computer Science, Bioinformatics Group, Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig 04107, Germany; Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany; Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Johan Jakobsson
- Department of Experimental Medical Science, Laboratory of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lunds Universitet, Lund 22184, Sweden
| | - Katja Nowick
- Faculty for Biology, Chemistry and Pharmacy, Freie Universität Berlin, Institute for Biology, Berlin 14195, Germany
| | - Volker Busskamp
- Technische Universität Dresden, DFG Research Center for Regenerative Therapies, Dresden 01307, Germany.
| |
Collapse
|
17
|
Luu L, Ciccotosto GD, Vella LJ, Cheng L, Roisman LC, Multhaup G, Hill AF, Munter LM, Cappai R. Amyloid Precursor Protein Dimerisation Reduces Neurite Outgrowth. Mol Neurobiol 2018; 56:13-28. [PMID: 29675574 DOI: 10.1007/s12035-018-1070-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/09/2018] [Indexed: 02/08/2023]
Abstract
The amyloid precursor protein (APP) undergoes extensive metabolism, and its transport and proteolytic processing can be modulated by its ability to form a homodimer. We have investigated the functional consequences of stabilised APP dimer expression in cells by studying the engineered dimerisation of the APPL17C (residue 17 in Aβ sequence) construct, which is associated with a 30% increase in APP dimer expression, on APP's neurite outgrowth promoting activity. Overexpression of APPL17C in SH-SY5Y cells decreased neurite outgrowth upon retinoic acid differentiation as compared to overexpressing APPWT cells. The APPL17C phenotype was rescued by replacing the APPL17C media with conditioned media from APPWT cells, indicating that the APPL17C mutant is impairing the secretion of a neuritogenic promoting factor. APPL17C had altered transport and was localised in the endoplasmic reticulum. Defining the molecular basis of the APPL17C phenotype showed that RhoA GTPase activity, a negative regulator of neurite outgrowth, was increased in APPL17C cells. RhoA activity was decreased after APPWT conditioned media rescue. Moreover, treatment with the RhoA inhibitor, Y27632, restored a wild-type morphology to the APPL17C cells. Small RNAseq analysis of APPL17C and APPWT cells identified several differentially expressed miRNAs relating to neurite outgrowth. Of these, miR-34a showed the greatest decrease in expression. Lentiviral-mediated overexpression of miR-34a rescued neurite outgrowth in APPL17C cells to APPWT levels and changed RhoA activation. This study has identified a novel link between APP dimerisation and its neuritogenic activity which is mediated by miR-34a expression.
Collapse
Affiliation(s)
- Luan Luu
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Laura J Vella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Laila C Roisman
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lisa-Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia. .,Department of Pharmacology & Therapeutics, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
18
|
Gu X, Wang X, Su D, Su X, Lin L, Li S, Wu Q, Liu S, Zhang P, Zhu X, Jiang X. CBX2 Inhibits Neurite Development by Regulating Neuron-Specific Genes Expression. Front Mol Neurosci 2018. [PMID: 29541019 PMCID: PMC5835719 DOI: 10.3389/fnmol.2018.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polycomb group (PcG) proteins regulate the epigenetic status of transcription regulatory states during development. Progression from pluripotency to differentiation requires the sequential activation and repression of different PcG target genes, however, the relationship between early patterning signals, PcG expression, and the development of the central nervous system is still unclear. Using various models of neuronal differentiation, we provide evidence that CBX2 is a negative regulator of neuronal differentiation. Knock-down of CBX2 expression promotes neurite development, while overexpression of CBX2 inhibits neurite development. Further, we found that CBX2 is a direct target gene of miR-124. During neuronal differentiation, CBX2 was decreased while miR-124 was increased. Mechanistically, CBX2 directly interacts with the promoter region of several neuro-associated genes and regulates their expression. We found that the neuron-specific GAP-43 gene could contribute to the stimulating effect on neurite development associated with inhibition of CBX2.
