1
|
Bakinowska E, Kiełbowski K, Skórka P, Dach A, Olejnik-Wojciechowska J, Szwedkowicz A, Pawlik A. Non-Coding RNA as Biomarkers and Their Role in the Pathogenesis of Gastric Cancer-A Narrative Review. Int J Mol Sci 2024; 25:5144. [PMID: 38791187 PMCID: PMC11121563 DOI: 10.3390/ijms25105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) represent a broad family of molecules that regulate gene expression, including microRNAs, long non-coding RNAs and circular RNAs, amongst others. Dysregulated expression of ncRNAs alters gene expression, which is implicated in the pathogenesis of several malignancies and inflammatory diseases. Gastric cancer is the fifth most frequently diagnosed cancer and the fourth most common cause of cancer-related death. Studies have found that altered expression of ncRNAs may contribute to tumourigenesis through regulating proliferation, apoptosis, drug resistance and metastasis. This review describes the potential use of ncRNAs as diagnostic and prognostic biomarkers. Moreover, we discuss the involvement of ncRNAs in the pathogenesis of gastric cancer, including their interactions with the members of major signalling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (P.S.); (A.D.); (J.O.-W.); (A.S.)
| |
Collapse
|
2
|
Li M, Bai M, Wu Y, Yang S, Zheng L, Sun L, Yu C, Huang Y. Transcriptome sequencing identifies prognostic genes involved in gastric adenocarcinoma. Mol Cell Biochem 2023; 478:2891-2906. [PMID: 36944795 DOI: 10.1007/s11010-023-04705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Gastric adenocarcinoma (GAC) is one of the world's most lethal malignant tumors. It has been established that the occurrence and progression of GAC are linked to molecular changes. However, the pathogenesis mechanism of GAC remains unclear. In this study, we sequenced 6 pairs of GAC tumor tissues and adjacent normal tissues and collected GAC gene expression profile data from the TCGA database. Analysis of this data revealed 465 differentially expressed genes (DEGs), of which 246 were upregulated and 219 were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were observably enriched in ECM-receptor interaction, protein digestion and absorption, and gastric acid secretion pathways. Six key genes (MATN3, COL1A1, COL5A2, P4HA3, SERPINE1 and VCAN) associated with poor GAC prognosis were screened from the protein‒protein interaction (PPI) network by survival analysis, and P4HA3 and MATN3 have rarely been reported to be associated with GAC. We further analyzed the function of P4HA3 in the GAC cell line SGC-7901 by RT‒qPCR, MTT, flow cytometry, colony formation, wound healing, Transwell and western blot assays. We found that P4HA3 was upregulated in the SGC-7901 cell line versus normal control cells. The outcomes of the loss-of-function assay illustrated that P4HA3 significantly enhanced the ability of GAC cells to proliferate and migrate. This study provides a new basis for the selection of prognostic markers and therapeutic targets for GAC.
Collapse
Affiliation(s)
- Mingyue Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Miao Bai
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, 121013, China
| | - Yulun Wu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Shuo Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
3
|
Takeda T, Tsubaki M, Genno S, Tokunaga K, Tanaka R, Nishida S. HER3/Akt/mTOR pathway is a key therapeutic target for the reduction of triple‑negative breast cancer metastasis via the inhibition of CXCR4 expression. Int J Mol Med 2023; 52:80. [PMID: 37477145 PMCID: PMC10555474 DOI: 10.3892/ijmm.2023.5283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Triple‑negative breast cancer (TNBC), a highly metastatic subtype of breast cancer, and it has the worst prognosis among all subtypes of breast cancer. However, no effective systematic therapy is currently available for TNBC metastasis. Therefore, novel therapies targeting the key molecular mechanisms involved in TNBC metastasis are required. The present study examined whether the expression levels of human epidermal growth factor receptor 3 (HER3) were associated with the metastatic phenotype of TNBC, and evaluated the potential of HER3 as a therapeutic target in vitro and in vivo. A new highly metastatic 4T1 TNBC cell line, termed 4T1‑L8, was established. The protein expression levels in 4T1‑L8 cells were measured using luminex magnetic bead assays and western blot analysis. The HER3 expression levels and distant metastasis‑free survival (DMFS) in TNBC were analyzed using Kaplan‑Meier Plotter. Transwell migration and invasion assays were performed to detect migration and invasion. The anti‑metastatic effects were determined in an experimental mouse model of metastasis. The results revealed that the increased expression of the HER3/Akt/mTOR pathway was associated with a greater level of cell migration, invasion and metastasis of TNBC cells. In addition, it was found that high expression levels of HER3 were associated with a poor DMFS. The inhibition of the HER3/Akt/mammalian target of rapamycin (mTOR) pathway decreased the migration, invasion and metastasis of TNBC cells by decreasing the expression of C‑X‑C chemokine receptor type 4 (CXCR4). Furthermore, treatment of metastatic TNBC cells with everolimus inhibited their migration, invasion and metastasis by decreasing CXCR4 expression. Thus, targeting the HER3/Akt/mTOR pathway opens up a new avenue for the development of therapeutics against TNBC metastasis; in addition, everolimus may prove to be an effective therapeutic agent for the suppression of TNBC metastasis.
