1
|
Li Y, Yang C, Liu X, Shu J, Zhao N, Sun Z, Tabish MS, Hong Y, Liu E, Wei N, Sun M. Potential therapeutic targets for Alzheimer's disease: Fibroblast growth factors and their regulation of ferroptosis, pyroptosis and autophagy. Neuroscience 2025; 573:42-51. [PMID: 40096963 DOI: 10.1016/j.neuroscience.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is a progressively worsening neurodegenerative disorder characterized primarily by the deposition of amyloid beta (Aβ) plaques in the brain and the abnormal aggregation of tau protein forming neurofibrillary tangles. These pathological changes lead to impaired neuronal function and cell death, subsequently affecting the structure and function of the brain. Fibroblast growth factors (FGFs) are a group of proteins that play crucial roles in various biological processes, including cell proliferation, differentiation, and survival. This article reviews the expression and regulation of FGFs in the central nervous system and how they affect neuronal survival, as well as the changes in FGF signaling pathways and its regulation of programmed cell death in AD. It particularly focuses on the impact of FGF1, FGF2, FGF21, other members of the FGF family, and FGFR on the pathophysiological mechanisms of AD. The potential of the PI3K/AKT/GSK-3β, Wnt/β-catenin, and NF-κB signaling pathways as targets for AD treatment is also discussed. Furthermore, the relationship between FGF-regulated ferroptosis, Pyroptosis and Autophagy and AD is explored, along with the role of these mechanisms in improving the progression of AD.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Zexin Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Muhammad Saud Tabish
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China
| | - Yichen Hong
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
2
|
Maldonado-Devincci AM, Odelade AE, Irby-Shabazz A, Jadhav V, Nepal P, Chang EM, Chang AY, Han J. Longitudinal sex-specific impacts of high-fat diet on dopaminergic dysregulation and behavior from periadolescence to late adulthood. Nutr Neurosci 2025; 28:425-438. [PMID: 39046103 PMCID: PMC11757805 DOI: 10.1080/1028415x.2024.2377471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Obesity is recognized for its adverse impact on brain health and related behaviors; however, the specific longitudinal effects of a high-fat diet (HFD) from juvenile stages of development through late adulthood remain poorly understood, particularly sex-specific outcomes. This study aimed to determine how prolonged exposure to HFD, commencing during periadolescence, would differentially predispose male and female mice to an elevated risk of dopaminergic dysregulation and associated behavioral deficits. METHODS One-month-old C57BL/6J male and female mice were subjected to either a control diet or an HFD for 5 and 9 months. Muscle strength, motor skills, sensorimotor integration, and anxiety-like behaviors were assessed at the end of the 5th and 8th months. Key dopaminergic molecules, including dopamine (DA), dopamine receptor D2 (DRD2), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2), were quantified at the end of the 5th or 9th months. RESULTS Behaviorally, male mice exposed to HFD exhibited more pronounced alterations in sensorimotor integration, anxiety-like behavior, and muscle strength after the 5th month of dietary exposure. In contrast, female mice displayed most behavioral differences after the 8th month of HFD exposure. Physiologically, there were notable sex-specific variations in the dopaminergic pathway response to HFD. Male mice exposed to HFD exhibited elevated tissue levels of VMAT2 and DRD2, whereas female mice showed reduced levels of DRD2 and DAT compared to control groups. DISCUSSION These findings indicate a general trend of altered time course susceptibility in male mice to chronic HFD consumption compared to their female counterparts, with male mice impacted earlier than females.
Collapse
Affiliation(s)
- Antoniette M. Maldonado-Devincci
- Department of Psychology, John R. and Kathy R. Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Anuoluwapo E. Odelade
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Adenike Irby-Shabazz
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Vidya Jadhav
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Pragya Nepal
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| | - Evelyn M. Chang
- Program in Liberal Medical Education, Division of Biology and Medicine, Brown University, Providence
| | - Alex Y. Chang
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Jian Han
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC USA
| |
Collapse
|
3
|
Chen L, Gao M, Ong SB, Gong G. Functions of FGF21 and its role in cardiac hypertrophy. J Adv Res 2025:S2090-1232(25)00148-1. [PMID: 40089060 DOI: 10.1016/j.jare.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND FGF21 is a stress-inducible hormone that operates in the autocrine or paracrine manner. Recent reports have revealed that FGF21 is highly expressed in cardiac hypertrophy to protect against heart injury and dysfunction. FGF21 is used to treat cardiac hypertrophy in mouse models. However, preclinical and clinical trials are restricted. AIM OF REVIEW This review mainly elucidates the diverse functions of FGF21 and explores the relationship between these functions and cardiac hypertrophy. It also discusses challenges and future perspectives in treating cardiac hypertrophy with FGF21. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the functions of FGF21, including energy metabolism, inflammation, oxidative stress, apoptosis, and autophagy. We also summarize vital functions and the underlying mechanisms through which FGF21 regulates the initiation and development of cardiac hypertrophy, connecting energy metabolism, inflammation, oxidative stress, apoptosis, and autophagy. Finally, we propose that FGF21 may be a potential therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meng Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sang-Bing Ong
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong (CUHK), China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Li J, Jiang H, Bai W, Yang Y, Zhou G, Chen W, Shao J. Fibroblast Growth Factor 21 Protects Against Cerebral Ischemia/Reperfusion Injury by Inhibiting Oxidative Stress and Ferroptosis. Neuropsychiatr Dis Treat 2025; 21:355-371. [PMID: 40027603 PMCID: PMC11871945 DOI: 10.2147/ndt.s504180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Cerebral ischemia/reperfusion injury (CIRI) severely impacts patient outcomes and quality of life, with limited treatment options. Although fibroblast growth factor21 (FGF21) is known for its metabolic and anti-inflammatory effects, its role and mechanisms in CIRI are not well explored. Methods After developing an MCAO/R injury model, mice received intraperitoneal injections of FGF21 (1.5 mg/kg) 15 min pre-reperfusion, as well as 8 and 16 h post-reperfusion. The TTC, TUNEL, H&E, and Nissl stainings were used 24 h post-reperfusion to determine the infarct volume, apoptotic cells, brain pathological damage, and nerve cell survival, respectively. ELISA and Western blotting were employed to detect oxidative stress (OxS) products and ferroptosis-related markers. RNA-seq of the ischemic penumbra tissues was conducted, followed by bioinformatics analysis to screen and identify differentially expressed genes (DEGs). Then, we used qPCR to validate relevant molecule mRNA expression while using immunofluorescence staining to assess CYBB protein localization and expression. Results The FGF21 reduced the infarct volume in MCAO/R-injured mice, diminished apoptotic cell numbers, and alleviated pathological damage to ischemic brain tissue. Furthermore, FGF21 inhibited OxS and ferroptosis post-CIRI. RNA-seq revealed a significant differential expression of numerous genes, extensively involving diverse biological processes post- ischemia/reperfusion injury (IRI). Bioinformatics analysis and validation results indicated that CYBB was the most significantly differentially expressed ferroptosis-related molecule, and it may be a novel key regulatory molecule mediating anti-IRI of FGF21. Conclusion FGF21 protects CIRI by inhibiting OxS and ferroptosis. The CYBB, a new key regulator, may mediate its anti-ferroptotic effects, offering new insights into CIRI therapies.
Collapse
Affiliation(s)
- Junjie Li
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Haiyan Jiang
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Wenya Bai
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Yuan Yang
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Guilin Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Wendong Chen
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| | - Jianlin Shao
- Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, People’s Republic of China
| |
Collapse
|
5
|
Nakashima Y, Hibi T, Urakami M, Hoshino M, Morii T, Sugawa H, Katsuta N, Tominaga Y, Takahashi H, Otomo A, Hadano S, Yasuda S, Hokamura A, Imai S, Kinoshita H. Soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m ameliorates cognitive function through gut microbiota modulation in high-fat diet mice. Curr Res Food Sci 2025; 10:100993. [PMID: 40026903 PMCID: PMC11869912 DOI: 10.1016/j.crfs.2025.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Recent studies have confirmed that obesity leads to neuroinflammation and cognitive decline. This study aimed to examine whether soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m could prevent cognitive decline and neuroinflammation progression in mice fed a high-fat diet (HFD). C57BL/6NJcl male mice were grouped according to the following dietary interventions and monitored for 15 weeks: (1) normal control diet, (2) HFD, (3) HFD with soymilk (SM), (4) HFD with soymilk yogurt (SY), and (5) HFD with bacterial cells of the starter strain (BC). The levels of inflammatory cytokines in serum and hippocampus were measured. Compared to the HFD group, the SY group scored higher in the novel object recognition test and exhibited lower levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF)-α in the hippocampus. However, the SM and BC groups did not show these significant changes. Proteomic analysis of the hippocampus revealed three enriched protein clusters in the SY group: synaptic proteins, glycolysis, and mitochondrial ATP formation. Fecal samples were also collected to measure the proportion of gut microbiota using 16S rRNA analysis. Interestingly, the proportion of butyrate-producing bacteria, such as Clostridium and Akkermansia, tended to be higher in the SY group than in the HFD group. An additional in vitro study revealed that the components of SY, such as daidzein, genistein, and adenine, could decrease inflammatory cytokine levels in microglial cells. In conclusion, soymilk yogurt prepared using P. pentosaceus TOKAI 759m may modulate gut microbiota and prevent neuroinflammation, thereby leading to a possible improvement in cognitive function.
