1
|
Arioz Tunc H, Calder PC, Cait A, Dodd GF, Gasaly Retamal NYI, Guillemet D, James D, Korzeniowski KJ, Lubkowska A, Meynier A, Ratajczak W, Respondek F, Thabuis C, Vaughan EE, Venlet N, Walton G, Gasser O, de Vos P. Impact of non-digestible carbohydrates and prebiotics on immunity, infections, inflammation and vaccine responses: a systematic review of evidence in healthy humans and a discussion of mechanistic proposals. Crit Rev Food Sci Nutr 2025:1-74. [PMID: 40516031 DOI: 10.1080/10408398.2025.2514700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
Prebiotics, particularly non-digestible carbohydrates (NDCs), are increasingly recognized for their role in modulating immune responses in the gut, lungs, and urinary tract. This review systematically evaluates evidence from human studies on the effects of NDCs and prebiotics on immune markers, infection risk and severity, inflammation, and vaccine responses. Prebiotics such as inulin, galactooligosaccharides (GOS), and fructooligosaccharides (FOS) positively influence gut microbiota by promoting beneficial species like Bifidobacteria. They also enhance the production of short-chain fatty acids (SCFAs) like butyrate, which interact with immune cells via G-protein-coupled receptors, inducing anti-inflammatory effects. In addition to microbiota-mediated mechanisms, NDCs and prebiotics may directly affect immune and epithelial cells by interacting with pattern recognition receptors (PRRs), enhancing gut barrier function, and modulating immunity. A systematic review of human studies showed that prebiotics, including GOS, FOS, and 2'-fucosyllactose (2FL), reduced infections and increased IgA in healthy infants, while yeast β-glucan reduced respiratory infection symptoms in healthy adults. Yeast β-glucan and GOS supplementation resulted in improvements in NK cell activity. Some effects on vaccine efficacy were noted in young adults, but the overall impact of NDCs and prebiotics on vaccination and systemic inflammation was inconsistent. Further research is needed to clarify the mechanisms involved and to optimize health applications.
Collapse
Affiliation(s)
- Hediye Arioz Tunc
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, New Zealand
- High-Value Nutrition National Science Challenge, University of Auckland, Auckland, New Zealand
| | | | | | | | - Daniel James
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Alexandra Meynier
- Nutrition Research Department, Mondelez France R&D SAS, Saclay, France
| | - Weronika Ratajczak
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | | | | | | | - Gemma Walton
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
- High-Value Nutrition National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Paul de Vos
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University, Venlo, The Netherlands
| |
Collapse
|
2
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2025; 17:1-22. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
3
|
Martínez-Ruiz M, Robeson MS, Piccolo BD. Fueling the fire: colonocyte metabolism and its effect on the colonic epithelia. Crit Rev Food Sci Nutr 2025:1-20. [PMID: 40405692 DOI: 10.1080/10408398.2025.2507701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Colonic permeability is a major consequence of dysbiosis and diseases affecting the colon, further contributing to inflammation and extraintestinal diseases. Recent advances have shed light on the association between colonocyte energy utilization and the mechanisms that support epithelial function and homeostasis. One unifying theme is the induction of colonocyte hypoxia, driven by the aerobic oxidation of microbial-derived butyrate, as a critical factor promoting multiple cellular processes that support intestinal barrier function, mucus secretion, and the maintenance of synergistic luminal microbes. Particular attention will be focused on experimental evidence supporting beta-oxidation via activation of peroxisome proliferators-activated receptor-γ (PPAR) and upregulation and activation of processes that promote barrier function by hypoxia-inducible factor (HIF) signaling. Growing evidence suggests that colonocyte energy utilization is tightly regulated and switches between beta-oxidation of butyrate and anaerobic glycolysis, the latter being associated with several disease states. As most of the primary literature associated with colonocyte energy utilization has focused on adult models, evidence supporting butyrate oxidation in the neonatal gut is lacking. Thus, this review details the current state of knowledge linking colonocyte substrate utilization to mechanisms supporting gut health, but also highlights the counterindications of colonic butyrate availability and utilization in developmental periods.
Collapse
Affiliation(s)
- Manuel Martínez-Ruiz
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian D Piccolo
- USDA-ARS Arkansas Children's Nutrition Center, Little Rock, AR, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Peng Z, Hou T, Yang K, Zhang J, Mao YH, Hou X. Microecologics and Exercise: Targeting the Microbiota-Gut-Brain Axis for Central Nervous System Disease Intervention. Nutrients 2025; 17:1769. [PMID: 40507038 PMCID: PMC12157277 DOI: 10.3390/nu17111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
The gut microbiota (GM) may play a crucial role in the development and progression of central nervous system (CNS) diseases. Microecologics and exercise can influence the composition and function of GM, thereby exerting positive effects on the CNS. Combined interventions of exercise and microecologics are expected to more comprehensively and effectively address CNS diseases through the microbiota-gut-brain axis (MGBA), potentially outperforming single interventions. However, there is currently a lack of relevant reviews on this topic. In this review, we examine the associations between changes in the microbiota and CNS diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and autism spectrum disorder (ASD). We also summarize studies on various types of microecologics (such as probiotics, prebiotics, synbiotics, and postbiotics) and exercise in improving CNS disease symptoms. Although current individual studies on microecologics and exercise have achieved certain results, the mechanisms underlying their synergistic effects remain unclear. This review aims to explore the theoretical basis, potential mechanisms, and clinical application prospects of combined interventions of microecologics and exercise in improving CNS diseases through the MGBA, providing a scientific basis for the development of more comprehensive and effective therapeutic interventions.
Collapse
Affiliation(s)
- Zhixing Peng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Tingting Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Jiangyu Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaohui Hou
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Z.P.); (T.H.); (K.Y.); (J.Z.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
5
|
Barber TM, Kabisch S, Pfeiffer AFH, Weickert MO. The Gut Microbiome as a Key Determinant of the Heritability of Body Mass Index. Nutrients 2025; 17:1713. [PMID: 40431453 PMCID: PMC12114430 DOI: 10.3390/nu17101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
The pathogenesis of obesity is complex and incompletely understood, with an underlying interplay between our genetic architecture and obesogenic environment. The public understanding of the development of obesity is shrouded in myths with widespread societal misconceptions. Body Mass Index (BMI) is a highly heritable trait. However, despite reports from recent genome-wide association studies, only a small proportion of the overall heritability of BMI is known to be lurking within the human genome. Other non-genetic heritable traits may contribute to BMI. The gut microbiome is an excellent candidate, implicating complex interlinks with hypothalamic control of appetite and metabolism via entero-endocrine, autonomic, and neuro-humeral pathways. The neonatal gut microbiome derived from the mother via transgenerational transmission (vaginal delivery and breastfeeding) tends to have a permanence within the gut. Conversely, non-maternally derived gut microbiota manifest mutability that responds to changes in lifestyle and diet. We should all strive to optimize our lifestyles and ensure a diet that is replete with varied and unprocessed plant-based foods to establish and nurture a healthy gut microbiome. Women of reproductive age should optimize their gut microbiome, particularly pre-conception, ante- and postnatally to enable the establishment of a healthy neonatal gut microbiome in their offspring. Finally, we should redouble our efforts to educate the populace on the pathogenesis of obesity, and the role of heritable (but modifiable) factors such as the gut microbiome. Such renewed understanding and insights would help to promote the widespread adoption of healthy lifestyles and diets, and facilitate a transition from our current dispassionate and stigmatized societal approach towards people living with obesity towards one that is epitomized by understanding, support, and compassion.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK;
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
6
|
Lu X, Su H, Zuo J, Zhong M, Luo S, Lu L, Zeng S, Zheng B. Characterization of prebiotic oligosaccharides-starch interactions and their effects on wheat starch properties under different freezing-thawing cycles. Int J Biol Macromol 2025; 311:143945. [PMID: 40328405 DOI: 10.1016/j.ijbiomac.2025.143945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025]
Abstract
The changes in the structure, gelatinization, and rheological properties of wheat starch during freeze-thaw cycles are crucial for enhancing the quality of products. This study investigated the effects of oligosaccharide (16 % w/w) addition on starch structure and properties under repeated freeze-thaw (FT) conditions. Specifically, xylooligosaccharides (XOS), galactooligosaccharides (GOS), and fructooligosaccharides (FOS) were found to preserve the supramolecular stacking of starch after the unwinding and amorphization of the native starch molecules. Notably, XOS more effectively inhibited the reorganization of starch structures after freezing and thawing, which could reduce the setback viscosity by 39.3 % after 11 freeze-thaw cycles. This inhibition likely prevents water molecules from entering granules and forming hydrogen bonds with starch chains, thereby limiting the development of helical and short-range ordered structures. Furthermore, the XOS curtailed the formation of long-range ordered structures in the crystalline region. These effects contribute to the increased shear resistance and structural recovery of the starch paste after shearing. Additionally, the presence of oligosaccharides led to reductions in both storage and loss moduli resulting in a relatively weak gel network structure. This study provides valuable insights into the selection of functional sugar substitutes for frozen products during freeze-thaw cycles.
Collapse
Affiliation(s)
- Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Han Su
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Jiaxin Zuo
- Centre of Excellence in Agri-food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach, Spalding, UK
| | - Meifang Zhong
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shudan Luo
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Liying Lu
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, 350002 Fuzhou, China; China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, 350002 Fuzhou, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| |
Collapse
|
7
|
Kaulpiboon J, Rudeekulthamrong P. Maltotriosyl-erythritol, a transglycosylation product of erythritol by Thermus sp. amylomaltase and its application to prebiotic. Food Chem 2025; 472:142937. [PMID: 39827568 DOI: 10.1016/j.foodchem.2025.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
In this study, maltotriosyl-erythritol (EG3) was synthesized as a novel prebiotic candidate via transglycosylation using recombinant amylomaltase (AMase) from Thermus sp. Tapioca starch served as the glucosyl donor, and erythritol as the acceptor. High-performance liquid chromatography (HPLC) revealed an EG3 yield of 14.0 % with a concentration of 2.8 mg/mL. Mass spectrometry confirmed the molecular weight of EG3 as 608 Da, and its strucopture was verified by 1H and 13C NMR analysis. EG3 exhibited greater resistance to acid, heat, and digestive enzymes compared to erythritol glucosides (EG1-2) and significantly promoted the growth of Lactobacillus casei BCC36987. Fermentation of EG3 resulted in the highest levels of lactic acid and total short-chain fatty acids, which may contribute to reduced pH levels. These findings suggest that erythritol-receptor products formed via AMase-catalyzed reactions, particularly EG3, are promising prebiotic ingredients, with the prebiotic activity of erythritol derivatives being influenced by the length of the carbohydrate chain.