Collapse
Affiliation(s)
- Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shuji Genno
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Kenta Tokunaga
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Remi Tanaka
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
4
|
Esfahani SA, Callahan C, Rotile NJ, Heidari P, Mahmood U, Caravan PD, Grant AK, Yen YF. Hyperpolarized [1- 13C]Pyruvate Magnetic Resonance Spectroscopic Imaging for Evaluation of Early Response to Tyrosine Kinase Inhibition Therapy in Gastric Cancer. Mol Imaging Biol 2022; 24:769-779. [PMID: 35467249 PMCID: PMC9588528 DOI: 10.1007/s11307-022-01727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE To evaluate the use of hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopic imaging (HP-13C MRSI) for quantitative measurement of early changes in glycolytic metabolism and its ability to predict response to pan-tyrosine kinase inhibitor (Pan-TKI) therapy in gastric cancer (GCa). PROCEDURES Pan-TKI afatinib-sensitive NCI-N87 and resistant SNU16 human GCa cells were assessed for GLUT1, hexokinase-II (HKII), lactate dehydrogenase (LDHA), phosphorylated AKT (pAKT), and phosphorylated MAPK (pMAPK) at 0-72 h of treatment with 0.1 μM afatinib. Subcutaneous NCI-N87 tumor-bearing nude mice underwent [18F]FDG PET/MRI and HP-13C MRSI at baseline and 4 days after treatment with afatinib 10 mg/kg/day or vehicle (n = 10/group). Changes in PET and HP-13C MRSI metabolic parameters were compared between the two groups. Imaging findings were correlated with tumor growth and histopathology over 3 weeks of treatment. RESULTS In vitro analysis showed a continuous decrease in LDHA, pAKT, and pMAPK in NCI-N87 compared to SNU16 cells within 72 h of treatment with afatinib, without a significant change in GLUT1 and HKII in either cell type. [18F]FDG PET of NCI-N87 tumors showed no significant change in PET measures at baseline and day 4 of treatment in either treatment group (SUVmean day 4/day 0: 2.7 ± 0.42/2.34 ± 0.38, p = 0.57 in the treated group vs. 1.73 ± 0.66/2.24 ± 0.43, p = 0.4 in the control group). HP-13C MRSI demonstrated significantly decreased lactate-to-pyruvate ratio (L/P) in treated tumors (L/P day 4/day 0: 0.83 ± 0.30/1.10 ± 0.20, p = 0.012 vs. 0.94 ± 0.20/0.98 ± 0.30, p = 0.75, in the treated vs. control group, respectively). Response to afatinib was confirmed with decreased tumor size over 3 weeks (11.10 ± 16.50 vs. 293.00 ± 79.30 mm3, p < 0.001, treated group vs. control group, respectively) and histopathologic evaluation. CONCLUSIONS HP-13C MRSI is a more representative biomarker of early metabolic changes in response to pan-TKI in GCa than [18F]FDG PET and could be used for early prediction of response to targeted therapies.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Divisionof Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cody Callahan
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Pedram Heidari
- Divisionof Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Umar Mahmood
- Divisionof Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, Boston, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Peter D Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
5
|
Chang CS, Shim JI, Byeon SJ, Lee EJ, Lee YY, Kim TJ, Lee JW, Kim BG, Choi CH. Prognostic Significance of HER3 Expression in Patients with Cervical Cancer. Cancers (Basel) 2022; 14:cancers14092139. [PMID: 35565268 PMCID: PMC9104480 DOI: 10.3390/cancers14092139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/30/2022] Open
Abstract
HER3 has been recognized to have an oncogenic role in various types of cancer. However, its prognostic significance has not been elucidated in cervical cancer. The aim of this study was to investigate the prognostic significance of HER3 expression in cervical cancer using immunohistochemistry (IHC). HER3 immunohistochemical staining was performed on the tumor tissue samples of 336 cervical cancer patients. The association between the clinicopathological characteristics and patient survival analysis was assessed according to HER3 expression. HER3 IHC staining was positive in 31.0% (104/336) of the cervical cancer patients. A higher proportion of adeno-/adenosquamous carcinoma was observed in the HER3-positive group (34.6%) than in the HER3-negative group (18.8%). In survival analysis, HER3 expression was significantly associated with poorer disease-free survival (DFS) and overall survival (OS) (p < 0.001 and p = 0.002, respectively). Multivariate analysis also indicated that HER3 expression was an independent prognostic factor for DFS (hazard ratio (HR) = 2.58, 95% confidence interval (CI) 1.42−4.67, p = 0.002) and OS (HR = 3.21, 95% CI, 1.26−8.14, p = 0.014). HER3 protein expression was a poor prognostic factor of survival in patients with cervical cancer. This finding could help to provide individualized management for these patients.
Collapse
Affiliation(s)
- Chi-Son Chang
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Jung In Shim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Sun-Ju Byeon
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwasung 18450, Korea;
| | - Eun Jin Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Tae-Joong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.-S.C.); (J.I.S.); (E.J.L.); (Y.-Y.L.); (T.-J.K.); (J.-W.L.); (B.-G.K.)
- Correspondence: ; Tel.: +82-2-3410-3545; Fax: +82-2-3410-0630
| |
Collapse
|
6
|
Zhou WT, Jin WL. B7-H3/CD276: An Emerging Cancer Immunotherapy. Front Immunol 2021; 12:701006. [PMID: 34349762 PMCID: PMC8326801 DOI: 10.3389/fimmu.2021.701006] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy aiming at suppressing tumor development by relying on modifying or strengthening the immune system prevails among cancer treatments and points out a new direction for cancer therapy. B7 homolog 3 protein (B7-H3, also known as CD276), a newly identified immunoregulatory protein member of the B7 family, is an attractive and promising target for cancer immunotherapy because it is overexpressed in tumor tissues while showing limited expression in normal tissues and participating in tumor microenvironment (TME) shaping and development. Thus far, numerous B7-H3-based immunotherapy strategies have demonstrated potent antitumor activity and acceptable safety profiles in preclinical models. Herein, we present the expression and biological function of B7-H3 in distinct cancer and normal cells, as well as B7-H3-mediated signal pathways in cancer cells and B7-H3-based tumor immunotherapy strategies. This review provides a comprehensive overview that encompasses B7-H3’s role in TME to its potential as a target in cancer immunotherapy.
Collapse
Affiliation(s)
- Wu-Tong Zhou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Akbari A, Sedaghat M, Heshmati J, Tabaeian SP, Dehghani S, Pizarro AB, Rostami Z, Agah S. Molecular mechanisms underlying curcumin-mediated microRNA regulation in carcinogenesis; Focused on gastrointestinal cancers. Biomed Pharmacother 2021; 141:111849. [PMID: 34214729 DOI: 10.1016/j.biopha.2021.111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is a bioactive ingredient found in the Rhizomes of Curcuma longa. Curcumin is well known for its chemopreventive and anti-cancer properties. Recent findings have demonstrated several pharmacological and biological impacts of curcumin, related to the control and the management of gastrointestinal cancers. Mechanistically, curcumin exerts its biological impacts via antioxidant and anti-inflammatory effects through the interaction with various transcription factors and signaling molecules. Moreover, epigenetic modulators such as microRNAs (miRNAs) have been revealed as novel targets of curcumin. Curcumin was discovered to regulate the expression of numerous pathogenic miRNAs in gastric, colorectal, esophageal and liver cancers. The present systematic review was performed to identify miRNAs that are modulated by curcumin in gastrointestinal cancers.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Heshmati