Collapse
Affiliation(s)
- Yuki Nakashima
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Tomoyuki Hibi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Masafumi Urakami
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Maki Hoshino
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Taiki Morii
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hikari Sugawa
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Nana Katsuta
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Yuki Tominaga
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Himeno Takahashi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shin Yasuda
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Ayaka Hokamura
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Saki Imai
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Probio Co., Ltd., 1330-1 Futa, Nishihara-mura, Aso-gun, Kumamoto, Japan
| |
Collapse
|
6
|
Ma J, Liu Y, Hu J, Liu X, Xia Y, Xia W, Shen Z, Kong X, Wu X, Mao L, Li Q. Tirzepatide administration improves cognitive impairment in HFD mice by regulating the SIRT3-NLRP3 axis. Endocrine 2025; 87:486-497. [PMID: 39222203 DOI: 10.1007/s12020-024-04013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE High-fat diet (HFD) currently is reported that in connection with cognitive impairment. Tirzepatide is a novel dual receptor agonist for glycemic control. But whether Tirzepatide exerts a protective effect in HFD-related cognitive impairment remains to be explore. METHODS During the study, the cognitive dysfunction mice model induced by HFD were established. The expressions synapse-associated protein and other target proteins were detected. The oxidative stress parameters, levels of inflammatory cytokine were also detected. RESULTS Our findings proved that Tirzepatide administration attenuates high fat diet-related cognitive impairment. Tirzepatide administration suppresses microglia activation, alleviates oxidative stress as well as suppressed the expression of NLRP3 in HFD mice by up-regulating SIRT3 expression. In conclusion, Tirzepatide attenuates HFD-induced cognitive impairment through reducing oxidative stress and neuroinflammation via SIRT3-NLRP3 signaling. CONCLUSION This study suggest that Tirzepatide has neuroprotective effects in HFD-related cognitive dysfunction mice model, which provides a promising treatment of HFD-related cognitive impairment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
| | - Xingjing Liu
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Xia Wu
- Department of Endocrinology, Affiliated Jiangyin Hospital of Nantong University, Wuxi, 214400, China
| | - Li Mao
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China.
| |
Collapse
|
7
|
Zeng J, Cheong LYT, Lo CH. Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration. Front Endocrinol (Lausanne) 2025; 15:1456948. [PMID: 39897964 PMCID: PMC11781992 DOI: 10.3389/fendo.2024.1456948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Obesity is a major modifiable risk factor leading to neuroinflammation and neurodegeneration. Excessive fat storage in obesity promotes the progressive infiltration of immune cells into adipose tissue, resulting in the release of pro-inflammatory factors such as cytokines and adipokines. These inflammatory mediators circulate through the bloodstream, propagating inflammation both in the periphery and in the central nervous system. Gut dysbiosis, which results in a leaky intestinal barrier, exacerbates inflammation and plays a significant role in linking obesity to the pathogenesis of neuroinflammation and neurodegeneration through the gut-brain/gut-brain-liver axis. Inflammatory states within the brain can lead to insulin resistance, mitochondrial dysfunction, autolysosomal dysfunction, and increased oxidative stress. These disruptions impair normal neuronal function and subsequently lead to cognitive decline and motor deficits, similar to the pathologies observed in major neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and Parkinson's disease. Understanding the underlying disease mechanisms is crucial for developing therapeutic strategies to address defects in these inflammatory and metabolic pathways. In this review, we summarize and provide insights into different therapeutic strategies, including methods to alter gut dysbiosis, lifestyle changes, dietary supplementation, as well as pharmacological agents derived from natural sources, that target obesity-induced neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Jialiu Zeng
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih Hung Lo
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
8
|
Xu J, Dai P, Zhang C, Dong N, Li C, Tang C, Jin Z, Lin S, Ye L, Sun T, Jin Y, Wu F, Luo L, Wu P, Li S, Li X, Hsu S, Jiang D, Wang Z. Injectable Hierarchical Bioactive Hydrogels with Fibroblast Growth Factor 21/Edaravone/Caffeic Acid Asynchronous Delivery for Treating Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412020. [PMID: 39630931 PMCID: PMC11775539 DOI: 10.1002/advs.202412020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Parkinson's disease (PD) is one of the most common long-term neurodegenerative disorders, with multiple comorbid psychiatric and behavioral abnormalities. The combination of clinical drugs targeting different symptoms with smart hydrogels to achieve asynchronous releases is highly translational and challenging. Here, a hierarchical bioactive hydrogel (OACDP) is designed with asynchronous release based on PD pathology. The hydrogel with caffeic acid-grafted polymer main chain is crosslinked using a micellar nanocrosslinker, with sufficient modulus (≈167 Pa), antioxidant activity (> 50%), injectability (30-gauge syringe needle), and shape-adaptability. Each of the three drugs (caffeic acid, fibroblast growth factor 21, and Edaravone) is separately engaged in different micro- or nanostructures of the hydrogel and released with asynchronous kinetics of first-order release, zero-order release, or matching Korsmeyer-Peppas model. The triple-loaded hydrogel is injected into the brains of PD rats, showing behavioral improvement. Histological analysis revealed that the triple-loaded OACDP hydrogels are effective in achieving immediate neuroprotection, i.e., reduction the loss of tyrosine hydroxylase in substantia nigra compacta and striatum (retained ≈10-fold versus control), decreasing oxidative stress, reducing astrocyte and microglia activation, and stimulating the AMPK/PGC-1α axis to regulate the mitochondrial function, providing a multi-dimensional PD therapy. The asynchronous release of OACDP hydrogel provides a new conception for PD treatment and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Junpeng Xu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Peng Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chen Zhang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Na Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Caiyan Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chonghui Tang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Zhihao Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shih‐Ho Lin
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
| | - Luyang Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Tianmiao Sun
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Yukai Jin
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Fenzan Wu
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
| | - Lihua Luo
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang324025China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shengcun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- Rehabilitation Medicine CenterThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Shan‐hui Hsu
- Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan106319Republic of China
- Institute of Cellular and System MedicineNational Health Research InstitutesMiaoliTaiwan350401Republic of China
| | - Dawei Jiang
- Affiliated Cixi HospitalWenzhou Medical UniversityNingboZhejiang315300China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| | - Zhouguang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
- State Key Laboratory of Macromolecular Drugs and Large‐scale PreparationSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiang325000China
| |
Collapse
|
9
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
10
|
Zheng X, Zhu Z, Zhong C, Guo D, Bu X, Peng H, Xu T, Zhang Y. Plasma fibroblast growth factor 21 and risk of cognitive impairment among patients with ischemic stroke. Neuroscience 2024; 563:129-135. [PMID: 39536857 DOI: 10.1016/j.neuroscience.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/19/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND AIMS Previous study reported that plasma fibroblast growth factor 21 (FGF-21) was associated with poor prognosis in patients with ischemic stroke. The purpose of present study was to prospectively investigate the relationship between plasma FGF-21 and post-stroke cognitive impairment (PSCI). METHODS A total of 600 patients from 7 hospitals were included in this study and plasma FGF-21 levels were examined for all the participants. Cognitive impairment was evaluated using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) at 3 months after ischemic stroke onset. RESULTS 323(53.8 %) or 419(69.8 %) participants had PSCI according to MMSE or MoCA at 3 months, respectively. After adjustment for age, National Institutes of Health stroke score, education, and other covariates, the odds ratio of PSCI defined by MMSE and MoCA for the highest vs lowest quartile of plasma FGF-21 was 1.77(1.05-2.98) and 2.40(1.35-4.29), respectively. Multiple-adjusted spline regression model showed a linear association between FGF-21 levels and PSCI (all P < 0.005 for linearity). Subgroup analyses further confirmed these results. CONCLUSION Elevated plasma FGF-21 level was associated with PSCI at 3 months after stroke independently of established conventional risk factors, suggesting that plasma FGF-21 may have potential prognostic value in risk stratification of PSCI.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Public Health Research Center and Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoqing Bu
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Cai LQ, Li XC, Wang YY, Chen YX, Zhu XY, Zuo ZY, Si-Ma YQ, Lin YN, Li XK, Huang XY. Investigation of Metabolic and Inflammatory Disorder in the Aging FGF21 Knockout Mouse. Inflammation 2024; 47:2173-2195. [PMID: 38653921 PMCID: PMC11607023 DOI: 10.1007/s10753-024-02032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Aging is a physiological condition accomplished with persistent low-grade inflammation and metabolic disorders. FGF21 has been reported to act as a potent longevity determinant, involving inflammatory response and energy metabolism. In this study, we engineered aging FGF21 knockout mice of 36-40 weeks and observed that FGF21 deficiency manifests a spontaneous inflammatory response of lung and abnormal accumulation of lipids in liver. On one hand, inflamed state in lungs and increased circulating inflammatory cytokines were found in FGF21 knockout mice of 36-40 weeks. To evaluate the ability of FGF21 to suppress inflammation, a subsequent study found that FGF21 knockout aggravated LPS-induced pulmonary exudation and inflammatory infiltration in mice, while exogenous administration of FGF21 reversed these malignant phenotypes by enhancing microvascular endothelial junction. On the other hand, FGF21 knockout induces fatty liver in aging mice, characterized by excessive accumulation of triglycerides within hepatocytes. Further quantitative metabolomics and lipidomics analysis revealed perturbed metabolic profile in liver lacking FGF21, including disrupted glucose and lipids metabolism, glycerophospholipid metabolism, and amino acid metabolism. Taken together, this investigation reveals the protective role of FGF21 during aging by weakening the inflammatory response and balancing energy metabolism.