Collapse
Affiliation(s)
- Jarunee Kaulpiboon
- Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Prakarn Rudeekulthamrong
- Department of Biochemistry, Phramongkutklao College of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand.
| |
Collapse
|
8
|
Mahgoup EM. "Gut Microbiota as a Therapeutic Target for Hypertension: Challenges and Insights for Future Clinical Applications" "Gut Microbiota and Hypertension Therapy". Curr Hypertens Rep 2025; 27:14. [PMID: 40261509 DOI: 10.1007/s11906-025-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW Systemic hypertension is a major risk factor for cardiovascular disease and remains challenging to manage despite the widespread use of antihypertensive medications and lifestyle modifications. This review explores the role of gut microbiota in hypertension development and regulation, highlighting key mechanisms such as inflammation, gut-brain axis modulation, and bioactive metabolite production. We also assess the potential of microbiota-targeted therapies for hypertension management. RECENT FINDINGS Emerging evidence indicates that microbial dysbiosis, high-salt diets, and gut-derived metabolites such as short-chain fatty acids (SCFAs) and bile acids significantly influence blood pressure regulation. Preclinical and early clinical studies suggest that interventions targeting gut microbiota, including probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), and dietary modifications, may help modulate hypertension. However, variability in gut microbiota composition among individuals and limited human trial data pose challenges to translating these findings into clinical practice. While microbiota-based therapies show promise for hypertension management, further research is needed to establish their efficacy and long-term effects. Large-scale, standardized clinical trials are crucial for understanding the therapeutic potential and limitations of gut microbiota interventions. A deeper understanding of the gut-hypertension axis could lead to novel, personalized treatment strategies for hypertension.
Collapse
Affiliation(s)
- Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt.
- Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2025; 33:397-407. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Vasquez R, Song JH, Park YS, Paik HD, Kang DK. Application of probiotic bacteria in ginsenoside bioconversion and enhancing its health-promoting benefits: a review. Food Sci Biotechnol 2025; 34:1631-1659. [PMID: 40160953 PMCID: PMC11936870 DOI: 10.1007/s10068-024-01734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 04/02/2025] Open
Abstract
Ginseng (Panax) is a perennial herb with medicinal properties found in Asia and North America. Ginseng extracts contain several compounds, such as ginsenosides, which have therapeutic properties and have been extensively studied. Because of their deglycosylated nature, minor ginsenosides exhibit more potent bioactive properties than their parent ginsenosides. However, untreated ginseng extracts contain low levels of bioactive minor ginsenosides. Thus, converting major ginsenosides to minor ginsenosides using various methods, including microbial bioconversion, is required. Probiotic bacteria such as lactic acid bacteria and bifidobacteria are safe and excellent agents for bioconverting ginsenosides. Numerous studies have demonstrated the application of probiotic bacteria to produce minor ginsenosides; however, a comprehensive discussion focusing on using probiotics in ginsenoside bioconversion has been lacking. Therefore, this review investigates the application of probiotic bacteria to produce minor ginsenosides. Moreover, improving the health-promoting properties of ginseng with the help of probiotics is also reviewed.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
11
|
Chen Y, Li P, Huang W, Yang N, Zhang X, Cai K, Chen Y, Xie Z, Gong J, Liao Q. Structural characterization and immunomodulatory activity of an exopolysaccharide isolated from Bifidobacterium adolescentis. Int J Biol Macromol 2025; 304:140747. [PMID: 39922339 DOI: 10.1016/j.ijbiomac.2025.140747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Bifidobacterium adolescentis is a key probiotic that has been proven to possess various bioactivities. A water-soluble heteropolysaccharide (BEP-1A) was isolated from the probiotic and systematically investigated for the first time. The molecular weight of BEP-1A was calculated to be 9.69 × 106 Da. Combined with monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, methylation and nuclear magnetic resonance (NMR) analysis, BEP-1A was composed of mannose, glucose and galactose at a molar ratio of 0.11⁚4.30⁚1.32. The backbone included β-1,2-Glcp, β-1,3-Glcp, α-1,4-Glcp, α-1,4-Galp, α-1,6-Galp and α-1,3-Manp, with the branch at the O-2 position of α-1,6-Galp, consisting of α-1,2-Galp and α-1-Glcp. Moreover, a filamentous structure of BEP-1A was detected by scanning electron microscopy (SEM). BEP-1A presented high thermal stability based on thermogravimetric analysis (TGA). X-ray diffractometry (XRD) results revealed that BEP-1A was an amorphous molecule without a crystal structure. Furthermore, BEP-1A significantly increased the viability of RAW 264.7 macrophages, improved phagocytosis, and promoted the secretion of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS). BEP-1A was also found to induce the nuclear translocation of the NF-κB subunit p65 and upregulate the phosphorylation of p65 and IκB-α, which suggested that the NF-κB pathway was involved in the BEP-1A-induced immunomodulatory effect. Overall, this study provides a theoretical basis for the development of BEP-1A as an immunomodulator in pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Ye Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangming District, Gongchang Road, Shenzhen, Guangdong Province 518106, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Panyu District, No. 232, Waihuan East Road, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
12
|
Kwon TE, Kim DM, Seo DH, Hamaker BR, Yoo SH. Increased survival rate of selected probiotics under environmental stresses through encapsulation in α-glucan-coated porous starch granules. Int J Biol Macromol 2025; 304:140754. [PMID: 39922356 DOI: 10.1016/j.ijbiomac.2025.140754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Porous starch granules (PSGs) produced by amylolytic enzymes show potential as an effective delivery system for various materials, including probiotics. This study developed α-glucan-coated PSGs (α-gcPSGs) to enhance probiotic viability under environmental stresses. Lactobacillus rhamnosus GG and Bifidobacterium longum were encapsulated in α-gcPSGs coated with amylosucrase-produced α-glucan. The protective effects were evaluated under acidic, bile, heat, and oxygen stress conditions. Results showed that α-gcPSGs significantly enhanced probiotic survival by reducing cell loss of L. rhamnosus GG to 1.41 log CFU/mL under acidic conditions (pH 2.0, 4 h), compared to 2.97 log CFU/mL for lyophilized cells. The thermal resistance of probiotics was improved with α-gcPSGs encapsulation. Encapsulation in α-gcPSGs significantly enhanced probiotic heat resistance, with L. rhamnosus GG demonstrating 96.5% cell viability after 1 h at 65 °C, compared to 42.5% for lyophilized L. rhamnosus GG. Additionally, α-gcPSGs-encapsulated B. longum maintained 63.9% survival after 48 h under oxygen stress, while lyophilized B. longum showed no survival. These findings demonstrate α-gcPSG's potential as a highly effective delivery system for probiotics.
Collapse
Affiliation(s)
- Tae-Eun Kwon
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Dong-Min Kim
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
13
|
Xie B, Dong C, Zhao X, Qu L, Lv Y, Liu H, Xu J, Yu Z, Shen H, Shang Y, Zhao X, Zhang J. Structural and functional alteration of the gut microbiomes in ICU staff: a cross-sectional analysis. Crit Care 2025; 29:141. [PMID: 40165255 PMCID: PMC11959758 DOI: 10.1186/s13054-025-05379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND 16S rRNA sequencing has revealed structural alterations in the gut microbiomes of medical workers, particularly those working in intensive care unit (ICU). This study aims to further compare the taxonomic and functional characteristics of gut microbiomes between ICU staff and non-medical individuals using metagenomic sequencing. METHODS A prospective cross-sectional cohort study was conducted, fecal samples from 39 individuals in each group-ICU staff and non-medical subjects were analyzed using metagenomic sequencing. PERMANOVA (using the adonis function) was employed to analyze the genus-level profiles and assess the impact of individual parameters on the gut microbiome. Multiple databases were utilized to annotate and compare the functional differences in gut microbiomes between the two groups. RESULTS We observed that ICU staff exhibited a significant decrease in gut microbiome diversity, characterized by a marked decline in Actinobacteria and a substantial increase in Bacteroides and Bacteroidaceae. CAZy annotation revealed a notable increase in carbohydrate-active enzymes within the ICU staff cohort. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis further indicated an elevated risk of endocrine and metabolic disorders, along with enhanced glycan biosynthesis and metabolism. Additionally, KEGG pathway enrichment analysis highlighted significant enrichment in cancer-related pathways. Analysis using the Virulence Factor Database (VFDB) showed a higher abundance of virulence factors associated with immune modulation, invasion, and antimicrobial activity/competitive advantage among ICU staff. Notably, no discernible difference in the presence of antibiotic resistance genes within the gut microbiomes was observed between the two groups. Importantly, all aforementioned differences demonstrated clear gender disparities. CONCLUSIONS Our findings indicated that ICU staff exhibited a reduction in gut microbiome diversity which was associated with an increase in virulence factors and carbohydrate-active enzymes, as well as with a heightened susceptibility to endocrine and metabolic diseases and cancers.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Chenyang Dong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Xin Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Lianlian Qu
- Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongling Lv
- School of Life Science, Hubei University, Wuhan, 430000, China
| | - Hong Liu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Jiaxin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Zhizhong Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China
| | - Hexiao Shen
- School of Life Science, Hubei University, Wuhan, 430000, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xing Zhao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430030, China.
| |
Collapse
|
14
|
Upadhyay V, Ortega EF, Ramirez Hernandez LA, Alexander M, Kaur G, Trepka K, Rock RR, Shima RT, Cheshire WC, Alipanah-Lechner N, Calfee CS, Matthay MA, Lee JV, Goga A, Jain IH, Turnbaugh PJ. Gut bacterial lactate stimulates lung epithelial mitochondria and exacerbates acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645052. [PMID: 40196632 PMCID: PMC11974820 DOI: 10.1101/2025.03.24.645052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear. Here, we use a combination of gnotobiotic mice, cell culture experiments, and re-analyses of a large metabolomics dataset from ARDS patients to reveal that gut bacteria impact lung cellular respiration by releasing metabolites that alter mitochondrial activity in lung epithelium. Colonization of germ-free mice with a complex gut microbiota stimulated lung mitochondrial gene expression. A single human gut bacterial species, Bifidobacterium adolescentis, was sufficient to replicate this effect, leading to a significant increase in mitochondrial membrane potential in lung epithelial cells. We then used genome sequencing and mass spectrometry to confirm that B. adolescentis produces L -lactate, which was sufficient to increase mitochondrial activity in lung epithelial cells. Finally, we found that serum lactate was significantly associated with disease severity in patients with ARDS from the Early Assessment of Renal and Lung Injury (EARLI) cohort. Together, these results emphasize the importance of more broadly characterizing the microbial etiology of ARDS and other lung diseases given the ability of gut bacterial metabolites to remotely control lung cellular respiration. Our discovery of a single bacteria-metabolite pair provides a proof-of-concept for systematically testing other microbial metabolites and a mechanistic biomarker that could be pursued in future clinical studies. Furthermore, our work adds to the growing literature linking the microbiome to mitochondrial function, raising intriguing questions as to the bidirectional communication between our endo- and ecto-symbionts.