Collapse
Affiliation(s)
- Xi Gu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xuemin Wang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Dazhuang Su
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaohong Su
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Lifang Lin
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuji Li
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Qiaoqi Wu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Shuhu Liu
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Peidong Zhang
- Department of Neurobiology, Southern Medical University, Guangzhou, China
| | - Xinhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
19
|
Zhang Y, Fu R, Liu Y, Li J, Zhang H, Hu X, Chen Y, Liu X, Li Y, Li P, Liu E, Gao N. Dephosphorylation and mitochondrial translocation of cofilin sensitizes human leukemia cells to cerulenin-induced apoptosis via the ROCK1/Akt/JNK signaling pathway. Oncotarget 2018; 7:20655-68. [PMID: 26967395 PMCID: PMC4991482 DOI: 10.18632/oncotarget.7994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, we determined that cerulenin, a natural product inhibitor of fatty acid synthase, induces mitochondrial injury and apoptosis in human leukemia cells through the mitochondrial translocation of cofilin. Only dephosphorylated cofilin could translocate to mitochondria during cerulenin-induced apoptosis. Disruption of the ROCK1/Akt/JNK signaling pathway plays a critical role in the cerulenin-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. In vivo studies demonstrated that cerulenin-mediated inhibition of tumor growth in a mouse xenograft model of leukemia was associated with mitochondrial translocation of cofilin and apoptosis. These data are consistent with a hierarchical model in which induction of apoptosis by cerulenin primarily results from activation of ROCK1, inactivation of Akt, and activation of JNK. This leads to the dephosphorylation and mitochondrial translocation of cofilin and culminates with cytochrome c release, caspase activation, and apoptosis. Our study has revealed a novel role of cofilin in the regulation of mitochondrial injury and apoptosis and suggests that cerulenin is a potential drug for the treatment of leukemia.
Collapse
Affiliation(s)
- Yanhao Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Ruoqiu Fu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yanxia Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Jing Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Hongwei Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xiaoye Hu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yibiao Chen
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xin Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yunong Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), Nanjing, China
| | - Ehu Liu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), Nanjing, China
| | - Ning Gao
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 2017; 141:118-131. [DOI: 10.1016/j.bcp.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
|
21
|
Xu T, Xie HQ, Li Y, Xia Y, Chen Y, Xu L, Wang L, Zhao B. CDC42 expression is altered by dioxin exposure and mediated by multilevel regulations via AhR in human neuroblastoma cells. Sci Rep 2017; 7:10103. [PMID: 28860601 PMCID: PMC5578991 DOI: 10.1038/s41598-017-10311-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/08/2017] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has shown that dioxin causes dysregulation of microRNAs (miRs) in a variety of tissues or cells. However, little is known about dioxin effects on neuronal miRs expression. In the present study, 277 differentially expressed miRs were identified by miRs microarray analysis in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, at 10−10 M) treated SK-N-SH neuroblastoma cells. Among them, 53 miRs exhibited changes of more than 0.4-fold. Consistent with the microarray data, we verified the induction effect of TCDD on hsa-miR-608 expression, which is a primate-specific miR associated with brain functions. Bioinformatics analysis showed involvement of hsa-miR-608 in cytoskeleton organization, in which one of the hsa-miR-608 target genes, Cell Division Cycle 42 (CDC42), might play a role. We also confirmed induction of CDC42 expression by TCDD in SK-N-SH cells. TCDD induced the expression of CDC42 mRNA in hsa-miR-608 inhibitor transfected cells more obviously than in control cells, suggesting involvement of both transcriptional and post-transcriptional mechanisms in the TCDD-induced CDC42 regulation. Furthermore, CH223191, an antagonist of the aryl hydrocarbon receptor (AhR), counteracted TCDD-induced hsa-miR-608 and CDC42 expression. These results indicated that AhR not only mediates transcriptional induction of CDC42, but also hsa-miR-608-induced post-transcriptional regulation of CDC42 in dioxin treated neuroblastoma cells.