Collapse
Affiliation(s)
- Lu-Qiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xiu-Chun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yang-Yue Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yu-Xin Chen
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xia-Yan Zhu
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Zi-Yi Zuo
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yi-Qun Si-Ma
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Yi-Nuo Lin
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xiao-Kun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Xiao-Ying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
12
|
Do PT, Chuang DM, Wu CC, Huang CZ, Chen YH, Kang SJ, Chiang YH, Hu CJ, Chen KY. Mesenchymal Stem Cells Overexpressing FGF21 Preserve Blood-Brain Barrier Integrity in Experimental Ischemic Stroke. Transl Stroke Res 2024; 15:1165-1175. [PMID: 37783839 DOI: 10.1007/s12975-023-01196-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Blood-brain barrier (BBB) disruption is a prominent pathophysiological mechanism in stroke. Transplantation of mesenchymal stem cells (MSCs) preserves BBB integrity following ischemic stroke. Fibroblast growth factor 21 (FGF21) has been shown to be a potent neuroprotective agent that reduces neuroinflammation and protects against BBB leakage. In this study, we assessed the effects of transplantation of MSCs overexpressing FGF21 (MSCs-FGF21) on ischemia-induced neurological deficits and BBB breakdown. MSCs-FGF21 was injected into the rat brain via the intracerebroventricular route 24 h after middle cerebral artery occlusion (MCAO) surgery. The behavioral performance was assessed using modified neurological severity scores and Y-maze tests. BBB disruption was measured using Evans blue staining, IgG extravasation, and brain water content. The levels of tight junction proteins, aquaporin 4, and neuroinflammatory markers were analyzed by western blotting and immunohistochemistry. The activity of matrix metalloproteinase-9 (MMP-9) was determined using gelatin zymography. At day-5 after MCAO surgery, intraventricular injection of MSCs-FGF21 was found to significantly mitigate the neurological deficits and BBB disruption. The MCAO-induced loss of tight junction proteins, including ZO-1, occludin, and claudin-5, and upregulation of the edema inducer, aquaporin 4, were also remarkably inhibited. In addition, brain infarct volume, pro-inflammatory protein expression, and MMP-9 activation were effectively suppressed. These MCAO-induced changes were only marginally improved by treatment with MSCs-mCherry, which did not overexpress FGF21. Overexpression of FGF21 dramatically improved the therapeutic efficacy of MSCs in treating ischemic stroke. Given its multiple benefits and long therapeutic window, MSC-FGF21 therapy may be a promising treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Phuong Thao Do
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Pediatrics, Hanoi Medical University, Hanoi, 100000, Vietnam
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Chung-Che Wu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Chi-Zong Huang
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- The PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Yen-Hua Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Shuo-Jhen Kang
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yung-Hsiao Chiang
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Chaur-Jong Hu
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan.
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Department of Neurology and Stroke Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan.
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, 110, Taiwan.
- The PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
13
|
González-Velázquez G, Aguirre-Garrido JF, Oros-Pantoja R, Salinas-Velarde ID, Contreras I, Estrada JA, Soto-Piña AE. Supplementation with inulin reverses cognitive flexibility alterations and modulates the gut microbiota in high-fat-fed mice. Front Behav Neurosci 2024; 18:1445154. [PMID: 39568732 PMCID: PMC11577567 DOI: 10.3389/fnbeh.2024.1445154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Alterations in cognitive performance are associated with inadequate nutritional states and diet composition. Prebiotics, such as inulin, are substances that can modulate the gut microbiome and, consequently, brain function by producing metabolites such as short-chain fatty acids (SCFAs). This study aimed to evaluate the effect of supplementation with inulin on cognitive flexibility, body composition, and gut microbiota in a murine model exposed to a high-fat (HF) diet. Methods CD1 mice were divided into five groups: control fed a standard diet (C), high-fat diet (HF), inulin (I), high-fat diet with inulin (HFI), and manipulation control (M). Dietary supplementation was administered for 6 weeks. Cognitive flexibility was assessed using the Attentional Set-Shifting Test (AST). In addition, body composition was measured via electrical bioimpedance and adipose tissue compartments of each mouse were removed and weighed. Finally, gut microbiota metataxonomic was analyzed through metataxonomic bacterial 16S rRNA sequencing. Results We observed that HF group required more AST trials than the C, HFI, and I groups in the compound discrimination (CD) and extra-dimensional (ED) stages. Notably, the HFI group required fewer trials than the HF group in the ED stage (p = 0.0187). No significant differences in overall body composition were observed between the groups. However, the percentage of gonadal and peritoneal adipose tissue was significantly higher in the HF and I groups compared to the C group. Statistically significant differences in alpha diversity for gut microbiota were observed using the Shannon, Simpson, and Chao1 indices. The I group showed a decrease in bacterial diversity compared to the HF group. While no differences were observed between groups in the phyla Bacillota and Bacteroidotes, Clostridium bacteria represented a lower proportion of sequences in the I group compared to the C group. Additionally, Lactobacillus represented a lower proportion of sequences in the HF group compared to the C and I groups. Discussion These findings suggest that supplementation with inulin could be a useful approach to mitigate the negative effects of an HF diet on cognitive flexibility and modulate gut microbiota composition.
Collapse
Affiliation(s)
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Lerma, Estado de México, Mexico
| | - Rigoberto Oros-Pantoja
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | - Irazú Contreras
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - José Antonio Estrada
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | |
Collapse
|
14
|
Zhang Y, Wang Y, Li Y, Pang J, Höhn A, Dong W, Gao R, Liu Y, Wang D, She Y, Guo R, Liu Z. Methionine restriction alleviates diabetes-associated cognitive impairment via activation of FGF21. Redox Biol 2024; 77:103390. [PMID: 39383602 PMCID: PMC11492615 DOI: 10.1016/j.redox.2024.103390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
Glucose metabolism disturbances may result in diabetes-associated cognitive decline (DACI). Methionine restriction (MR) diet has emerged as a potential dietary strategy for managing glucose homeostasis. However, the effects and underlying mechanisms of MR on DACI have not been fully elucidated. Here, we found that a 13-week MR (0.17 % methionine, w/w) intervention starting at 8 weeks of age improved peripheral insulin sensitivity in male db/db mice, a model for type 2 diabetes. Notably, MR significantly improved working as well as long-term memory in db/db mice, accompanied by increased PSD-95 level and reduced neuroinflammatory factors, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). We speculate that this effect may be mediated by MR activating hepatic fibroblast growth factor 21 (FGF21) and the brain FGFR1/AMPK/GLUT4 signaling pathway to enhance brain glucose metabolism. To further delineate the mechanism, we used intracerebroventricular injection of adeno-associated virus to specifically knock down FGFR1 in the brain to verify the role of FGFR1 in MR-mediated DACI. It was found that the positive effects of MR on DACI were offset, reflected in decreased cognitive function, impaired synaptic plasticity, upregulated neuroinflammation, and balanced enzymes regulating reactive oxygen species (Sod1, Sod2, Nox4). Of note, the FGFR1/AMPK/GLUT4 signaling pathway and brain glucose metabolism were inhibited. In summary, our study demonstrated that MR increased peripheral insulin sensitivity, activated brain FGFR1/AMPK/GLUT4 signaling through FGF21, maintained normal glucose metabolism and redox balance in the brain, and thereby alleviated DACI. These results provide new insights into the effects of MR diet on cognitive dysfunction caused by impaired brain energy metabolism.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiju Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen, Neuherberg, Germany
| | - Weixuan Dong
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Rui Gao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yan Liu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Da Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongbo She
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Guo
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
15
|
Zhang Y, Luo C, Huang P, Cheng Y, Ma Y, Gao J, Ding H. Diosmetin Ameliorates HFD-induced Cognitive Impairments via Inhibiting Metabolic Disorders, Mitochondrial Dysfunction and Neuroinflammation in Male SD Rats. Mol Neurobiol 2024; 61:8069-8085. [PMID: 38460078 DOI: 10.1007/s12035-024-04083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Currently, accumulating evidence has indicated that overnutrition-associated obesity may result in not only metabolic dysregulations, but also cognitive impairments. This study aimed to investigate the protective effects of Diosmetin, a bioflavonoid compound with multiple biological functions, on cognitive deficits induced by a high fat diet (HFD) and the potential mechanisms. In the present study, oral administration of Diosmetin (25, 50 and 100 mg/kg) for 12 weeks significantly reduced the body weight, restored glucose tolerance and normalized lipid profiles in the serum and liver in HFD-induced obese rats. Diosmetin also significantly ameliorated depression-like behaviors and impaired spatial memory in multiple behavioral tests, including the open field test, elevated plus-maze and Morris water maze, which was in accordance with the decreased pathological changes and neuronal damage in different regions of hippocampus as suggested by H&E and Nissl staining. Notably, our results also indicated that Diosmetin could significantly improve mitochondrial dysfunction induced by HFD through upregulating genes involved in mitochondrial biogenesis and dynamics, increasing mitochondrial ATP levels and inhibiting oxidative stress. Moreover, the levels of key enzymes involved in the TCA cycle were also significantly increased upon Diosmetin treatment. Meanwhile, Diosmetin inhibited HFD-induced microglial overactivation and down-regulated inflammatory cytokines both in the serum and hippocampus. In conclusion, these results indicated that Diosmetin might be a novel nutritional intervention to prevent the occurrence and development of obesity-associated cognitive dysfunction via metabolic regulation and anti-inflammation.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Chunyun Luo
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Puxin Huang
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Yahong Cheng
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Yufang Ma
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Jiefang Gao
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China
| | - Hong Ding
- Department of Pharmaceutical Science, Wuhan University, 430000, Wuhan, China.
| |
Collapse
|
16
|
Sullivan AI, Jensen-Cody SO, Claflin KE, Vorhies KE, Flippo KH, Potthoff MJ. Characterization of FGF21 Sites of Production and Signaling in Mice. Endocrinology 2024; 165:bqae120. [PMID: 39253796 DOI: 10.1210/endocr/bqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Fibroblast growth factor (FGF) 21 is an endocrine hormone that signals to multiple tissues to regulate metabolism. FGF21 and another endocrine FGF, FGF15/19, signal to target tissues by binding to the co-receptor β-klotho (KLB), which then facilitates the interaction of these different FGFs with their preferred FGF receptor. KLB is expressed in multiple metabolic tissues, but the specific cell types and spatial distribution of these cells are not known. Furthermore, while circulating FGF21 is primarily produced by the liver, recent publications have indicated that brain-derived FGF21 impacts memory and learning. Here we use reporter mice to comprehensively assess KLB and FGF21 expression throughout the body. These data provide an important resource for guiding future studies to identify important peripheral and central targets of FGFs and to determine the significance of nonhepatic FGF21 production.
