1
|
Wagner M, Hu Q, Hu S, Phillips C, Wang W, Pittenger B, Fali A, Li C, Mathurin J, Dazzi A, Su C, De Wolf P. Force Volume Atomic Force Microscopy-Infrared for Simultaneous Nanoscale Chemical and Mechanical Spectromicroscopy. ACS NANO 2025; 19:18791-18803. [PMID: 40350657 PMCID: PMC12096466 DOI: 10.1021/acsnano.5c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Photothermal atomic force microscopy-infrared (AFM-IR) combines the nanoscale spatial resolution of AFM with the chemical identification capability of infrared spectroscopy and has thrived in various applications. Currently executed in three major AFM modes (contact, tapping, and peak force tapping) we introduce a fourth variant built upon force volume mode comprising a defined engage, hold, and retract segment in each pixel. IR laser pulsing at a probe resonance frequency during the constant-force hold segment duplicates the resonance-enhanced AFM-IR detection principle of contact mode. However, force volume AFM-IR removes the lateral forces that cause tip wear and sample damage while adding the spatial resolution of tapping AFM-IR. As demonstrated on different materials, this imaging and spectroscopy technique integrates monolayer sensitivity, sub-10 nm spatial chemical resolution, simultaneous nanomechanical property sensing, and precise force control. The ability to sweep the infrared laser repetition rate in each pixel provides additional, rich information in the form of contact resonance curves, while compensating for mechanically induced probe resonance shifts in an alternative to conventional phase-locked loop based frequency tracking. Such sweeps inherently consider the Q-factor (i.e., mechanical damping) in the AFM-IR response, a little investigated aspect. Furthermore, the probing depth can be varied by selecting different resonances recorded within a single broad frequency sweep. Switching to the surface sensitive AFM-IR detection scheme during the hold segment additionally limits the probing depth. These qualities should position force volume AFM-IR as a valuable addition to established AFM-IR modes.
Collapse
Affiliation(s)
- Martin Wagner
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Qichi Hu
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Shuiqing Hu
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Cassandra Phillips
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Weijie Wang
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Bede Pittenger
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Alireza Fali
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Chunzeng Li
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Jérémie Mathurin
- Institut
de Chimie Physique, Université Paris-Saclay
- CNRS, 91400Orsay, France
| | - Alexandre Dazzi
- Institut
de Chimie Physique, Université Paris-Saclay
- CNRS, 91400Orsay, France
| | - Chanmin Su
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| | - Peter De Wolf
- Bruker
Nano Surfaces Division, 112 Robin Hill Rd, Santa Barbara, California93117, United States
| |
Collapse
|
2
|
Petay M, Tang E, Bouderlique E, Zaworski J, Dazzi A, Letavernier E, Bazin D, Mathurin J, Deniset-Besseau A. Nano-Investigation of Mineralized Biological Samples Chemical Composition: Experimental Challenges, Constraints, and Considerations. Anal Chem 2025; 97:4954-4961. [PMID: 40028890 DOI: 10.1021/acs.analchem.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding the chemical composition of calcifications in biological tissues at the nanoscale is crucial for deciphering their formation processes and possible pathological implications. Atomic Force Microscopy Infrared Spectroscopy (AFM-IR), by allowing IR spectroscopy at the nanoscale, is thus a promising strategy to access such highly spatially resolved chemical information. However, these specimens' inherent morphological and mechanical heterogeneities pose significant challenges for standard resonance-enhanced (RE-AFM-IR) and tapping AFM-IR acquisition modes. This study introduces a dual-mode approach combining tapping and RE-AFM-IR to address these challenges. Tapping AFM-IR is first employed to acquire the topography of the soft and rough surfaces, while RE-AFM-IR provides chemical description at the submicrometric scale through hyperspectral (HS) imaging. This dual-mode methodology is validated on different mineralized biological samples, including breast microcalcifications, revealing the local chemical heterogeneous distribution within the calcium phosphate matrice. Our results outline that dual-mode AFM-IR, coupled with HS imaging, enables robust chemical characterization of highly heterogeneous biomaterials and offers a more comprehensive description compared to conventional AFM-IR single-wavenumber mapping and local spectra.