Collapse
Affiliation(s)
- Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Heidi Q Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Lingyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China. .,University of Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
22
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
23
|
Wang C, Wei Z, Jiang G, Liu H. Neuroprotective mechanisms of miR-124 activating PI3K/Akt signaling pathway in ischemic stroke. Exp Ther Med 2017; 13:3315-3318. [PMID: 28587406 PMCID: PMC5450636 DOI: 10.3892/etm.2017.4424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022] Open
Abstract
The neuroprotective mechanisms of miR-124 activating phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in ischemic stroke were investigated. The oxygen-glucose deprivation model of nerve cells induced by PC12 cells was established in vitro, then miR-124 mimics or inhibitor was transfected and synthesized by liposome. Cells were divided into the blank control, model, mimics and inhibitor groups, and the apoptotic rate was determined using flow cytometry. Additionally, the expression levels of PI3K, Akt, Bax, Bcl-2, caspase-3 mRNA and protein were tested by quantitative PCR and western blot analysis at 0, 3, 6, 12 and 24 h, respectively. The apoptotic rate at each time-point in the blank control group was not significantly different. The apoptotic rate of the model and inhibitor groups increased over time, whereas the mimics group decreased (P<0.05). The apoptotic rate at each time-point in the mimics group was significantly lower than that of the model and inhibitor groups, and the rate of the inhibitor group was higher than that of the model group (P<0.05). PI3K, Akt and Bcl-2 mRNA and protein expression levels at the different time-points in the mimics group were significantly higher than those of the remaining groups (P<0.05). The expression levels of Bax and caspase-3 mRNA and protein in the inhibitor group were the highest, followed by the model and mimics groups, while that of the blank control group was the lowest (P<0.05). The results suggest that miR-124 participates in the neural protection of ischemic stroke by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Changming Wang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Zhijie Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Guohong Jiang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Haijun Liu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
24
|
Nadim WD, Simion V, Bénédetti H, Pichon C, Baril P, Morisset-Lopez S. MicroRNAs in Neurocognitive Dysfunctions: New Molecular Targets for Pharmacological Treatments? Curr Neuropharmacol 2017; 15:260-275. [PMID: 27396304 PMCID: PMC5412695 DOI: 10.2174/1570159x14666160709001441] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Neurodegenerative and cognitive disorders are multifactorial diseases (i.e., involving neurodevelopmental, genetic, age or environmental factors) characterized by an abnormal development that affects neuronal function and integrity. Recently, an increasing number of studies revealed that the dysregulation of microRNAs (miRNAs) may be involved in the etiology of cognitive disorders as Alzheimer, Parkinson, and Huntington's diseases, Schizophrenia and Autism spectrum disorders. METHODS From an extensive search in bibliographic databases of peer-reviewed research literature, we identified relevant published studies related to specific key words such as memory, cognition, neurodegenerative disorders, neurogenesis and miRNA. We then analysed, evaluated and summerized scientific evidences derived from these studies. RESULTS We first briefly summarize the basic molecular events involved in memory, a process inherent to cognitive disease, and then describe the role of miRNAs in neurodevelopment, synaptic plasticity and memory. Secondly, we provide an overview of the impact of miRNA dysregulation in the pathogenesis of different neurocognitive disorders, and lastly discuss the feasibility of miRNA-based therapeutics in the treatment of these disorders. CONCLUSION This review highlights the molecular basis of neurodegenerative and cognitive disorders by focusing on the impact of miRNAs dysregulation in these pathological phenotypes. Altogether, the published reports suggest that miRNAs-based therapy could be a viable therapeutic alternative to current treatment options in the future.
Collapse
Affiliation(s)
- Wissem Deraredj Nadim
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Viorel Simion
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Patrick Baril
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR4301, Université d’Orléans France, 45071 Orléans Cedex, France
| |
Collapse
|
25
|
Li G, Ling S. MiR-124 Promotes Newborn Olfactory Bulb Neuron Dendritic Morphogenesis and Spine Density. J Mol Neurosci 2016; 61:159-168. [PMID: 27924451 DOI: 10.1007/s12031-016-0873-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
Using microarray analysis, we detected microRNA-124 (miR-124) to be abundantly expressed in the olfactory bulb (OB). miR-124 regulates adult neurogenesis in the subventricular zone (SVZ). However, much less is known about its role in newborn OB neurons. Here, using both gain-of-function and loss-of-function approaches, we demonstrate that brain-specific miR-124 affects dendritic morphogenesis and spine density in newborn OB neurons. Functional Annotation Clustering of miR-124 targets was enriched in "cell morphogenesis involved in neuron differentiation."
