1
|
Servetto N, De Troch M, Gazeau F, de Aranzamendi C, Alurralde G, González G, Sahade R. Fatty acid response of calcifying benthic Antarctic species to ocean acidification and warming. MARINE POLLUTION BULLETIN 2025; 217:118111. [PMID: 40344802 DOI: 10.1016/j.marpolbul.2025.118111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Ocean acidification (OA) and ocean warming (OW) are likely to alter the biochemical composition of certain organisms as a physiological response to these changing environmental conditions. Given the importance of fatty acids (FA) in energy transfer within marine food webs, this two-month laboratory study examines the response of two calcifying species from Potter Cove (Antarctica) - the bivalve Aequiyoldia eightsii and the coral Malacobelemnon daytoni - to predicted OA and OW, focusing on their FA profiles. Neither species showed significant changes compared to the control group in the composition of FA ratios associated with immune function and cell membrane fluidity in response to either OA or OW. Additionally, the FA composition related to inflammatory responses remained largely unaffected by the stressors, although the 20:5n-3 FA was negatively impacted in A. eightsii under high-temperature conditions. Overall, the FA composition in these species appears robust to near-future environmental changes.
Collapse
Affiliation(s)
- Natalia Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología Marina, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina.
| | - Marleen De Troch
- Marine Biology, Krijgslaan 281/S8, Ghent University, 9000 Ghent, Belgium
| | - Frédéric Gazeau
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer 06230, France
| | - Carla de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología Marina, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina
| | - Gastón Alurralde
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden; Baltic Marine Environment Protection Commission HELCOM, Helsinki FI-00160, Finland
| | - Germán González
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología Marina, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina
| | - Ricardo Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología Marina, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina.
| |
Collapse
|
2
|
Fraser KPP, Peck LS, Clark MS, Clarke A. A comparative study of tissue protein synthesis rates in an Antarctic, Harpagifer antarcticus and a temperate, Lipophrys pholis teleost. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111650. [PMID: 38718893 DOI: 10.1016/j.cbpa.2024.111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The affect of temperature on tissue protein synthesis rates has been reported in temperate and tropical, but not Antarctic fishes. Previous studies have generally demonstrated low growth rates in Antarctic fish species in comparison to temperate relatives and elevated levels of protein turnover. This study investigates how low temperatures effect tissue protein synthesis and hence tissue growth in a polar fish species. Groups of Antarctic, Harpagifer antarcticus and temperate, Lipophrys pholis, were acclimated to a range of overlapping water temperatures and protein synthesis was measure in white muscle (WM), liver and gastrointestinal tract (GIT). WM protein synthesis rates increased linearly with temperature in both species (H. antarcticus 0.16-0.23%.d-1, L. pholis, 0.31-0.76%.d-1), while liver (H. antarcticus 0.24-0.27%.d-1, L. pholis, 0.44-1.03%.d-1) and GIT were unaffected by temperature in H. antarcticus but increased non-linearly in L.pholis (H. antarcticus 0.22-0.26%.d-1, L. pholis, 0.40-0.86%.d-1). RNA to protein ratios were unaffected by temperature in H. antarcticus but increased weakly, in L.pholis WM and liver. In L.pholis, RNA translational efficiency increased significantly with temperature in all tissues, but only in liver in H. antarcticus. At the overlapping temperature of 3 °C, protein synthesis (WM 26%, Liver, 39%, GIT, 35%) and RNA translational efficiency (WM 273%, Liver, 271%, GIT, 300%) were significantly lower in H. antarcticus than L.pholis, while RNA to protein ratios were significantly higher (WM 270%, Liver 170%, GIT 186%). Tissue specific effects of temperature are detectable in both species. This study provides the first evidence, that tissue protein synthesis rates are constrained in Antarctic fishes.
Collapse
Affiliation(s)
- Keiron P P Fraser
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK; University of Plymouth, Marine Station, Artillery Place, Coxside, Plymouth PL4 0LU, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Andrew Clarke
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
3
|
Makri V, Giantsis IA, Nathanailides C, Feidantsis K, Antonopoulou E, Theodorou JA, Michaelidis B. Seasonal energy investment and metabolic patterns in a farmed fish. J Therm Biol 2024; 123:103894. [PMID: 38879912 DOI: 10.1016/j.jtherbio.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The present research focuses on the seasonal changes in the energy content and metabolic patterns of red porgy (Pagrus pagrus) sampled in a fish farm in North Evoikos Gulf (Greece). The study was designed in an effort to evaluate the influence of seasonality in several physiological feauteres of high commercial importance that may affect feed intake and growth. We determined glycogen, lipids and proteins levels, and cellular energy allocation (CEA) as a valuable marker of exposure to stress, which integrates available energy (Ea) and energy consumption (Ec). Metabolic patterns and aerobic oxidation potential were based on the determination of glucose transporter (GLU), carnitine transporter (CTP), L-lactate dehydrogenase (L-LDH), citrate synthase (CS), cytochrome C oxidase subunit IV isoform 1 (COX1) and 3-hydroxyacyl CoA dehydrogenase (HOAD) relative gene expression. To integrate metabolic patterns and gene expression, L-LDH, CS, COX and HOAD activities were also determined. For further estimation of biological stores oxidized during seasonal acclimatization, we determined the blood levels of glucose, lipids and lactate. The results indicated seasonal changes in energy content, different patterns in gene expression and reorganization of metabolic patterns during cool acclimatization with increased lipid oxidation. During warm acclimatization, however, energy consumption was mostly based on carbohydrates oxidation. The decrease of Ec and COX1 activity in the warm exposed heart seem to be consistent with the OCLTT hypothesis, suggesting that the heart may be one of the first organs to be limited during seasonal warming. Overall, this study has profiled changes in energetics and metabolic patterns occurring at annual temperatures at which P. pagrus is currently farmed, suggesting that this species is living at the upper edge of their thermal window, at least during summer.
Collapse
Affiliation(s)
- Vasiliki Makri
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | | | | | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| |
Collapse
|
4
|
Servetto N, Ruiz MB, Martínez M, Harms L, de Aranzamendi MC, Alurralde G, Giménez D, Abele D, Held C, Sahade R. Molecular responses to ocean acidification in an Antarctic bivalve and an ascidian. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166577. [PMID: 37633374 DOI: 10.1016/j.scitotenv.2023.166577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Southern Ocean organisms are considered particularly vulnerable to Ocean acidification (OA), as they inhabit cold waters where calcite-aragonite saturation states are naturally low. It is also generally assumed that OA would affect calcifying animals more than non-calcifying animals. In this context, we aimed to study the impact of reduced pH on both types of species: the ascidian Cnemidocarpa verrucosa sp. A, and the bivalve Aequiyoldia eightsii, from an Antarctic fjord. We used gene expression profiling and enzyme activity to study the responses of these two Antarctic benthic species to OA. We report the results of an experiment lasting 66 days, comparing the molecular mechanisms underlying responses under two pCO2 treatments (ambient and elevated pCO2). We observed 224 up-regulated and 111 down-regulated genes (FC ≥ 2; p-value ≤ 0.05) in the ascidian. In particular, the decrease in pH caused an upregulation of genes involved in the immune system and antioxidant response. While fewer differentially expressed (DE) genes were observed in the infaunal bivalve, 34 genes were up-regulated, and 69 genes were downregulated (FC ≥ 2; p-value ≤ 0.05) in response to OA. We found downregulated genes involved in the oxidoreductase pathway (such as glucose dehydrogenase and trimethyl lysine dioxygenase), while the heat shock protein 70 was up-regulated. This work addresses the effect of OA in two common, widely distributed Antarctic species, showing striking results. Our major finding highlights the impact of OA on the non-calcifying species, a result that differ from the general trend, which describes a higher impact on calcifying species. This calls for discussion of potential effects on non-calcifying species, such as ascidians, a diverse and abundant group that form extended three-dimensional clusters in shallow waters and shelf areas in the Southern Ocean.