Collapse
Affiliation(s)
- Margaux Petay
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ellie Tang
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Elise Bouderlique
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Jeremy Zaworski
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Alexandre Dazzi
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Emmanuel Letavernier
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
- Service des Explorations Fonctionnelles Multidisciplinaires, Hôpital TENON, 4 rue de la Chine, 75020 Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
3
|
Zhang M, Liu T, Tan D, Liu J, Gao Y, Wang H, Gao F, Yang Z. Preparation, characterization, and ex vivo evaluation of isoxanthohumol nanosuspension. Int J Pharm 2024; 667:124909. [PMID: 39522839 DOI: 10.1016/j.ijpharm.2024.124909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study assessed the equilibrium solubility, oil-water distribution coefficient, and dissociation constant of Isoxanthohumol (IXN), and formulated IXN nanoparticles (IXN-Nps) using a micro media grinding method. The research characterized the particle size, polydispersity index, zeta potential, morphology, and structure of the nanoparticles, and evaluated the optimal cryoprotectant. Additionally, the study examined the toxicity and in vitro and in vivo release of IXN on HT-29 cells. IXN is classified as a Biopharmaceutical Classification System (BCS) II class drug with weak acidity. The average particle size of IXN-Nps is 249.500 nm, with a polydispersity index (PDI) of 0.149 and a zeta potential of -25.210 mV. The research identified 5 % mannitol as the optimal cryoprotectant. Compared to IXN, the half-maximal inhibitory concentration of IXN-Nps decreased to one-third, demonstrating a significant inhibitory effect on HT-29 colon cancer cells. The in vitro cumulative release rate of IXN-Nps within 24 h was 3.5 times higher than that of the IXN solution. In vivo pharmacokinetic results revealed that the oral bioavailability of IXN-Nps increased significantly by 2.8 times compared to the IXN solution. The correlation coefficient (r = 0.9227) exceeded the critical value for significance at the 0.01 (r = 0.834) level, indicating a strong correlation between in vivo and in vitro results. Consequently, the nanosuspension overcame the low solubility limitation of IXN and proved to be an effective method for enhancing the oral bioavailability of IXN.
Collapse
Affiliation(s)
- Mingkang Zhang
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Tianjiao Liu
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Ding Tan
- School of Pharmacy Fuzhou University, China
| | - Jingrui Liu
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Yingying Gao
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Haibo Wang
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Feng Gao
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China
| | - Zhixin Yang
- School of Pharmacy Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education 150040, China.
| |
Collapse
|
4
|
Duverger W, Tsaka G, Khodaparast L, Khodaparast L, Louros N, Rousseau F, Schymkowitz J. An end-to-end approach for single-cell infrared absorption spectroscopy of bacterial inclusion bodies: from AFM-IR measurement to data interpretation of large sample sets. J Nanobiotechnology 2024; 22:406. [PMID: 38987828 PMCID: PMC11234752 DOI: 10.1186/s12951-024-02674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs. RESULTS We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs. CONCLUSIONS Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.