Collapse
Affiliation(s)
- Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kai E Vorhies
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa Neurosciences Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
17
|
Zhang Y, Zhang Z, Yu Q, Lan B, Shi Q, Liu Y, Zhang W, Li F. Dual-factor model of sleep and diet: a new approach to understanding central fatigue. Front Neurosci 2024; 18:1465568. [PMID: 39355851 PMCID: PMC11442446 DOI: 10.3389/fnins.2024.1465568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Background Numerous studies have recently examined the impact of dietary factors such as high-fat diets on fatigue. Our study aims to investigate whether high-fat diet (HFD) alone or combined with alternate-day fasting (ADF) can lead to the central fatigue symptoms and to investigate the potential integration of dietary and sleep variables in the development of central fatigue models. Methods Seventy-five male Wistar rats were divided into five groups: control, HFD, HFD + ADF, modified multiple platform method (MMPM), and MMPM+HFD + ADF. Each group underwent a 21-day modeling period according to their respective protocol. Their behavioral characteristics, fatigue biochemical markers, hippocampal pathological changes, mitochondrial ultrastructure, and oxidative stress damage were analyzed. Results Our findings demonstrate that using only HFD did not cause central fatigue, but combining it with ADF did. This combination led to reduced exercise endurance, decreased locomotor activity, impaired learning and memory abilities, along with alterations in serum levels of alanine aminotransferase (ALT), creatine kinase (CK), and lactate (LAC), as well as hippocampal pathological damage and other central fatigue symptoms. Moreover, the MMPM+HFD + ADF method led to the most obvious central fatigue symptoms in rats, including a variety of behavioral changes, alterations in fatigue-related biochemical metabolic markers, prominent pathological changes in hippocampal tissue, severe damage to the ultrastructure of mitochondria in hippocampal regions, changes in neurotransmitters, and evident oxidative stress damage. Additionally, it was observed that rats subjected to HFD + ADF, MMPM, and MMPM+HFD + ADF modeling method exhibited significant brain oxidative stress damage. Conclusion We have demonstrated the promotive role of dietary factors in the development of central fatigue and have successfully established a more stable and clinically relevant animal model of central fatigue by integrating dietary and sleep factors.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zehan Zhang
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingqian Yu
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bijuan Lan
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qinghuan Shi
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liu
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weiyue Zhang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Li
- School of Tradional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Di Majo D, Ricciardi N, Di Liberto V, Allegra M, Frinchi M, Urone G, Scordino M, Massaro A, Mudò G, Ferraro G, Sardo P, Giglia G, Gambino G. The remarkable impact of Opuntia Ficus Indica fruit administration on metabolic syndrome: Correlations between cognitive functions, oxidative stress and lipid dysmetabolism in the high-fat, diet-fed rat model. Biomed Pharmacother 2024; 177:117028. [PMID: 38959603 DOI: 10.1016/j.biopha.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND A wealth of evidence underscores the bioactive properties of nutraceuticals and functional foods in addressing oxyinflammatory-based diseases with implications at both peripheral and central levels. Opuntia ficus-indica (OFI) is well-documented for its health-promoting attributes, though its fruit (OFIF) remains relatively understudied. Not only poses Metabolic Syndrome (MetS) cardiometabolic risks but also contributes significantly to cognitive impairment, especially in crucial brain areas such as hippocampus and hypothalamus. METHODS Following 8 weeks of HFD to induce MetS, rats received OFIF oral supplementation for 4 weeks to evaluate cognitive and affective modifications using behavioural paradigms, i.e. open field, burrowing, white-dark box, novelty-suppressed feeding, and object recognition tests. Our investigation extended to biochemical evaluations of lipid homeostasis, central and peripheral oxidative stress and neurotrophic pathways, correlating these measures together with circulating leptin levels. RESULTS Our data revealed that OFIF modulation of leptin positively correlates with systemic and brain oxidative stress, with markers of increased anxiety-like behaviour and impaired lipid homeostasis. On the other hand, leptin levels reduced by OFIF are associated with improved antioxidant barriers, declarative memory and neurotrophic signalling. DISCUSSION This study underscores OFIF neuroactive potential in the context of MetS-associated cognitive impairment, offering insights into its mechanisms and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Danila Di Majo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Valentina Di Liberto
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Mario Allegra
- Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Monica Frinchi
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giulia Urone
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Miriana Scordino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Palermo 90128, Italy
| | - Giuseppa Mudò
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Pierangelo Sardo
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| | - Giuseppe Giglia
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy.
| | - Giuditta Gambino
- Department of Biomedicine Neuroscience and Advanced Diagnostics, Section of Human Physiology, School of Medicine, University of Palermo, Palermo 90127, Italy; Post-Graduate School of Nutrition and Food Science, School of Medicine, University of Palermo, Palermo 90127, Italy
| |
Collapse
|
20
|
Łukawska A, Mulak A. A correlation of serum fibroblast growth factor 21 level with inflammatory markers and indicators of nutritional status in patients with inflammatory bowel disease. Front Physiol 2024; 15:1394030. [PMID: 38983722 PMCID: PMC11231369 DOI: 10.3389/fphys.2024.1394030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Background Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that regulates nutrient and metabolic homeostasis. Inflammatory state is one of the stimulators of FGF21 secretion. The aim of the study was to assess correlations between serum FGF21 level and inflammatory markers as well as nutritional status indicators in patients with inflammatory bowel disease (IBD). Methods Fasting serum FGF21 level was measured using ELISA test in 105 IBD patients and 17 healthy controls. There were 31 subjects with active ulcerative colitis (UC), 16 with inactive UC, 36 with active Crohn's disease (CD), and 22 with inactive CD. Clinical and endoscopic activity of IBD was evaluated based on validated scales and indices. Fecal calprotectin, serum CRP, and selected parameters of nutritional status were tested in all patients. Results Serum FGF21 level was characterized by fluctuations depending on the IBD activity. FGF21 level was significantly higher in both active UC and CD compared to inactive phases of the diseases and to the controls. A correlation between FGF21 and fecal calprotectin levels was also found in UC and CD. Additionally, in CD, FGF21 level positively correlated with CRP level. In both UC and CD, a negative correlation was noted between FGF21 level and nutritional status parameters including cholesterol, protein, albumin levels, and BMI. Conclusion The intensity of intestinal inflammation is related to FGF21 level, which correlates negatively with nutritional status indicators in IBD. The disturbances in FGF21 secretion may contribute to the multifactorial pathogenesis of malnutrition and weight loss in IBD patients.
Collapse
Affiliation(s)
- Agata Łukawska
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
21
|
Chen C, Jiang C, Lin T, Hu Y, Wu H, Xiang Q, Yang M, Wang S, Han X, Tao J. Landscape of transcriptome-wide m 6A modification in diabetic liver reveals rewiring of PI3K-Akt signaling after physical exercise. Acta Physiol (Oxf) 2024; 240:e14154. [PMID: 38682314 DOI: 10.1111/apha.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
AIM Type 2 diabetes mellitus (T2DM) is one of the most common diseases, and epigenetic modification N6-methyladenosine (m6A) is essential for transcriptional modulation involved in its development. However, the precise role and landscape of transcriptome-wide m6A alterations in molecular adaptations after physical exercise have yet to be fully elucidated. METHODS Four-week-old male C57BL/6J mice received a high-fat diet (HFD) for 12 weeks to establish a diabetic state, and HFD mice were simultaneously subjected to physical exercise (HFD + EX). The hepatic RNA m6A methylome was examined, the conjoint MeRIP-seq and RNA-seq was performed, and the exercise-modulated genes were confirmed. RESULTS Physical exercise significantly ameliorates liver metabolic disorder and triggers a dynamic change in hepatic RNA m6A. By analyzing the distribution of m6A in transcriptomes, an abundance of m6A throughout mRNA transcripts and a pattern of conserved m6A after physical exercise was identified. It is noteworthy that conjoint MeRIP-seq and RNA-seq data revealed that both differentially methylated genes and differentially expressed genes were enriched in all stages of the PI3K-Akt signaling pathway, in particular the upstream nodes of this pathway, which are considered a valuable therapeutic target for T2DM. Moreover, in vivo and in vitro analyses showed that exercise-mediated methyltransferase Rbm15 positively regulated the expression of two upstream genes (Itga3 and Fgf21) in an m6A-dependent manner. CONCLUSION These findings highlight the pivotal role of the exercise-induced m6A epigenetic network and contribute insights into the intricate epigenetic mechanism underlying insulin signaling.
Collapse
Affiliation(s)
- Cong Chen
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of cognitive rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Cai Jiang
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ting Lin
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yue Hu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Huijuan Wu
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Qing Xiang
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of cognitive rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Minguang Yang
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of cognitive rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Sinuo Wang
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jing Tao
- Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of cognitive rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Wang H, Yin W, Ma S, Wang P, Zhang L, Li P, Shao Z, Chen X, Zhu P. Prenatal environmental adversity and child neurodevelopmental delay: the role of maternal low-grade systemic inflammation and maternal anti-inflammatory diet. Eur Child Adolesc Psychiatry 2024; 33:1771-1781. [PMID: 37596369 DOI: 10.1007/s00787-023-02267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023]
Abstract
Maternal inflammation has been proposed as a possible pathway connecting prenatal environmental adversity (PEA), which includes maternal overweightness or obesity, diabetes, hypertensive disorders, and mood or anxiety disorders, to child neurodevelopmental delay. However, effective preventive measures have not yet been reported. Herein, we aimed to investigate whether a maternal anti-inflammatory diet reduced the risk of PEA-induced neurodevelopmental delay, by inhibiting inflammation. This prospective study included 7438 mother-child pairs. Maternal overweightness or obesity, diabetes, and hypertensive disorders were diagnosed before 28 week gestation. Maternal depression disorders were identified using the Edinburgh postnatal depression survey (EPDS) during mid-pregnancy. During mid- and late pregnancy, maternal high-sensitivity C-reactive protein (hs-CRP) levels were measured to evaluate systemic inflammation. The inflammatory potential of the diet was evaluated using the food-based empirical dietary inflammatory pattern (EDIP) score during mid-pregnancy. Pregnant women were classified into high- or low-score groups based on the median EDIP score. The outcomes of neurodevelopmental delay at 6-36 month postpartum were extracted from the Register of Child Healthcare. Among the 7438 mother-child pairs, 2937 (39.5%) were exposed to PEA, and neurodevelopmental delay occurred in 540 (7.3%). Children exposed to PEA had a higher risk of neurodevelopmental delay than those not exposed. PEA exposure was associated with increased hs-CRP during pregnancy in a PEA monotonic manner, an interquartile range increase in hs-CRP in mid- and late pregnancy was associated with an increased risk of child neurodevelopmental delay. Higher maternal persistent inflammation partially mediated the effect of PEA exposure on child neurodevelopmental delay by 17.19%. An increased risk of PEA-related neurodevelopmental delay was observed only in the children of mothers with high-EDIP rather than low-EDIP. These results suggest that increased systemic inflammation through mid- and late pregnancy mediates the association between PEA and child neurodevelopmental delay. A maternal anti-inflammatory diet may improve PEA-induced neurodevelopmental delay, by inhibiting inflammation.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Wanjun Yin
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Shuangshuang Ma
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- Anhui Mental Health Centre, Hefei, China
| | - Peng Wang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Peipei Li
- Hefei Maternal and Child Health Service Centre, Hefei, China
| | - Ziyu Shao
- Hefei Maternal and Child Health Service Centre, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Anhui Maternal and Child Health Hospital, 15 Yimin Street, Hefei, China.