Collapse
Affiliation(s)
- Guifa Li
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shucai Ling
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
26
|
Ohtake Y, Wong D, Abdul-Muneer PM, Selzer ME, Li S. Two PTP receptors mediate CSPG inhibition by convergent and divergent signaling pathways in neurons. Sci Rep 2016; 6:37152. [PMID: 27849007 PMCID: PMC5111048 DOI: 10.1038/srep37152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Receptor protein tyrosine phosphatase σ (PTPσ) and its subfamily member LAR act as transmembrane receptors that mediate growth inhibition of chondroitin sulfate proteoglycans (CSPGs). Inhibition of either receptor increases axon growth into and beyond scar tissues after CNS injury. However, it is unclear why neurons express two similar CSPG receptors, nor whether they use the same or different intracellular pathways. We have now studied the signaling pathways of these two receptors using N2A cells and primary neurons derived from knockout mice. We demonstrate that both receptors share certain signaling pathways (RhoA, Akt and Erk), but also use distinct signals to mediate CSPG actions. Activation of PTPσ by CSPGs selectively inactivated CRMP2, APC, S6 kinase and CREB. By contrast LAR activation inactivated PKCζ, cofilin and LKB1. For the first time, we propose a model of the signaling pathways downstream of these two CSPG receptors. We also demonstrate that deleting both receptors exhibits additive enhancement of axon growth in adult neuronal cultures in vitro. Our findings elucidate the novel downstream pathways of CSPGs and suggest potential synergy of blocking their two PTP receptors.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Daniella Wong
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - P. M. Abdul-Muneer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael E. Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
27
|
Saraiva C, Ferreira L, Bernardino L. Traceable microRNA-124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease. NEUROGENESIS 2016; 3:e1256855. [PMID: 28405588 DOI: 10.1080/23262133.2016.1256855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by the selective degeneration of the nigrostriatal dopaminergic pathway, is a major socio-economic burden in modern society. While there is presently no cure for PD, enhancing the number of neural stem cells (NSCs) and/or stimulating their differentiation into new neurons are promising therapeutic strategies. Many proneurogenic factors have been implicated in controlling NSCs activity, including the microRNA (miR)-124. However, current strategies described for the intracellular delivery of miR involve mostly unspecific or inefficient platforms. In Saraiva et al. we developed miR-124 loaded nanoparticles (NPs) able to efficiently deliver miR-124 into neural stem/progenitor cells and boost neuronal differentiation and maturation in vitro. In vivo, the intracerebroventricular injection of miR-124 NPs increased the number of new neurons in the olfactory bulb of healthy and 6-hydroxidopamine (6-OHDA) lesioned mice, a model for PD. Importantly, miR-124 NPs enhanced the migration of new neurons into the 6-OHDA lesioned striatum, culminating in motor function improvement. Given the recent advent of clinical trials for miR-based therapies and the theranostic applications of our NPs, we expect to support the clinical translation of our delivery platform in the context of PD and other neurodegenerative diseases which may benefit from enhancing miR levels.
Collapse
Affiliation(s)
- Cláudia Saraiva
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior , Covilhã, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Liliana Bernardino
- Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior , Covilhã, Portugal
| |
Collapse
|
28
|
Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury. Neural Plast 2016; 2016:1279051. [PMID: 27818801 PMCID: PMC5081430 DOI: 10.1155/2016/1279051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/02/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury is a devastating disease which disrupts the connections between the brain and spinal cord, often resulting in the loss of sensory and motor function below the lesion site. Most injured neurons fail to regenerate in the central nervous system after injury. Multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration after injury. MicroRNAs can modulate multiple genes' expression and are tightly controlled during nerve development or the injury process. Evidence has demonstrated that microRNAs and their signaling pathways play important roles in mediating axon regeneration and glial scar formation after spinal cord injury. This article reviews the role and mechanism of differentially expressed microRNAs in regulating axon regeneration and glial scar formation after spinal cord injury, as well as their therapeutic potential for promoting axonal regeneration and repair of the injured spinal cord.
Collapse
|
29
|
Transcriptional and Epigenetic Regulation in Injury-Mediated Neuronal Dendritic Plasticity. Neurosci Bull 2016; 33:85-94. [PMID: 27730386 DOI: 10.1007/s12264-016-0071-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/27/2016] [Indexed: 12/26/2022] Open
Abstract
Injury to the nervous system induces localized damage in neural structures and neuronal death through the primary insult, as well as delayed atrophy and impaired plasticity of the delicate dendritic fields necessary for interneuronal communication. Excitotoxicity and other secondary biochemical events contribute to morphological changes in neurons following injury. Evidence suggests that various transcription factors are involved in the dendritic response to injury and potential therapies. Transcription factors play critical roles in the intracellular regulation of neuronal morphological plasticity and dendritic growth and patterning. Mounting evidence supports a crucial role for epigenetic modifications via histone deacetylases, histone acetyltransferases, and DNA methyltransferases that modify gene expression in neuronal injury and repair processes. Gene regulation through epigenetic modification is of great interest in neurotrauma research, and an early picture is beginning to emerge concerning how injury triggers intracellular events that modulate such responses. This review provides an overview of injury-mediated influences on transcriptional regulation through epigenetic modification, the intracellular processes involved in the morphological consequences of such changes, and potential approaches to the therapeutic manipulation of neuronal epigenetics for regulating gene expression to facilitate growth and signaling through dendritic arborization following injury.