Collapse
Affiliation(s)
- Wouter Duverger
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Grigoria Tsaka
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Leuven Brain Institute, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Laleh Khodaparast
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Nikolaos Louros
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, Leuven, 3000, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
5
|
Zhaliazka K, Ali A, Kurouski D. Phospholipids and Cholesterol Determine Molecular Mechanisms of Cytotoxicity of α-Synuclein Oligomers and Fibrils. ACS Chem Neurosci 2024; 15:371-381. [PMID: 38166409 DOI: 10.1021/acschemneuro.3c00671] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, hypothalamus, and thalamus is a hallmark of Parkinson's disease. Neuronal death is linked to the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that regulates cell vesicle trafficking. α-Syn aggregation rate, as well as the secondary structure and toxicity of α-Syn fibrils, could be uniquely altered by lipids. However, molecular mechanisms that determine such a remarkable difference in the toxicity of α-Syn fibrils formed in the presence of lipids remain unclear. In this study, we used a set of molecular assays to determine the molecular mechanism by which α-Syn fibrils formed in the presence of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Cho) exert cell toxicity. We found that rat dopaminergic cells exposed to α-Syn fibrils formed in the presence of different lipids exert drastically different magnitudes and dynamics of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). Specifically, α-Syn:CL were found to cause the strongest, whereas α-Syn fibrils formed in the absence of lipids had the lowest magnitude of the UPR cell response. We also found the opposite dynamics of the ER- and MT-UPR responses in rat dopaminergic cells exposed to protein aggregates. These results could suggest that facing severe ER stress, dopaminergic cells suppress MT-UPR response, enabling the maximal ATP production to restore their normal physiological function. These findings help to better understand complex mechanisms of cell toxicity of amyloid aggregates and ultimately find neuroprotective drug candidates that will be able to suppress the spread of Parkinson's disease.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Schultz JF, Krylyuk S, Schwartz JJ, Davydov AV, Centrone A. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2024; 13:10.1515/nanoph-2023-0717. [PMID: 38846933 PMCID: PMC11155493 DOI: 10.1515/nanoph-2023-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nanophotonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a naturally hyperbolic material, meaning that its dielectric function deterministically controls the directional propagation of in-plane HPhPs within its reststrahlen bands. Strategies such as substrate engineering, nano- and heterostructuring, and isotopic enrichment are being developed to alter the intrinsic die ectric functions of natural hyperbolic materials and to control the confinement and propagation of HPhPs. Since isotopic disorder can limit phonon-based processes such as HPhPs, here we synthesize isotopically enriched 92MoO3 (92Mo: 99.93 %) and 100MoO3 (100Mo: 99.01 %) crystals to tune the properties and dispersion of HPhPs with respect to natural α-MoO3, which is composed of seven stable Mo isotopes. Real-space, near-field maps measured with the photothermal induced resonance (PTIR) technique enable comparisons of inplane HPhPs in α-MoO3 and isotopically enriched analogues within a reststrahlen band (≈820 cm-1 to ≈ 972 cm-1). Results show that isotopic enrichment (e.g., 92MoO3 and 100MoO3) alters the dielectric function, shifting the HPhP dispersion (HPhP angular wavenumber × thickness vs IR frequency) by ≈-7% and ≈ +9 %, respectively, and changes the HPhP group velocities by ≈ ±12 %, while the lifetimes (≈ 3 ps) in 92MoO3 were found to be slightly improved (≈ 20 %). The latter improvement is attributed to a decrease in isotopic disorder. Altogether, isotopic enrichment was found to offer fine control over the properties that determine the anisotropic in-plane propagation of HPhPs in α-MoO3, which is essential to its implementation in nanophotonic applications.
Collapse
Affiliation(s)
- Jeremy F. Schultz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; and Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
7
|
Ali A, Zhaliazka K, Dou T, Holman AP, Kurouski D. The toxicities of A30P and A53T α-synuclein fibrils can be uniquely altered by the length and saturation of fatty acids in phosphatidylserine. J Biol Chem 2023; 299:105383. [PMID: 37890776 PMCID: PMC10679493 DOI: 10.1016/j.jbc.2023.105383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Progressive degeneration of dopaminergic neurons in the midbrain, hypothalamus, and thalamus is a hallmark of Parkinson's disease (PD). Neuronal death is linked to the abrupt aggregation of α-synuclein (α-syn), a small protein that regulates vesicle trafficking in synaptic clefts. Studies of families with a history of PD revealed several mutations in α-syn including A30P and A53T that are linked to the early onset of this pathology. Numerous pieces of evidence indicate that lipids can alter the rate of protein aggregation, as well as modify the secondary structure and toxicity of amyloid oligomers and fibrils. However, the role of lipids in the stability of α-syn mutants remains unclear. In this study, we investigate the effect of phosphatidylserine (PS), an anionic lipid that plays an important role in the recognition of apoptotic cells by macrophages, in the stability of WT, A30P, and A53T α-syn. We found PS with different lengths and saturation of fatty acids accelerated the rate of WT and A30P aggregation. At the same time, the opposite effect was observed for most PS on A53T. We also found that PS with different lengths and saturation of fatty acids change the secondary structure and toxicities of WT, A30P, and A53T fibrils. These results indicate that lipids can play an important role in the onset and spread of familial PD.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Aidan P Holman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA; Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