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, China.
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
23
|
Xie J, Yan J, Ji K, Guo Y, Xu S, Shen D, Li C, Gao H, Zhao L. Fibroblast growth factor 21 enhances learning and memory performance in mice by regulating hippocampal L-lactate homeostasis. Int J Biol Macromol 2024; 271:132667. [PMID: 38801850 DOI: 10.1016/j.ijbiomac.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is one endogenous metabolic molecule that functions as a regulator in glucose and lipid homeostasis. However, the effect of FGF21 on L-lactate homeostasis and its mechanism remains unclear until now. Forty-five Six-week-old male C57BL/6 mice were divided into three groups: control, L-lactate, and FGF21 (1.5 mg/kg) groups. At the end of the treatment, nuclear magnetic resonance-based metabolomics, and key proteins related to L-lactate homeostasis were determined respectively to evaluate the efficacy of FGF21 and its mechanisms. The results showed that, compared to the vehicle group, the L-lactate-treated mice displayed learning and memory performance impairments, as well as reduced hippocampal ATP and NADH levels, but increased oxidative stress, mitochondrial dysfunction, and apoptosis, which suggesting inhibited L-lactate-pyruvate conversion in the brain. Conversely, FGF21 treatment ameliorated the L-lactate accumulation state, accompanied by restoration of the learning and memory defects, indicating enhanced L-lactate uptake and utilization in hippocampal neurons. We demonstrated that maintaining constant L-lactate-pyruvate flux is essential for preserving neuronal bioenergetic and redox levels. FGF21 contributed to preparing the brain for situations of high availability of L-lactate, thus preventing neuronal vulnerability in metabolic reprogramming.
Collapse
Affiliation(s)
- Jiaojiao Xie
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiapin Yan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Danjie Shen
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
24
|
Liu G, Shu W, Chen Y, Fu Y, Fang S, Zheng H, Cheng W, Lin Q, Hu Y, Jiang N, Yu B. Bone-derived PDGF-BB enhances hippocampal non-specific transcytosis through microglia-endothelial crosstalk in HFD-induced metabolic syndrome. J Neuroinflammation 2024; 21:111. [PMID: 38685040 PMCID: PMC11057146 DOI: 10.1186/s12974-024-03097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1β (IL-1β) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.
Collapse
Affiliation(s)
- Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Shu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Trauma Orthopedics, Liuzhou People's Hospital, Liuzhou, China
| | - Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Shuai Fang
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Haonan Zheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weike Cheng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrong Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjun Hu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Feng Z, Fang C, Ma Y, Chang J. Obesity-induced blood-brain barrier dysfunction: phenotypes and mechanisms. J Neuroinflammation 2024; 21:110. [PMID: 38678254 PMCID: PMC11056074 DOI: 10.1186/s12974-024-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.
Collapse
Affiliation(s)
- Ziying Feng
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yinzhong Ma
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
26
|
Chao YM, Wu HY, Yeh SH, Yang DI, Her LS, Wu YL. Glucosamine Enhancement of Learning and Memory Functions by Promoting Fibroblast Growth Factor 21 Production. Int J Mol Sci 2024; 25:4211. [PMID: 38673797 PMCID: PMC11050103 DOI: 10.3390/ijms25084211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a crucial role in metabolism and brain function. Glucosamine (GLN) has been recognized for its diverse beneficial effects. This study aimed to elucidate the modulation of FGF21 production by GLN and its impact on learning and memory functions. Using both in vivo and in vitro models, we investigated the effects of GLN on mice fed with a normal diet or high-fat diet and on mouse HT22 hippocampal cells, STHdhQ7/Q7 striatal cells, and rat primary cortical neurons challenged with GLN. Our results indicated that GLN promotes learning and memory functions in mice and upregulates FGF21 expression in the hippocampus, cortex, and striatum, as well as in HT22 cells, STHdhQ7/Q7 cells, and cortical neurons. In animals receiving GLN together with an FGF21 receptor FGFR1 inhibitor (PD173074), the GLN-enhanced learning and memory functions and induction of FGF21 production in the hippocampus were significantly attenuated. While exploring the underlying molecular mechanisms, the potential involvement of NF-κB, Akt, p38, JNK, PKA, and PPARα in HT22 and NF-κB, Akt, p38, and PPARα in STHdhQ7/Q7 were noted; GLN was able to mediate the activation of p65, Akt, p38, and CREB in HT22 and p65, Akt, and p38 in STHdhQ7/Q7 cells. Our accumulated findings suggest that GLN may increase learning and memory functions by inducing FGF21 production in the brain. This induction appears to be mediated, at least in part, through GLN's activation of the NF-κB, Akt, p38, and PKA/CREB pathways.
Collapse
Affiliation(s)
- Yu-Ming Chao
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-M.C.); (S.-H.Y.)
| | - Hon-Yen Wu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sin-Huei Yeh
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-M.C.); (S.-H.Y.)
| | - Ding-I Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Lu-Shiun Her
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yuh-Lin Wu
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-M.C.); (S.-H.Y.)
| |
Collapse
|
27
|
Zhang X, Xie T, Zhou S, Yuan Y, Chen W, Zheng J, Liu X, Yuan T, Lu Y, Liu Z. Effects of the ApoE genotype on cognitive function in aging mice fed with a high-fat diet and the protective potential of n-3 polyunsaturated fatty acids. Food Funct 2024; 15:2249-2264. [PMID: 38319599 DOI: 10.1039/d3fo03965j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The ApoE4 allele is the strongest genetic determinant for Alzheimer's disease (AD), while obesity is a strong environmental risk for AD. The modulatory effect of the ApoE genotype on aging-related cognitive function in tandem with a high-fat diet (HFD) remains uncertain. This study aimed to elucidate the effects of ApoE3/ApoE4 genotypes in aged mice exposed to a HFD, and the benefits of n-3 polyunsaturated fatty acids (PUFAs) from fish oil. Remarkably, the HFD led to weight gain and lipid accumulation, more pronounced in ApoE3 mice, while ApoE4 mice experienced exacerbated cerebral insulin resistance, neuroinflammation, and oxidative stress. Critically, n-3 PUFAs modulated the cerebral insulin signaling via the IRS-1/AKT/GLUT4 pathway, mitigated microglial hyperactivity, and reduced IL-6 and MDA levels, thereby counteracting cognitive deficits. These findings highlight the contrasting impacts of ApoE genotypes on aging mice exposed to a HFD, supporting n-3 PUFAs as a strategic nutritional intervention for brain health, especially for ApoE4 carriers.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tianzhi Xie
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Shuang Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yingxuan Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jie Zheng
- School of Nursing, Peking University, 100191, Beijing, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tian Yuan
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China.
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanhui Lu
- School of Nursing, Peking University, 100191, Beijing, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China.
- Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong, 523170, China
| |
Collapse
|
28
|
Yuguang L, Chang Y, Li H, Li F, Zou Q, Liu X, Chen X, Cui J. Inflammation mediates the relationship between diet quality assessed by healthy eating index-2015 and metabolic syndrome. Front Endocrinol (Lausanne) 2024; 15:1293850. [PMID: 38379861 PMCID: PMC10877714 DOI: 10.3389/fendo.2024.1293850] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Background Metabolic syndrome is a cluster of metabolic disorders, including obesity, hypertension, hyperglycemia, and abnormal lipid levels. However, researches on the association between overall dietary quality measured by the Healthy Eating Index-2015 (HEI-2015) and the risk of metabolic syndrome is still lacking. Methods This study utilized data from four cycles (2011-2018) of the National Health and Nutrition Examination Survey (NHANES) database, including 17,582 participants. Logistic regression analysis was employed to explore the correlation between HEI and the risk of metabolic syndrome. Additionally, mediation analysis was conducted to examine the effects of Systemic Immune-Inflammation Index (SII) and serum uric acid as potential mediators between HEI and metabolic syndrome risk. Weighted quantile sum (WQS) regression evaluated the composite exposure impact of the 13 components of the HEI on metabolic syndrome, as well as the proportion of their weights. Results Higher dietary quality measured by HEI-2015 (at the 75th percentile) was negatively correlated with the risk of metabolic syndrome (OR=0.80, 95%CI=0.72-0.89, P=0.003). Higher SII and serum uric acid levels were identified as risk factors for metabolic syndrome (P for trend<0.001). Approximately 37.5% of the effect of HEI on metabolic syndrome occurrence was mediated by SII (Indirect effect=-0.002, 95%CI (-0.003,-0.001), Direct effect=-0.022, 95%CI (-0.0273,-0.015)). Additionally, 25% of the effect of HEI on metabolic syndrome occurrence was mediated by serum uric acid levels (Indirect effect=-0.006, 95%CI (-0.010,-0.012), Direct effect=-0.024, 95%CI (-0.041,-0.009)). WQS regression analysis revealed the highest weighted proportions for seafood and plant proteins (25.20%) and sodium (17.79%), while the weight for whole fruit was the lowest (0.25%). Conclusion Better dietary quality measured by HEI-2015 was associated with a lower likelihood of metabolic syndrome. Higher SII and serum uric acid levels were identified as risk factors for metabolic syndrome and potential mediators.