- Songhor Healthcare Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sadegh Dehghani
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rostami
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
9
|
Rau A, Kocher K, Rommel M, Kühl L, Albrecht M, Gotthard H, Aschmoneit N, Noll B, Olayioye MA, Kontermann RE, Seifert O. A bivalent, bispecific Dab-Fc antibody molecule for dual targeting of HER2 and HER3. MAbs 2021; 13:1902034. [PMID: 33752566 PMCID: PMC7993124 DOI: 10.1080/19420862.2021.1902034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Dual targeting of surface receptors with bispecific antibodies is attracting increasing interest in cancer therapy. Here, we present a novel bivalent and bispecific antagonistic molecule (Dab-Fc) targeting human epidermal growth factors 2 and 3 (HER2 and HER3) derived from the Db-Ig platform, which was developed for the generation of multivalent and multispecific antibody molecules. Dab-Fc comprises the variable domains of the anti-HER2 antibody trastuzumab and the anti-HER3 antibody 3-43 assembled into a diabody-like structure stabilized by CH1 and CL domains and further fused to a human γ1 Fc region. The resulting Dab-Fc 2 × 3 molecule retained unhindered binding to both antigens and was able to bind both antigens sequentially. In cellular experiments, the Dab-Fc 2 × 3 molecule strongly bound to different tumor cell lines expressing HER2 and HER3 and was efficiently internalized. This was associated with potent inhibition of the proliferation and migration of these tumor cell lines. Furthermore, IgG-like pharmacokinetics and anti-tumoral activity were demonstrated in a xenograft tumor model of the gastric cancer cell-line NCI-N87. These results illustrate the suitability of our versatile Db-Ig platform technology for the generation of bivalent bispecific molecules, which has been successfully used here for the dual targeting of HER2 and HER3.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/pharmacokinetics
- Antibodies, Bispecific/pharmacology
- Antibody-Dependent Cell Cytotoxicity/drug effects
- Antineoplastic Agents, Immunological/pharmacokinetics
- Antineoplastic Agents, Immunological/pharmacology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Humans
- Immunoglobulin Fc Fragments/pharmacology
- MCF-7 Cells
- Mice, SCID
- Molecular Targeted Therapy
- Neoplasm Invasiveness
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/immunology
- Receptor, ErbB-3/metabolism
- Signal Transduction
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/immunology
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Alexander Rau
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Mirjam Rommel
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Maximilian Albrecht
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Hannes Gotthard
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Bettina Noll
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Monilola A. Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Non-coding RNAs underlying chemoresistance in gastric cancer. Cell Oncol (Dordr) 2020; 43:961-988. [PMID: 32495294 DOI: 10.1007/s13402-020-00528-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a major health issue in the Western world. Current clinical imperatives for this disease include the identification of more effective biomarkers to detect GC at early stages and enhance the prevention and treatment of metastatic and chemoresistant GC. The advent of non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long-non coding RNAs (lncRNAs), has led to a better understanding of the mechanisms by which GC cells acquire features of therapy resistance. ncRNAs play critical roles in normal physiology, but their dysregulation has been detected in a variety of cancers, including GC. A subset of ncRNAs is GC-specific, implying their potential application as biomarkers and/or therapeutic targets. Hence, evaluating the specific functions of ncRNAs will help to expand novel treatment options for GC. CONCLUSIONS In this review, we summarize some of the well-known ncRNAs that play a role in the development and progression of GC. We also review the application of such ncRNAs in clinical diagnostics and trials as potential biomarkers. Obviously, a deeper understanding of the biology and function of ncRNAs underlying chemoresistance can broaden horizons toward the development of personalized therapy against GC.
Collapse
|
11
|
Qiao Z, Yang D, Liu L, Liu Z, Wang J, He D, Wu H, Wang J, Ma Z. Genome-wide identification and characterization of long non-coding RNAs in MDCK cell lines with high and low tumorigenicities. Genomics 2020; 112:1077-1086. [DOI: 10.1016/j.ygeno.2019.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
12
|
Chen H, Pan D, Yang Z, Li L. Integrated analysis and knockdown of RAB23 indicate the role of RAB23 in gastric adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:745. [PMID: 32042761 DOI: 10.21037/atm.2019.11.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background The present study aimed to identify key differentially expressed genes (DEGs) and miRNAs (DEmiRNAs) in gastric adenocarcinoma. Methods We performed integrated analysis to determine DEGs and DEmiRNAs of gastric adenocarcinoma based on the GEO database. A DEmiRNA-target interaction network was established. GO and KEGG pathway enrichment analyses were utilized. Then, MKN45 cells were transfected with shRNA-RAB23 to knock down the expression of RAB23. CCK-8, transwell and flow cytometry assays were utilized to measure the capacities for cell proliferation, migration and apoptosis, and the apoptosis-related gene and protein levels were measured by using polymerase chain reaction (PCR) and Western blot, respectively. Colocalization analysis of Snc1 with the vesicular protein VAMP3 and the endoplasmic reticulum protein Calnexin was performed to assess the influence of RAB23 on vesicle transport. Finally, we performed metabolomic analysis by using gas chromatography mass spectrometry (GC-MS). Results We performed MMIA of gastric adenocarcinoma based on two miRNA datasets and two mRNA datasets. A total of 4,586 DEmRNAs and 30 DEmiRNAs were obtained. The DEmRNAs of gastric adenocarcinoma were significantly enriched in PI3K/Akt signaling. We identified three interactions, hsa-miR-23a-3p-PTPN4, hsa-miR-20b-5p (hsa-miR-130a-3p)-TNFRSF10B, and hsa-miR-130a-3p (hsa-miR-363-3p)-RAB23, that may be related to the pathogenesis of gastric adenocarcinoma. The growth of MKN45 cells was inhibited by RAB23 knockdown via shRNA-RAB23 transfection. Metabolic analysis of three groups revealed a number of significantly altered metabolites, including glycerol, niacinamide, and nonadecanoic acid methylester. Conclusions RAB23 might be a target gene of hsa-miR-130a-3p and hsa-miR-363-3p. In gastric adenocarcinoma cells, knockdown of RAB23 inhibited cell proliferation, migration, and invasion and increased apoptosis by downregulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Zhihuang Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Liangqing Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