Collapse
|
15
|
Beyoğlu D, Idle JR. The Microbiome and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:2882. [PMID: 40243472 PMCID: PMC11988851 DOI: 10.3390/ijms26072882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition wherein excessive fat accumulates in the liver, leading to inflammation and potential liver damage. In this narrative review, we evaluate the tissue microbiota, how they arise and their constituent microbes, and the role of the intestinal and hepatic microbiota in MASLD. The history of bacteriophages (phages) and their occurrence in the microbiota, their part in the potential causation of MASLD, and conversely, "phage therapy" for antibiotic resistance, obesity, and MASLD, are all described. The microbiota metabolism of bile acids and dietary tryptophan and histidine is defined, together with the impacts of their individual metabolites on MASLD pathogenesis. Both periodontitis and intestinal microbiota dysbiosis may cause MASLD, and how individual microorganisms and their metabolites are involved in these processes is discussed. Novel treatment opportunities for MASLD involving the microbiota exist and include fecal microbiota transplantation, probiotics, prebiotics, synbiotics, tryptophan dietary supplements, intermittent fasting, and phages or their holins and endolysins. Although FDA is yet to approve phage therapy in clinical use, there are multiple FDA-approved clinical trials, and this may represent a new horizon for the future treatment of MASLD.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| | - Jeffrey R. Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
16
|
Ebigbo N, Long A, Do P, Coughlin L, Poulides N, Jewell T, Gan S, Zhan X, Koh AY. Optimizing Precision Probiotics for Mitigating Graft-Versus-Host Disease. Microorganisms 2025; 13:706. [PMID: 40284543 PMCID: PMC12029423 DOI: 10.3390/microorganisms13040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Precision probiotics have shown great promise as novel therapies but have not been fully realized. One major obstacle is that different strains of the same gut microbiota species can induce markedly variable phenotypic outcomes. Here, we aimed to optimize and validate in a preclinical model, a six-species precision probiotic therapy for graft-versus-host disease (GVHD), an autoimmune complication following allogeneic stem cell transplantation. We had identified these six species as associated with protection against GVHD in a prior clinical study. We isolated strains of three of the targeted taxa (B. longum, C. bolteae, and Blautia spp.) from human stem cell transplant patients and characterized their SCFA production in vitro. We observed significant strain-to-strain variability among these gut microbiota taxa in their capacity to produce short-chain fatty acids, a microbiota-derived metabolite shown to be important for mitigating gut GVHD and inflammatory bowel disease, in vitro. We found that B. longum was able to augment butyrate production by C. bolteae and Blautia when co-cultured in vitro. "Optimized" precision probiotics mitigated GVHD and significantly increased survival (p = 0.013, log-rank test) in mice compared to a "standard" probiotic consortium of the same bacterial species obtained from a commercial repository. Importantly, the optimized probiotics resulted in significant increases in intestinal short-chain fatty acid concentrations compared to standard probiotics (p < 0.001, Mann-Whitney test). Our findings highlight the promising potential of utilizing an optimized precision probiotic approach to maximize therapeutic efficacy.
Collapse
Affiliation(s)
- Nonyelum Ebigbo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Apple Long
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phinga Do
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Laura Coughlin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Nicole Poulides
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
| | - Talia Jewell
- Isolation Bio Inc., San Francisco, CA 94306, USA
| | - Shuheng Gan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaowei Zhan
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (N.E.)
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Kim G, Kim S, Lee W, Shin H. The impact of coffee on gut microbial structure based on in vitro fecal incubation system. Food Sci Biotechnol 2025; 34:971-979. [PMID: 39974865 PMCID: PMC11832990 DOI: 10.1007/s10068-024-01717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 02/21/2025] Open
Abstract
Coffee is globally popular beverage, renowned for its taste and stimulating properties. This study aims to explore the impact of two different types of coffee, depending on extraction methods, on the gut microbiota. Fecal samples from healthy donors (n = 20) were cultured with or without coffee using in vitro fecal incubation. Both coffee-treated groups exhibited lower microbial diversity and greater structural differences in their communities compared to the control. Notably, the Bifidobacterium genus was overrepresented in the instant coffee (IC)-treated groups, whereas the Blautia genus was underrepresented in both coffee-treated groups. Additionally, genes for TCA cycle and vitamin B6 metabolism were more prevalent in coffee-treated groups than in the control. However, the precursor pathways leading to the TCA cycle differed between the DC- and IC-treated groups, reflecting the distinct chemical compositions of each coffee type. These findings demonstrate that extraction method of coffee significantly affects its impacts on gut microbial structure. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01717-7.
Collapse
Affiliation(s)
- Gyungcheon Kim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul, 05006 Republic of Korea
| | - Seongok Kim
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul, 05006 Republic of Korea
| | - WonJune Lee
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul, 05006 Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul, 05006 Republic of Korea
| |
Collapse
|
18
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Abdelhamid M, Counts SE, Zhou C, Hida H, Kim JI, Michikawa M, Jung CG. Protective Effects of Bifidobacterium Breve MCC1274 as a Novel Therapy for Alzheimer's Disease. Nutrients 2025; 17:558. [PMID: 39940416 PMCID: PMC11820889 DOI: 10.3390/nu17030558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by memory impairment that significantly interferes with daily life. Therapeutic options for AD that substantively modify disease progression remain a critical unmet need. In this regard, the gut microbiota is crucial in maintaining human health by regulating metabolism and immune responses, and increasing evidence suggests that probiotics, particularly beneficial bacteria, can enhance memory and cognitive functions. Recent studies have highlighted the positive effects of Bifidobacterium breve MCC1274 (B. breve MCC1274) on individuals with mild cognitive impairment (MCI) and schizophrenia. Additionally, oral supplementation with B. breve MCC1274 has been shown to effectively prevent memory decline in AppNL-G-F mice. In relation to Alzheimer's pathology, oral supplementation with B. breve MCC1274 has been found to reduce amyloid-β (Aβ) accumulation and tau phosphorylation in both AppNL-G-F and wild-type (WT) mice. It also decreases microglial activation and increases levels of synaptic proteins. In this review, we examine the beneficial effects of B. breve MCC1274 on AD, exploring potential mechanisms of action and how this probiotic strain may aid in preventing or treating the disease. Furthermore, we discuss the broader implications of B. breve MCC1274 for improving overall host health and provide insights into future research directions for this promising probiotic therapy.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.); (S.E.C.)
| | - Scott E. Counts
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.); (S.E.C.)
| | - Chunyu Zhou
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Jae-Il Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, Nippon Dental University, Niigata 951-8580, Japan
| | - Cha-Gyun Jung
- Center for Nursing International Promotion, Nagoya City University Graduate School of Nursing, Nagoya 467-8601, Japan
| |
Collapse
|
20
|
Wang C, Chao C, Sun R, Yu J, Yang Y, Copeland L, Wang S. Increased Crystallite Stability Enhances Gut Microbial Fermentability of Type 5 Resistant Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2613-2622. [PMID: 39818832 DOI: 10.1021/acs.jafc.4c08872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the in vitro fecal fermentation properties of starch-lipid complexes with VI-type and VII-type crystallites were investigated in the present study. Compared to VI-type complexes, fermentation of VII-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production. Moreover, fermentation of VII-type complexes promoted a greater relative abundance of SCFAs-producing bacteria in the fecal microbiota than did VI-type complexes. Our results show that the more stable VII-type complexes are utilized more effectively than VI-type complexes, which can be attributed to the bacteria binding more readily to VII-type than to VI-type complexes. Therefore, VII-type complexes were considered to deliver better health benefits than VI-type complexes due to their greater potential for producing SCFAs and stimulating beneficial gut microbial activity in the colon.
Collapse
Affiliation(s)
- Cuiping Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
- Food Laboratory of Zhongyuan, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
21
|
Florêncio GP, Xavier AR, Natal ACDC, Sadoyama LP, Röder DVDDB, Menezes RDP, Sadoyama Leal G, Patrizzi LJ, Pena GDG. Synergistic Effects of Probiotics and Lifestyle Interventions on Intestinal Microbiota Composition and Clinical Outcomes in Obese Adults. Metabolites 2025; 15:70. [PMID: 39997695 PMCID: PMC11857521 DOI: 10.3390/metabo15020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Obesity is a growing global epidemic. The composition of the intestinal microbiota can be influenced by several factors. Studies highlight the role of intestinal bacteria in the pathophysiology of obesity. So, the objective of this study was to investigate whether the use of probiotics, together with healthy lifestyle habits, contributes to weight reduction in obese individuals by analyzing the intestinal microbiota profile. METHODS A prospective study was carried out with 45 adults with obesity. Participants underwent guidance on healthy lifestyle habits, received a probiotic component containing different microbiological strains and were followed for 60 days. Clinical parameters, body composition, biochemical analysis, and intestinal microbiota assessment were performed before and after treatment. After 60 days, it was observed that the bacterial strains present in the probiotic were present in the patients' intestinal microbiota. Participants also showed improvements in physical activity, sleep quality, and anxiety management, as well as changes in some eating habits, such as a reduction in the consumption of processed foods and a significant increase in water intake. RESULTS A reduction in BMI, fasting glucose, insulin, HOMA-IR, LDL cholesterol, and triglycerides was observed, in addition to an increase in HDL cholesterol, improvement in bowel movement frequency, and stool consistency. Analysis of the intestinal microbiota revealed an increase in microbial diversity and a better balance between the bacterial phyla Firmicutes and Bacteroidetes. CONCLUSIONS The changes related to improving the composition of the intestinal microbiota, dietary habits, increased physical activity, reduced anxiety, and better sleep quality have significantly contributed to weight loss and improvements in physiological parameters in obese individuals.
Collapse
Affiliation(s)
- Glauber Pimentel Florêncio
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Analicy Rodrigues Xavier
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Ana Catarina de Castro Natal
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | - Lorena Prado Sadoyama
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| | | | - Ralciane de Paula Menezes
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil;
| | - Geraldo Sadoyama Leal
- Institute of Biotechnology, Federal University of Catalão, Catalão 75704-020, GO, Brazil;
| | - Lislei Jorge Patrizzi
- Department of Physiotherapy, Federal University of Triângulo Mineiro, Uberaba 38025-350, MG, Brazil;
| | - Geórgia das Graças Pena
- School of Medicine, Federal University of Uberlândia, Uberlândia 38405-320, MG, Brazil; (G.P.F.); (A.R.X.); (A.C.d.C.N.); (L.P.S.)