Collapse
Affiliation(s)
- Li Yuguang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Chang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Hongwei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Fangqi Li
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Qing Zou
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xiangliang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chen
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Gambino G, Frinchi M, Giglia G, Scordino M, Urone G, Ferraro G, Mudò G, Sardo P, Di Majo D, Di Liberto V. Impact of “Golden” tomato juice on cognitive alterations in metabolic syndrome: Insights into behavioural and biochemical changes in a high-fat diet rat model. J Funct Foods 2024; 112:105964. [DOI: 10.1016/j.jff.2023.105964] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
30
|
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G. FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med 2023; 29:165. [PMID: 38049769 PMCID: PMC10696847 DOI: 10.1186/s10020-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
31
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
32
|
Shen M, Zhang M, Mao N, Lin Z. Batokine in Central Nervous System Diseases. Mol Neurobiol 2023; 60:7021-7031. [PMID: 37526894 DOI: 10.1007/s12035-023-03490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023]
Abstract
Brown adipose tissue (BAT) is a special type of fat tissue in mammals and is also a key endocrine organ in the human body. Batokine, the endocrine effector of BAT, plays a neuroprotective role and improves the prognosis by exerting anti-apoptotic and anti-inflammatory effects, as well as by improving vascular endothelial function and other mechanisms in nerve injury diseases. The present article briefly reviewed several types of batokines related to central nervous system (CNS) diseases. Following this, the potential therapeutic value and future research direction of batokines for CNS diseases were chiefly discussed from the aspects of protective mechanism and signaling pathway.
Collapse
Affiliation(s)
- Ming Shen
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Niping Mao
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital of Wenzhou Medical University and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
33
|
Wu S, Liu X, Yang H, Ma W, Qin Z. The effect of lipid metabolism on age-associated cognitive decline: Lessons learned from model organisms and human. IBRO Neurosci Rep 2023; 15:165-169. [PMID: 38204577 PMCID: PMC10776322 DOI: 10.1016/j.ibneur.2023.08.2194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 08/29/2023] [Indexed: 01/12/2024] Open
Abstract
Lipids are required as integral building blocks of cells to support cellular structures and functions. The intricate mechanisms underpinning lipid homeostasis are essential for the health and maintenance of the central nervous system. Here we summarize the recent advances in dissecting the effect of lipid metabolism on cognitive function and its age-associated decline by reviewing relevant studies ranging from invertebrate model organisms to mammals including human.
Collapse
Affiliation(s)
- Shihao Wu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Geriatric Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Xiaoli Liu
- Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200125, China
| | - Haiyan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Wenlin Ma
- Department of Geriatric Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai 200040, China
| | - Zhao Qin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| |
Collapse
|
34
|
Yang C, Wang W, Deng P, Wang X, Zhu L, Zhao L, Li C, Gao H. Fibroblast growth factor 21 ameliorates behavior deficits in Parkinson's disease mouse model via modulating gut microbiota and metabolic homeostasis. CNS Neurosci Ther 2023; 29:3815-3828. [PMID: 37334756 PMCID: PMC10651963 DOI: 10.1111/cns.14302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
AIMS The effects of FGF21 on Parkinson's disease (PD) and its relationship with gut microbiota have not been elucidated. This study aimed to investigate whether FGF21 would attenuate behavioral impairment through microbiota-gut-brain metabolic axis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mice model. METHODS Male C57BL/6 mice were rendomized into 3 groups: vehicle (CON); MPTP 30 mg/kg/day i.p. injection (MPTP); FGF21 1.5 mg/kg/d i.p. injection plus MPTP 30 mg/kg/day i.p. injection (FGF21 + MPTP). The behavioral features, metabolimics profiling, and 16 s rRNA sequencing were performed after FGF21 treatment for 7 days. RESULTS MPTP-induced PD mice showed motor and cognitive deficits accompanied by gut microbiota dysbiosis and brain-region-specific metabolic abnormalities. FGF21 treatment dramatically attenuated motor and cognitive dysfunction in PD mice. FGF21 produced a region-specific alteration in the metabolic profile in the brain in ways indicative of greater ability in neurotransmitter metabolism and choline production. In addition, FGF21 also re-structured the gut microbiota profile and increased the relative abundance of Clostridiales, Ruminococcaceae, and Lachnospiraceae, thereby rescuing the PD-induced metabolic disorders in the colon. CONCLUSION These findings indicate that FGF21 could affect behavior and brain metabolic homeostasis in ways that promote a favorable colonic microbiota composition and through effects on the microbiota-gut-brain metabolic axis.
Collapse
Affiliation(s)
- Changwei Yang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- School of Public healthFujian Medical UniversityFuzhouChina
| | - Wuqiong Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Pengxi Deng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Xinyi Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Lin Zhu
- School of Public healthFujian Medical UniversityFuzhouChina
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
35
|
Chaaya R, Steele JR, Oliver BG, Chen H, Machaalani R. Effects of e-vapour and high-fat diet on the immunohistochemical staining of nicotinic acetylcholine receptors, apoptosis, microglia and astrocytes in the adult male mouse hippocampus. J Chem Neuroanat 2023; 132:102303. [PMID: 37343645 DOI: 10.1016/j.jchemneu.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/27/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The use of e-cigarettes/e-vapour, and the consumption of a high-fat diet (HFD), are two popular lifestyle choices associated with alterations in the hippocampus. This study, using a mouse model, investigated the effects of exposure to e-vapour (± nicotine) and HFD (43% fat) consumption, on the expression of nicotinic acetylcholine receptor (nAChR) subunits α3, α4, α7 and β2, apoptosis markers caspase-3 and TUNEL, microglial marker Iba-1, and astrocyte marker GFAP, in hippocampal subregions of dentate gyrus (DG) and cornu ammonis (CA) 1-3. The major findings included: (1) HFD alone had minimal effect with no consistent pattern or interaction between the markers, (2) E-vapour (± nicotine) predominantly affected the CA2 subregion, decreasing α7 and β2 nAChR subunits and Iba-1, (3) Nicotine e-vapour increased TUNEL across all subregions, and (4) HFD, in the presence of nicotine-free e-vapour, decreased caspase-3 and increased TUNEL across all regions, and decreased Iba-1 in the CA subregions, while HFD and nicotine-containing e-vapour, subregion specifically affected the α3, α4 and α7 nAChR subunits, with a protective effect against change in GFAP in the DG and Iba-1 in the CA1 and CA3. These findings highlight that e-vapour itself alters nAChRs, particularly in the CA2 subregion, associated with a decrease in neuroinflammatory response (Iba-1) across the whole hippocampus, and the addition of nicotine increases cell apoptosis across the whole hippocampus. HFD alone was not detrimental in our model, but in the presence of nicotine-free e-vapour, it differentially affected apoptosis, while the addition of nicotine increased nAChR subunits.
Collapse
Affiliation(s)
- Rita Chaaya
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Joel R Steele
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnea Laboratory, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
36
|
Zhang J, Xiong YW, Tan LL, Zheng XM, Zhang YF, Ling Q, Zhang C, Zhu HL, Chang W, Wang H. Sperm Rhoa m6A modification mediates intergenerational transmission of paternally acquired hippocampal neuronal senescence and cognitive deficits after combined exposure to environmental cadmium and high-fat diet in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131891. [PMID: 37354721 DOI: 10.1016/j.jhazmat.2023.131891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Little is currently known about the effect and mechanism of combined paternal environmental cadmium (Cd) and high-fat diet (HFD) on offspring cognitive ability. Here, using in vivo model, we found that combined paternal environmental Cd and HFD caused hippocampal neuronal senescence and cognitive deficits in offspring. MeRIP-seq revealed m6A level of Rhoa, a regulatory gene of cellular senescence, was significantly increased in combined environmental Cd and HFD-treated paternal sperm. Interestingly, combined paternal environmental Cd and HFD markedly enhanced Rhoa mRNA, its m6A and reader protein IGF2BP1 in offspring hippocampus. STM2457, the inhibitor of m6A modification, markedly mitigated paternal exposure-caused the elevation of hippocampal Rhoa m6A, neuronal senescence and cognitive deficits in offspring. In vitro experiments, Rhoa siR significantly reversed mouse hippocampal neuronal senescence. Igf2bp1 siR obviously reduced the level and stability of Rhoa in aging mouse hippocampal neuronal cells. In conclusion, combined paternal environmental Cd and HFD induce offspring hippocampal neuronal senescence and cognitive deficits by promoting IGF2BP1-mediated Rhoa stabilization in offspring hippocampus via elevating Rhoa m6A in paternal sperm.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Chao Zhang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
37
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Fibroblast growth factor 21 in metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1220426. [PMID: 37576954 PMCID: PMC10414186 DOI: 10.3389/fendo.2023.1220426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Metabolic syndrome is a complex metabolic disorder that often clinically manifests as obesity, insulin resistance/diabetes, hyperlipidemia, and hypertension. With the development of social and economic systems, the incidence of metabolic syndrome is increasing, bringing a heavy medical burden. However, there is still a lack of effective prevention and treatment strategies. Fibroblast growth factor 21 (FGF21) is a member of the human FGF superfamily and is a key protein involved in the maintenance of metabolic homeostasis, including reducing fat mass and lowering hyperglycemia, insulin resistance and dyslipidemia. Here, we review the current regulatory mechanisms of FGF21, summarize its role in obesity, diabetes, hyperlipidemia, and hypertension, and discuss the possibility of FGF21 as a potential target for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
38
|
Kuo YY, Tsai HY, Kuo YM, Tzeng SF, Chen PS, Hsu PH, Lin YT, Chen PC. Glibenclamide promotes FGF21 secretion in interscapular BAT and attenuates depression-like behaviors in male mice with HFD-induced obesity. Life Sci 2023; 328:121900. [PMID: 37391066 DOI: 10.1016/j.lfs.2023.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
AIMS Epidemiological evidence suggests that comorbidity of obesity and depression is extremely common and continues to grow in prevalence. However, the mechanisms connecting these two conditions are unknown. In this study, we explored how treatment with KATP channel blocker glibenclamide (GB) or the well-known metabolic regulator FGF21 impact male mice with high-fat diet (HFD)-induced obesity and depressive-like behaviors. MATERIALS AND METHODS Mice were fed with HFD for 12 weeks and then treated with recombinant FGF21 protein by infusion for 2 weeks, followed by intraperitoneal injection of 3 mg/kg recombinant FGF21 once per day for 4 days. Measurements were made of catecholamine levels, energy expenditure, biochemical endpoints and behavior tests, including sucrose preference and forced swim tests were. Alternatively, animals were infused with GB into brown adipose tissue (BAT). The WT-1 brown adipocyte cell line was used for molecular studies. KEY FINDINGS Compared to HFD controls, HFD + FGF21 mice exhibited less severe metabolic disorder symptoms, improved depressive-like behaviors, and more extensive mesolimbic dopamine projections. FGF21 treatment also rescued HFD-induced dysregulation of FGF21 receptors (FGFR1 and co-receptor β-klotho) in the ventral tegmental area (VTA), and it altered dopaminergic neuron activity and morphology in HFD-fed mice. Importantly, we also found that FGF21 mRNA level and FGF21 release were increased in BAT after administration of GB, and GB treatment to BAT reversed HFD-induced dysregulation of FGF21 receptors in the VTA. SIGNIFICANCE GB administration to BAT stimulates FGF21 production in BAT, corrects HFD-induced dysregulation of FGF21 receptor dimers in VTA dopaminergic neurons, and attenuates depression-like symptoms.