Collapse
|
30
|
Wang B, Guo J, Feng L, Suen CW, Fu WM, Zhang JF, Li G. MiR124 suppresses collagen formation of human tendon derived stem cells through targeting egr1. Exp Cell Res 2016; 347:360-6. [PMID: 27569005 DOI: 10.1016/j.yexcr.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/20/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022]
Abstract
Collagen formation is used as a crucial indicator of tenogenic differentiation of human tendon derived stem cell (hTDSC). Early growth response-1(egr1), a transcriptional factor, has been demonstrated to regulate tendon differentiation and promote tendon repair. Considering that the therapeutic options for tendon injuries remain limited, investigating the regulation of egr1 could facilitate the understanding of tendon development at molecular level so as to find a promising therapeutic target. MicroRNAs (miRNA) have been considered as epigenetic regulators to mediate multiple biological activities including stem cell differentiation. In the present study, biological experiments confirmed the prediction that miR124-3p (miR124) could have direct binding with egr1. We also found that miR124 suppressed collagen formation during the tendon differentiation of hTDSC while anti-miR124 promoted it. Furthermore, egr1 knockdown abolished the promotive effect of anti-miR124, suggesting that miR124 prevents tendon differentiation via suppressing egr1 expression. Therefore, miR124 may be a promising therapeutic target for tendon injury.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Jia Guo
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Chun-Wai Suen
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China; The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
31
|
Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release 2016; 235:291-305. [PMID: 27269730 DOI: 10.1016/j.jconrel.2016.06.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/02/2016] [Indexed: 01/17/2023]
Abstract
Modulation of the subventricular zone (SVZ) neurogenic niche can enhance brain repair in several disorders including Parkinson's disease (PD). Herein, we used biocompatible and traceable polymeric nanoparticles (NPs) containing perfluoro-1,5-crown ether (PFCE) and coated with protamine sulfate to complex microRNA-124 (miR-124), a neuronal fate determinant. The ability of NPs to efficiently deliver miR-124 and prompt SVZ neurogenesis and brain repair in PD was evaluated. In vitro, miR-124 NPs were efficiently internalized by neural stem/progenitors cells and neuroblasts and promoted their neuronal commitment and maturation. The expression of Sox9 and Jagged1, two miR-124 targets and stemness-related genes, were also decreased upon miR-124 NP treatment. In vivo, the intracerebral administration of miR-124 NPs increased the number of migrating neuroblasts that reached the granule cell layer of the olfactory bulb, both in healthy and in a 6-hydroxydopamine (6-OHDA) mouse model for PD. MiR-124 NPs were also able to induce migration of neurons into the lesioned striatum of 6-OHDA-treated mice. Most importantly, miR-124 NPs proved to ameliorate motor symptoms of 6-OHDA mice, monitored by the apomorphine-induced rotation test. Altogether, we provide clear evidences to support the use of miR-124 NPs as a new therapeutic approach to boost endogenous brain repair mechanisms in a setting of neurodegeneration.
Collapse
Affiliation(s)
- C Saraiva
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J Paiva
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal
| | - T Santos
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - L Ferreira
- CNC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal; Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - L Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
32
|
MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells. Cell Tissue Res 2016; 365:225-32. [DOI: 10.1007/s00441-016-2395-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/09/2016] [Indexed: 01/02/2023]
|
33
|
Wang Y, Wang D, Guo D. MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway. PLoS One 2016; 11:e0146646. [PMID: 26745800 PMCID: PMC4706435 DOI: 10.1371/journal.pone.0146646] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/21/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Some recent studies suggest that multiple miRNAs might regulate neurogenic transdifferentiation of mesenchymal stromal cells (MSCs). In the present study, we hypothesized that the miR-124 can repress the expression of RhoA upon the neurogenesis of adipose derived MSCs (ADMSCs). METHODS MiRNA expression dynamics during neurogenic transdifferentiation of ADMSCs were measured. The expression of neuron-specific enolase (NSE), Tuj-1 (Neuron-specific class III beta-tubulin) and glial fibrillary acidic protein (GFAP), as well as electrophysiological properties, were detected after neurogenic transdifferentiation. The targeting of miR-124 over RhoA was verified by dual luciferase assay, qRT-PCR and western blot. The functions of miR-124 and the RhoA/ROCK signaling pathway were studied using gain and loss of function experiments in vitro. RESULTS MiR-124 is significantly upregulated during neurogenic transdifferentiation of ADMSCs. Knockdown of endogenous miR-124 hampered neurogenic transdifferentiation and the acquired electrophysiological properties. MiR-124 could directly target RHOA mRNA and repress its expression, through which it increased the proportion of transdifferentiated (transdiff.) cells with positive NSE, Tuj-1 and GFAP. RhoA/ROCK1, but not ROCK2 is a downstream signaling pathway of miR-124 in the process of transdifferentiation. CONCLUSION MiR-124 is an important miRNA modulating neurogenic transdifferentiation of ADMSCs at least partly via the miR-124/RhoA/ROCK1 signaling pathway. These findings provided some fundamental information for future use of ADMSCs as an agent for regenerative medicine and cell therapy for neurological diseases.