| |
Collapse
|
22
|
Kruk M, Lalowski P, Płecha M, Ponder A, Rudzka A, Zielińska D, Trząskowska M. Prebiotic potential of spent brewery grain - In vitro study. Food Chem 2025; 463:141254. [PMID: 39298848 DOI: 10.1016/j.foodchem.2024.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Spent brewery grain (SBG) is a by-product of the brewery industry. The study aimed to investigate the prebiotic potential of SBG. The chemical composition and fermentation capacity of SBG were checked. The gut microbiota response to SBG was assessed in two in vitro models (batch fermentation and dynamic system). Substances with prebiotic properties, including arabinoxylans (16.7 g/100 g) and polyphenols (49.1 mg/100 g), were identified in SBG. Suitable growth and fermentation by probiotic bacteria were observed. The modulatory effect of gut microbiota depends on the in vitro system used. In batch fermentation, there was no stimulation of Bifidobacterium or lactic acid bacteria (LAB), but short-chain fatty acid (SCFA) and branched short-chain fatty acids (BCFA) synthesis increased. In dynamic, SBG exhibited a moderate bifidogenic effect, promoting Akkermansia and LAB growth while reducing Bacteroides and Escherichia-Shigella. SCFA stabilisation and reduction of BCFA content were noted. Moderate prebiotic effects were observed.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| | - Piotr Lalowski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Alicja Ponder
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Agnieszka Rudzka
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
23
|
Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol 2025; 15:1487641. [PMID: 39834364 PMCID: PMC11743475 DOI: 10.3389/fmicb.2024.1487641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The beneficial properties of probiotics have always been a point of interest. Probiotics play a major role in maintaining the health of Gastrointestinal Tract (GIT), a healthy digestive system is responsible for modulating all other functions of the body. The effectiveness of probiotics can be enhanced by formulating them with prebiotics the formulation thus formed is referred to as synbiotics. It not only improves the viability and stability of probiotic cells, but also inhibits the growth of pathogenic strains. Lactobacillus and Bifidobacterium spp. are most commonly used as probiotics. The other microbial spp. that can be used as probiotics are Bacillus, Streptococcus, Enterococcus, and Saccharomyces. Probiotics can be used for the treatment of diabetes, obesity, inflammatory, cardiovascular, respiratory, Central nervous system disease (CNS) and digestive disorders. It is also essential to encapsulate live microorganisms that promote intestinal health. Encapsulation of probiotics safeguards them against risks during production, storage, and gastrointestinal transit. Heat, pressure, and oxidation eradicate probiotics and their protective qualities. Encapsulation of probiotics prolongs their viability, facilitates regulated release, reduces processing losses, and enables application in functional food products. Probiotics as microspheres produced through spray drying or coacervation. This technique regulates the release of gut probiotics and provides stress resistance. Natural encapsulating materials including sodium alginate, calcium chloride, gel beads and polysaccharide promoting safeguards in probiotics during the digestive process. However, several methods including, spray drying where liquid is atomized within a heated air chamber to evaporate moisture and produce dry particles that improves the efficacy and stability of probiotics. Additionally, encapsulating probiotics with prebiotics or vitamins enhance their efficacy. Probiotics enhance immune system efficacy by augmenting the generation of antibodies and immunological cells. It combats illnesses and enhances immunity. Recent studies indicate that probiotics may assist in the regulation of weight and blood glucose levels and influence metabolism and insulin sensitivity. Emerging research indicates that the "gut-brain axis" connects mental and gastrointestinal health. Probiotics may alleviate anxiety and depression via influencing neurotransmitter synthesis and inflammation. Investigations are underway about the dermatological advantages of probiotics that forecasting the onsite delivery of probiotics, encapsulation is an effective technique and requires more consideration from researchers. This review focuses on the applications of probiotics, prebiotics and synbiotics in the prevention and treatment of human health.
Collapse
Affiliation(s)
- Bhutada Sarita
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Dahikar Samadhan
- Department of Microbiology, Sanjivani Arts, Commerce and Science College, Kopargaon, India
| | - Md Zakir Hassan
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
- Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Elena G. Kovaleva
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
24
|
Wongsamart R, Somboonna N, Cheibchalard T, Klankeo P, Ruampatana J, Nuntapaitoon M. Probiotic Bacillus licheniformis DSMZ 28710 improves sow milk microbiota and enhances piglet health outcomes. Sci Rep 2025; 15:17. [PMID: 39747535 PMCID: PMC11696930 DOI: 10.1038/s41598-024-84573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Maintaining a diverse and balanced sow milk microbiome is essential to piglet development. Thus, this study aimed to examine the effects of probiotic Bacillus licheniformis supplementation on the microbiome composition of sow colostrum and milk, and to review associated health findings in piglets. B. licheniformis DSMZ 28710 was supplemented at 10 g/day as feed additive before predicted farrowing until weaning by top dressing. Colostrum and milk samples were collected for metagenomic DNA extraction, 16s rRNA sequencing, and bioinformatics analyses for bacterial microbiota diversity. Results indicated that the supplementation increased the abundances of beneficial bacteria, such as Lactobacillus, Pediococcus, Bacteroides, and Bifidobacterium, while decreasing the abundances of pathogenic bacteria, such as Staphylococcus aureus, Enterobacteriaceae, and Campylobacter in the colostrum. The supplementation increased diversity while maintaining richness and evenness. Moreover, the rise in predicted microbial community metabolic function in membrane transport pathways provides crucial evidence showing that the supplementation is potentially beneficial to piglets, as these pathways are important for providing nutrients and immunity to offspring. This research highlights the importance of microbiome composition in sow milk and the potential of B. licheniformis supplementation as a means to improve piglet health and development.
Collapse
Affiliation(s)
- Rungdawan Wongsamart
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand.
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanya Cheibchalard
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piriya Klankeo
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Morakot Nuntapaitoon
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
25
|
Xiao Y, Huang L, Zhao J, Chen W, Lu W. The gut core microbial species Bifidobacterium longum: Colonization, mechanisms, and health benefits. Microbiol Res 2025; 290:127966. [PMID: 39547052 DOI: 10.1016/j.micres.2024.127966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bifidobacterium longum (B. longum) is a species of the core microbiome in the human gut, whose abundance is closely associated with host age and health status. B. longum has been shown to modulate host gut microecology and have the potential to alleviate various diseases. Comprehensive understanding on the colonization mechanism of B. longum and mechanism of the host-B. longum interactions, can provide us possibility to prevent and treat human diseases through B. longum-directed strategies. In this review, we summarized the gut colonization characteristics of B. longum, discussed the diet factors that have ability/potential to enrich indigenous and/or ingested B. longum strains, and reviewed the intervention mechanisms of B. longum in multiple diseases. The key findings are as follows: First, B. longum has specialized colonization mechanisms, like a wide carbohydrate utilization spectrum that allows it to adapt to the host's diet, species-level conserved genes encoding bile salt hydrolase (BSHs), and appropriate bacterial surface structures. Second, dietary intervention (e.g., anthocyanins) could effectively improve the gut colonization of B. longum, demonstrating the feasibility of diet-tuned strain colonization. Finally, we analyzed the skewed abundance of B. longum in different types of diseases and summarized the main mechanisms by which B. longum alleviates digestive (repairing the intestinal mucosal barrier by stimulating Paneth cell activity), immune (up-regulating the regulatory T cell (Treg) populations and maintaining the balance of Th1/Th2), and neurological diseases (regulating the kynurenine pathway and quinolinic acid levels in the brain through the gut-brain axis).
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Lijuan Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
26
|
Firrman J, Deyaert S, Mahalak KK, Liu L, Baudot A, Joossens M, Poppe J, Cameron SJS, Van den Abbeele P. The Bifidogenic Effect of 2'Fucosyllactose Is Driven by Age-Specific Bifidobacterium Species, Demonstrating Age as an Important Factor for Gut Microbiome Targeted Precision Medicine. Nutrients 2024; 17:151. [PMID: 39796584 PMCID: PMC11723031 DOI: 10.3390/nu17010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested. The responses of these divergent communities to treatment with the human milk oligosaccharide 2'-fucosyllactose (2'FL), fructo-oligosaccharides (FOS), and lactose was investigated using the Ex vivo SIFR® technology that employs bioreactor fermentation and is validated to be predictive of clinical findings. Additionally, it was evaluated whether combining faecal microbiomes of a given age group into a single pooled microbiome produced similar results as the individual microbiomes. RESULTS First, marked age-dependent changes in community structure were identified. Bifidobacterium levels strongly declined as age increased, and Bifidobacterium species composition was age-dependent: B. longum, B. catenulatum/pseudocatenulatum, and B. adolescentis were most prevalent for breastfed infants, toddlers/children, and adults, respectively. Metabolomic analyses (LA-REIMS) demonstrated that these age-dependent differences particularly impacted treatment effects of 2'FL (more than FOS/lactose). Further analysis revealed that while 2'FL enhanced production of short-chain fatty acids (SCFAs) and exerted potent bifidogenic effects, regardless of age, the specific Bifidobacterium species enhanced by 2'FL, as well as subsequent cross-feeding interactions, were highly age-dependent. Furthermore, single-pooled microbiomes produced results that were indicative of the average treatment response for each age group. Nevertheless, pooled microbiomes had an artificially high diversity, thus overestimating treatment responses (especially for infants), did not recapitulate interindividual variation, and disallowed for the correlative analysis required to unravel mechanistic actions. CONCLUSIONS Age is an important factor in shaping the gut microbiome, with the dominant taxa and their metabolites changing over a lifetime. This divergence affects the response of the microbiota to therapeutics, demonstrated in this study using 2'FL. These results evidence the importance of screening across multiple age groups separately to provide granularity of how therapeutics impact the microbiome and, consequently, human health.
Collapse
Affiliation(s)
- Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19462, USA; (J.F.)
| | - Stef Deyaert
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium
| | - Karley K. Mahalak
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19462, USA; (J.F.)
| | - LinShu Liu
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, 600 East Mermaid Lane, Wyndmoor, PA 19462, USA; (J.F.)
| | - Aurélien Baudot
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology (WE10), Ghent University, 9000 Ghent, Belgium
| | - Jonas Poppe
- Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium
| | - Simon J. S. Cameron
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | | |
Collapse
|
27
|
Gao F, Shen Y, Wu H, Laue HE, Lau FK, Gillet V, Lai Y, Shrubsole MJ, Prada D, Zhang W, Liu Z, Bellenger JP, Takser L, Baccarelli AA. Associations of Stool Metal Exposures with Childhood Gut Microbiome Multiomics Profiles in a Prospective Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22053-22063. [PMID: 39630952 DOI: 10.1021/acs.est.4c09642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Metal exposures are closely related to childhood developmental health. However, their effects on the childhood gut microbiome, which also impacts health, are largely unexplored using microbiome multiomics including the metagenome and metatranscriptome. This study examined the associations of fecal profiles of metal/element exposures with gut microbiome species and active functional pathways in 8- to 12-year-old children (N = 116) participating in the GESTation and Environment (GESTE) cohort study. We analyzed 19 stool metal and element concentrations (B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, Ba, and Pb). Covariate-adjusted linear regression models identified several significant microbiome associations with continuous stool metal/element concentrations. For instance, Zn was positively associated with Turicibacter sanguinis (coef = 1.354, q-value = 0.039) and negatively associated with Eubacterium eligens (coef = -0.794, q-value = 0.044). Higher concentrations of Cd were associated with lower Eubacterium eligens (coef = -0.774, q-value = 0.045). Additionally, a total of 490 significant functional pathways such as biosynthesis and degradation/utilization/assimilation were identified, corresponding to different functions, including amino acid synthesis and carbohydrate degradation. Our results suggest links among metal exposures, pediatric gut microbiome multiomics, and potential health implications. Future work will further explore their relation to childhood health.