Collapse
Affiliation(s)
- Yi-Ying Kuo
- Department of Physiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institue of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Yeh Tsai
- Department of Physiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, Taiwan
| | - Po-Hung Hsu
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Institue of Basic Medical Sciences, College of Medicine, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
39
|
Sonsalla MM, Lamming DW. Geroprotective interventions in the 3xTg mouse model of Alzheimer's disease. GeroScience 2023; 45:1343-1381. [PMID: 37022634 PMCID: PMC10400530 DOI: 10.1007/s11357-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disease. As the population ages, the increasing prevalence of AD threatens massive healthcare costs in the coming decades. Unfortunately, traditional drug development efforts for AD have proven largely unsuccessful. A geroscience approach to AD suggests that since aging is the main driver of AD, targeting aging itself may be an effective way to prevent or treat AD. Here, we discuss the effectiveness of geroprotective interventions on AD pathology and cognition in the widely utilized triple-transgenic mouse model of AD (3xTg-AD) which develops both β-amyloid and tau pathologies characteristic of human AD, as well as cognitive deficits. We discuss the beneficial impacts of calorie restriction (CR), the gold standard for geroprotective interventions, and the effects of other dietary interventions including protein restriction. We also discuss the promising preclinical results of geroprotective pharmaceuticals, including rapamycin and medications for type 2 diabetes. Though these interventions and treatments have beneficial effects in the 3xTg-AD model, there is no guarantee that they will be as effective in humans, and we discuss the need to examine these interventions in additional animal models as well as the urgent need to test if some of these approaches can be translated from the lab to the bedside for the treatment of humans with AD.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, 2500 Overlook Terrace, VAH C3127 Research 151, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
40
|
Tang M, Cheng S, Wang L, Tang H, Liu T, Zhao T, Dang R. Decreased FGF19 and FGF21: possible underlying common pathogenic mechanism of metabolic and cognitive dysregulation in depression. Front Neurosci 2023; 17:1165443. [PMID: 37266540 PMCID: PMC10229787 DOI: 10.3389/fnins.2023.1165443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Background Accumulating studies suggested that major depressive disorder (MDD) was closely related to metabolic syndrome (MetS). Important endogenous regulators fibroblast growth factors (FGFs) 19 and 21 were also reported to participate in psychiatric disorders. This study aimed to investigate the role of FGF19 and FGF21 in MDD and to explore the possible pathogenic mechanism of metabolic and cognitive dysregulation in depression. Methods A total of 59 MDD patients and 55 healthy control participants were recruited. The serum levels of FGF19 and FGF21 and lipid profiles were measured by means of enzymatic methods. Cognitive function was measured by repeatable battery for the assessment of neuropsychological status (RBANS) scores. The gene expression of PGC-1α and FNDC5 was determined by quantitative polymerase chain reaction (PCR). Results We found that plasma FGF19 and FGF21 levels were significantly decreased in patients with MDD. Meanwhile, triglyceride (TG) was significantly elevated and PGC-1α was significantly downregulated in MDD patients. Correlation analyses showed negative associations between TG and FGF19 levels. As for cognitive performance, both FGF19 and FGF21 levels were positively correlated with immediate memory. However, FGF19 levels were negatively correlated with language, and FGF21 levels were also negatively correlated with attention and delayed memory. Additionally, negative associations were found between FGF19 levels and PGC-1α. FGF21 levels were positively associated with PGC-1α and negatively associated with FNDC5. Conclusion This study elucidated the role of FGF19 and FGF21 in MDD. MDD patients were confirmed to have metabolic and cognitive dysregulation, and this abnormality was linked to the decreased concentrations of FGF19 and FGF21 through the PGC-1α/FNDC5 pathway. Our results showed that the alterations of FGF19 and FGF21 levels may be a common pathogenic mechanism of metabolic and cognitive disturbances in patients with MDD.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuqiao Cheng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Tang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ruili Dang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Jining Medical University, Jining, China
| |
Collapse
|
41
|
Zhai W, Zhang T, Jin Y, Huang S, Xu M, Pan J. The fibroblast growth factor system in cognitive disorders and dementia. Front Neurosci 2023; 17:1136266. [PMID: 37214403 PMCID: PMC10196031 DOI: 10.3389/fnins.2023.1136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Cognitive impairment is the core precursor to dementia and other cognitive disorders. Current hypotheses suggest that they share a common pathological basis, such as inflammation, restricted neurogenesis, neuroendocrine disorders, and the destruction of neurovascular units. Fibroblast growth factors (FGFs) are cell growth factors that play essential roles in various pathophysiological processes via paracrine or autocrine pathways. This system consists of FGFs and their receptors (FGFRs), which may hold tremendous potential to become a new biological marker in the diagnosis of dementia and other cognitive disorders, and serve as a potential target for drug development against dementia and cognitive function impairment. Here, we review the available evidence detailing the relevant pathways mediated by multiple FGFs and FGFRs, and recent studies examining their role in the pathogenesis and treatment of cognitive disorders and dementia.
Collapse
|
42
|
Liu L, Li F, Shao T, Zhang L, Lee J, Dryden G, McClain CJ, Zhao C, Feng W. FGF21 Depletion Attenuates Colitis through Intestinal Epithelial IL-22-STAT3 Activation in Mice. Nutrients 2023; 15:2086. [PMID: 37432218 PMCID: PMC10181108 DOI: 10.3390/nu15092086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a glucose and lipid metabolic regulator. Recent research revealed that FGF21 was also induced by inflammatory stimuli. Its role in inflammatory bowel disease (IBD) has not been investigated. In this study, an experimental IBD model was established in FGF21 knockout (KO) and wild-type (WT) mice by adding 2.5% (wt/vol) dextran sodium sulfate (DSS) to their drinking water for 7 days. The severity of the colitis and the inflammation of the mouse colon tissues were analyzed. In WT mice, acute DSS treatment induced an elevation in plasma FGF21 and a significant loss of body weight in a time-dependent manner. Surprisingly, the loss of body weight and the severity of the colitis induced by DSS treatment in WT mice were significantly attenuated in FGF21 KO mice. Colon and circulating pro-inflammatory factors were significantly lower in the FGF21 KO mice compared to the WT mice. As shown by BrdU staining, the FGF21 KO mice demonstrated increased colonic epithelial cell proliferation. DSS treatment reduced intestinal Paneth cell and goblet cell numbers in the WT mice, and this effect was attenuated in the FGF21 KO mice. Mechanistically, FGF21 deficiency significantly increased the signal transducer and activator of transcription (STAT)-3 activation in intestinal epithelial cells and increased the expression of IL-22. Further study showed that the expression of suppressor of cytokine signaling-2/3 (SOCS 2/3), a known feedback inhibitor of STAT3, was significantly inhibited in the DSS-treated FGF2 KO mice compared to the WT mice. We conclude that FGF21 deficiency attenuated the severity of DSS-induced acute colitis, which is likely mediated by enhancing the activation of the IL-22-STAT3 signaling pathway in intestinal epithelial cells.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Fengyuan Li
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Tuo Shao
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jiyeon Lee
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Gerald Dryden
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
- Robley Rex VA Medical Center, Louisville, KY 40206, USA
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
43
|
Vilela WR, Bellozi PMQ, Picolo VL, Cavadas BN, Marques KVS, Pereira LTG, Guirao ARDY, Amato AA, Magalhães KG, Mortari MR, Medei EH, Goulart JT, de Bem AF. Early-life metabolic dysfunction impairs cognition and mitochondrial function in mice. J Nutr Biochem 2023; 117:109352. [PMID: 37061011 DOI: 10.1016/j.jnutbio.2023.109352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The impact of overnutrition early in life is not restricted to the onset of cardiovascular and metabolic diseases, but also affects critical brain functions related to cognition. This study aimed to evaluate the relationship between peripheral metabolic and bioenergetic changes induced by a two-hit protocol and their impact on cognitive function in juvenile mice. Three-week-old male C57BL/6 mice received a high-fat diet (HFD) or control diet for 7 weeks, associated with 2 low doses of streptozotocin (STZ) or vehicle. Despite the absence of obesity, HFD+STZ impaired glucose metabolism and induced a trend towards cholesterol increase. The two-hit protocol impaired recognition and spatial memories in juvenile mice, without inducing a depressive-like behavior. HFD+STZ mice presented increased immunoreactivity for GFAP and a trend towards a decrease in NeuN in the hippocampus. The treatment caused a bioenergetic impairment in the hippocampus, characterized by a decrease in both O2 consumption related to ATP production and in the maximum respiratory capacity. The thermogenic capacity of brown adipose tissue was impaired by the two-hit protocol, here verified through the absence of a decrease in O2 consumption after uncoupled protein-1 inhibition and an increase in the reserve respiratory capacity. Impaired mitochondrial function was also observed in the liver of HFD+STZ juvenile mice, but not in their heart. These results indicate that exposure to HFD+STZ early in life has a detrimental impact on the bioenergetic and mitochondrial function of tissues with metabolic and thermogenic activities, which is likely related to hippocampal metabolic changes and cognitive impairment.