Collapse
Affiliation(s)
- Ye Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Desheng Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Dawen Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- * E-mail:
| |
Collapse
|
34
|
Klinge CM. miRNAs regulated by estrogens, tamoxifen, and endocrine disruptors and their downstream gene targets. Mol Cell Endocrinol 2015; 418 Pt 3:273-97. [PMID: 25659536 PMCID: PMC4523495 DOI: 10.1016/j.mce.2015.01.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short (22 nucleotides), single-stranded, non-coding RNAs that form complimentary base-pairs with the 3' untranslated region of target mRNAs within the RNA-induced silencing complex (RISC) and block translation and/or stimulate mRNA transcript degradation. The non-coding miRBase (release 21, June 2014) reports that human genome contains ∼ 2588 mature miRNAs which regulate ∼ 60% of human protein-coding mRNAs. Dysregulation of miRNA expression has been implicated in estrogen-related diseases including breast cancer and endometrial cancer. The mechanism for estrogen regulation of miRNA expression and the role of estrogen-regulated miRNAs in normal homeostasis, reproduction, lactation, and in cancer is an area of great research and clinical interest. Estrogens regulate miRNA transcription through estrogen receptors α and β in a tissue-specific and cell-dependent manner. This review focuses primarily on the regulation of miRNA expression by ligand-activated ERs and their bona fide gene targets and includes miRNA regulation by tamoxifen and endocrine disrupting chemicals (EDCs) in breast cancer and cell lines.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
35
|
Boese AS, Saba R, Campbell K, Majer A, Medina S, Burton L, Booth TF, Chong P, Westmacott G, Dutta SM, Saba JA, Booth SA. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol Cell Neurosci 2015; 71:13-24. [PMID: 26658803 DOI: 10.1016/j.mcn.2015.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/27/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Discrepancy in synaptic structural plasticity is one of the earliest manifestations of the neurodegenerative state. In prion diseases, a reduction in synapses and dendritic spine densities is observed during preclinical disease in neurons of the cortex and hippocampus. The underlying molecular mechanisms of these alterations have not been identified but microRNAs (miRNAs), many of which are enriched at the synapse, likely regulate local protein synthesis in rapid response to stressors such as replicating prions. MiRNAs are therefore candidate regulators of these early neurodegenerative changes and may provide clues as to the molecular pathways involved. We therefore determined changes in mature miRNA abundance within synaptoneurosomes isolated from prion-infected, as compared to mock-infected animals, at asymptomatic and symptomatic stages of disease. During preclinical disease, miRNAs that are enriched in neurons including miR-124a-3p, miR-136-5p and miR-376a-3p were elevated. At later stages of disease we found increases in miRNAs that have previously been identified as deregulated in brain tissues of prion infected mice, as well as in Alzheimer's disease (AD) models. These include miR-146a-5p, miR-142-3p, miR-143-3p, miR-145a-5p, miR-451a, miR-let-7b, miR-320 and miR-150-5p. A number of miRNAs also decreased in abundance during clinical disease. These included almost all members of the related miR-200 family (miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-141-3p, and miR-429-3p) and the 182 cluster (miR-182-5p and miR-183-5p).
Collapse
Affiliation(s)
- Amrit S Boese
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada
| | - Reuben Saba
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Kristyn Campbell
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada
| | - Anna Majer
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada
| | - Sarah Medina
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Lynn Burton
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, 1015 Arlington St., Winnipeg, MB R3E 3M4, Canada
| | - Timothy F Booth
- Viral Diseases Division, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Patrick Chong
- Mass Spectrometry and Proteomics Core Facility, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core Facility, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada
| | | | | | - Stephanie A Booth
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, 1015 Arlington St., Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, 730 William Ave., Winnipeg, MB R3E 0W3, Canada.