8
|
Rodriguez A, Ali A, Holman AP, Dou T, Zhaliazka K, Kurouski D. Nanoscale structural characterization of transthyretin aggregates formed at different time points of protein aggregation using atomic force microscopy-infrared spectroscopy. Protein Sci 2023; 32:e4838. [PMID: 37967043 PMCID: PMC10683371 DOI: 10.1002/pro.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Transthyretin (TTR) amyloidosis is a progressive disease characterized by an abrupt aggregation of misfolded protein in multiple organs and tissues TTR is a tetrameric protein expressed in the liver and choroid plexus. Protein misfolding triggers monomerization of TTR tetramers. Next, monomers assemble forming oligomers and fibrils. Although the secondary structure of TTR fibrils is well understood, there is very little if anything is known about the structural organization of TTR oligomers. To end this, we used nano-infrared spectroscopy, also known as atomic force microscopy infrared (AFM-IR) spectroscopy. This emerging technique can be used to determine the secondary structure of individual amyloid oligomers and fibrils. Using AFM-IR, we examined the secondary structure of TTR oligomers formed at the early (3-6 h), middle (9-12 h), and late (28 h) of protein aggregation. We found that aggregating, TTR formed oligomers (Type 1) that were dominated by α-helix (40%) and β-sheet (~30%) together with unordered protein (30%). Our results showed that fibril formation was triggered by another type of TTR oligomers (Type 2) that appeared at 9 h. These new oligomers were primarily composed of parallel β-sheet (55%), with a small amount of antiparallel β-sheet, α-helix, and unordered protein. We also found that Type 1 oligomers were not toxic to cells, whereas TTR fibrils formed at the late stages of protein aggregation were highly cytotoxic. These results show the complexity of protein aggregation and highlight the drastic difference in the protein oligomers that can be formed during such processes.
Collapse
Affiliation(s)
- Axell Rodriguez
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Abid Ali
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Aidan P. Holman
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
9
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
10
|
Matveyenka M, Zhaliazka K, Kurouski D. Unsaturated fatty acids uniquely alter aggregation rate of α-synuclein and insulin and change the secondary structure and toxicity of amyloid aggregates formed in their presence. FASEB J 2023; 37:e22972. [PMID: 37302013 PMCID: PMC10405295 DOI: 10.1096/fj.202300003r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 06/12/2023]
Abstract
Docosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components. Once consumed, DHA and ARA can interact with a large variety of biomolecules, including proteins such as insulin and α-synuclein (α-Syn). Under pathological conditions known as injection amyloidosis and Parkinson's disease, these proteins aggregate forming amyloid oligomers and fibrils, toxic species that exert high cell toxicity. In this study, we investigate the role of DHA and ARA in the aggregation properties of α-Syn and insulin. We found that the presence of both DHA and ARA at the equimolar concentrations strongly accelerated aggregation rates of α-Syn and insulin. Furthermore, LCPUFAs substantially altered the secondary structure of protein aggregates, whereas no noticeable changes in the fibril morphology were observed. Nanoscale Infrared analysis of α-Syn and insulin fibrils grown in the presence of both DHA and ARA revealed the presence of LCPUFAs in these aggregates. We also found that such LCPUFAs-rich α-Syn and insulin fibrils exerted significantly greater toxicities compared to the aggregates grown in the LCPUFAs-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Putera KH, Kim J, Baek SY, Schlecht SH, Beaulieu ML, Haritos V, Arruda EM, Ashton-Miller JA, Wojtys EM, Banaszak Holl MM. Fatigue-driven compliance increase and collagen unravelling in mechanically tested anterior cruciate ligament. Commun Biol 2023; 6:564. [PMID: 37237052 PMCID: PMC10219950 DOI: 10.1038/s42003-023-04948-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Approximately 300,000 anterior cruciate ligament (ACL) tears occur annually in the United States, half of which lead to the onset of knee osteoarthritis within 10 years of injury. Repetitive loading is known to result in fatigue damage of both ligament and tendon in the form of collagen unravelling, which can lead to structural failure. However, the relationship between tissue's structural, compositional, and mechanical changes are poorly understood. Herein we show that repetitive submaximal loading of cadaver knees causes an increase in co-localised induction of collagen unravelling and tissue compliance, especially in regions of greater mineralisation at the ACL femoral enthesis. Upon 100 cycles of 4× bodyweight knee loading, the ACL exhibited greater unravelled collagen in highly mineralized regions across varying levels of stiffness domains as compared to unloaded controls. A decrease in the total area of the most rigid domain, and an increase in the total area of the most compliant domain was also found. The results highlight fatigue-driven changes in both protein structure and mechanics in the more mineralized regions of the ACL enthesis, a known site of clinical ACL failure. The results provide a starting point for designing studies to limit ligament overuse injury.