Collapse
Affiliation(s)
- N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.
| | - M B Ruiz
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany; Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - M Martínez
- Universidad de la Republica, Montevideo, Uruguay
| | - L Harms
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - G Alurralde
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden; Baltic Marine Environment Protection Commission HELCOM, Helsinki FI-00160, Finland
| | - D Giménez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| | - D Abele
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - C Held
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 12 27570 Bremerhaven, Germany
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecosistemas Marinos Polares (ECOMARES-IDEA), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares (ECOMARES), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina.
| |
Collapse
|
5
|
Collins M, Clark MS, Truebano M. The environmental cellular stress response: the intertidal as a multistressor model. Cell Stress Chaperones 2023; 28:467-475. [PMID: 37129699 PMCID: PMC10469114 DOI: 10.1007/s12192-023-01348-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
The wild poses a multifaceted challenge to the maintenance of cellular function. Therefore, a multistressor approach is essential to predict the cellular mechanisms which promote homeostasis and underpin whole-organism tolerance. The intertidal zone is particularly dynamic, and thus, its inhabitants provide excellent models to assess mechanisms underpinning multistressor tolerance. Here, we critically review our current understanding of the regulation of the cellular stress response (CSR) under multiple abiotic stressors in intertidal organisms and consider to what extent a multistressor approach brings us closer to understanding responses in the wild. The function of the CSR has been well documented in laboratory and field exposures with a view to understanding single-stressor thermal effects. Multistressor studies still remain relatively limited in comparison but have applied three main approaches: (i) laboratory application of multiple stressors in isolation, (ii) multiple stressors applied in combination, and (iii) field-based correlation of multiple stressors against the CSR. The application of multiple stressors in isolation has allowed the identification of putative, shared stress pathways but overlooks non-additive stressor interactions on the CSR. Combined stressor studies are relatively limited in number but already highlight variable effects on the CSR dependent upon stressor type, timing, and magnitude. Field studies have allowed the identification of responsive components of the CSR to various stressors in situ but are correlative, not causative. A combined approach involving laboratory multistressor studies linking the CSR to whole-organism tolerance as well as field studies is required if we are to understand the role of the CSR in the natural environment.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
6
|
Gill LT, Kennedy JR, Marshall KE. Proteostasis in ice: the role of heat shock proteins and ubiquitin in the freeze tolerance of the intertidal mussel, Mytilus trossulus. J Comp Physiol B 2023; 193:155-169. [PMID: 36593419 DOI: 10.1007/s00360-022-01473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
The bay mussel, Mytilus trossulus, is an animal that can survive extracellular ice formation. Depending on air and ocean temperatures, freeze tolerant intertidal organisms, like M. trossulus, may freeze and thaw many times during the winter. Freezing can cause protein denaturation, leading to an induction of the heat shock response with expression of chaperone proteins like the 70 kDa heat shock protein (HSP70), and an increase in ubiquitin-conjugated proteins. There has been little work on the mechanisms of freeze tolerance in intertidal species, limiting our understanding of this survival strategy. Additionally, this limited research has focused solely on the effects of single freezing events, but the act of repeatedly crossing the freezing threshold may present novel physiological or biochemical stressors that have yet to be discovered. Mytilus are important ecosystem engineers and provide habitat for other intertidal species, thus understanding their physiology under thermal extremes is important for preserving shoreline health. We predicted that repeated freeze exposures would increase mortality, upregulate HSP70 expression, and increase ubiquitin conjugates in mussels, relative to single, prolonged freeze exposures. Mytilus trossulus from Vancouver, Canada were repeatedly frozen for a combination of 1 × 8 h, 2 × 4 h, or 4 × 2 h. We then compared mortality, HSP70 expression, and the quantity of ubiquitin-conjugated proteins across experimental groups. We found a single 8-h freeze caused significantly more mortality than repeated freeze-thaw cycles. We also found that HSP70 and ubiquitinated protein was upregulated exclusively after freeze-thaw cycles, suggesting that freeze-thaw cycles offer a period of damage repair between freezes. This indicates that freeze-thaw cycles, which happen naturally in the intertidal, are crucial for M. trossulus survival in sub-zero temperatures.
Collapse
Affiliation(s)
- Lauren T Gill
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Jessica R Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Kumar V, Roy S, Behera BK, Das BK. Heat Shock Proteins (Hsps) in Cellular Homeostasis: A Promising Tool for Health Management in Crustacean Aquaculture. Life (Basel) 2022; 12:1777. [PMID: 36362932 PMCID: PMC9699388 DOI: 10.3390/life12111777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/28/2023] Open
Abstract
Heat shock proteins (Hsps) are a family of ubiquitously expressed stress proteins and extrinsic chaperones that are required for viability and cell growth in all living organisms. These proteins are highly conserved and produced in all cellular organisms when exposed to stress. Hsps play a significant role in protein synthesis and homeostasis, as well as in the maintenance of overall health in crustaceans against various internal and external environmental stresses. Recent reports have suggested that enhancing in vivo Hsp levels via non-lethal heat shock, exogenous Hsps, or plant-based compounds, could be a promising strategy used to develop protective immunity in crustaceans against both abiotic and biotic stresses. Hence, Hsps as the agent of being an immune booster and increasing disease resistance will present a significant advancement in reducing stressful conditions in the aquaculture system.
Collapse
Affiliation(s)
| | | | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, ICAR-Central Inland Fisheries Research Institute (CIFRI), Barrackpore 700120, India
| |
Collapse
|
8
|
Younas W, Khan FU, Zaman M, Lin D, Zuberi A, Wang Y. Toxicity of synthesized silver nanoparticles in a widespread fish: A comparison between green and chemical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157366. [PMID: 35843321 DOI: 10.1016/j.scitotenv.2022.157366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Metallic nanoparticles are gaining importance in various fields of life due to their large surface area to volume ratio. However, metallic nanoparticles pose different toxic effects on fish when they appear with different shapes and compositions in water. Herein the present study was designed to evaluate the median (LC50) and sub-lethal (1/10th of LC50) concentrations of Ag-Green NPs, 700 μg/L for Ag-Chem NPs, and 50 μg/L for Ag2O-Chem NPs were confirmed in Hypophthalmichthys molitrix. Furthermore, exposure of H. molitrix fingerlings to 10 % of LC50 concentration of these particles induced significantly higher (p < 0.05) activities of serum alanine transaminase, aspartate aminotransferase, lactate dehydrogenase, white blood cells, acetylcholinesterase and catalase, superoxide dismutase, peroxidase, relative gene expressions of antioxidant enzymes, heat shock protein (Hsp70), hypoxia- inducible factor 1-alpha (HIF-1α) and lipid peroxidase level than the control, but decreased hematological parameters with less effects of Ag-Green NPs than chemically synthesized AgNPs. Moreover, the histopathological study also indicated morphological changes in the liver and gills of treated fish groups. The comparative toxicity evaluation revealed the maximum negative effect of Ag2O-Chem NPs followed by Ag-Chem NPs while Ag-Green NPs showed the least toxic effects. Based on our results, replacement of chemically synthesized NPs to green synthesized AgNPs can be recommended in large scale application to reduce the noxious effects to aquatic environment.
Collapse
Affiliation(s)
- Waqar Younas
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fahim Ullah Khan
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Muhib Zaman
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Amina Zuberi
- Fisheries and Aquaculture Lab, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Wang X, Tang T. Effects of Polystyrene Diet on the Growth and Development of Tenebrio molitor. TOXICS 2022; 10:608. [PMID: 36287887 PMCID: PMC9610515 DOI: 10.3390/toxics10100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the role of Tenebrio molitor in degrading polystyrene foam through its gut microbes has become the focus of research. However, little literature has reported the effect of feeding on polystyrene foam on the growth and development of Tenebrio molitor. In this study, we investigated the impacts of different polystyrene by evaluating the vital signs of Tenebrio molitor fed in the intestines and excrement fluids using RNA-Seq t.echnology and then verifying the transcriptome sequencing findings using qRT-PCR technology. The average weight of Tenebrio molitor larvae in the wheat bran group increased significantly. Tenebrio molitor larvae in the PS group, on the other hand, didn't grow as much and had a much lower average weight than those in the wheat bran group. Compared to the bran group, the excrement of Tenebrio molitor fed only on polystyrene foam was flaky and coarse, increased nitrogen and phosphorus atomic concentration ratios by about 50%, decreased potassium atomic concentration ratios by 63%, with the enterocytes and circular muscle of Tenebrio molitor falling as well. Kyoto Encyclopedia of Genes and Genomes enrichment indicated that the differential genes were mainly related to metabolic pathways. There was an agreement between qRT-PCR and RNA-Seq analyses for the growth and development genes chitinase, heat shock protein 70, and cytochrome P450. Only feeding polystyrene foam shall lead to the growth and development retardation of Tenebrio molitor.