| |
Collapse
|
36
|
Gu X, Li A, Liu S, Lin L, Xu S, Zhang P, Li S, Li X, Tian B, Zhu X, Wang X. MicroRNA124 Regulated Neurite Elongation by Targeting OSBP. Mol Neurobiol 2015; 53:6388-6396. [DOI: 10.1007/s12035-015-9540-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
|
37
|
Hartmann H, Hoehne K, Rist E, Louw AM, Schlosshauer B. miR-124 disinhibits neurite outgrowth in an inflammatory environment. Cell Tissue Res 2015; 362:9-20. [DOI: 10.1007/s00441-015-2183-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
|
38
|
Zou H, Ding Y, Shi W, Xu X, Gong A, Zhang Z, Liu J. MicroRNA-29c/PTEN pathway is involved in mice brain development and modulates neurite outgrowth in PC12 cells. Cell Mol Neurobiol 2015; 35:313-322. [PMID: 25352418 PMCID: PMC11486311 DOI: 10.1007/s10571-014-0126-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
Abstract
Growing evidence indicates that microRNAs (miRNAs) are important mediators of brain development and neurite growth. However, the affected signaling mechanisms are not clearly clarified. In the present study, we confirm that miR-29c is expressed during mice brain development and increases neurite outgrowth via decreasing PTEN expression. We first screen the picked-out miR-29c up-regulated in PC12 cells induced by nerve growth factor (NGF). In silico analysis of possible miR-29c targets, VEGFA, MAPK3, PDGFB, and PTEN mRNA are proposed as relatively likely putative binding sites for miR-29c. Subsequently, we detect that miR-29c is involved in brain development and has a negative relationship with the expression of PTEN. Then, using luciferase reporter assay,we demonstrate that miR-29c could directly target to the 3'-UTR of PTEN mRNA and result in down-expression of PTEN. By infecting PC12 cells with lentiviral pLKO-miR-29c or control, we also find that increasing levels of miR-29c markedly increase Akt phosphorylation level, and thus, promote neurite outgrowth of PC12 cells. Together, our results identify that miR-29c is required for mice brain development and modulates neurite outgrowth in PC12 cells via targeting PTEN and has a promising therapeutic target for neural disease.
Collapse
Affiliation(s)
- Hongjun Zou
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China
| | - Ya Ding
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China
| | - Weifeng Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Xu Xu
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jinbo Liu
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, No. 185 Juqian street, Changzhou, Jiangsu, 213003, China.
- Department of Orthopaedics, The First People's Hospital of Changzhou, School of Medicine, Third Affiliated Hospital of Suzhou University, No. 185 of Juqian Street, Changzhou, 213000, China.
| |
Collapse
|
39
|
Miao W, Bao TH, Han JH, Yin M, Yan Y, Wang WW, Zhu YH. Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. ACTA ACUST UNITED AC 2015; 48:433-9. [PMID: 25760028 PMCID: PMC4445667 DOI: 10.1590/1414-431x20144012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular
changes that occur after traumatic brain injury (TBI). However, the changes and
possible roles of miRNAs induced by voluntary exercise prior to TBI are still not
known. In this report, the microarray method was used to demonstrate alterations in
miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a
running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decreased
the mortality rate and improved the recovery of the righting reflex in TBI mice, and
ii) differentially changed the levels of several miRNAs, upregulating some and
downregulating others. Furthermore, we revealed global upregulation of miR-21,
miR-92a, and miR-874 and downregulation of miR-138, let-7c, and miR-124 expression
among the sham-non-runner, TBI-non-runner, and TBI-runner groups. Quantitative
reverse transcription polymerase chain reaction data (RT-qPCR) indicated good
consistency with the microarray results. Our microarray-based analysis of miRNA
expression in mice cerebral cortex after TBI revealed that some miRNAs such as
miR-21, miR-92a, miR-874, miR-138, let-7c, and miR-124 could be involved in the
prevention and protection afforded by voluntary exercise in a TBI model.
Collapse
Affiliation(s)
- W Miao
- Department of Neurology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - T H Bao
- Department of Neurology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - J H Han
- Department of Neurology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - M Yin
- Department of Neurology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Y Yan
- Department of Neurology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - W W Wang
- Department of Cardiology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Y H Zhu
- Department of Neurology, Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
40
|
Twaroski D, Bosnjak ZJ, Bai X. MicroRNAs: New Players in Anesthetic-Induced Developmental Neurotoxicity. ACTA ACUST UNITED AC 2015; 6:357. [PMID: 26146587 DOI: 10.4172/2153-2435.1000357] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growing evidence demonstrates that prolonged exposure to general anesthetics during brain development induces widespread neuronal cell death followed by long-term memory and learning disabilities in animal models. These studies have raised serious concerns about the safety of anesthetic use in pregnant women and young children. However, the underlying mechanisms of anesthetic-induced neurotoxicity are complex and are not well understood. MicroRNAs are endogenous, small, non-coding RNAs that have been implicated to play important roles in many different disease processes by negatively regulating target gene expression. A possible role for microRNAs in anesthetic-induced developmental neurotoxicity has recently been identified, suggesting that microRNA-based signaling might be a novel target for preventing the neurotoxicity. Here we provide an overview of anesthetic-induced developmental neurotoxicity and focus on the role of microRNAs in the neurotoxicity observed in both human stem cell-derived neuron and animal models. Aberrant expression of some microRNAs has been shown to be involved in anesthetic-induced developmental neurotoxicity, revealing the potential of microRNAs as therapeutic or preventive targets against the toxicity.