Collapse
Affiliation(s)
- Kevin H Putera
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Jinhee Kim
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - So Young Baek
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen H Schlecht
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mélanie L Beaulieu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Victoria Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Ashton-Miller
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia.
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Orthopaedic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
13
|
Zhang J, Khanal D, Banaszak Holl MM. Applications of AFM-IR for drug delivery vector characterization: infrared, thermal, and mechanical characterization at the nanoscale. Adv Drug Deliv Rev 2023; 192:114646. [PMID: 36521685 DOI: 10.1016/j.addr.2022.114646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
The development of effective drug delivery systems requires in-depth characterization of the micro- or nanostructure of the material vectors with high spatial resolution, resulting in a deep understanding of the design-function relationship and maximum therapeutic efficacy. Atomic force microscopy-infrared spectroscopy (AFM-IR) combines the high spatial resolution of AFM and the capabilities of IR spectroscopy to identify chemical composition and it has emerged as a powerful tool for the detailed characterization of a drug delivery system at the nanoscale. In addition, the instruments also allow thermal and mechanical evaluation at the nanoscale. In this review, we highlight the applications of AFM-IR in various drug delivery systems, including polymer-based carriers, lipid-contained nanocarriers, and metal-based nanocarriers. The existing challenges as well as the future perspectives for the application of AFM-IR for drug delivery vector characterization are also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; The University of Sydney, Sydney Nano Institute, Sydney, New South Wales 2006, Australia.
| | - Mark M Banaszak Holl
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia; Department of Mechanial and Materials Engineering, School of Engineering University of Alabama at Birmingham, Birmingham, AL 35294 USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink Medical School, University of Alabama at Birmingham, Birmingham, AL 35294 USA.