Collapse
Affiliation(s)
- Xiaosu Wang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Tianle Tang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
10
|
Fraser KPP, Peck LS, Clark MS, Clarke A, Hill SL. Life in the freezer: protein metabolism in Antarctic fish. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211272. [PMID: 35291327 PMCID: PMC8905173 DOI: 10.1098/rsos.211272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/04/2022] [Indexed: 05/12/2023]
Abstract
Whole-animal, in vivo protein metabolism rates have been reported in temperate and tropical, but not Antarctic fish. Growth in Antarctic species is generally slower than lower latitude species. Protein metabolism data for Antarctic invertebrates show low rates of protein synthesis and unusually high rates of protein degradation. Additionally, in Antarctic fish, increasing evidence suggests a lower frequency of successful folding of nascent proteins and reduced protein stability. This study reports the first whole-animal protein metabolism data for an Antarctic fish. Groups of Antarctic, Harpagifer antarcticus, and temperate, Lipophrys pholis, fish were acclimatized to a range of overlapping water temperatures and food consumption, whole-animal growth and protein metabolism measured. The rates of protein synthesis and growth in Antarctic, but not temperate fish, were relatively insensitive to temperature and were significantly lower in H. antarcticus at 3°C than in L. pholis. Protein degradation was independent of temperature in H. antarcticus and not significantly different to L. pholis at 3°C, while protein synthesis retention efficiency was significantly higher in L. pholis than H. antarcticus at 3°C. These results suggest Antarctic fish degrade a significantly larger proportion of synthesized protein than temperate fish, with fundamental energetic implications for growth at low temperatures.
Collapse
Affiliation(s)
- Keiron P. P. Fraser
- Marine Station, University of Plymouth, Artillery Place, Coxside, Plymouth PL4 OLU, UK
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Andrew Clarke
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - Simeon L. Hill
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK
| |
Collapse
|
11
|
Li S, Liu K, Cui A, Hao X, Wang B, Wang HY, Jiang Y, Wang Q, Feng B, Xu Y, Shao C, Liu X. A Chromosome-Level Genome Assembly of Yellowtail Kingfish (Seriola lalandi). Front Genet 2022; 12:825742. [PMID: 35126476 PMCID: PMC8807568 DOI: 10.3389/fgene.2021.825742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022] Open
Abstract
Yellowtail kingfish (Seriola lalandi) is a pelagic marine piscivore with a circumglobal distribution. It is particularly suitable for open ocean aquaculture owing to its large body size, fast swimming, rapid growth, and high economic value. A high-precision genome is of great significance for future genetic breeding research and large-scale aquaculture in the open ocean. PacBio, Illumina, and Hi-C data were combined to assemble chromosome-level reference genome with the size of 648.34 Mb (contig N50: 28.52 Mb). 175 contigs was anchored onto 24 chromosomes with lengths ranging from 12.28 to 34.59 Mb, and 99.79% of the whole genome sequence was covered. The BUSCOs of genome and gene were 94.20 and 95.70%, respectively. Gene families associated with adaptive behaviors, such as olfactory receptors and HSP70 gene families, expanded in the genome of S. lalandi. An analysis of selection pressure revealed 652 fast-evolving genes, among which mkxb, popdc2, dlx6, and ifitm5 may be related to rapid growth traits. The data generated in this study provide a valuable resource for understanding the genetic basis of S. lalandi traits.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- China State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
| | - Kaiqiang Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiancai Hao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong-Yan Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Feng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongjiang Xu, ; Changwei Shao,
| | - Changwei Shao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongjiang Xu, ; Changwei Shao,
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Nieva LV, Peck LS, Clark MS. Variable heat shock response in Antarctic biofouling serpulid worms. Cell Stress Chaperones 2021; 26:945-954. [PMID: 34601709 PMCID: PMC8578209 DOI: 10.1007/s12192-021-01235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
The classical heat shock response (HSR) with up-regulation of hsp70 in response to warming is often absent in Antarctic marine species. Whilst in Antarctic fish, this is due to a mutation in the gene promoter region resulting in permanent constitutive expression of the inducible form of hsp70; there are further questions as to whether evolution to life below 0 °C has resulted in a generalised alteration to the HSR in Antarctic marine invertebrates. However, the number of species investigated to date is limited. In the first evaluation of the HSR in two spirorbid polychaetes Romanchella perrieri and Protolaeospira stalagmia, we show highly variable results of HSR induction depending on warming regimes. These animals were subjected to in situ warming (+ 1 °C and + 2 °C above ambient conditions) using heated settlement panels for 18 months, and then the HSR was tested in R. perrieri using acute and chronic temperature elevation trials. The classic HSR was not induced in response to acute thermal challenge in this species (2 h at 15 °C) and significant down-regulation of hsp90 occurred during chronic warming at 4 °C for 30 days. Analysis of heat shock protein (HSP) genes in a transcriptome study of P. stalagmia, which had been warmed in situ for 18 months, showed up-regulation of HSP70 and HSP90 family members, thus further emphasising the complexity of the response in Antarctic marine species. It is increasingly apparent that the Antarctic HSR has evolved in a species-specific manner to life in the cold.
Collapse
Affiliation(s)
- Leyre Villota Nieva
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| |
Collapse
|
13
|
Yusof NA, Charles J, Wan Mahadi WNS, Abdul Murad AM, Mahadi NM. Characterization of Inducible HSP70 Genes in an Antarctic Yeast, Glaciozyma antarctica PI12, in Response to Thermal Stress. Microorganisms 2021; 9:microorganisms9102069. [PMID: 34683390 PMCID: PMC8540855 DOI: 10.3390/microorganisms9102069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
The induction of highly conserved heat shock protein 70 (HSP70) is often related to a cellular response due to harmful stress or adverse life conditions. In this study, we determined the expression of Hsp70 genes in the Antarctic yeast, Glaciozyma antarctica, under different several thermal treatments for several exposure periods. The main aims of the present study were (1) to determine if stress-induced Hsp70 could be used to monitor the exposure of the yeast species G. antarctica to various types of thermal stress; (2) to analyze the structures of the G. antarctica HSP70 proteins using comparative modeling; and (3) to evaluate the relationship between the function and structure of HSP70 in G. antarctica. In this study, we managed to amplify and clone 2 Hsp70 genes from G. antarctica named GaHsp70-1 and GaHsp70-2. The cells of G. antarctica expressed significantly inducible Hsp70 genes after the heat and cold shock treatments. Interestingly, GaHsp70-1 showed 2–6-fold higher expression than GaHsp70-2 after the heat and cold exposure. ATP hydrolysis analysis on both G. antarctica HSP70s proved that these psychrophilic chaperones can perform activities in a wide range of temperatures, such as at 37, 25, 15, and 4 °C. The 3D structures of both HSP70s revealed several interesting findings, such as the substitution of a β-sheet to loop in the N-terminal ATPase binding domain and some modest residue substitutions, which gave the proteins the flexibility to function at low temperatures and retain their functional activity at ambient temperatures. In conclusion, both analyzed HSP70s played important roles in the physiological adaptation of G. antarctica.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.C.); (W.N.S.W.M.)