Collapse
Affiliation(s)
- Feng Gao
- Department of Environmental Health Sciences, Fielding School of Public Health, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Yike Shen
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Hannah E Laue
- Department of Biostatistics and Epidemiology, University of Massachusetts Amherst School of Public Health and Health Sciences, Amherst, Massachusetts 01003, United States
| | - Fion K Lau
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Virginie Gillet
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Yunjia Lai
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Diddier Prada
- Institute for Health Equity Research - IHER, Department of Population Health Science and Policy and the Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Zhonghua Liu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York 10032, United States
| | | | - Larissa Takser
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Senaprom S, Namjud N, Ondee T, Bumrungpert A, Pongpirul K. Sugar Composition of Thai Desserts and Their Impact on the Gut Microbiome in Healthy Volunteers: A Randomized Controlled Trial. Nutrients 2024; 16:3933. [PMID: 39599719 PMCID: PMC11597037 DOI: 10.3390/nu16223933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The relationship between consuming Thai desserts-predominantly composed of carbohydrates-and gut microbiome profiles remains unclear. This study aimed to evaluate the effects of consuming various Thai desserts with different GI values on the gut microbiomes of healthy volunteers. METHODS This open-label, parallel randomized clinical trial involved 30 healthy individuals aged 18 to 45 years. Participants were randomly assigned to one of three groups: Phetchaburi's Custard Cake (192 g, low-GI group, n = 10), Saraburi's Curry Puff (98 g, medium-GI group, n = 10), and Lampang's Crispy Rice Cracker (68 g, high-GI group, n = 10), each consumed alongside their standard breakfast. Fecal samples were collected at baseline and 24 h post-intervention for metagenomic analysis of gut microbiome profiles using 16S rRNA gene sequencing. RESULTS After 24 h, distinct trends in the relative abundance of various gut microbiota were observed among the dessert groups. In the high-GI dessert group, the abundance of Collinsella and Bifidobacterium decreased compared to the low- and medium-GI groups, while Roseburia and Ruminococcus showed slight increases. Correlation analysis revealed a significant negative relationship between sugar intake and Lactobacillus abundance in the medium- and high-GI groups, but not in the low-GI group. Additionally, a moderately negative association was observed between Akkermansia abundance and sugar intake in the high-GI group. These bacteria are implicated in energy metabolism and insulin regulation. LEfSe analysis identified Porphyromonadaceae and Porphyromonas as core microbiota in the low-GI group, whereas Klebsiella was enriched in the high-GI group, with no predominant bacteria identified in the medium-GI group. CONCLUSIONS The findings suggest that Thai desserts with varying GI levels can influence specific gut bacteria, though these effects may be temporary.
Collapse
Affiliation(s)
- Sayamon Senaprom
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.); (N.N.); (T.O.)
| | - Nuttaphat Namjud
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.); (N.N.); (T.O.)
| | - Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.); (N.N.); (T.O.)
- Center of Excellence in Preventive and Integrative Medicine (CE-PIM), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Akkarach Bumrungpert
- College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand;
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.); (N.N.); (T.O.)
- Center of Excellence in Preventive and Integrative Medicine (CE-PIM), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Bumrungrad International Hospital, Bangkok 10110, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| |
Collapse
|
29
|
Mhlanga P, Mianda SM, Sivakumar D. Impact of Fermentation of Pumpkin Leaves and Melon Varieties with Lactobacillus Strains on Physicochemical Properties, Antioxidant Activity, and Carotenoid Compounds. Foods 2024; 13:3562. [PMID: 39593978 PMCID: PMC11592831 DOI: 10.3390/foods13223562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This study examined the impact of fermentation using Lactiplantibacillus plantarum (L75) and Bifidobacterium longum (BF) on the total soluble solids (TSS), pH, TA, LAB survival, color properties, ascorbic acid content, total phenolic content (TPC), carotenoid components, and antioxidant properties of smoothies made from melon varieties (Cantaloupe, Honeydew, and Watermelon) separately with pumpkin leaves (Cucurbita moschata and Cucurbita pepo). For all smoothies, pH (r = -0.74) and TSS (r = -0.79) were inversely and strongly correlated with LAB counts, while LAB counts were positively correlated with TA (r = 0.87). Fermentation time (24 to 72 h) significantly (p < 0.05) decreased the TSS (%), pH, and color properties of all smoothies fermented with L75 or BF, while TA increased. Fermenting Cantaloupe melon and C pepo leaves with L75 (CMCL75) for 24 h increased the ascorbic acid content to 3.8 mg/100 mL. The sensory panel scores were highest for Watermelon and C. moschata or C. pepo fermented with L75 or BF for 24 h. TPC concentration was highest in CMCL75 (70.76 mg of gallic acid per 100 mL) after 24 h. C. pepo leaves and Cantaloupe fermented with L75 (CPCL75) showed the highest concentration of total carotenoids (70.38 mg/100 mL), lutein (2.53 µg/100 mL), cis β-carotene (25.43 µg/100 mL), and trans β-carotene (620.37 µg/100 mL). In contrast, CMCL75 showed the highest concentration of zeaxanthin (0.70 mg/100 mL). This study demonstrated the potential of fermenting Cantaloupe and pumpkin leaves together with the L75 strain to produce non-dairy functional products.
Collapse
Affiliation(s)
- Pretty Mhlanga
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (S.M.M.)
| | - Sephora Mutombo Mianda
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (S.M.M.)
| | - Dharini Sivakumar
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (S.M.M.)
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4108, Australia
| |
Collapse
|
30
|
Menon A, Ravindran R, Koopmans S, Sanders JPM, Rai DK, Gaffey J, Augustyniak A, McMahon H. Purification, characterisation, and determination of prebiotic potential of fructooligosaccharide from perennial rye grass. Int J Biol Macromol 2024; 279:135031. [PMID: 39244127 DOI: 10.1016/j.ijbiomac.2024.135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/26/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Abhay Menon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland
| | - Rajeev Ravindran
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland
| | | | | | - Dilip K Rai
- Department of Food BioSciences, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland
| | - Aleksandra Augustyniak
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland
| | - Helena McMahon
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technology, Tralee, Ireland.
| |
Collapse
|
31
|
Heer K, Kaur M, Sidhu D, Dey P, Raychaudhuri S. Modulation of gut microbiome in response to the combination of Escherichia coli Nissle 1917 and sugars: a pilot study using host-free system reflecting impact on interpersonal microbiome. Front Nutr 2024; 11:1452784. [PMID: 39502876 PMCID: PMC11534610 DOI: 10.3389/fnut.2024.1452784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION The differential effects of probiotic, prebiotic, and synbiotic formulations on human health are dictated by the inter-individual gut microbial profile. The effects of probiotics such as Escherichia coli Nissle 1917 (ECN) on gut microbiota may vary according to the microbiome profiles of individuals and may be influenced by the presence of certain carbohydrates, which can impact microbial community structure and treatment results. METHOD Processed fecal samples from donors having contrasting lifestyles, dietary patterns, and disease histories were mixed with 5 × 106 CFU/mL ECN with or without 1% (w/v) sugars (glucose, galactose, or rice starch) in a host-free system. Post-incubation, 16 s rRNA sequencing was performed. Microbial diversity and taxonomic abundance were computed in relation to the probiotic, prebiotic, and synbiotic treatment effects and interpersonal microbiome variance. RESULT Baseline gut microbial profiles showed significant inter-individual variations. ECN treatment alone had a limited impact on the inter-personal gut microbial diversity and abundance. Prebiotics caused a substantial enrichment in Actinobacteria, but there were differences in the responses at the order and genus levels, with enrichment shown in Bifidobacterium, Collinsella, and Megasphaera. Subject B exhibited enrichment in Proteobacteria and Cyanobacteria, but subject A showed more diversified taxonomic alterations as a consequence of the synbiotic treatments. Despite negligible difference in the α-diversity, probiotic, prebiotic, and synbiotic treatments independently resulted in distinct segregation in microbial communities at the β-diversity level. The core microbiota was altered only under prebiotic and synbiotic treatment. Significant correlations primarily for minor phyla were identified under prebiotic and synbiotic treatment. CONCLUSION The interindividual microbiome composition strongly influences the effectiveness of personalized diet and treatment plans. The responsiveness to dietary strategies varies according to individual microbiome profiles influenced by health, diet, and lifestyle. Therefore, tailored approaches that consider individual microbiome compositions are crucial for maximizing gut health and treatment results.
Collapse
Affiliation(s)
- Kiran Heer
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manpreet Kaur
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Dwinder Sidhu
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Saumya Raychaudhuri
- Molecular Biology and Microbial Physiology Division, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
32
|
Dargenio VN, Cristofori F, Brindicci VF, Schettini F, Dargenio C, Castellaneta SP, Iannone A, Francavilla R. Impact of Bifidobacterium longum Subspecies infantis on Pediatric Gut Health and Nutrition: Current Evidence and Future Directions. Nutrients 2024; 16:3510. [PMID: 39458503 PMCID: PMC11510697 DOI: 10.3390/nu16203510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: the intestinal microbiota, a complex community vital to human health, is shaped by microbial competition and host-driven selective pressures. Among these microbes, Bifidobacterium plays a crucial role in early gut colonization during neonatal stages, where Bifidobacterium longum subspecies infantis (B. infantis) predominates and is particularly prevalent in healthy breastfed infants. Objectives: as we embark on a new era in nutrition of the pediatric population, this study seeks to examine the existing understanding regarding B. infantis, encompassing both preclinical insights and clinical evidence. Methods: through a narrative disceptation of the current literature, we focus on its genetic capacity to break down various substances that support its survival and dominance in the intestine. Results: using "omics" technologies, researchers have identified beneficial mechanisms of B. infantis, including the production of short-chain fatty acids, serine protease inhibitors, and polysaccharides. While B. infantis declines with age and in various diseases, it remains a widely used probiotic with documented benefits for infant and child health in numerous studies. Conclusions: the current scientific evidence underscores the importance for ongoing research and clinical trials for a deeper understanding of B. infantis's role in promoting long-term health.