| |
Collapse
|
14
|
Matveyenka M, Rizevsky S, Pellois JP, Kurouski D. Lipids uniquely alter rates of insulin aggregation and lower toxicity of amyloid aggregates. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159247. [PMID: 36272517 PMCID: PMC10401553 DOI: 10.1016/j.bbalip.2022.159247] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 02/25/2023]
Abstract
Amyloid formation is a hallmark of many medical diseases including diabetes type 2, Alzheimer's and Parkinson diseases. Under these pathological conditions, misfolded proteins self-assemble forming oligomers and fibrils, structurally heterogeneous aggregates that exhibit a large variety of shapes and forms. A growing body of evidence points to drastic changes in the lipid profile in organs affected by amyloidogenic diseases. In this study, we investigated the extent to which individual phospho- and sphingolipids, as well as their mixtures can impact insulin aggregation. Our results show that lipids and their mixtures uniquely alter rates of insulin aggregation simultaneously changing the secondary structure of protein aggregates that are grown in their presence. These structurally different protein-lipid aggregates impact cell viability to different extent while using distinct mechanisms of toxicity. These findings suggest that irreversible changes in lipid profiles of organs may trigger formation of toxic protein species that in turn are responsible for the onset and progression of amyloidogenic diseases.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Viet Nam
| | - Jean-Philippe Pellois
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
15
|
Jakob DS, Centrone A. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution. Anal Chem 2022; 94:15564-15569. [PMID: 36321942 PMCID: PMC9798386 DOI: 10.1021/acs.analchem.2c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photothermal induced resonance (PTIR), an atomic force microscopy (AFM) analogue of IR spectroscopy also known as AFM-IR, is capable of nanoscale lateral resolution and finds broad applications in biology and materials science. Here, the spectral range of a top-illumination PTIR setup operating in contact-mode is expanded for the first time to the visible and near-IR spectral ranges. The result is a tool that yields absorption spectra and maps of electronic and vibrational features with spatial resolution down to ≈10 nm. In addition to the improved resolution, the setup enables light-polarization-dependent PTIR experiments in the visible and near-IR ranges for the first time. While previous PTIR implementations in the visible used total internal reflection illumination requiring challenging sample preparations on an optically transparent prism, the top illumination used here greatly simplifies sample preparation and will foster a broad application of this method.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Zhaliazka K, Kurouski D. Nanoscale Characterization of Parallel and Antiparallel β-Sheet Amyloid Beta 1-42 Aggregates. ACS Chem Neurosci 2022; 13:2813-2820. [PMID: 36122250 PMCID: PMC10405294 DOI: 10.1021/acschemneuro.2c00180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abrupt aggregation of amyloid beta (Aβ) peptide is strongly associated with Alzheimer's disease. In this study, we used atomic force microscopy-infrared (AFM-IR) spectroscopy to characterize the secondary structure of Aβ oligomers, protofibrils and fibrils formed at the early (4 h), middle (24 h), and late (72 h) stages of protein aggregation. This innovative spectroscopic approach allows for label-free nanoscale structural characterization of individual protein aggregates. Using AFM-IR, we found that at the early stage of protein aggregation, oligomers with parallel β-sheet dominated. However, these species exhibited slower rates of fibril formation compared to the oligomers with antiparallel β-sheet, which first appeared in the middle stage. These antiparallel β-sheet oligomers rapidly propagated into fibrils that were simultaneously observed together with parallel β-sheet fibrils at the late stage of protein aggregation. Our findings showed that aggregation of Aβ is a complex process that yields several distinctly different aggregates with dissimilar toxicities.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Dou T, Zens C, Schröder K, Jiang Y, Makarov AA, Kupfer S, Kurouski D. Solid-to-Liposome Conformational Transition of Phosphatidylcholine and Phosphatidylserine Probed by Atomic Force Microscopy, Infrared Spectroscopy, and Density Functional Theory Calculations. Anal Chem 2022; 94:13243-13249. [PMID: 36107722 PMCID: PMC10405298 DOI: 10.1021/acs.analchem.2c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liposomes are emerging therapeutic formulations for site-specific delivery of chemotherapeutic drugs. The efficiency and selectivity of drug delivery by these carriers largely rely on their surface properties, shape, and size. There is a growing demand for analytical approaches that can be used for structural and morphological characterization of liposomes at the single-vesicle level. AFM-IR is a modern optical nanoscopic technique that combines the advantages of scanning probe microscopy and infrared spectroscopy. Our findings show that AFM-IR can be used to probe conformational changes in phospholipids that take place upon their assembly into liposomes. Such conclusions can be made based on the corresponding changes in intensities of the lipid vibrational bands as the molecules transition from a solid state into large unilamellar vesicles (LUVs). This spectroscopic analysis of LUV formation together with density functional theory calculations also reveals the extent to which the molecular conformation and local environment of the functional groups alter the AFM-IR spectra of phospholipids. Using melittin as a test protein, we also examined the extent to which LUVs can be used for protein internalization. We found that melittin enters LUVs nearly instantaneously, which protects it from possible structural modifications that are caused by a changing environment. This foundational work empowers AFM-IR analysis of liposomes and opens new avenues for determination of the molecular mechanisms of liposome-drug interactions.