13
|
Li X, Zhao J, Zhang H, Cai J. Silencing of LncRNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Inhibits the Proliferation and Promotes the Apoptosis of Gastric Cancer Cells Through Regulating microRNA-22-3p-Mediated ErbB3. Onco Targets Ther 2020; 13:559-571. [PMID: 32021298 PMCID: PMC6980870 DOI: 10.2147/ott.s222375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study aimed to investigate the regulatory effects and mechanisms of long non-coding RNA (LncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on gastric cancer (GC) cells. METHODS The expression of MALAT1 was detected in GC tissues and two GC cell lines (SGC-7901 and BGC-823). MALAT1 was overexpressed and silenced in GC cells by the transfection of pcDNA-MALAT1 and siRNA-MALAT1, respectively. The proliferation and apoptosis of transfected cells, as well as the tumor volume and weight in mice injected with transfected cells were determined. After identifying the interaction between microRNA-22-3p (miR-22-3p) and MALAT1/epidermal growth factor receptor 3 (ErbB3), the effects of miR-22-3p/ErbB3 silencing on the proliferation and apoptosis of GC cells were evaluated. RESULTS MALAT1 was significantly upregulated in GC tissues and cells and negatively associated with the survival of GC patients. Overexpression of MALAT1 significantly promoted the proliferation and inhibited the apoptosis of SGC-7901 cells, while silencing of MALAT1 exerts contrary effects on BGC-823 cells. Silencing of MALAT1 also significantly inhibited the tumor growth in mice. In addition, MALAT1 negatively regulated its target miR-22-3p. Silencing of miR-22-3p reversed the anti-tumor effects of MALAT1 silencing on GC cells. MiR-22-3p negatively regulated its target ErbB3. Silencing of ErbB3 reversed the tumor-promoting effects of miR-22-3p silencing on GC cells. CONCLUSION Silencing of MALAT1 inhibited the proliferation and promoted the apoptosis of GC cells through upregulating miR-22-3p and downregulating ErbB3.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
- Department of General SurgeryⅡ, Baoding First Central Hospital, Baoding, Hebei071000, People’s Republic of China
| | - Jiangqiao Zhao
- Department of General Surgery, Cangzhou People’s Hospital, Cangzhou, Hebei061000, People’s Republic of China
| | - Huiqing Zhang
- Department of Medical, Baoding First Central Hospital, Baoding, Hebei, People’s Republic of China
| | - Jianhui Cai
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei050017, People’s Republic of China
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei050051, People’s Republic of China
| |
Collapse
|
14
|
Ahmed A. Prevalence of Her3 in gastric cancer and its association with molecular prognostic markers: a Saudi cohort based study. Libyan J Med 2019; 14:1574532. [PMID: 30915908 PMCID: PMC6442113 DOI: 10.1080/19932820.2019.1574532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Her 3 is a member of epidermal growth factor receptors. Mutated, oncogenic Her3 is reported in gastric and colonic cancers with emerging evidence that Her3 can be a potential target for molecular therapies. There is a paucity of studies regarding Her3 and its prognostic implications in gastric cancer in our region. In this study, we evaluated prevalence of Her3 in gastric cancer, in a Saudi cohort of cases, along with its association with prognostic markers p53 and Ki-67. The study was conducted in Department of Pathology of King Fahd Hospital of Imam Abdulrahman Bin Faisal University, Dammam, KSA. Fifty cases of gastric carcinoma were selected from the pathology files that fulfilled the inclusion criteria. Clinico-pathological parameters, Laurens histological classification, and immunohistochemical staining for Her3, p53, and Ki-67 were done. Her 3 positive cases were also evaluated for Her-2neu co-expression. Her3 positivity was seen in 16% (n = 8) out of a total of 50 cases. The median age of presentation was 44 years. Within Her3 positive cases, a female preponderance of 63% (n = 5), presence of high grade tumors in 75% (n = 6), diffuse gastric carcinoma in 63% (n = 5), diffuse to focal p53 positivity in 63% (n = 5), and a high to moderate Ki-67 proliferation index in 75% (n = 6) of cases was seen. Her3 expression was independent of Her-2neu status. Her3 prevalence of 16% with a median age of 44 years at presentation was less than in other reported studies, highlighting the concept of ethnic and regional variation in tumor characteristics. Her3 association with diffuse gastric carcinoma, high grade tumors, diffuse to focal p53 positivity and high to moderate Ki-67 proliferation index points towards a more aggressive clinical behavior.
Collapse
Affiliation(s)
- Ayesha Ahmed
- a Department of Pathology, College of Medicine , Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University , Al-Khobar , Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Han L, Hao Y, Wang J, Wang Z, Yang H, Wu X. Knockdown of LINC02465 Suppresses Gastric Cancer Cell Growth and Metastasis Via PI3K/AKT Pathway. HUM GENE THER CL DEV 2019; 30:19-28. [PMID: 30632400 DOI: 10.1089/humc.2018.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Liang Han
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu Province, China
| | - Yanping Hao
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu Province, China
| | - Jianhua Wang
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu Province, China
| | - Zhengjiang Wang
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu Province, China
| | - Hongmei Yang
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu Province, China
| | - Xudong Wu
- Department of Gastroenterology, First People's Hospital of Yancheng City, Yancheng, Jiangsu Province, China
| |
Collapse
|
16
|
Qiang Z, Meng L, Yi C, Yu L, Chen W, Sha W. Curcumin regulates the miR-21/PTEN/Akt pathway and acts in synergy with PD98059 to induce apoptosis of human gastric cancer MGC-803 cells. J Int Med Res 2019; 47:1288-1297. [PMID: 30727807 PMCID: PMC6421392 DOI: 10.1177/0300060518822213] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective PD98059 is a potent and selective inhibitor of mitogen-activated protein
kinase. Substantial preclinical evidence has shown an anti-tumor effect of
curcumin on various solid tumors. This study aimed to investigate whether
curcumin synergistically acts with PD98059 in exerting anti-gastric cancer
effects. Methods The cell counting kit-8 assay was used to detect cell proliferation of the
human gastric cancer MGC-803 cell line. Flow cytometry was performed to
detect apoptosis. Western blotting was used to detect phosphatase and tensin
homolog (PTEN) and phosphorylated Akt (p-Akt) expression levels.
Quantitative reverse transcription-polymerase chain reaction was used to
determine microRNA-21 (miR-21). Results A dose of 5 to 40 µM curcumin inhibited proliferation of MGC-803 cells in a
dose- and time-dependent manner. A high dose of curcumin strongly inhibited
p-Akt protein expression. With increasing curcumin levels, PTEN expression
increased and miR-21 levels decreased. These results suggest that curcumin
negatively modulated the miR-21/PTEN/Akt pathway. Moreover, after
pretreatment with PD98059, cell apoptosis induced by curcumin was
significantly increased. Additionally, the inhibitory effects of curcumin on
the miR-21/PTEN/Akt pathway were significantly enhanced. Conclusion PD98059 combined with curcumin may be a potential strategy for managing
gastric cancer.