- Correspondence: ; Tel.: +60-19-605-1219
| | - Jennifer Charles
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.C.); (W.N.S.W.M.)
| | - Wan Nur Shuhaida Wan Mahadi
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.C.); (W.N.S.W.M.)
| | - Abdul Munir Abdul Murad
- Faculty of Science and Technology, School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | | |
Collapse
|
14
|
Lopez-Anido RN, Harrington AM, Hamlin HJ. Coping with stress in a warming Gulf: the postlarval American lobster's cellular stress response under future warming scenarios. Cell Stress Chaperones 2021; 26:721-734. [PMID: 34115338 PMCID: PMC8275755 DOI: 10.1007/s12192-021-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
The Gulf of the Maine (GoM) is one of the fastest warming bodies of water in the world, posing serious physiological challenges to its marine inhabitants. Marine organisms can cope with the cellular and molecular stresses created by climate change through changes in gene expression. We used transcriptomics to examine how exposure to current summer temperatures (16 °C) or temperature regimes reflective of projected moderate and severe warming conditions (18 °C and 22 °C, respectively) during larval development alters expression of transcripts affiliated with the cellular stress response (CSR) in postlarval American lobsters (Homarus americanus). We identified 26 significantly differentially expressed (DE) transcripts annotated to CSR proteins. Specifically, transcripts for proteins affiliated with heat shock, the ubiquitin family, DNA repair, and apoptosis were significantly over-expressed in lobsters reared at higher temperatures relative to current conditions. Substantial variation in the CSR expression between postlarvae reared at 18 °C and those reared at 22 °C suggests that postlarvae reared under severe warming may have a hindered ability to cope with the physiological and molecular challenges of ocean warming. These results highlight that postlarval American lobsters may experience significant heat stress as rapid warming in the GoM continues, potentially compromising their ability to prevent cellular damage and inhibiting the reallocation of cellular energy towards other physiological functions beyond activation of the CSR. Moreover, this study establishes additional American lobster stress markers and addresses various knowledge gaps in crustacean biology, where sufficient 'omics research is lacking.
Collapse
Affiliation(s)
| | - Amalia M Harrington
- Maine Sea Grant College Program, University of Maine, 5741 Libby Hall, Room 121, Orono, ME, 04469, USA.
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA.
| | - Heather J Hamlin
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
15
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
16
|
de Aranzamendi MC, Servetto N, Movilla J, Bettencourt R, Sahade R. Ocean acidification effects on the stress response in a calcifying antarctic coastal organism: The case of Nacella concinna ecotypes. MARINE POLLUTION BULLETIN 2021; 166:112218. [PMID: 33721687 DOI: 10.1016/j.marpolbul.2021.112218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Ocean acidification (OA) could become a serious threat for the Antarctic marine ecosystem over coming years, as the solubility of atmospheric CO2 and CaCO3 minerals increases at lower temperatures. We evaluated the effect of OA on the stress response of the limpet Nacella concinna by measuring gene expression levels. The experiment was performed with the two ecotypes (Littoral and Sublittoral) of the species during 54 days (IPCC, 2019 scenario RCP8.5; control, ~375 ppm; low-pH treatment, ~923 ppm). Exposure to low-pH treatment during 15 days triggered the down-regulation of two heat-shock protein genes (HSP70A, HSP70B) only in sublittoral individuals. Little variation in the relative expression values of all genes in both ecotypes was observed probably, due to a historical exposure to the substantial daily natural pH fluctuations recorded in the study area during the experiment. This study provides relevant baseline data for future OA experiments on coastal species in Antarctica.
Collapse
Affiliation(s)
- M C de Aranzamendi
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Córdoba, Argentina.
| | - N Servetto
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Córdoba, Argentina
| | - J Movilla
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Estación de Investigación Jaume Ferrer, La Mola s/n 07720 Menorca, Spain
| | - R Bettencourt
- OKEANOS Marine Research Center, Faculty of Science and Technology, University of the Azores, 9900-862 Horta, Portugal
| | - R Sahade
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Av. Vélez Sarsfield 299 (X5000JJC), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Ecosistemas Marinos Polares, Córdoba, Argentina.
| |
Collapse
|
17
|
Tripp-Valdez MA, Cicala F, Galindo-Sánchez CE, Chacón-Ponce KD, López-Landavery E, Díaz F, Re-Araujo D, Lafarga-De la Cruz F. Growth Performance and Transcriptomic Response of Warm-Acclimated Hybrid Abalone Haliotis rufescens (♀) × H. corrugata (♂). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:62-76. [PMID: 33040235 DOI: 10.1007/s10126-020-10002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Along the Pacific coast of the Baja California Peninsula (Mexico), abalone represents one of the most lucrative fisheries. As wild populations are currently depleted, abalone farm production aims to balance the decreasing populations with the increasing demand. The Mexican abalone aquaculture is almost entirely based on red abalone (Haliotis rufescens). However, the increasing frequency of extreme temperature events is hampering this activity. The use interspecific hybrids can potentially improve abalone culture, as species have differences in their thermal tolerance. Therefore, the hybrid progeny between H. rufescens (♀) and pink abalone H. corrugata (♂), a temperate and a warmer water abalone species, respectively, will naturally support higher temperature. To test this hypothesis, growth rate, mortality and metabolic rate of both pure (RR) and hybrid abalone (RP) were assessed under the H. rufescens' optimum (18 °C) and thermally stressed (22 °C) conditions. To unveil the molecular pathways involved in the heat response, transcriptional profiling of both crosses was also investigated. At high temperature, we observed constrained growth and survival in RR while RP showed a significant increase in both rates, supporting the improved performance of the hybrid compared. These results match with the transcriptional profiling of hybrids showing higher expression of genes involved in growth and calcification, whereas in the pure red progeny, the transcriptional profile was mainly associated with the regulation of necroptosis process. Our results may contribute to propose new management plans to increase farm abalone production in Baja California.
Collapse
Affiliation(s)
- M A Tripp-Valdez
- Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - F Cicala
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - C E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - K D Chacón-Ponce
- Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - E López-Landavery
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - F Díaz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - D Re-Araujo
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - F Lafarga-De la Cruz
- Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, B. C. Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
18
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
19
|
Kresnoadi U, Rahayu RP, Ariani MD, Soesanto S. The Potential of Natural Propolis Extract Combined with Bovine Bone Graft in Increasing Heat Shock Protein 70 and Osteocalcin on Socket Preservation. Eur J Dent 2020; 14:31-37. [PMID: 32168530 PMCID: PMC7069740 DOI: 10.1055/s-0040-1701921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE This study aims to combine natural propolis with bovine bone graft (BBG) as a means of extraction socket preservation after 3 and 7 days toward expression of heat shock protein (HSP) 70 and osteocalcin to regenerate bone. MATERIALS AND METHODS The Cavia cobaya were divided into eight groups, each consisting of seven samples. Their lower left incisors were extracted and induced with PEG, propolis extract, BBG, and a combination of propolis extract BBG. The research subjects were terminated on days 3 and 7 postextraction. Immunohistochemical and histopathological examinations were subsequently performed to observe HSP 70 expression, osteocalcin expression, osteoblasts, and osteoclasts. STATISTICAL ANALYSIS Data obtained were then analyzed with one-way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) tests. RESULTS Both the groups with the combination of propolis extract and BBG on days 3 and 7 were found to present the highest number of HSP70 expression, osteocalcin expression, and osteoblast cells as well as the lowest number of osteoclasts. CONCLUSION Both the groups with the combination of propolis extract and BBG on days 3 and 7 were found to present the highest number of HSP70 expression, osteocalcin expression, and osteoblast cells as well as the lowest number of osteoclasts.
Collapse
Affiliation(s)
- Utari Kresnoadi
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Soesanto Soesanto
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
20
|
Kausar S, Abbas MN, Yang L, Cui H. Biotic and abiotic stress induces the expression of Hsp70/90 organizing protein gene in silkworm, Bombyx mori. Int J Biol Macromol 2020; 143:610-618. [DOI: 10.1016/j.ijbiomac.2019.12.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 01/29/2023]
|
21
|
Convey P, Peck LS. Antarctic environmental change and biological responses. SCIENCE ADVANCES 2019; 5:eaaz0888. [PMID: 31807713 PMCID: PMC6881164 DOI: 10.1126/sciadv.aaz0888] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
Antarctica and the surrounding Southern Ocean are facing complex environmental change. Their native biota has adapted to the region's extreme conditions over many millions of years. This unique biota is now challenged by environmental change and the direct impacts of human activity. The terrestrial biota is characterized by considerable physiological and ecological flexibility and is expected to show increases in productivity, population sizes and ranges of individual species, and community complexity. However, the establishment of non-native organisms in both terrestrial and marine ecosystems may present an even greater threat than climate change itself. In the marine environment, much more limited response flexibility means that even small levels of warming are threatening. Changing sea ice has large impacts on ecosystem processes, while ocean acidification and coastal freshening are expected to have major impacts.