Collapse
Affiliation(s)
- Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin Schröder
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Yuan Jiang
- Merck & Company Inc., MRL, Analytical Research & Development, Boston, Massachusetts 02115, United States
| | - Alexey A. Makarov
- Merck & Company Inc., MRL, Analytical Research & Development, Boston, Massachusetts 02115, United States
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Schwartz JJ, Pavlidis G, Centrone A. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy. Anal Chem 2022; 94:13126-13135. [PMID: 36099442 DOI: 10.1021/acs.analchem.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photothermal induced resonance (PTIR), also known as AFM-IR, enables nanoscale infrared (IR) imaging and spectroscopy by using the tip of an atomic force microscope to transduce the local photothermal expansion and contraction of a sample. The signal transduction efficiency and spatial resolution of PTIR depend on a multitude of sample, cantilever, and illumination source parameters in ways that are not yet well understood. Here, we elucidate and separate the effects of laser pulse length, pulse shape, sample thermalization time (τ), interfacial thermal conductance, and cantilever detection frequency by devising analytical and numerical models that link a sample's photothermal excitations to the cantilever dynamics over a broad bandwidth (10 MHz). The models indicate that shorter laser pulses excite probe oscillations over broader bandwidths and should be preferred for measuring samples with shorter thermalization times. Furthermore, we show that the spatial resolution critically depends on the interfacial thermal conductance between dissimilar materials and improves monotonically, but not linearly, with increasing cantilever detection frequencies. The resolution can be enhanced for samples that do not fully thermalize between pulses (i.e., laser repetition rates ≳ 1/3τ) as the probed depth becomes smaller than the film thickness. We believe that the insights presented here will accelerate the adoption and impact of PTIR analyses across a wide range of applications by informing experimental designs and measurement strategies as well as by guiding future technical advances.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States.,Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Georges Pavlidis
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
19
|
Matveyenka M, Rizevsky S, Kurouski D. Length and Unsaturation of Fatty Acids of Phosphatidic Acid Determines the Aggregation Rate of Insulin and Modifies the Structure and Toxicity of Insulin Aggregates. ACS Chem Neurosci 2022; 13:2483-2489. [PMID: 35930674 DOI: 10.1021/acschemneuro.2c00330] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phosphatidic acid (PA) is a unique plasma membrane lipid that contains fatty acids (FAs) with different lengths and degrees of unsaturation. Under physiological conditions, PA acts as a second messenger regulating a wide variety of cellular processes. At the same time, the role of PA under pathological conditions, which are caused by an abrupt aggregation of amyloid proteins, remains unclear. In this study, we investigated the effect of PA with different lengths and unsaturation of FAs on insulin aggregation. We found that PA with C16:0 FAs strongly inhibited insulin aggregation, whereas PA with C18:0 FAs accelerated it. Furthermore, PA with unsaturated (C18:1) FAs made the insulin form extremely long and thick fibrils that were not observed for PAs with saturated FAs. We also found that the presence of PA with C16:0 FAs resulted in the formation of aggregates that exerted significantly lower cell toxicity compared to the aggregates formed in the presence of PAs with C18:0 and C18:1 FAs. These results suggest that PA may play a key role in neurodegeneration.
Collapse
Affiliation(s)
- Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
20
|
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev 2022; 51:5248-5267. [PMID: 35616225 DOI: 10.1039/d2cs00095d] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, MD 20740, USA.,Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St., NW Washington D.C., 20057, USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
21
|
Matveyenka M, Rizevsky S, Kurouski D. Unsaturation in the Fatty Acids of Phospholipids Drastically Alters the Structure and Toxicity of Insulin Aggregates Grown in Their Presence. J Phys Chem Lett 2022; 13:4563-4569. [PMID: 35580189 PMCID: PMC9170185 DOI: 10.1021/acs.jpclett.2c00559] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lipid bilayers play an important role in the pathological assembly of amyloidogenic proteins and peptides. This assembly yields oligomers and fibrils, which are highly toxic protein aggregates. In this study, we investigated the role of saturation in fatty acids of two phospholipids that are present in cell membranes. We found that unsaturated cardiolipin (CL) drastically shortened the lag phase of insulin aggregation. Furthermore, structurally and morphologically different aggregates were formed in the presence of unsaturated CL vs saturated CL. These aggregates exerted drastically different cell toxicity. Both saturated and unsaturated phosphatidylcholine (PC) were able to inhibit insulin aggregation equally efficiently. Similar to CL, structurally different aggregates were formed in the presence of saturated and unsaturated PC. These aggregates exerted different cell toxicities. These results show that unsaturated phospholipids catalyze the formation of more toxic amyloid aggregates comparing to those formed in the presence of saturated lipids.