Collapse
Affiliation(s)
- Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Viviana Fara Brindicci
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care, Santissima Annunziata Hospital, 74123 Taranto, Italy;
| | - Costantino Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Stefania Paola Castellaneta
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| | - Andrea Iannone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari “Aldo Moro”, 70126 Bari, Italy; (V.N.D.); (F.C.); (V.F.B.); (C.D.); (S.P.C.)
| |
Collapse
|
33
|
Li Z, Wang Y, Wang Z, Wu D, Zhao Y, Gong X, Jiang Q, Xia C. Study on biotransformation and absorption of genistin based on fecal microbiota and Caco-2 cell. Front Pharmacol 2024; 15:1437020. [PMID: 39444613 PMCID: PMC11496136 DOI: 10.3389/fphar.2024.1437020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Genistin, as a kind of natural isoflavone glycoside, has good biological activity, and its weak absorption makes it closely related to intestinal flora. However, the role of the intestinal flora is still unclear and whether the metabolites produced by the intestinal flora are absorbed systemically is also variable. Methods Genistin was fermented for 24 h based on fecal bacteria fermentation technology. The components were qualitatively and quantitatively analyzed by HPLC and UHPLC-Q-Exactive Orbitrap Mass spectrometry. The composition of intestinal flora in fermentation samples from fecal bacteria was detected by 16S rRNA sequencing. Five representative probiotics were cultured in vitro and fermented with genistin to determine similarities and differences in genistin metabolites by different bacteria at different times. Finally, the absorption results of metabolites by fermentation were verified by a Caco-2 cell monolayer. Results The HPLC results of fecal fermentation showed that genistein levels increased from 0.0139 ± 0.0057 mg/mL to 0.0426 ± 0.0251 mg/mL and two new metabolites were produced. A total of 46 metabolites following fecal fermentation were identified, resulting from various biotransformation reaction products, such as decarbonylation, hydroxylation, and methylation. Simultaneously, the 16S rRNA results showed that the intestinal flora changed significantly before and after fermentation and that the intestinal microorganisms in the control (Con) group and the fermentation (Fer) group showed a significant separation trend. Five genera, Lactobacillus, Bifidobacterium, Parabacteroides, Sutterella, and Dorea, were considered the dominant flora for genistin fermentation. The qualitative results of fermentation of genistin by five probiotics at different times showed that there were significant differences in small molecule metabolites by fermentation of different bacteria. Meanwhile, most metabolites could be identified following fecal bacteria fermentation, which verified the importance of the dominant bacteria in the feces for the biotransformation of components. Finally, the absorption results of the metabolites based on the Caco-2 cell monolayer showed that 14 metabolites could be absorbed into the circulation in vivo through the mesentery. Discussion The small molecule metabolites of genistin by fermentation of fecal bacteria can be well absorbed systemically by the body. These studies provide a reference value for explaining the transformation and absorption of flavonoid glycosides in the intestine.
Collapse
Affiliation(s)
- Zhe Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqing Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zicheng Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Dongxue Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuhao Zhao
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xun Gong
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Congmin Xia
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Schlienger de Alba BN, Espinosa Andrews H. Benefits and Challenges of Encapsulating Bifidobacterium Probiotic Strains with Bifidogenic Prebiotics. Probiotics Antimicrob Proteins 2024; 16:1790-1800. [PMID: 38696093 DOI: 10.1007/s12602-024-10269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 10/02/2024]
Abstract
Bifidobacteria offer remarkable health benefits when added to probiotic formulations, contributing to the burgeoning market driven by increased awareness among consumers and healthcare providers. However, several pivotal challenges must be crossed: strain selection, encapsulation wall materials, compatible food matrices, and the intricate interplay among these factors. An approach to address these challenges involves exploring bifidogenic substrates as potential encapsulation materials. This strategy has the potential to enhance bifidobacteria viability within the demanding gastrointestinal environment, extend shelf life, and promote synergistic interactions that promote bifidobacteria survival. Nonetheless, it is crucial to acknowledge that the relationship between bifidogenic substrates and bifidobacterial metabolism is complex and multifaceted. Consequently, despite the promising outlook, it is important to emphasize that this approach requires in-depth investigation, as the intricate interplay between these elements constitutes a rich area of ongoing research. This pursuit aims to ultimately deliver consumers a product that can genuinely improve their health and well-being.
Collapse
Affiliation(s)
- Brenda Nathalie Schlienger de Alba
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Food Technology, Camino Arenero #1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, A.C. (CIATEJ), Mexico
| | - Hugo Espinosa Andrews
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Food Technology, Camino Arenero #1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, A.C. (CIATEJ), Mexico.
| |
Collapse
|
35
|
Dai H, Huang Q, Li S, Du D, Yu W, Guo J, Zhao Z, Yu X, Ma F, Sun P. Effect of Dietary Benzoic Acid Supplementation on Growth Performance, Rumen Fermentation, and Rumen Microbiota in Weaned Holstein Dairy Calves. Animals (Basel) 2024; 14:2823. [PMID: 39409772 PMCID: PMC11476432 DOI: 10.3390/ani14192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Supplementation with benzoic acid (BA) in animal feed can reduce feeds' acid-binding capacity, inhibit pathogenic bacterial growth, enhance nutrient digestion, and increase intestinal enzyme activities. This study aimed to investigate the effects of different doses of BA on the growth performance, rumen fermentation, and rumen microbiota of weaned Holstein dairy calves. Thirty-two Holstein calves at 60 days of age were randomly assigned into four groups (n = 8): a control group (fed with a basal diet without BA supplementation; CON group) and groups that were supplemented with 0.25% (LBA group), 0.50% (MBA group), and 0.75% (HBA group) BA to the basal diet (dry matter basis), respectively. The experiment lasted for 42 days, starting at 60 days of age and ending at 102 days of age, with weaning occurring at 67 days of age. Supplementation with BA linearly increased the average daily gain of the weaned dairy calves, which was significantly higher in the LBA, MBA, and HBA groups than that in the CON group. The average daily feed intake was quadratically increased with increasing BA supplementation, peaking in the MBA group. Supplementation with BA linearly decreased the feed-to-gain (F/G) ratio, but did not affect rumen fermentation parameters, except for the molar proportion of butyrate and iso-butyrate, which were linearly increased with the dose of BA supplementation. Compared with the CON group, the molar proportions of iso-butyrate in the LBA, MBA, and HBA groups and that of butyrate in the HBA group were significantly higher than those in the CON group. Supplementation with BA had no significant effect on the alpha and beta diversity of the rumen microbiota, but significantly increased the relative abundances of beneficial bacteria, such as Bifidobacterium, and reduced those of the harmful bacteria, such as unclassified_o__Gastranaerophilales and Oscillospiraceae_UCG-002, in the rumen. Functional prediction analysis using the MetaCyc database revealed significant variations in the pathways associated with glycolysis across groups, including the GLYCOLYSIS-TCA-GLYOX-BYPASS, GLYCOL-GLYOXDEG-PWY, and P105-PWY pathways. In conclusion, BA supplementation improved the composition and function of rumen microbiota, elevated the production of butyrate and iso-butyrate, and increased the growth performance of weaned Holstein dairy calves.
Collapse
Affiliation(s)
- Haonan Dai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China; (S.L.); (W.Y.); (Z.Z.)
| | - Dewei Du
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China; (S.L.); (W.Y.); (Z.Z.)
| | - Jia Guo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China; (S.L.); (W.Y.); (Z.Z.)
| | - Xin Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| |
Collapse
|
36
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
37
|
Kujawska M, Neuhaus K, Huptas C, Jiménez E, Arboleya S, Schaubeck M, Hall LJ. Exploring the Potential Probiotic Properties of Bifidobacterium breve DSM 32583-A Novel Strain Isolated from Human Milk. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10346-9. [PMID: 39287748 DOI: 10.1007/s12602-024-10346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Human milk is the best nutrition for infants, providing optimal support for the developing immune system and gut microbiota. Hence, it has been used as source for probiotic strain isolation, including members of the genus Bifidobacterium, in an effort to provide beneficial effects to infants who cannot be exclusively breastfed. However, not all supplemented bifidobacteria can effectively colonise the infant gut, nor confer health benefits to the individual infant host; therefore, new isolates are needed to develop a range of dietary products for this specific age group. Here, we investigated the beneficial potential of Bifidobacterium breve DSM 32583 isolated from human milk. We show that in vitro B. breve DSM 32583 exhibited several characteristics considered fundamental for beneficial bacteria, including survival in conditions simulating those present in the digestive tract, adherence to human epithelial cell lines, and inhibition of growth of potentially pathogenic microorganisms. Its antibiotic resistance patterns were comparable to those of known beneficial bifidobacterial strains, and its genome did not contain plasmids nor virulence-associated genes. These results suggest that B. breve DSM 32583 is a potential probiotic candidate.
Collapse
Affiliation(s)
- Magdalena Kujawska
- Chair of intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Christopher Huptas
- Chair of Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | | | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Monika Schaubeck
- HiPP GmbH & Co. Vertrieb KG, Georg-Hipp-Str. 7, 85276, Pfaffenhofen (Ilm), Germany.
| | - Lindsay J Hall
- Chair of intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| |
Collapse
|
38
|
Maruta H, Fujii Y, Toyokawa N, Nakamura S, Yamashita H. Effects of Bifidobacterium-Fermented Milk on Obesity: Improved Lipid Metabolism through Suppression of Lipogenesis and Enhanced Muscle Metabolism. Int J Mol Sci 2024; 25:9934. [PMID: 39337421 PMCID: PMC11432277 DOI: 10.3390/ijms25189934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and Bifidobacterium, have garnered attention for their potential in obesity prevention. However, the effects of Bifidobacterium-fermented products on obesity have not been thoroughly elucidated. Bifidobacterium, which exists in the gut of animals, is known to enhance lipid metabolism. During fermentation, it produces acetic acid, which has been reported to improve glucose tolerance and insulin resistance, and exhibit anti-obesity and anti-diabetic effects. Functional foods have been very popular around the world, and fermented milk is a good candidate for enrichment with probiotics. In this study, we aim to evaluate the beneficial effects of milks fermented with Bifidobacterium strains on energy metabolism and obesity prevention. Three Bifidobacterium strains (Bif-15, Bif-30, and Bif-39), isolated from newborn human feces, were assessed for their acetic acid production and viability in milk. These strains were used to ferment milk. Otsuka-Long-Evans Tokushima Fatty (OLETF) rats administered Bif-15-fermented milk showed significantly lower weight gain compared to those in the water group. The phosphorylation of AMPK was increased and the expression of lipogenic genes was suppressed in the liver of rats given Bif-15-fermented milk. Additionally, gene expression related to respiratory metabolism was significantly increased in the soleus muscle of rats given Bif-15-fermented milk. These findings suggest that milk fermented with the Bifidobacterium strain Bif-15 can improve lipid metabolism and suppress obesity.
Collapse
Affiliation(s)
- Hitomi Maruta
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
| | - Yusuke Fujii
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Naoki Toyokawa
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Shoji Nakamura
- Fundamental Laboratory, Ohayo Daily Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi 703-8505, Okayama, Japan
| | - Hiromi Yamashita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
- Graduate School of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan
| |
Collapse
|
39
|
King ML, Xing X, Reintjes G, Klassen L, Low KE, Alexander TW, Waldner M, Patel TR, Wade Abbott D. In vitro and ex vivo metabolism of chemically diverse fructans by bovine rumen Bifidobacterium and Lactobacillus species. Anim Microbiome 2024; 6:50. [PMID: 39252059 PMCID: PMC11382395 DOI: 10.1186/s42523-024-00328-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Inulin and inulin-derived fructooligosaccharides (FOS) are well-known prebiotics for use in companion animals and livestock. The mechanisms by which FOS contribute to health has not been fully established. Further, the fine chemistry of fructan structures from diverse sources, such as graminan-type fructans found in cereal crops, has not been fully elucidated. New methods to study fructan structure and microbial responses to these complex carbohydrates will be key for evaluating the prebiotic potency of cereal fructans found in cattle feeds. As the rumen microbiome composition is closely associated with their metabolic traits, such as feed utilization and waste production, prebiotics and probiotics represent promising additives to shift the microbial community toward a more productive state. RESULTS Within this study, inulin, levan, and graminan-type fructans from winter wheat, spring wheat, and barley were used to assess the capacity of rumen-derived Bifidobacterium boum, Bifidobacterium merycicum, and Lactobacillus vitulinus to metabolize diverse fructans. Graminan-type fructans were purified and structurally characterized from the stems and kernels of each plant. All three bacterial species grew on FOS, inulin, and cereal crop fructans in pure cultures. L. vitulinus was the only species that could metabolize levan, albeit its growth was delayed. Fluorescently labelled polysaccharides (FLAPS) were used to demonstrate interactions with Gram-positive bacteria and confirm fructan metabolism at the single-cell level; these results were in agreement with the individual growth profiles of each species. The prebiotic potential of inulin was further investigated within naïve rumen microbial communities, where increased relative abundance of Bifidobacterium and Lactobacillus species occurred in a dose-dependent and temporal-related manner. This was supported by in situ analysis of rumen microbiota from cattle fed inulin. FLAPS probe derived from inulin and fluorescent in situ hybridization using taxon-specific probes confirmed that inulin interacts with Bifidobacteria and Lactobacilli at the single-cell level. CONCLUSION This research revealed that rumen-derived Bifidobacteria and Lactobacilli vary in their metabolism of structurally diverse fructans, and that inulin has limited prebiotic potential in the rumen. This knowledge establishes new methods for evaluating the prebiotic potential of fructans from diverse plant sources as prebiotic candidates for use in ruminants and other animals.