Collapse
Affiliation(s)
- Danielle Twaroski
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA ; Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA ; Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA ; Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
41
|
Zhang T, Wang J, Zhai X, Li H, Li C, Chang J. MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta Biochim Biophys Sin (Shanghai) 2014; 46:1072-9. [PMID: 25348738 DOI: 10.1093/abbs/gmu105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression by binding to the 3'-untranslated region (3'UTR) of target mRNAs. In order to investigate the physiological role of miR-124 in bladder cancer, target genes of miR-124 were predicted by the TargetScan software, and cyclin-dependent kinase (CDK4), which has been implicated as a regulator of cell cycle, was chosen for further study. MiR-124 could significantly repress CDK4 expression by targeting its binding site in the 3'UTR of CDK4 in vitro. In both bladder cancer cell lines and tissues, the expression of miR-124 was significantly down-regulated, while CDK4 expression was up-regulated. Ectopic expression of miR-124 in transplanted HT1197 cells resulted in the retardation of tumor growth in mouse tumor xenografts. And the expression of miR-124 and CDK4 showed an obvious inverse correlation in these xenograft tissues, which was also observed in human bladder cancer tissue samples. Taken together, our results strongly suggest that miR-124 can arrest cell cycle and restrain the growth of bladder cancer by targeting CDK4 directly.
Collapse
Affiliation(s)
- Ting Zhang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jingyao Wang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, China Department of Gynaecology, Second Hospital of Tianjin Medical University, Tianjin 300211, China Department of Gynaecology and Obstetrics, Tangshan Maternal and Children Health Hospital, Tangshan 063000, China
| | - Xiaofeng Zhai
- Department of Traditional Chinese Medicine, Changhai Hospital affiliated to Second Military Medical University, Shanghai 200433, China
| | - Hongjie Li
- Institute of Basic Medicine, Hebei United University, Tangshan 063000, China
| | - Changying Li
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiwu Chang
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
42
|
Bi YM, Xu JB, An HY. MicroRNAs and biological functions of hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2014; 22:3587-3591. [DOI: 10.11569/wcjd.v22.i24.3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, 18-24 nucleotide long, non-coding RNA molecules which are involved in virtually every cellular process including proliferation, differentiation and apoptosis by specifically interacting with the mRNA and regulating the expression of genes. Recently it has been found that miRNAs cooperate with transforming growth factor (TGF-β), nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α) and other cytokines, and form complex "network" signaling pathways to influence the activation, proliferation, migration and apoptosis of hepatic stellate cells (HSCs), suggesting that miRNAs may regulate biological behaviors of HSCs via various signal transduction pathways, and have a great influence on the development of hepatic fibrosis. This article will review the impact of miRNAs on the biological functions of HSCs via different signal transduction pathways.
Collapse
|
43
|
Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol 2014; 268:46-53. [PMID: 25128264 DOI: 10.1016/j.expneurol.2014.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/29/2014] [Accepted: 08/05/2014] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that play important roles in the development and functions of the brain. Extensive studies have revealed critical roles for miRNAs in brain development and function. Dysregulation or altered expression of miRNAs is associated with abnormal brain development and pathogenesis of neurodevelopmental diseases. This review serves to highlight the versatile roles of these small RNA molecules in normal brain development and their association with neurodevelopmental disorders, in particular, two closely related neuropsychiatric disorders of neurodevelopmental origin, schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Emily Sun
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanhong Shi
- Department of Neurosciences, Cancer Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
44
|
MiR-145 inhibits osteosarcoma cells proliferation and invasion by targeting ROCK1. Tumour Biol 2014; 35:7645-50. [PMID: 24801908 DOI: 10.1007/s13277-014-2031-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/28/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) contribute to the development and progression of various types of human cancers. The aim of this study was to study the role of miR-145 and to identify its functional target gene in osteosarcoma (OS) cells. We found that miR-145 was reduced in OS tissues and cell lines. Enforced expression of miR-145 inhibited cell proliferation, migration, and invasion abilities of MG-63 cells. Furthermore, we revealed that Rho-associated protein kinase 1 (ROCK1) was a target of miR-145 in OS. Finally, we found that silencing of ROCK1 performed similar effects with miR-145 in MG-63 cells, and ROCK1 was inversely correlated with miR-145 in OS tissues. Collectively, these data indicate that miR-145 may act as a tumor suppressor and contributes to the progression of OS through targeting ROCK1.
Collapse
|