Collapse
|
22
|
Clark MS, Thorne MAS, King M, Hipperson H, Hoffman JI, Peck LS. Life in the intertidal: Cellular responses, methylation and epigenetics. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13077] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Melody S. Clark
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| | | | - Michelle King
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| | - Helen Hipperson
- NERC Biomolecular Analysis FacilityDepartment of Animal and Plant SciencesUniversity of Sheffield Sheffield UK
| | - Joseph I. Hoffman
- Department of Animal BehaviourUniversity of Bielefeld Bielefeld Germany
| | - Lloyd S. Peck
- British Antarctic SurveyNatural Environment Research Council Cambridge UK
| |
Collapse
|
23
|
Kim JH, Jeong SY, Kim PJ, Dahms HU, Han KN. Bio-effect-monitoring of long-term thermal wastes on the oyster, Crassostrea gigas, using heat shock proteins. MARINE POLLUTION BULLETIN 2017; 119:359-364. [PMID: 28454761 DOI: 10.1016/j.marpolbul.2017.04.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
We bio-monitored the stress of oyster, Crassostrea gigas, for possible long term effects of thermal waste from a power plant. The expression level of its heat shock proteins (HSPs) was measured by real time-reverse transcript PCR along with their density and growth in the field. Oyster size varied in a distance dependent pattern. Physics modeling for evaluation of spreading of the thermal effluent revealed that station A is affected by the thermal effluents abundance, and the size of C. gigas showed a negative relationship with distance to the power plant. The abundance and size of C. gigas were smallest at station A, which was closest to the thermal effluent outlet. The kinetics of changes in the hsp70 and hsp90 mRNA levels in the mantle of C. gigas were also investigated. Regardless of the higher expression level of hsp70 mRNA than hsp90, both hsp70 and hsp90 mRNA levels were significantly higher at station A. The expression levels decreased inversely with distance from the thermal effluent outlet, with expression of hsp70 mRNA at station A being approximately 7-fold higher than at station B and 15-fold higher than at station C. Similarly, expression of hsp90 mRNA at station A was approximately 14-fold higher than at station B and 22-fold higher than at station C. The present findings provide new insights on biological correlation among the growth of individuals and population size and the molecular index in C. gigas following thermal effects.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Unit of Polar Genomics, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Su-Young Jeong
- Department of Oceanography, College of Natural Sciences, Inha University, Incheon 402-751, South Korea
| | - Pyung-Joong Kim
- ARA Consulting & Technology, D-1510, SMART Valley Bldg., 30, Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Hans-Uwe Dahms
- Kaohsiung Medical University, Department of Biomedical Science and Environmental Biology, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan, ROC; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan, ROC
| | - Kyung-Nam Han
- Department of Oceanography, College of Natural Sciences, Inha University, Incheon 402-751, South Korea.
| |
Collapse
|
24
|
Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:348-358. [DOI: 10.1016/j.cbpa.2016.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/26/2016] [Accepted: 11/03/2016] [Indexed: 11/22/2022]
|
25
|
Liang F, Zhang G, Yin S, Wang L. The role of three heat shock protein genes in the immune response to Aeromonas hydrophila challenge in marbled eel, Anguilla marmorata. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160375. [PMID: 27853553 PMCID: PMC5098978 DOI: 10.1098/rsos.160375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/14/2016] [Indexed: 05/13/2023]
Abstract
Heat shock proteins (HSPs) are highly conserved molecular chaperones that play critical roles in both innate and adaptive immunity. However, little information about HSPs from marbled eel Anguilla marmorata is known. In this study, the full-length Amhsp90 (2527 bp), Amhsp70 (2443 bp) and Amhsc70 (2247 bp) were first cloned from A. marmorata, using rapid amplification of cDNA ends, containing open reading frames of 2181, 1932 and 1950 bp in length, and encoding proteins with 726, 643 and 649 amino acids, respectively. The deduced amino acid sequences of three Amhsps shared a high homology similarity with other migratory fish. Real-time fluorescent quantitative polymerase chain reaction was used to evaluate tissue-specific distribution and mRNA expression levels of three Amhsps subjected to infection with Aeromonas hydrophila. The mRNA expression of three Amhsps in eight tested tissues, namely liver, heart, muscle, gill, spleen, kidney, brain and intestine, of juvenile A. marmorata was evaluated to reveal the major expression distribution in liver, intestine, muscle and heart. After pathogen challenge treatments, mRNA transcriptions of three Amhsps revealed a significant regulation at various time points in the same tissue. All these findings suggest that Amhsps may be involved in the immune response in A. marmorata.
Collapse
Affiliation(s)
- Fenfei Liang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, People's Republic of China
| | - Guosong Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, People's Republic of China
| | - Shaowu Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, People's Republic of China
- Author for correspondence: Shaowu Yin e-mail:
| | - Li Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, People's Republic of China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, People's Republic of China
| |
Collapse
|
26
|
Clark MS, Thorne MAS, Burns G, Peck LS. Age-related thermal response: the cellular resilience of juveniles. Cell Stress Chaperones 2016; 21:75-85. [PMID: 26364303 PMCID: PMC4679744 DOI: 10.1007/s12192-015-0640-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022] Open
Abstract
Understanding species' responses to environmental challenges is key to predicting future biodiversity. However, there is currently little data on how developmental stages affect responses and also whether universal gene biomarkers to environmental stress can be identified both within and between species. Using the Antarctic clam, Laternula elliptica, as a model species, we examined both the tissue-specific and age-related (juvenile versus mature adult) gene expression response to acute non-lethal warming (12 h at 3 °C). In general, there was a relatively muted response to this sub-lethal thermal challenge when the expression profiles of treated animals, of either age, were compared with those of 0 °C controls, with none of the "classical" stress response genes up-regulated. The expression profiles were very variable between the tissues of all animals, irrespective of age with no single transcript emerging as a universal biomarker of thermal stress. However, when the expression profiles of treated animals of the different age groups were directly compared, a very different pattern emerged. The profiles of the younger animals showed significant up-regulation of chaperone and antioxidant transcripts when compared with those of the older animals. Thus, the younger animals showed evidence of a more robust cellular response to warming. These data substantiate previous physiological analyses showing a more resilient juvenile population.
Collapse
Affiliation(s)
- M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - G Burns
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - L S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
27
|
Artigaud S, Richard J, Thorne MAS, Lavaud R, Flye-Sainte-Marie J, Jean F, Peck LS, Clark MS, Pichereau V. Deciphering the molecular adaptation of the king scallop (Pecten maximus) to heat stress using transcriptomics and proteomics. BMC Genomics 2015; 16:988. [PMID: 26596422 PMCID: PMC4657243 DOI: 10.1186/s12864-015-2132-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/22/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The capacity of marine species to survive chronic heat stress underpins their ability to survive warming oceans as a result of climate change. In this study RNA-Seq and 2-DE proteomics were employed to decipher the molecular response of the sub-tidal bivalve Pecten maximus, to elevated temperatures. RESULTS Individuals were maintained at three different temperatures (15, 21 and 25 °C) for 56 days, representing control conditions, maximum environmental temperature and extreme warming, with individuals sampled at seven time points. The scallops thrived at 21 °C, but suffered a reduction in condition at 25 °C. RNA-Seq analyses produced 26,064 assembled contigs, of which 531 were differentially expressed, with putative annotation assigned to 177 transcripts. The proteomic approach identified 24 differentially expressed proteins, with nine identified by mass spectrometry. Network analysis of these results indicated a pivotal role for GAPDH and AP-1 signalling pathways. Data also suggested a remodelling of the cell structure, as revealed by the differential expression of genes involved in the cytoskeleton and cell membrane and a reduction in DNA repair. They also indicated the diversion of energetic metabolism towards the mobilization of lipid energy reserves to fuel the increased metabolic rate at the higher temperature. CONCLUSIONS This work provides preliminary insights into the response of P. maximus to chronic heat stress and provides a basis for future studies examining the tipping points and energetic trade-offs of scallop culture in warming oceans.