Collapse
Affiliation(s)
- Zhanrong Qiang
- 1 Southern Medical University, Guangzhou, Guangdong Province, China.,2 Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.,3 Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China.,*These authors contributed equally to this work
| | - Lingyu Meng
- 3 Department of Gastroenterology and Hepatology, the Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China.,4 Guilin Medical University, Guilin, Guangxi Province, China.,*These authors contributed equally to this work
| | - Caixia Yi
- 4 Guilin Medical University, Guilin, Guangxi Province, China
| | - Lianying Yu
- 1 Southern Medical University, Guangzhou, Guangdong Province, China.,2 Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Wenxia Chen
- 1 Southern Medical University, Guangzhou, Guangdong Province, China.,2 Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Weihong Sha
- 1 Southern Medical University, Guangzhou, Guangdong Province, China.,2 Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:194. [PMID: 29282102 PMCID: PMC5745957 DOI: 10.1186/s13046-017-0666-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
Abstract
Background Patients with gastric cancer commonly have a poor prognosis, owing to its invasiveness and distant metastasis. Recent studies have confirmed the pivotal role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including gastric cancer. However, little is known about the molecular mechanism by which lncRNA AK023391 contributes to gastric cancer. Methods A lncRNA microarray was used to identify the differentially expressed lncRNA AK023391 in gastric cancer and adjacent normal tissues. In addition, RNA fluorescence in situ hybridization (FISH) was used to investigate the association between AK023391 expression and the clinicopathological characteristics and prognosis of patients with gastric cancer. Subsequently, a series of in vitro assays and a xenograft tumor model were used to observe the functions of lncRNA AK023391 in gastric cancer cells. A cancer pathway microarray, bioinformatic analysis, western blotting, and immunochemistry were carried out to verify the regulation of AK023391 and its downstream PI3K/Akt signaling pathway. Results Expression of lncRNA AK023391 was significantly upregulated in gastric cancer samples and cell lines in comparison to adjacent normal tissues, and was positively correlated with poor survival in patients with gastric cancer. The multivariate Cox regression model revealed that AK023391 expression acted as an independent prognostic factor for survival in patients with gastric cancer. Knockdown of AK023391 inhibited cell growth and invasion both in vitro and in vivo, and induced apoptosis and cell cycle arrest in gastric cancer cells, whereas its overexpression reversed these effects. Mechanistically, PI3K/Akt signaling mediated the NF-κB, FOXO3a, and p53 pathways. Moreover, downstream transcription factors, such as c-myb, cyclinB1/G2, and BCL-6 might be involved in AK023391-induced tumorigenesis in gastric cancer. Conclusions The novel oncogenic lncRNA AK023391 in gastric cancer exerts its effects through activation of the PI3K/Akt signaling pathway, and may act as a potential biomarker for survival in patients with gastric cancer. Electronic supplementary material The online version of this article (10.1186/s13046-017-0666-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Cao GD, Chen K, Chen B, Xiong MM. Positive prognostic value of HER2-HER3 co-expression and p-mTOR in gastric cancer patients. BMC Cancer 2017; 17:841. [PMID: 29233126 PMCID: PMC5727869 DOI: 10.1186/s12885-017-3851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background The HER2-HER3 heterodimer significantly decreases survival in breast cancer patients. However, the prognostic value of HER2-HER3 overexpression remains unknown in gastric cancer (GC). Methods The expression levels of HER2, HER3, Akt, p-Akt, mTOR and p-mTOR were examined in specimens from 120 GC patients by immunohistochemistry and quantitative reverse transcription-PCR. The associations of HER proteins, PI3K/Akt/mTOR pathway-related proteins, clinicopathological features of GC, and overall survival (OS) were assessed. To comprehensively evaluate the prognostic values of pathway-related proteins, meta-analyses were conducted with STATA 11.0. Results HER2 overexpression was significantly associated with HER3 levels (P = 0.02). HER3 was highly expressed in gastric cancer tissues. High HER2 and HER3 levels were associated with elevated p-Akt and p-mTOR amounts (P < 0.05). Furthermore, HER2-HER3 co-expression was associated with high p-Akt and p-mTOR (P < 0.05) levels. Meanwhile, p-mTOR overexpression was tightly associated with differentiation, depth of invasion, lymph node metastasis, TNM stage and OS (P < 0.05). By meta-analyses, Akt, p-Akt, and mTOR levels were unrelated to clinicopathological characters. HER3 overexpression was associated with depth of invasion (OR = 2.39, 95%CI 1.62–3.54, P < 0.001) and lymph node metastasis (OR = 2.35, 95%CI 1.34–4.11, P = 0.003). Further, p-mTOR overexpression was associated with patient age, tumor location, depth of invasion (OR = 1.63, 95%CI 1.08–2.45, P = 0.02) and TNM stage (OR = 1.73, 95%CI 1.29–2.32, P < 0.001). In addition, HER2-HER3 overexpression corresponded to gradually shortened 5-year OS (P < 0.05), and significant relationships were shown among HER3, p-mTOR overexpression, and 1-, 3-, 5-year OS (P < 0.05). Conclusions HER2-HER3 co-expression may potentially enhance mTOR phosphorylation. HER2-HER3 co-expression and p-mTOR are both related to the prognosis of GC patients. Electronic supplementary material The online version of this article (10.1186/s12885-017-3851-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Dong Cao
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ke Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Mao-Ming Xiong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
19
|
Lin P, Xiong DD, Dang YW, Yang H, He Y, Wen DY, Qin XG, Chen G. The anticipating value of PLK1 for diagnosis, progress and prognosis and its prospective mechanism in gastric cancer: a comprehensive investigation based on high-throughput data and immunohistochemical validation. Oncotarget 2017; 8:92497-92521. [PMID: 29190933 PMCID: PMC5696199 DOI: 10.18632/oncotarget.21438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a multi-functional protein and its aberrant expression is a driver of cancerous transformation and progression. To increase our understanding of the clinical value and potential molecular mechanism of PLK1 in gastric cancer (GC), we performed this comprehensive investigation. A total of 25 datasets and 12 publications were finally incorporated. Additional immunohistochemistry was conducted to validate the expression pattern of PLK1 in GC. The pooled standard mean deviation (SMD) indicated that PLK1 mRNA was up-regulated in GC (SMD=1.21, 95% CI: 0.65-1.77, P< 0.001). Similarly, the pooled odds ratio (OR) revealed that PLK1 protein was overexpressed in GC compared with normal gastric tissue (OR=12.12, 95% CI: 5.41-27.16, P<0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.86. Furthermore, our results demonstrated that GC patients with PLK1 overexpression were significantly associated with unfavorable overall survival (HR =1.54, 95% CI: 1.30–1.83, P<0.001), lymph node metastasis (OR = 1.78, 95% CI: 1.13–2.80, P=0.013) and advanced TNM stage (OR=1.48, 95% CI: 1.02-2.15, P=0.038). Altogether, 100 similar genes were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and further with gene-set enrichment analysis. These genes were related to gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relevant to the cell cycle. Gene set enrichment analysis (GSEA) indicated that PLK1 is associated with various cancer-related pathways. Collectively, this study suggests that PLK1 overexpression could play vital roles in the carcinogenesis and deterioration of GC via regulating tumor-related pathways.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
20
|
Lim WC, Kim H, Kim YJ, Park SH, Song JH, Lee KH, Lee IH, Lee YK, So KA, Choi KC, Ko H. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells. Bioorg Med Chem Lett 2017; 27:5337-5343. [PMID: 29122484 DOI: 10.1016/j.bmcl.2017.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation.
Collapse
Affiliation(s)
- Won-Chul Lim
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Hyunhee Kim
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Young-Joo Kim
- Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, South Korea
| | - Seung-Ho Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ki Heon Lee
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - In Ho Lee
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Yoo-Kyung Lee
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, College of Medicine, Dankook University, Seoul, South Korea.
| |
Collapse
|
21
|
Li Q, Zhang R, Yan H, Zhao P, Wu L, Wang H, Li T, Cao B. Prognostic significance of HER3 in patients with malignant solid tumors. Oncotarget 2017; 8:67140-67151. [PMID: 28978022 PMCID: PMC5620162 DOI: 10.18632/oncotarget.18007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
Human epidermal growth factor receptor 3 (HER3) is closely involved in tumor progression and is an important target of therapy. To evaluate the prognostic significance of HER3 in malignant solid tumors, we searched the PUBMED, EMBASE and CNKI databases for relevant studies written in English or Chinese up to December 2015. Fifteen studies comprising 2964 patients were identified. The HER3+ rate ranged from 9.0-75.1 % in malignant solid tumors: 30.3-75.1 % in breast cancers, 51.1-74.5 % in colorectal cancers, 13.7-59.0 % in gastric cancers, and 54.5-74.4 % in cervical cancers. For patients with a malignant solid tumor, the death risk was higher for those with a HER3+ tumor than for those with a HER3− tumor (HR 1.60, 95% CI: 1.27 - 2.02, P < 0.001). Subgroup analysis revealed this was also the case for patients with digestive or gastric cancer (HR 1.78, P < 0.001; HR 2.18, P < 0.001). By contrast, HER3 had no prognostic significance in colorectal or breast cancer (HR 1.52, P = 0.296; HR 1.23, P = 0.108). HER3+ is thus associated with poor survival in overall and in gastric cancer. The prognostic significance of HER3+ in other tumors is uncertain and deserves further study.