Collapse
Affiliation(s)
- Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Greta Reintjes
- Microbial-Carbohydrate Interactions Group, Department of Biology/Chemistry, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Trevor W Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Matthew Waldner
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trushar R Patel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
40
|
Arantes V, Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Nogueira CFO, Marcondes WF. Enzymatic approaches for diversifying bioproducts from cellulosic biomass. Chem Commun (Camb) 2024; 60:9704-9732. [PMID: 39132917 DOI: 10.1039/d4cc02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellulosic biomass is the most abundantly available natural carbon-based renewable resource on Earth. Its widespread availability, combined with rising awareness, evolving policies, and changing regulations supporting sustainable practices, has propelled its role as a crucial renewable feedstock to meet the escalating demand for eco-friendly and renewable materials, chemicals, and fuels. Initially, biorefinery models using cellulosic biomass had focused on single-product platform, primarily monomeric sugars for biofuel. However, since the launch of the first pioneering cellulosic plants in 2014, these models have undergone significant revisions to adapt their biomass upgrading strategy. These changes aim to diversify the bioproduct portfolio and improve the revenue streams of cellulosic biomass biorefineries. Within this area of research and development, enzyme-based technologies can play a significant role by contributing to eco-design in producing and creating innovative bioproducts. This Feature Article highlights our strategies and recent progress in utilizing the biological diversity and inherent selectivity of enzymes to develop and continuously optimize sustainable enzyme-based technologies with distinct application approaches. We have advanced technologies for standalone platforms, which produce various forms of cellulose nanomaterials engineered with customized and enhanced properties and high yields. Additionally, we have tailored technologies for integration within a biorefinery concept. This biorefinery approach prioritizes designing tailored processes to establish bionanomaterials, such as cellulose and lignin nanoparticles, and bioactive molecules as part of a new multi-bioproduct platform for cellulosic biomass biorefineries. These innovations expand the range of bioproducts that can be produced from cellulosic biomass, transcending the conventional focus on monomeric sugars for biofuel production to include biomaterials biorefinery. This shift thereby contributes to strengthening the Bioeconomy strategy and supporting the achievement of several Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.
Collapse
Affiliation(s)
- Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Carlaile F O Nogueira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Wilian F Marcondes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
41
|
Wu Q, Li W, Kwok LY, Lv H, Sun J, Sun Z. Regional variation and adaptive evolution in Bifidobacterium pseudocatenulatum: Insights into genomic and functional diversity in human gut. Food Res Int 2024; 192:114840. [PMID: 39147525 DOI: 10.1016/j.foodres.2024.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bifidobacterium pseudocatenulatum is a prevalent gut microbe in humans of all ages and plays a crucial role in host health. However, its adaptive evolutionary characteristics remain poorly understood. This study analyzed the genome of 247 B. pseudocatenulatum isolates from Chinese, Vietnamese, Japanese and other region populations using population genomics and functional genomics. Our findings revealed high genetic heterogeneity and regional clustering within B. pseudocatenulatum isolates. Significant differences were observed in genome characteristics, phylogeny, and functional genes. Specifically, Chinese and Vietnamese isolates exhibited a higher abundance of genes involved in the metabolism of plant-derived carbohydrates (GH13, GH43, and GH5 enzyme families), aligning with the predominantly vegetable-, wheat- and fruit-based diets of these populations. Additionally, we found widespread transmission of antibiotic resistance genes (tetO and tetW) through mobile genetic elements, such as genomic islands (GIs), resulting in substantial intra-regional differences. Our findings highlight distinct adaptive evolution in B. pseudocatenulatum driven by gene specialization, possibly in response to regional variations in diet and lifestyle. This study sheds light on bifidobacteria colonization mechanisms in the host gut. IMPORTANCE: Gut microbiota, as a key link in the gut-brain axis, helps to maintain the health of the organism, among which, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum) is an important constituent member of the gut microbiota, which plays an important role in maintaining the balance of gut microbiota. The probiotic properties of B. pseudocatenulatum have been widely elaborated, and in order to excavate its evolutionary features at the genomic level, here we focused on the genetic background and evolutionary mechanism of the B. pseudocatenulatum genomes isolated from the intestinal tracts of different populations. Ultimately, based on the phylogenetic tree, we found that B. pseudocatenulatum has high genetic diversity and regional clustering phenomenon, in which plant-derived carbohydrate metabolism genes (GH13, GH43, GH5) showed significant regional differences, and this genetic differentiation drove the adaptive evolution, which likely shaped by diet and lifestyle.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
42
|
Kang A, Kwak MJ, Choi HJ, Son SH, Lim SH, Eor JY, Song M, Kim MK, Kim JN, Yang J, Lee M, Kang M, Oh S, Kim Y. Integrative Analysis of Probiotic-Mediated Remodeling in Canine Gut Microbiota and Metabolites Using a Fermenter for an Intestinal Microbiota Model. Food Sci Anim Resour 2024; 44:1080-1095. [PMID: 39246539 PMCID: PMC11377207 DOI: 10.5851/kosfa.2024.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 09/10/2024] Open
Abstract
In contemporary society, the increasing number of pet-owning households has significantly heightened interest in companion animal health, expanding the probiotics market aimed at enhancing pet well-being. Consequently, research into the gut microbiota of companion animals has gained momentum, however, ethical and societal challenges associated with experiments on intelligent and pain-sensitive animals necessitate alternative research methodologies to reduce reliance on live animal testing. To address this need, the Fermenter for Intestinal Microbiota Model (FIMM) is being investigated as an in vitro tool designed to replicate gastrointestinal conditions of living animals, offering a means to study gut microbiota while minimizing animal experimentation. The FIMM system explored interactions between intestinal microbiota and probiotics within a simulated gut environment. Two strains of commercial probiotic bacteria, Enterococcus faecium IDCC 2102 and Bifidobacterium lactis IDCC 4301, along with a newly isolated strain from domestic dogs, Lactobacillus acidophilus SLAM AK001, were introduced into the FIMM system with gut microbiota from a beagle model. Findings highlight the system's capacity to mirror and modulate the gut environment, evidenced by an increase in beneficial bacteria like Lactobacillus and Faecalibacterium and a decrease in the pathogen Clostridium. The study also verified the system's ability to facilitate accurate interactions between probiotics and commensal bacteria, demonstrated by the production of short-chain fatty acids and bacterial metabolites, including amino acids and gamma-aminobutyric acid precursors. Thus, the results advocate for FIMM as an in vitro system that authentically simulates the intestinal environment, presenting a viable alternative for examining gut microbiota and metabolites in companion animals.
Collapse
Affiliation(s)
- Anna Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min-Jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Seon-Hui Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sei-Hyun Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Ju Young Eor
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Minho Song
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Min Kyu Kim
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jong Nam Kim
- Department of Food Science & Nutrition, Dongseo University, Busan 47011, Korea
| | - Jungwoo Yang
- IBS R&D Center, Ildong Bioscience, Pyeongtaek 17957, Korea
| | - Minjee Lee
- IBS R&D Center, Ildong Bioscience, Pyeongtaek 17957, Korea
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
43
|
Zhang S, Zhang H, Zhang C, Wang G, Shi C, Li Z, Gao F, Cui Y, Li M, Yang G. Composition and evolutionary characterization of the gut microbiota in pigs. Int Microbiol 2024; 27:993-1008. [PMID: 37982990 PMCID: PMC11300507 DOI: 10.1007/s10123-023-00449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Huan Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cheng Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guan Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chuanxing Shi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
44
|
Van-Wehle T, Vital M. Investigating the response of the butyrate production potential to major fibers in dietary intervention studies. NPJ Biofilms Microbiomes 2024; 10:63. [PMID: 39080292 PMCID: PMC11289085 DOI: 10.1038/s41522-024-00533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Interventions involving dietary fibers are known to benefit host health. A leading contribution of gut microbiota is commonly recognized with production of short chain fatty acids (SCFA) suspected to play a key role. However, the detailed mechanisms are largely unknown, and apart from a well-described bifidogenic effect of some fibers, results for other bacterial taxa are often incongruent between studies. We performed pooled analyses of 16S rRNA gene data derived from intervention studies (n = 14) based on three fibers, namely, inulin-type fructans (ITF), resistant starch (RS), and arabinoxylan-oligosaccharides (AXOS), harmonizing the bioinformatics workflow to reveal taxa stimulated by those substrates, specifically focusing on the SCFA-production potential. The results showed an increased butyrate production potential after ITF (p < 0.05) and RS (p < 0.1) treatment via an increase in bacteria exhibiting the enzyme butyryl-CoA:acetate CoA-transferase (but) that was governed by Faecalibacterium, Anaerostipes (ITF) and Agathobacter (RS) respectively. AXOS did not promote an increase in butyrate producers, nor were pathways linked to propionate production stimulated by any intervention. A bifidogenic effect was observed for AXOS and ITF, which was only partly associated with the behavior of but-containing bacteria and largely represented a separate response. Low and high Ruminococcus abundances pre-intervention for ITF and RS, respectively, promoted an increase in but-containing taxa (p < 0.05) upon interventions, whereas initial Prevotella abundance was negatively associated with responses of butyrate producers for both fibers. Collectively, our data demonstrate targeted stimulation of specific taxa by individual fibers increasing the potential to synthesize butyrate, where gut microbiota composition pre-intervention strongly controlled outcomes.