Collapse
Affiliation(s)
- Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Joëlle Richard
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Romain Lavaud
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Jonathan Flye-Sainte-Marie
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Fred Jean
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Institut Universitaire Européen de la Mer, Plouzané, 29280, France.
| |
Collapse
|
28
|
Peck LS. A Cold Limit to Adaptation in the Sea. Trends Ecol Evol 2015; 31:13-26. [PMID: 26552514 DOI: 10.1016/j.tree.2015.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022]
Abstract
Temperature affects biological functions by altering reaction rates. Physiological rates usually double to treble for every 10 °C rise, and 1-4 fold encompasses normal biological functions. However, in polar marine species inhabiting temperatures around 0 °C many processes are slowed beyond the Arrhenius relationships for warmer water species. Growth, embryonic development, Specific dynamic action (SDA) duration, and time to acclimate to altered temperature, are all 5-12 fold slower in species living near 0 °C than at 10 °C. This cold marine physiological transition to slower states is absent, however, in oxygen consumption and SDA factorial scope; processes where capacity is related to aerobic scope. My opinion is that processes involving significant protein modification are impacted, and protein synthesis or folding problems cause the slowing of rates beyond expected temperature effects.
Collapse
Affiliation(s)
- Lloyd S Peck
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK.
| |
Collapse
|
29
|
|
30
|
Lüchmann KH, Clark MS, Bainy ACD, Gilbert JA, Craft JA, Chipman JK, Thorne MAS, Mattos JJ, Siebert MN, Schroeder DC. Key metabolic pathways involved in xenobiotic biotransformation and stress responses revealed by transcriptomics of the mangrove oyster Crassostrea brasiliana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:10-20. [PMID: 26186662 DOI: 10.1016/j.aquatox.2015.06.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The Brazilian oyster Crassostrea brasiliana was challenged to three common environmental contaminants: phenanthrene, diesel fuel water-accommodated fraction (WAF) and domestic sewage. Total RNA was extracted from the gill and digestive gland, and cDNA libraries were sequenced using the 454 FLX platform. The assembled transcriptome resulted in ̃20,000 contigs, which were annotated to produce the first de novo transcriptome for C. brasiliana. Sequences were screened to identify genes potentially involved in the biotransformation of xenobiotics and associated antioxidant defence mechanisms. These gene families included those of the cytochrome P450 (CYP450), 70kDa heat shock, antioxidants, such as glutathione S-transferase, superoxide dismutase, catalase and also multi-drug resistance proteins. Analysis showed that the massive expansion of the CYP450 and HSP70 family due to gene duplication identified in the Crassostrea gigas genome also occurred in C. brasiliana, suggesting these processes form the base of the Crassostrea lineage. Preliminary expression analyses revealed several candidates biomarker genes that were up-regulated during each of the three treatments, suggesting the potential for environmental monitoring.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna, Brazil.
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Jack A Gilbert
- Biosciences Division (BIO), Argonne National Laboratory, Argonne, USA; Department of Ecology and Evolution, University of Chicago, Chicago, USA; Marine Biological Laboratory, Woods Hole, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.
| | - J Kevin Chipman
- School of Biological Sciences, The University of Birmingham, Birmingham, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marília N Siebert
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom (MBA), Plymouth, UK.
| |
Collapse
|
31
|
Cascella K, Jollivet D, Papot C, Léger N, Corre E, Ravaux J, Clark MS, Toullec JY. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of antarctic krill: differences in thermal habitats, responses and implications under climate change. PLoS One 2015; 10:e0121642. [PMID: 25835552 PMCID: PMC4383606 DOI: 10.1371/journal.pone.0121642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/03/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A comparative thermal tolerance study was undertaken on two sister species of Euphausiids (Antarctic krills) Euphausia superba and Euphausia crystallorophias. Both are essential components of the Southern Ocean ecosystem, but occupy distinct environmental geographical locations with slightly different temperature regimes. They therefore provide a useful model system for the investigation of adaptations to thermal tolerance. METHODOLOGY/PRINCIPAL FINDING Initial CTmax studies showed that E. superba was slightly more thermotolerant than E. crystallorophias. Five Hsp70 mRNAs were characterized from the RNAseq data of both species and subsequent expression kinetics studies revealed notable differences in induction of each of the 5 orthologues between the two species, with E. crystallorophias reacting more rapidly than E. superba. Furthermore, analyses conducted to estimate the evolutionary rates and selection strengths acting on each gene tended to support the hypothesis that diversifying selection has contributed to the diversification of this gene family, and led to the selective relaxation on the inducible C form with its possible loss of function in the two krill species. CONCLUSIONS The sensitivity of the epipelagic species E. crystallorophias to temperature variations and/or its adaptation to cold is enhanced when compared with its sister species, E. superba. These results indicate that ice krill could be the first of the two species to be impacted by the warming of coastal waters of the Austral ocean in the coming years due to climate change.
Collapse
Affiliation(s)
- Kévin Cascella
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Claire Papot
- Université de Lille1, CNRS UMR8198, Ecoimmunology of Marine Annelids, 59655 Villeneuve d’Ascq, France
| | - Nelly Léger
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Erwan Corre
- Sorbonne Universités, UPMC Université Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, FR 2424, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Juliette Ravaux
- Sorbonne Universités, UPMC Université Paris 06, UMR 7208 CNRS, Equipe AMEX, 75005 Paris, France
- CNRS 7208, BOREA, UPMC Université Paris 06, 75005 Paris, France
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| | - Jean-Yves Toullec
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, 29680 Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France
- * E-mail:
| |
Collapse
|
32
|
HUANG X, WANG T, YE Z, HAN G, DONG Y. Temperature relations of aerial and aquatic physiological performance in a mid-intertidal limpetCellana toreuma: Adaptation to rapid changes in thermal stress during emersion. Integr Zool 2015; 10:159-70. [DOI: 10.1111/1749-4877.12107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiongwei HUANG
- State Key Laboratory of Marine Environmental Science; College of Marine and Earth Sciences, Xiamen University; Xiamen China
| | | | - Ziwen YE
- State Key Laboratory of Marine Environmental Science; College of Marine and Earth Sciences, Xiamen University; Xiamen China
| | - Guodong HAN
- State Key Laboratory of Marine Environmental Science; College of Marine and Earth Sciences, Xiamen University; Xiamen China
| | - Yunwei DONG
- State Key Laboratory of Marine Environmental Science; College of Marine and Earth Sciences, Xiamen University; Xiamen China
- Marine Biodiversity and Global Change Center; Xiamen University; Xiamen China
| |
Collapse
|
33
|
2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes 2015; 3:3-41. [PMID: 28248261 PMCID: PMC5302490 DOI: 10.3390/proteomes3010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/04/2014] [Indexed: 11/17/2022] Open
Abstract
The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) “metabolism”, including antioxidant defence and degradation of xenobiotics; (ii) “genetic information processing”, comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) “cellular processes”, such as cell motility, transport and catabolism; (iv) “environmental information processing”, including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.
Collapse
|
34
|
Knigge T, Bachmann L, Köhler HR. An intron-containing, heat-inducible stress-70 gene in the millipede Tachypodoiulus niger (Julidae, Diplopoda). Cell Stress Chaperones 2014; 19:741-7. [PMID: 24446070 PMCID: PMC4147066 DOI: 10.1007/s12192-014-0494-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022] Open
Abstract
The highly conserved part of the nucleotide-binding domain of the hsp70 gene family was amplified from the soil diplopod Tachypodoiulus niger (Julidae, Diplopoda). Genomic DNA yielded 701, 549 and 540 bp sequences, whereas cDNA from heat shocked animals produced only one distinct fragment of 543 bp. The sequences could be classified as a 70 kDa heat shock protein (hsp70), the corresponding 70 kDa heat shock cognate (hsc70) and a glucose-related hsp70 homologue (grp78). Comparisons of genomic and cDNA sequences of hsc70 identified two introns within the consensus sequence. Generally, stress-70 expression levels were low, which hampered successful RT-PCR and subsequent subcloning. Following experimental heat shock, however, the spliced hsc70 was amplified predominantly, instead of its inducible homologue hsp70. This finding suggests that microevolution in this soil-dwelling arthropod is directed towards low constitutive stress-70 levels and that the capacity for stress-70 induction presumably is limited. hsc70, albeit having introns, apparently is inducible and contributes to the stress-70 response.