Collapse
Affiliation(s)
- Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - RuiXue Zhang
- Department of Internal Medicine, The First Hospital, Tsinghua University, Beijing 100016, China
| | - Han Yan
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - PengFei Zhao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li Wu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Hui Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Teng Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Beijing Digestive Diseases Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
22
|
Schmitt LC, Rau A, Seifert O, Honer J, Hutt M, Schmid S, Zantow J, Hust M, Dübel S, Olayioye MA, Kontermann RE. Inhibition of HER3 activation and tumor growth with a human antibody binding to a conserved epitope formed by domain III and IV. MAbs 2017; 9:831-843. [PMID: 28421882 DOI: 10.1080/19420862.2017.1319023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3-43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3-43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3-43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Lisa C Schmitt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Alexander Rau
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Oliver Seifert
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Jonas Honer
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Meike Hutt
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Simone Schmid
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Jonas Zantow
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Michael Hust
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Stefan Dübel
- b Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig , Germany
| | - Monilola A Olayioye
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,c Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| | - Roland E Kontermann
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany.,c Stuttgart Research Center Systems Biology, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
23
|
Wang LL, Hao S, Zhang S, Guo LJ, Hu CY, Zhang G, Gao B, Zhao JJ, Jiang Y, Tian WG, Wang J, Luo DL. PTEN/PI3K/AKT protein expression is related to clinicopathological features and prognosis in breast cancer with axillary lymph node metastases. Hum Pathol 2017; 61:49-57. [DOI: 10.1016/j.humpath.2016.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/16/2016] [Accepted: 07/02/2016] [Indexed: 02/07/2023]
|
24
|
Li Y, Guo G, Song J, Cai Z, Yang J, Chen Z, Wang Y, Huang Y, Gao Q. B7-H3 Promotes the Migration and Invasion of Human Bladder Cancer Cells via the PI3K/Akt/STAT3 Signaling Pathway. J Cancer 2017; 8:816-824. [PMID: 28382144 PMCID: PMC5381170 DOI: 10.7150/jca.17759] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer is one of most common malignant cancer. Although previous studies have found abnormal expression of B7-H3 in human bladder cancer tissues, the exact role and molecular mechanism of B7-H3 in bladder cancer remain unknown. In this study, we first detected the expression of B7-H3 in human bladder cancer samples and cell lines, and analyzed its correlations with clinicopathological pathological parameters. Next, siRNAs or overexpression plasmids of B7-H3 were transfected into T24 or 5637 cells, and cell proliferation, apoptosis, migration and invasion were analyzed via CCK-8, colony formation, flow cytometry and transwell assays, protein expression levels were determined by western blotting. The results presented here showed B7-H3 was upregulated in bladder cancer samples compared with normal tissues, and the expression level was correlated with local invasion status. B7-H3 did not affect cell proliferation and apoptosis, but cell migration and invasion were changed through the regulation of matrix metalloproteinase (MMP) 2/9. Knockdown of B7-H3 resulted in decreased activity of the STAT3 and PI3K/Akt pathways, and the Akt served as an upstream regulator of the STAT3. Our results suggest that the overexpression of B7-H3 promotes the migration and invasion of human bladder cancer cells through the PI3K/Akt/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuchao Li
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China;; Trainee Brigade, Third Military Medical University, Chongqing 400038, China
| | - Guoning Guo
- Department of Emergency, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jie Song
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China
| | - Zhiping Cai
- Trainee Brigade, Third Military Medical University, Chongqing 400038, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Zhiwen Chen
- Urology Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yun Wang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| | - Qiangguo Gao
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
25
|
Shen L, Zhao L, Tang J, Wang Z, Bai W, Zhang F, Wang S, Li W. Key Genes in Stomach Adenocarcinoma Identified via Network Analysis of RNA-Seq Data. Pathol Oncol Res 2017; 23:745-752. [PMID: 28058586 DOI: 10.1007/s12253-016-0178-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
RNA-seq data of stomach adenocarcinoma (STAD) were analyzed to identify critical genes in STAD. Meanwhile, relevant small molecule drugs, transcription factors (TFs) and microRNAs (miRNAs) were also investigated. Gene expression data of STAD were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis was performed with package edgeR. Relationships with correlation coefficient > 0.6 were retained in the gene co-expression network. Functional enrichment analysis was performed for the genes in the network with DAVID and KOBASS 2.0. Modules were identified using Cytoscape. Relevant small molecules drugs, transcription factors (TFs) and microRNAs (miRNAs) were revealed by using CMAP and WebGestalt databases. A total of 520 DEGs were identified between 285 STAD samples and 33 normal controls, including 244 up-regulated and 276 down-regulated genes. A gene co-expression network containing 53 DEGs and 338 edges was constructed, the genes of which were significantly enriched in focal adhesion, ECM-receptor interaction and vascular smooth muscle contraction pathways. Three modules were identified from the gene co-expression network and they were associated with skeletal system development, inflammatory response and positive regulation of cellular process, respectively. A total of 20 drugs, 9 TFs and 6 miRNAs were acquired that may regulate the DEGs. NFAT-COL1A1/ANXA1, HSF2-FOS, SREBP-IL1RN and miR-26-COL5A2 regulation axes may be important mechanisms for STAD.
Collapse
Affiliation(s)
- Li Shen
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Lizhi Zhao
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Jiquan Tang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Zhiwei Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weisong Bai
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Feng Zhang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Shouli Wang
- Department of Digestive Surgery, HanZhong Central Hospital, Hanzhong, Shaanxi, 723000, China
| | - Weihua Li
- The People's Hospital in Gansu Province, Center Lab, No, 204 west Donggang Rood, Lanzhou City, Gansu Province, 730000, China.
| |
Collapse
|
26
|
Wang Y, Yang H, Duan G. HER3 over-expression and overall survival in gastrointestinal cancers. Oncotarget 2016; 6:42868-78. [PMID: 26517355 PMCID: PMC4767477 DOI: 10.18632/oncotarget.5998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Published studies on the association between human epidermal factor receptor 3 (HER3) expression and overall survival (OS) in gastrointestinal cancers have yielded conflicting results. The aim of this study was to explore the association of HER3 over-expression with OS in gastrointestinal cancers. A systematic search was performed through Medline/PubMed, Embase, Science Direct and Elsevier. The summary odds ratio (OR) with 95% confidence interval (CI) was calculated to estimate the strength of the association. Overall, we observed that HER3 over-expression was associated with worse OS at five years (OR = 1.38, 95% CI: 1.04-1.82); however, HER3 over-expression was not associated with worse OS at three years (OR = 1.33, 95% CI: 0.97-1.84). The cumulative meta-analysis showed similar results. In subgroup analyses by tumor type, HER3 over-expression in gastric cancers was associated with worse OS at both three years (OR = 1.69, 95% CI: 1.28-2.25) and five years (OR = 1.74, 95% CI: 1.26-2.41). In conclusion, our results suggest that HER3 over-expression may be associated with worse overall survival in gastric cancers. Well-designed studies with a large sample size are required to further confirm our findings.