Collapse
Affiliation(s)
- Wembley Rodrigues Vilela
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Paula Maria Quaglio Bellozi
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Victor Luna Picolo
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Bruna Neves Cavadas
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Keila Valentina Silva Marques
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | | | - Ainhoa Rodriguez de Yurre Guirao
- Laboratory of Cardioimunology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angélica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil
| | - Emiliano Horacio Medei
- Laboratory of Cardioimunology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jair Trapé Goulart
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil.
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, Biology Institute, University of Brasilia, Federal District, Brazil; Center of Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden.
| |
Collapse
|
44
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
45
|
Nota MH, Nicolas S, O’Leary OF, Nolan YM. Outrunning a bad diet: interactions between exercise and a Western-style diet for adolescent mental health, metabolism and microbes. Neurosci Biobehav Rev 2023; 149:105147. [PMID: 36990371 DOI: 10.1016/j.neubiorev.2023.105147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Adolescence is a period of biological, psychological and social changes, and the peak time for the emergence of mental health problems. During this life stage, brain plasticity including hippocampal neurogenesis is increased, which is crucial for cognitive functions and regulation of emotional responses. The hippocampus is especially susceptible to environmental and lifestyle influences, mediated by changes in physiological systems, resulting in enhanced brain plasticity but also an elevated risk for developing mental health problems. Indeed, adolescence is accompanied by increased activation of the maturing hypothalamic-pituitary-adrenal axis, sensitivity to metabolic changes due to increased nutritional needs and hormonal changes, and gut microbiota maturation. Importantly, dietary habits and levels of physical activity significantly impact these systems. In this review, the interactions between exercise and Western-style diets, which are high in fat and sugar, on adolescent stress susceptibility, metabolism and the gut microbiota are explored. We provide an overview of current knowledge on implications of these interactions for hippocampal function and adolescent mental health, and speculate on potential mechanisms which require further investigation.
Collapse
|
46
|
Rice-memolin, a novel peptide derived from rice bran, improves cognitive function after oral administration in mice. Sci Rep 2023; 13:2887. [PMID: 36807368 PMCID: PMC9938899 DOI: 10.1038/s41598-023-30021-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Many people eat polished rice, while rice bran, a by-product known to be rich in protein and expected to have potential functions for health benefits, has not been effectively utilized. In this study, we determined that orally administered Val-Tyr-Thr-Pro-Gly (VYTPG) derived from rice bran protein improved cognitive decline in mice fed a high-fat diet (HFD). It was demonstrated that VYTPG was released from model peptides corresponding to fragment sequences of original rice proteins (Os01g0941500, Os01g0872700, and allergenic protein) after treatment with thermolysin, a microorganism-derived enzyme often used in industrial scale processes. The thermolysin digest also improved cognitive decline after oral administration in mice. Because VYTPG (1.0 mg/kg) potently improved cognitive decline and is enzymatically produced from the rice bran, we named it rice-memolin. Next, we investigated the mechanisms underlying the cognitive decline improvement associated with rice-memolin. Methyllycaconitine, an antagonist for α7 nicotinic acetylcholine receptor, suppressed the rice-memolin-induced effect, suggesting that rice-memolin improved cognitive decline coupled to the acetylcholine system. Rice-memolin increased the number of 5-bromo-2'-deoxyuridine (BrdU)-positive cells and promoted the mRNA expression of EGF and FGF-2 in the hippocampus, implying that these neurotropic factors play a role in hippocampal neurogenesis after rice-memolin administration. Epidemiologic studies demonstrated that diabetes is a risk factor for dementia; therefore, we also examined the effect of rice-memolin on glucose metabolism. Rice-memolin improved glucose intolerance. In conclusion, we identified a novel rice-derived peptide that can improve cognitive decline. The mechanisms are associated with acetylcholine and hippocampal neurogenesis. Rice-memolin is the first rice-brain-derived peptide able to improve cognitive decline.
Collapse
|
47
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
48
|
Li S, Wang Z, Zhou Z, Gao Z, Liu Y, Li J, Gao X, Liu J, Liu H, Xu Q. Molecular Mechanism of the Role of Apigenin in the Treatment of Hyperlipidemia: A Network Pharmacology Approach. Chem Biodivers 2023; 20:e202200308. [PMID: 36621947 DOI: 10.1002/cbdv.202200308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
The therapeutic effect of apigenin (APG) on hyperlipidemia was investigated using network pharmacology combined with molecular docking strategy, and the potential targets of APG in the treatment of hyperlipidemia were explored. Genetic Ontology Biological Process (GOBP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway enrichment analysis of common targets were performed. Then, molecular docking was used to predict the binding mode of APG to the target. Finally, Sprague Dawley rats were used to establish a hyperlipidemia model. The expression levels of insulin (INS) and vascular endothelial growth factor A (VEGFA) mRNA in each group were detected by quantitative reverse transcription-polymerase chain reaction. Network pharmacological studies revealed that the role of APG in the treatment of hyperlipidemia was through the regulation of INS, VEGFA, tumor necrosis factor, epidermal growth factor receptor, matrix metalloprotein 9, and other targets, as well as through the regulation of the hypoxia-inducible factor 1 (HIF-1) signaling pathway, fluid shear stress, and atherosclerosis signaling pathways, vascular permeability; APG also participated in the regulation of glucose metabolism and lipid metabolism, and acted on vascular endothelial cells, and regulated vascular tone. Molecular docking showed that APG binds to the target with good efficiency. Experiments showed that after APG treatment, the expression levels of INS and VEGFA mRNA in the model group were significantly decreased (p<0.01). In conclusion, APG has multiple targets and affects pathways involved in the treatment of hyperlipidemia by regulating the HIF-1 signaling pathway, fluid shear stress, and the atherosclerosis pathway.
Collapse
Affiliation(s)
- Shuhan Li
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Zizhao Wang
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Zhengnan Zhou
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Zhiyuan Gao
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Yuai Liu
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Jie Li
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Xingbang Gao
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Jing Liu
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Hanbing Liu
- College of Basic Medicine, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| | - Qian Xu
- Department of Biochemistry, Chengde Medical University, Chengde, 067000, Hebei, P. R. China
| |
Collapse
|
49
|
Parthasarathy G, Pattison MB, Midkiff CC. The FGF/FGFR system in the microglial neuroinflammation with Borrelia burgdorferi: likely intersectionality with other neurological conditions. J Neuroinflammation 2023; 20:10. [PMID: 36650549 PMCID: PMC9847051 DOI: 10.1186/s12974-022-02681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lyme neuroborreliosis, caused by the bacterium Borrelia burgdorferi affects both the central and peripheral nervous systems (CNS, PNS). The CNS manifestations, especially at later stages, can mimic/cause many other neurological conditions including psychiatric disorders, dementia, and others, with a likely neuroinflammatory basis. The pathogenic mechanisms associated with Lyme neuroborreliosis, however, are not fully understood. METHODS In this study, using cultures of primary rhesus microglia, we explored the roles of several fibroblast growth factor receptors (FGFRs) and fibroblast growth factors (FGFs) in neuroinflammation associated with live B. burgdorferi exposure. FGFR specific siRNA and inhibitors, custom antibody arrays, ELISAs, immunofluorescence and microscopy were used to comprehensively analyze the roles of these molecules in microglial neuroinflammation due to B. burgdorferi. RESULTS FGFR1-3 expressions were upregulated in microglia in response to B. burgdorferi. Inhibition of FGFR 1, 2 and 3 signaling using siRNA and three different inhibitors showed that FGFR signaling is proinflammatory in response to the Lyme disease bacterium. FGFR1 activation also contributed to non-viable B. burgdorferi mediated neuroinflammation. Analysis of the B. burgdorferi conditioned microglial medium by a custom antibody array showed that several FGFs are induced by the live bacterium including FGF6, FGF10 and FGF12, which in turn induce IL-6 and/or CXCL8, indicating a proinflammatory nature. To our knowledge, this is also the first-ever described role for FGF6 and FGF12 in CNS neuroinflammation. FGF23 upregulation, in addition, was observed in response to the Lyme disease bacterium. B. burgdorferi exposure also downregulated many FGFs including FGF 5, 7, 9, 11, 13, 16, 20 and 21. Some of the upregulated FGFs have been implicated in major depressive disorder (MDD) or dementia development, while the downregulated ones have been demonstrated to have protective roles in epilepsy, Parkinson's disease, Alzheimer's disease, spinal cord injury, blood-brain barrier stability, and others. CONCLUSIONS In this study we show that FGFRs and FGFs are novel inducers of inflammatory mediators in Lyme neuroborreliosis. It is likely that an unresolved, long-term (neuro)-Lyme infection can contribute to the development of other neurologic conditions in susceptible individuals either by augmenting pathogenic FGFs or by suppressing ameliorative FGFs or both.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Division of Immunology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Room 109, Covington, LA, 70433, USA.
| | - Melissa B Pattison
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, 18703, Three Rivers Road, Covington, LA, 70433, USA
| |
Collapse
|
50
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|