Collapse
Affiliation(s)
- Thomas Knigge
- Laboratory of Ecotoxicology, EA 3222 PRES Normandie, Le Havre University, 25 Rue Philippe Lebon, F-76058, Le Havre Cedex, France,
| | | | | |
Collapse
|
35
|
Clark MS, Thorne MAS, Amaral A, Vieira F, Batista FM, Reis J, Power DM. Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas. Ecol Evol 2013; 3:3283-97. [PMID: 24223268 PMCID: PMC3797477 DOI: 10.1002/ece3.719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/27/2022] Open
Abstract
Understanding the environmental responses of an invasive species is critical in predicting how ecosystem composition may be transformed in the future, especially under climate change. In this study, Crassostrea gigas, a species well adapted to the highly variable intertidal environment, was exposed to the chronic environmental challenges of temperature (19 and 24°C) and pH (ambient seawater and a reduction of 0.4 pH units) in an extended 3-month laboratory-based study. Physiological parameters were measured (condition index, shell growth, respiration, excretion rates, O:N ratios, and ability to repair shell damage) alongside molecular analyses. Temperature was by far the most important stressor, as demonstrated by reduced condition indexes and shell growth at 24°C, with relatively little effect detected for pH. Transcriptional profiling using candidate genes and SOLiD sequencing of mantle tissue revealed that classical “stress” genes, previously reported to be upregulated under acute temperature challenges, were not significantly expressed in any of the treatments, emphasizing the different response between acute and longer term chronic stress. The transcriptional profiling also elaborated on the cellular responses underpinning the physiological results, including the identification of the PI3K/AKT/mTOR pathway as a potentially novel marker for chronic environmental challenge. This study represents a first attempt to understand the energetic consequences of cumulative thermal stress on the intertidal C. gigas which could significantly impact on coastal ecosystem biodiversity and function in the future.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council High Cross, Madingley Road, Cambridge, CB3 0ET, U.K
| | | | | | | | | | | | | |
Collapse
|
36
|
Lencioni V, Bernabò P, Cesari M, Rebecchi L, Cesari M. Thermal stress induces HSP70 proteins synthesis in larvae of the cold stream non-biting midge Diamesa cinerella Meigen. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:1-14. [PMID: 23404797 DOI: 10.1002/arch.21088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Laboratory experiments on the cold stenothermal midge Diamesa cinerella (Diptera, Chironomidae) were performed to study the relationship between increasing temperature and heat shock proteins (HSP70) expression at translational level (Western blotting). Thermotolerance of IV instar larvae collected in nature at 1.5-4.3°C during seasons was analyzed through short-term (1 h at ten different temperatures from 26°C to 35°C) and long-term (1-14 h at 26°C and 1-4 h at 32°C) heat shocks. A high thermotolerance was detected (LT50=30.9-32.8°C and LT100=34.0-37.8°C). However, survival decreased consistently with increasing exposure time, especially at higher temperature (LTime50=7.64 h at 26°C and LTime50=1.73 h at 32°C). The relationship between such heat resistance and HSP70 expression appeared evident because a relationship between HSP70 level and larval survival rate was generally found. A heat shock response (HSR) was consistent only in the summer larvae. The absence of HSR in the other populations coupled with even higher amounts of HSP70 than in summer, led us to hypothesize that other macromolecules and other adaptive mechanisms, apart from biochemical ones, are involved in the response of D. cinerella larvae to high temperature. Altogether these results stressed how in this midge the HSP70 protein family confers resistance against cold, being detected under natural conditions in control larvae collected in all seasons, but also against warm under experimental heat shocks. These results give new insights into possible responses to climate changes in freshwater insects within the context of global warming.
Collapse
Affiliation(s)
- Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, Museo delle Scienze, Trento, Italy.
| | | | | | | | | |
Collapse
|
37
|
Heat shock protein HSP70B as a marker for genotype resistance to environmental stress in Chlorella species from contrasting habitats. Gene 2013; 516:184-9. [DOI: 10.1016/j.gene.2012.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/19/2012] [Accepted: 11/29/2012] [Indexed: 11/20/2022]
|
38
|
Madeira D, Narciso L, Cabral HN, Diniz MS, Vinagre C. Thermal tolerance of the crab Pachygrapsus marmoratus: intraspecific differences at a physiological (CTMax) and molecular level (Hsp70). Cell Stress Chaperones 2012; 17:707-16. [PMID: 22619030 PMCID: PMC3468680 DOI: 10.1007/s12192-012-0345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022] Open
Abstract
Temperature is one of the most important variables influencing organisms, especially in the intertidal zone. This work aimed to test physiological and molecular intraspecific differences in thermal tolerance of the crab Pachygrapsus marmoratus (Fabricius, 1787). The comparisons made focused on sex, size, and habitat (estuary and coast) differences. The physiological parameter was upper thermal limit, tested via the critical thermal maximum (CTMax) and the molecular parameter was total heat shock protein 70 (Hsp70 and Hsp70 plus Hsc70) production, quantified via an enzyme-linked imunosorbent assay. Results showed that CTMax values and Hsp70 production are higher in females probably due to different microhabitat use and potentially due to different hormonal regulation in males and females. Among females, non-reproducing ones showed a higher CTMax value, but no differences were found in Hsp70, even though reproducing females showed higher variability in Hsp70 amounts. As reproduction takes up a lot of energy, its allocation for other activities, including stress responses, is lower. Juveniles also showed higher CTMax and Hsp70 expression because they occur in greater shore heights and ageing leads to alterations in protein synthesis. Comparing estuarine and coastal crabs, no differences were found in CTMax but coastal crabs produce more Hsp70 than estuarine crabs because they occur in drier and hotter areas than estuarine ones, which occur in moister environments. This work shows the importance of addressing intraspecific differences in the stress response at different organizational levels. This study shows that these differences are key factors in stress research, climate research, and environmental monitoring.
Collapse
Affiliation(s)
- D Madeira
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
39
|
Amberg JJ, Schreier TM, Gaikowski MP. Molecular responses differ between sensitive silver carp and tolerant bighead carp and bigmouth buffalo exposed to rotenone. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1379-1391. [PMID: 22447502 DOI: 10.1007/s10695-012-9625-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Some species of fish are more tolerant of rotenone, a commonly used non-specific piscicide, than others. This species-specific tolerance to rotenone has been thought to be associated with the uptake and the efficiency at which the chemical is detoxified. However, rotenone stimulates oxidative stress and superoxides, which are also toxic. Understanding the modes in which fish physiologically respond to rotenone is important in developing improved protocols for its application in controlling aquatic nuisance species. Using a molecular approach, we investigated the physiological and molecular mechanisms of rotenone resistance. Species-specific responses were observed when rotenone-sensitive silver, Hypophthalmichthys molitrix, and both rotenone-resistant bighead carp, Hypophthalmichthys nobilis, and bigmouth buffalo, Ictiobus cyprinellus, were exposed to rotenone. Rotenone levels in plasma were highest 90 min after exposure in both silver carp and bigmouth buffalo, but bigmouth buffalo tolerated over twice the burden (ng mL(-1) g(-1)) than silver carp. Expression of genes related with detoxification (cyp1a and gst) increased in silver carp, but either decreased or remained the same in bighead carp. Genes linked with oxidative stress in the cytosol (gpx, cat and sod1) and hsp70 increased only in silver carp after a 6-h exposure. Expression of genes associated with oxidative stress in the mitochondria (sod2 and ucp2) differed between silver carp and bighead carp. Expression of sod2 changed minimally in bighead carp, but expression of ucp2 linearly increased to nearly 85-fold of the level prior to exposure. Expression of sod2 and ucp2 did not change until 6 h in silver carp. Use of sod1 and sod2 to combat oxidative stress results in hydrogen peroxide production, while use of ucp2 produces nitric oxide, a chemical known to inhibit apoptosis. We conclude that the mechanism at which a fish handles oxidative stress plays an important role in the tolerance to rotenone.
Collapse
Affiliation(s)
- Jon J Amberg
- United States Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI 54603, USA.
| | | | | |
Collapse
|
40
|
Brose RD, Shin G, McGuinness MC, Schneidereith T, Purvis S, Dong GX, Keefer J, Spencer F, Smith KD. Activation of the stress proteome as a mechanism for small molecule therapeutics. Hum Mol Genet 2012; 21:4237-52. [PMID: 22752410 DOI: 10.1093/hmg/dds247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.