Collapse
Affiliation(s)
- Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
27
|
Cao GD, Chen K, Xiong MM, Chen B. HER3, but Not HER4, Plays an Essential Role in the Clinicopathology and Prognosis of Gastric Cancer: A Meta-Analysis. PLoS One 2016; 11:e0161219. [PMID: 27536774 PMCID: PMC4990181 DOI: 10.1371/journal.pone.0161219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background and Aim Human epidermal growth factor receptor (HER) family plays an important role in gastric cancer (GC), especially HER2. Too much attention has been paid to HER2; however, the functions of HER3 and HER4 overexpression in GC are always ignored. The clinicopathological and prognostic roles of HER3 and HER4 in GC are controversial. In this study, a systematic review and meta-analysis was conducted to evaluate the use of HER3 or HER4 as a predictor of clinicopathology and survival time in GC patients. Methods Eligible studies were searched on PubMed, Ovid, Web of Science, and Cochrane databases through multiple search strategies. Data collection and statistical analysis were carried out by the Revman 5.3 software. The Newcastle-Ottawa scale was used to assess the quality of included studies. Results A total of 448 studies about HER3 overexpression and GC, and 398 studies about HER4 overexpression and GC were searched. Of these, 5 eligible studies about HER3 including 1016 GC patients and 3 eligible studies about HER4 including 793 GC patients met the inclusion criteria. The results showed that HER3 and HER4 overexpression were significantly associated with depth of tumor invasion (OR = 0.44, 95%CI 0.29–0.67, P = 0.0002 and OR = 0.50, 95%CI 0.38–0.86, P = 0.007) and lymph node metastasis (OR = 0.40, 95%CI 0.20–0.77, P = 0.007 and OR = 0.57, 95%CI 0.38–0.86, P = 0.007), and HER3 overexpression reveals a tendency of later tumor node metastases (TNM) stage (OR = 0.50, 95%CI 0.22–1.15, P = 0.10) and predicts a worse survival time (RR = 0.71, 95%CI 0.61–0.84, P<0.00001), while HER4 overexpression had no correlation with TNM stage (OR = 0.60, 95%CI 0.20–1.78) and survival time (RR = 1.09, 95%CI 0.91–1.30). Conclusions This meta-analysis indicated that HER3 plays an essential role in the clinicopathology and prognosis of GC. However, HER4 may not be an ideal prognostic factor for GC.
Collapse
Affiliation(s)
- Guo-dong Cao
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ke Chen
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Mao-ming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- * E-mail: (MMX); (BC)
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- * E-mail: (MMX); (BC)
| |
Collapse
|
28
|
Zhao L, Wang Y, Xue Y, Lv W, Zhang Y, He S. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion. Acta Biochim Biophys Sin (Shanghai) 2015; 47:890-8. [PMID: 26390883 DOI: 10.1093/abbs/gmv095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/06/2015] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis.
Collapse
Affiliation(s)
- Lanfu Zhao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yafei Xue
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Wenhai Lv
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Yufu Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| | - Shiming He
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
29
|
Chang C, Niu Z, Gu N, Zhao W, Wang G, Jia Y, Li D, Xu C. Analysis of the ways and methods of signaling pathways in regulating cell cycle of NIH3T3 at transcriptional level. BMC Cell Biol 2015; 16:25. [PMID: 26511608 PMCID: PMC4625951 DOI: 10.1186/s12860-015-0071-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 10/19/2015] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND To analyze the ways and methods of signaling pathways in regulating cell cycle progression of NIH3T3 at transcriptional level, we modeled cell cycle of NIH3T3 and found that G1 phase of NIH3T3 cell cycle was at 5-15 h after synchronization, S phase at 15-21 h, G2 phase at 21-22 h, M phase at 22-25 h. RESULTS Mouse Genome 430 2.0 microarray was used to detect the gene expression profiles of the model, and results showed remarkable changes in the expressions of 64 cell cycle genes and 960 genes associated with other physiological activity during the cell cycle of NIH3T3. For the next step, IPA software was used to analyze the physiological activities, cell cycle genes-associated signal transduction activities and their regulatory roles of these genes in cell cycle progression, and our results indicated that the reported genes were involved in 17 signaling pathways in the regulation of cell cycle progression. Newfound genes such as PKC, RAS, PP2A, NGR and PI3K etc. belong to the functional category of molecular mechanism of cancer, cyclins and cell cycle regulation HER-2 signaling in breast cancer signaling pathways. These newfound genes could promote DNA damage repairment and DNA replication progress, regulate the metabolism of protein, and maintain the cell cycle progression of NIH3T3 modulating the reported genes CCND1 and C-FOS. CONCLUSION All of the aforementioned signaling pathways interacted with the cell cycle network, indicating that NIH3T3 cell cycle was regulated by a number of signaling pathways.
Collapse
Affiliation(s)
- Cuifang Chang
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Zhipeng Niu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Ningning Gu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Weiming Zhao
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Gaiping Wang
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Yifeng Jia
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Deming Li
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, No. 46, Construction East Road, Xinxiang, 453007, Henan Province, P. R. China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
30
|
McEvoy LM, O'Toole SA, Spillane CD, Martin CM, Gallagher MF, Stordal B, Blackshields G, Sheils O, O'Leary JJ. Identifying novel hypoxia-associated markers of chemoresistance in ovarian cancer. BMC Cancer 2015. [PMID: 26205780 PMCID: PMC4513971 DOI: 10.1186/s12885-015-1539-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer is associated with poor long-term survival due to late diagnosis and development of chemoresistance. Tumour hypoxia is associated with many features of tumour aggressiveness including increased cellular proliferation, inhibition of apoptosis, increased invasion and metastasis, and chemoresistance, mostly mediated through hypoxia-inducible factor (HIF)-1α. While HIF-1α has been associated with platinum resistance in a variety of cancers, including ovarian, relatively little is known about the importance of the duration of hypoxia. Similarly, the gene pathways activated in ovarian cancer which cause chemoresistance as a result of hypoxia are poorly understood. This study aimed to firstly investigate the effect of hypoxia duration on resistance to cisplatin in an ovarian cancer chemoresistance cell line model and to identify genes whose expression was associated with hypoxia-induced chemoresistance. Methods Cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cell lines were exposed to various combinations of hypoxia and/or chemotherapeutic drugs as part of a ‘hypoxia matrix’ designed to cover clinically relevant scenarios in terms of tumour hypoxia. Response to cisplatin was measured by the MTT assay. RNA was extracted from cells treated as part of the hypoxia matrix and interrogated on Affymetrix Human Gene ST 1.0 arrays. Differential gene expression analysis was performed for cells exposed to hypoxia and/or cisplatin. From this, four potential markers of chemoresistance were selected for evaluation in a cohort of ovarian tumour samples by RT-PCR. Results Hypoxia increased resistance to cisplatin in A2780 and A2780cis cells. A plethora of genes were differentially expressed in cells exposed to hypoxia and cisplatin which could be associated with chemoresistance. In ovarian tumour samples, we found trends for upregulation of ANGPTL4 in partial responders and down-regulation in non-responders compared with responders to chemotherapy; down-regulation of HER3 in partial and non-responders compared to responders; and down-regulation of HIF-1α in non-responders compared with responders. Conclusion This study has further characterized the relationship between hypoxia and chemoresistance in an ovarian cancer model. We have also identified many potential biomarkers of hypoxia and platinum resistance and provided an initial validation of a subset of these markers in ovarian cancer tissues. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lynda M McEvoy
- Department of Histopathology TCD, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin 8, Ireland. .,Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland.