Collapse
Affiliation(s)
- Thao Van-Wehle
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
45
|
Lee S, Choi SP, Choi HJ, Jeong H, Park YS. A comprehensive review of synbiotics: an emerging paradigm in health promotion and disease management. World J Microbiol Biotechnol 2024; 40:280. [PMID: 39060821 DOI: 10.1007/s11274-024-04085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Synbiotics are complex preparations of prebiotics that can be selectively utilized by live microorganisms to improve host health. Synbiotics are divided into complementary synbiotics, which consist of probiotics and prebiotics with independent functions, and synergistic synbiotics, which consist of prebiotics that are selectively used by gut microorganisms. Complementary synbiotics used in human clinical trials include Lactobacillus spp. and Bifidobacterium spp. as probiotics, and fructooligosaccharides, galactooligosaccharides, and inulin as prebiotics. Over the past five years, synbiotics have been most commonly used in patients with metabolic disorders, including obesity, and immune and gastrointestinal disorders. Several studies have observed alterations in the microbial community; however, these changes did not lead to significant improvements in disease outcomes or biochemical and hematological markers. The same synbiotics have been applied to individuals with different gut environments. As a result, even with the same synbiotics, there are non-responders who do not respond to the applied synbiotics due to the different intestinal environment for each individual. Therefore, to obtain meaningful results, applying different synbiotics depending on the individual is necessary. Synergistic synbiotics are one solution to circumvent this problem, as they combine elements that can effectively improve health, even in non-responders. This review aims to explain the concept of synbiotics, highlight recent human clinical trials, and explore the current state of research on synergistic synbiotics.
Collapse
Affiliation(s)
- Sulhee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Sang-Pil Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
46
|
Sanchez-Gallardo R, Bottacini F, Friess L, Esteban-Torres M, Somers C, Moore RL, McAuliffe FM, Cotter PD, van Sinderen D. Unveiling metabolic pathways of selected plant-derived glycans by Bifidobacterium pseudocatenulatum. Front Microbiol 2024; 15:1414471. [PMID: 39081887 PMCID: PMC11286577 DOI: 10.3389/fmicb.2024.1414471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Bifidobacteria are commonly encountered members of the human gut microbiota that possess the enzymatic machinery necessary for the metabolism of certain plant-derived, complex carbohydrates. In the current study we describe differential growth profiles elicited by a panel of 21 newly isolated Bifidobacterium pseudocatenulatum strains on various plant-derived glycans. Using a combination of gene-trait matching and comparative genome analysis, we identified two distinct xylanases responsible for the degradation of xylan. Furthermore, three distinct extracellular α-amylases were shown to be involved in starch degradation by certain strains of B. pseudocatenulatum. Biochemical characterization showed that all three α-amylases can cleave the related substrates amylose, amylopectin, maltodextrin, glycogen and starch. The genes encoding these enzymes are variably found in the species B. pseudocatenulatum, therefore constituting a strain-specific adaptation to the gut environment as these glycans constitute common plant-derived carbohydrates present in the human diet. Overall, our study provides insights into the metabolism of these common dietary carbohydrates by a human-derived bifidobacterial species.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Clarissa Somers
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca L. Moore
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Arzamasov AA, Rodionov DA, Hibberd MC, Guruge JL, Kazanov MD, Leyn SA, Kent JE, Sejane K, Bode L, Barratt MJ, Gordon JI, Osterman AL. Integrative genomic reconstruction of carbohydrate utilization networks in bifidobacteria: global trends, local variability, and dietary adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602360. [PMID: 39005317 PMCID: PMC11245093 DOI: 10.1101/2024.07.06.602360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Bifidobacteria are among the earliest colonizers of the human gut, conferring numerous health benefits. While multiple Bifidobacterium strains are used as probiotics, accumulating evidence suggests that the individual responses to probiotic supplementation may vary, likely due to a variety of factors, including strain type(s), gut community composition, dietary habits of the consumer, and other health/lifestyle conditions. Given the saccharolytic nature of bifidobacteria, the carbohydrate composition of the diet is one of the primary factors dictating the colonization efficiency of Bifidobacterium strains. Therefore, a comprehensive understanding of bifidobacterial glycan metabolism at the strain level is necessary to rationally design probiotic or synbiotic formulations that combine bacterial strains with glycans that match their nutrient preferences. In this study, we systematically reconstructed 66 pathways involved in the utilization of mono-, di-, oligo-, and polysaccharides by analyzing the representation of 565 curated metabolic functional roles (catabolic enzymes, transporters, transcriptional regulators) in 2973 non-redundant cultured Bifidobacterium isolates and metagenome-assembled genomes (MAGs). Our analysis uncovered substantial heterogeneity in the predicted glycan utilization capabilities at the species and strain level and revealed the presence of a yet undescribed phenotypically distinct subspecies-level clade within the Bifidobacterium longum species. We also identified Bangladeshi isolates harboring unique gene clusters tentatively implicated in the breakdown of xyloglucan and human milk oligosaccharides. Predicted carbohydrate utilization phenotypes were experimentally characterized and validated. Our large-scale genomic analysis considerably expands the knowledge of carbohydrate metabolism in bifidobacteria and provides a foundation for rationally designing single- or multi-strain probiotic formulations of a given bifidobacterial species as well as synbiotic combinations of bifidobacterial strains matched with their preferred carbohydrate substrates.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janaki L Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey, 34956
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - James E Kent
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
48
|
Zhu Y, Wang J, Cidan Y, Wang H, Li K, Basang W. Gut Microbial Adaptation to Varied Altitudes and Temperatures in Tibetan Plateau Yaks. Microorganisms 2024; 12:1350. [PMID: 39065118 PMCID: PMC11278572 DOI: 10.3390/microorganisms12071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The yak (Bos grunniens) exhibits exceptional regional adaptability, enabling it to thrive in the distinctive ecological niches of the Qinghai-Tibet Plateau. Its survival relies on the intricate balance of its intestinal microbiome, essential for adapting to harsh environmental conditions. Despite the documented significance of bacteria and fungi in maintaining intestinal homeostasis and supporting immune functions, there is still a substantial gap in understanding how the composition and functionality of yak gut microbiota vary along altitude-temperature gradients. This study aims to fill this gap by employing 16S rRNA and ITS amplicon sequencing techniques to analyze and compare the intestinal microbiome of yaks residing at different elevations and exposed to varying temperatures. The findings demonstrate subtle variations in the diversity of intestinal bacteria and fungi, accompanied by significant changes in taxonomic composition across various altitudes and temperature gradients. Notably, Firmicutes, Actinobacteriota, and Bacteroidota emerged as the dominant phyla across all groups, with Actinobacteriota exhibiting the highest proportion (35.77%) in the LZF group. Functional prediction analysis revealed significant associations between the LZF group and metabolic pathways related to amino acid metabolism and biosynthesis. This suggests a potential role for actinomycetes in enhancing nutrient absorption and metabolism in yaks. Furthermore, our findings suggest that the microbiota of yaks may enhance energy metabolism and catabolism by modulating the Firmicutes-to-Bacteroidota ratio, potentially mitigating the effects of temperature variations. Variations in gut bacterial and fungal communities among three distinct groups were analyzed using metagenomic techniques. Our findings indicate that microbial genera exhibiting significant increases in yaks at lower altitudes are largely beneficial. To sum up, our research investigated the changes in gut bacterial and fungal populations of yaks residing across diverse altitude and temperature ranges. Moreover, these results enhance comprehension of gut microbial makeup and variability, offering perspectives on the environmental resilience of dry lot feeding yaks from a microbial angle.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
- Linzhou Animal Husbandry and Veterinary Station, Lhasa 850009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| |
Collapse
|
49
|
Liu T, Bai H, Wang S, Gong W, Wang Z. Transcriptomic and metabolomic analysis of prebiotics utilization by Bifidobacterium animalis. World J Microbiol Biotechnol 2024; 40:257. [PMID: 38937374 DOI: 10.1007/s11274-024-04061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
In this study, the utilization mechanism of oligosaccharides by Bifidobacterium was investigated through the transcriptome sequencing and non-targeted metabolomics technology of Bifidobacterium animalis cultured with fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS). The results showed that FOS affected the synthesis of adenosine triphosphate binding transporters (ABC transporters) by increasing the expression levels of msmE, msmG, and gluA. Similarly, GOS improved aminoacyl-tRNA synthases by upregulating the expression of tRNA-Ala, tRNA-Pro, and tRNA-Met. Bifidobacterium animalis cultured with FOS and GOS produced different metabolites, such as histamine, tartaric acid, and norepinephrine, with the functions of inhibiting inflammation, alleviating depression and diseases related to brain and nervous system and maintaining body health. Furthermore, the transcriptome and metabolome analysis results revealed that FOS and GOS promoted the growth and metabolism of Bifidobacterium animalis by regulating the related pathways of carbohydrate, energy, and amino acid metabolism. Overall, the experimental results provided significant insights into the prebiotic effects of FOS and GOS.
Collapse
Affiliation(s)
- Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Songjun Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Wenhui Gong
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China
| | - Zhanzhong Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, China.
| |
Collapse
|
50
|
Song Q, Zhu Y, Liu X, Liu H, Zhao X, Xue L, Yang S, Wang Y, Liu X. Changes in the gut microbiota of patients with sarcopenia based on 16S rRNA gene sequencing: a systematic review and meta-analysis. Front Nutr 2024; 11:1429242. [PMID: 39006102 PMCID: PMC11239431 DOI: 10.3389/fnut.2024.1429242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Sarcopenia, an age-related disease, has become a major public health concern, threatening muscle health and daily functioning in older adults around the world. Changes in the gut microbiota can affect skeletal muscle metabolism, but the exact association is unclear. The richness of gut microbiota refers to the number of different species in a sample, while diversity not only considers the number of species but also the evenness of their abundances. Alpha diversity is a comprehensive metric that measures both the number of different species (richness) and the evenness of their abundances, thereby providing a thorough understanding of the species composition and structure of a community. Methods This meta-analysis explored the differences in intestinal microbiota diversity and richness between populations with sarcopenia and non-sarcopenia based on 16 s rRNA gene sequencing and identified new targets for the prevention and treatment of sarcopenia. PubMed, Embase, Web of Science, and Google Scholar databases were searched for cross-sectional studies on the differences in gut microbiota between sarcopenia and non-sarcopenia published from 1995 to September 2023 scale and funnel plot analysis assessed the risk of bias, and performed a meta-analysis with State v.15. 1. Results A total of 17 randomized controlled studies were included, involving 4,307 participants aged 43 to 87 years. The alpha diversity of intestinal flora in the sarcopenia group was significantly reduced compared to the non-sarcopenia group: At the richness level, the proportion of Actinobacteria and Fusobacteria decreased, although there was no significant change in other phyla. At the genus level, the abundance of f-Ruminococcaceae; g-Faecalibacterium, g-Prevotella, Lachnoclostridium, and other genera decreased, whereas the abundance of g-Bacteroides, Parabacteroides, and Shigella increased. Discussion This study showed that the richness of the gut microbiota decreased with age in patients with sarcopenia. Furthermore, the relative abundance of different microbiota changed related to age, comorbidity, participation in protein metabolism, and other factors. This study provides new ideas for targeting the gut microbiota for the prevention and treatment of sarcopenia. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=475887, CRD475887.
Collapse
Affiliation(s)
- Qi Song
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Youkang Zhu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xiao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Hai Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | | | - Liyun Xue
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Shaoying Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Yujia Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xifang Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|