Collapse
Affiliation(s)
- Rebecca Deering Brose
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pineda MC, Turon X, López-Legentil S. Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress Chaperones 2012; 17:435-44. [PMID: 22249790 PMCID: PMC3368029 DOI: 10.1007/s12192-012-0321-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/05/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022] Open
Abstract
Species distribution, abundance, and long-term survival are determined by biotic and abiotic regimes. However, little is known about the importance of these factors in species range expansion. Styela plicata is a solitary ascidian introduced all over the world by ship fouling, including salt marsh habitats, where introduced populations must tolerate high seasonal variations in temperature and salinity. To determine the seasonal stress levels in a salt marsh population of S. plicata, we quantified heat shock protein (hsp70) gene expression using quantitative real-time PCR throughout a 2-year cycle. Results showed that hsp70 expression varied over time, with higher stress levels recorded in summer and winter. Periodic conditions of high temperatures, particularly when coupled with low salinities, increased hsp70 gene expression. Mortality events observed every year around June were concurrent with sharp increases in temperature (>6°C), indicating that drastic changes in abiotic factors may overwhelm the observed stress response mechanisms. Determining the ability of introduced species to cope with stress, and the thresholds above which these mechanisms fail, is fundamental to predict the potential expansion range of introduced species and design efficient containment plans.
Collapse
Affiliation(s)
- Mari Carmen Pineda
- Department of Animal Biology, University of Barcelona, Diagonal Avenue 643, 08028 Barcelona, Spain
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Girona Spain
| | - Susanna López-Legentil
- Department of Animal Biology, University of Barcelona, Diagonal Avenue 643, 08028 Barcelona, Spain
| |
Collapse
|
42
|
Santovito G, Marino SM, Sattin G, Cappellini R, Bubacco L, Beltramini M. Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish: insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biol 2012. [DOI: 10.1007/s00300-012-1200-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Bernabò P, Rebecchi L, Jousson O, Martínez-Guitarte JL, Lencioni V. Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy). Cell Stress Chaperones 2011; 16:403-10. [PMID: 21188662 PMCID: PMC3118828 DOI: 10.1007/s12192-010-0251-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 11/24/2022] Open
Abstract
To better understand the physiological capability of cold-stenothermal organisms to survive high-temperature stress, we analyzed the thermotolerance limits and the expression level of hsp70 genes under temperature stress in the alpine midge Pseudodiamesa branickii (Diptera Chironomidae). A lethal temperature (LT(100)) of 36°C and a lethal temperature 50% (LT(50)) of 32.2°C were found for the cold-stenothermal larvae after short-term shocks (1 h). Additional experiments revealed that the duration of the exposure negatively influenced survival, whereas a prior exposure to a less severe high temperature generated an increase in survival. To investigate the molecular basis of this high thermotolerance, the expression of the hsp70 gene family was surveyed via semi-quantitative reverse transcription-polymerase chain reaction analysis in treated larvae. The constitutive (hsc70) and inducible (hsp70) forms were both analyzed. Larvae of P. branickii showed a significant up-regulation of inducible hsp70 gene with increasing temperatures and an over-expression of both hsp70 and hsc70 by increasing the time of exposure. Different from that was shown in many cold-stenothermal Antarctic organisms, P. branickii was able to activate hsp70 genes transcription (equal to heat shock response) in response to thermal stress. Finally, the unclear relationship between hsp70 expression and survival led us to surmise that genes other than hsp70 and other processes apart from the biochemical processes might generate the high thermaltolerance of P. branickii larvae. These results and future high-throughput studies at both the transcriptome and proteome level will improve our ability to predict the future geographic distribution of this species within the context of global warming.
Collapse
Affiliation(s)
- Paola Bernabò
- Department of Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
- Section of Invertebrate Zoology and Hydrobiology, Museo Tridentino di Scienze Naturali, Via Calepina 14, 38122 Trento, Italy
- Centre for Integrative Biology, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Lorena Rebecchi
- Department of Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Jose Luis Martínez-Guitarte
- Group of Biology and Environmetal Toxixology, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey 9, 28040 Madrid, Spain
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, Museo Tridentino di Scienze Naturali, Via Calepina 14, 38122 Trento, Italy
| |
Collapse
|
44
|
Clark MS, Thorne MAS, Toullec JY, Meng Y, Guan LL, Peck LS, Moore S. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome. PLoS One 2011; 6:e15919. [PMID: 21253607 PMCID: PMC3017093 DOI: 10.1371/journal.pone.0015919] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/07/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS), providing a resource for population and also gene function studies. CONCLUSIONS This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding marine ectotherms' capacities to cope with environmental change.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ocean acidification at high latitudes: potential effects on functioning of the Antarctic bivalve Laternula elliptica. PLoS One 2011; 6:e16069. [PMID: 21245932 PMCID: PMC3016332 DOI: 10.1371/journal.pone.0016069] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
Ocean acidification is a well recognised threat to marine ecosystems. High latitude regions are predicted to be particularly affected due to cold waters and naturally low carbonate saturation levels. This is of concern for organisms utilising calcium carbonate (CaCO(3)) to generate shells or skeletons. Studies of potential effects of future levels of pCO(2) on high latitude calcifiers are at present limited, and there is little understanding of their potential to acclimate to these changes. We describe a laboratory experiment to compare physiological and metabolic responses of a key benthic bivalve, Laternula elliptica, at pCO(2) levels of their natural environment (430 µatm, pH 7.99; based on field measurements) with those predicted for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH 8.32). Adult L. elliptica basal metabolism (oxygen consumption rates) and heat shock protein HSP70 gene expression levels increased in response both to lowering and elevation of pH. Expression of chitin synthase (CHS), a key enzyme involved in synthesis of bivalve shells, was significantly up-regulated in individuals at pH 7.78, indicating L. elliptica were working harder to calcify in seawater undersaturated in aragonite (Ω(Ar) = 0.71), the CaCO(3) polymorph of which their shells are comprised. The different response variables were influenced by pH in differing ways, highlighting the importance of assessing a variety of factors to determine the likely impact of pH change. In combination, the results indicate a negative effect of ocean acidification on whole-organism functioning of L. elliptica over relatively short terms (weeks-months) that may be energetically difficult to maintain over longer time periods. Importantly, however, the observed changes in L. elliptica CHS gene expression provides evidence for biological control over the shell formation process, which may enable some degree of adaptation or acclimation to future ocean acidification scenarios.
Collapse
|
46
|
Rosic NN, Pernice M, Dove S, Dunn S, Hoegh-Guldberg O. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 2011; 16:69-80. [PMID: 20821176 PMCID: PMC3024090 DOI: 10.1007/s12192-010-0222-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 02/07/2023] Open
Abstract
Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic stress. In this study, we identified members of two major heat shock proteins (HSPs) families, Hsp70 and Hsp90, in Symbiodinium sp. (clade C) with full-length sequences that showed the highest similarity and evolutionary relationship with other known HSPs from dinoflagellate protists. Regulation of HSPs gene expression was examined in samples of the scleractinian coral Acropora millepora subjected to elevated temperatures progressively over 18 h (fast) and 120 h (gradual thermal stress). Moderate to severe heat stress at 26°C and 29°C (+3°C and +6°C above average sea temperature) resulted in an increase in algal Hsp70 gene expression from 39% to 57%, while extreme heat stress (+9°C) reduced Hsp70 transcript abundance by 60% (after 18 h) and 70% (after 120 h). Elevated temperatures decreased an Hsp90 expression under both rapid and gradual heat stress scenarios. Comparable Hsp70 and Hsp90 gene expression patterns were observed in Symbiodinium cultures and in hospite, indicating their independent regulation from the host. Differential gene expression profiles observed for Hsp70 and Hsp90 suggests diverse roles of these molecular chaperones during heat stress response. Reduced expression of the Hsp90 gene under heat stress can indicate a reduced role in inhibiting the heat shock transcription factor which may lead to activation of heat-inducible genes and heat acclimation.
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Global Change Institute, The University of Queensland, St. Lucia, 4072, Queensland, Australia.
| | | | | | | | | |
Collapse
|