| | - Sharon A O'Toole
- Department of Obstetrics and Gynaecology, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland.
| | - Cathy D Spillane
- Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin 8, Ireland.
| | - Cara M Martin
- Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin 8, Ireland.
| | - Michael F Gallagher
- Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin 8, Ireland.
| | - Britta Stordal
- Department of Histopathology TCD, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin 8, Ireland.
| | - Gordon Blackshields
- Department of Histopathology TCD, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin 8, Ireland.
| | - Orla Sheils
- Department of Histopathology TCD, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin 8, Ireland.
| | - John J O'Leary
- Department of Histopathology TCD, Sir Patrick Dun's Laboratory, Central Pathology Laboratory, St James's Hospital, Dublin 8, Ireland. .,Molecular Pathology Laboratory, Coombe Women and Infants' University Hospital, Dublin 8, Ireland.
| |
Collapse
|
31
|
Westcot SE, Hatzold J, Urban MD, Richetti SK, Skuster KJ, Harm RM, Lopez Cervera R, Umemoto N, McNulty MS, Clark KJ, Hammerschmidt M, Ekker SC. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS One 2015; 10:e0130688. [PMID: 26110643 PMCID: PMC4482254 DOI: 10.1371/journal.pone.0130688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023] Open
Abstract
Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes—fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a—had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) – ErbB2/3 – AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a – ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.
Collapse
Affiliation(s)
- Stephanie E. Westcot
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julia Hatzold
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stefânia K. Richetti
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
| | - Kimberly J. Skuster
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rhianna M. Harm
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Roberto Lopez Cervera
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noriko Umemoto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Melissa S. McNulty
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stephen C. Ekker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
32
|
Ema A, Yamashita K, Ushiku H, Kojo K, Minatani N, Kikuchi M, Mieno H, Moriya H, Hosoda K, Katada N, Kikuchi S, Watanabe M. Immunohistochemical analysis of RTKs expression identified HER3 as a prognostic indicator of gastric cancer. Cancer Sci 2014; 105:1591-600. [PMID: 25455899 PMCID: PMC4317956 DOI: 10.1111/cas.12556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/27/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Standard treatment in Japan for the 13th Japanese Gastric Cancer Association stage II/III advanced gastric cancer is postoperative adjuvant S-1 administration after curative surgery. High expression of receptor type tyrosine kinases (RTKs) has repeatedly represented poor prognosis for cancers. However it has not been demonstrated whether RTKs have prognostic relevance for stage II/III gastric cancer with standard treatment. Tumor tissues were obtained from 167 stage II/III advanced gastric cancer patients who underwent curative surgery and received postoperative S-1 chemotherapy from 2000 to 2010. Expression of the RTKs including EGFR, HER2, HER3, IGF-1R, and EphA2 was analyzed using immunohistochemistry (IHC). Analysis using a multivariate proportional hazard model identified the most significant RTKs that represented independent prognostic relevance. When tumor HER3 expression was classified into IHC 1+/2+ (n = 98) and IHC 0 (n = 69), the cumulative 5-year Relapse Free Survival (5y-RFS) was 56.5 and 82.9%, respectively (P = 0.0034). Significant prognostic relevance was similarly confirmed for IGF-1R (P = 0.014), and EGFR (P = 0.030), but not for EphA2 or HER2 expression. Intriguingly, HER3 expression was closely correlated with IGF-1R (P < 0.0001, R = 0.41), and EphA2 (P < 0.0001, R = 0.34) expression. Multivariate proportional hazard model analysis identified HER3 (IHC 1+/2+) (HR; 1.53, 95% CI, 1.11–2.16, P = 0.0078) as the sole RTK that was a poor prognostic factor independent of stage. Of the 53 patients who recurred, 40 patients (75.5%) were HER3-positive. Thus, of the RTKs studied, HER3 was the only RTK identified as an independent prognostic indicator of stage II/III advanced gastric cancer with standard treatment.
Collapse
Affiliation(s)
- Akira Ema
- Department of Surgery, Kitasato University School of Medicine, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang L, Yuan H, Li Y, Han Y. The role of HER3 in gastric cancer. Biomed Pharmacother 2014; 68:809-12. [PMID: 25194439 DOI: 10.1016/j.biopha.2014.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/06/2014] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer is the second leading cause of cancer mortality in the world. HER family tyrosine kinases play a critical role in the development of gastric cancer. The HER family of receptor tyrosine kinases includes EGF receptor (EGFR), HER2, HER3, and HER4. Targeted drugs antineoplastic therapies such as EGFR tyrosine kinase inhibitors have application with confrontation of gastric cancer. However, less attention has been paid to the oncogenic functions of HER3 essepecially in the gastric cancer due to its lack of intrinsic kinase activity. Recent work, however, has placed the role of HER3 in gastric cancer in the spotlight as a key signaling hub in several contexts. First, HER3 overexpression may be associated with poor prognosis and unfavorable survival mediated by PI3K/AKT signaling pathway. Second, a large amount of direct evidence has emerged the benefit of anti-HER3 agents in combination with EGFR tyrosine kinase inhibitors as well as anti-HER2 agents in gastric cancer. Furthermore, we can further elucidate the relationship between HER3 and MET inhibitors in gastric cancer that the development of resistance to MET inhibitors may result from the overexpression of HER3. This review focuses on the current achievements of the relationship between HER3 and gastric cancer in vivo and in vitro, the development of HER3 molecule-targeted therapy, additionally, the challenge which we will meet in the future.
Collapse
Affiliation(s)
- Liying Wang
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Hengheng Yuan
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Yu Han
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital, Harbin Medical University, Harbin, PR China.
| |
Collapse
|