Collapse
Affiliation(s)
| | - Stanislav Rizevsky
- Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | | |
Collapse
|
22
|
Rizevsky S, Matveyenka M, Kurouski D. Nanoscale Structural Analysis of a Lipid-Driven Aggregation of Insulin. J Phys Chem Lett 2022; 13:2467-2473. [PMID: 35266717 PMCID: PMC9169669 DOI: 10.1021/acs.jpclett.1c04012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Abrupt aggregation of misfolded proteins is a hallmark of a large number of severe pathologies, including diabetes types 1 and 2, Alzheimer, and Parkinson diseases. A growing body of evidence suggests that lipids can uniquely change rates of amyloid-associated proteins as well as modify the structure of formed oligomers and fibrils. In this study, we utilize atomic force microscopy infrared (AFM-IR) spectroscopy, also known as nano-IR spectroscopy, to examine the structure of individual insulin oligomers, protofilaments, and fibrils grown in the presence of phospholipids. Our findings show that AFM-IR spectra of insulin oligomers have strong signals of C-H and PO2- vibrations, which points on the presence of lipids in the oligomer structure. Furthermore, substantial shifts in lipid vibrations in AFM-IR spectra of the oligomers relative to the corresponding bands of pure lipids have been observed. This points on strong interactions between a lipid and a protein that are developed at the stage of the oligomer formation.
Collapse
Affiliation(s)
- Stanislav Rizevsky
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
23
|
Ma X, Pavlidis G, Dillon E, Beltran V, Schwartz JJ, Thoury M, Borondics F, Sandt C, Kjoller K, Berrie BH, Centrone A. Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Anal Chem 2022; 94:3103-3110. [PMID: 35138807 DOI: 10.1021/acs.analchem.1c04182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (μ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (μ-FTIR ≈ 102 μm3, O-PTIR ≈ 10-1 μm3, PTIR ≈ 10-5 μm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 μm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Collapse
Affiliation(s)
- Xiao Ma
- Institute for the Conservation of Cultural Heritage, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, China
| | - Georges Pavlidis
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eoghan Dillon
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Victoria Beltran
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Jeffrey J Schwartz
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Mathieu Thoury
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Ferenc Borondics
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Kevin Kjoller
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Barbara H Berrie
- Scientific Research Department, National Gallery of Art, 2000B South Club Drive, Landover, Maryland 20785, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
24
|
Abstract
Peak force infrared (PFIR) microscopy achieves nanoscale infrared imaging at sub-10 nm spatial resolution through photothermal mechanical detection of atomic force microscopy (AFM). However, it suffers from a major limitation that only one infrared frequency can be scanned for an AFM frame at a time. To overcome this limitation, we report here dual-color PFIR microscopy that enables simultaneous imaging at two infrared frequencies. This dual-color PFIR microscopy bypasses the limitations of frame drift and distortion of AFM when comparing two images of different infrared frequencies. We benchmark the performance and spatial resolution of this method using structured polymers exhibiting phase separation. We further demonstrate the application of this technique in imaging biological samples by mapping the cell wall of Escherichia coli (E. coli) bacteria. The presence of a bacterial outer membrane was detected without extrinsic labels. This dual-color PFIR microscopy enables simultaneous nondestructive chemical nanoimaging of multiple chemical components and will be useful for potential applications such as in situ dual-channel monitoring of chemical reactions.
Collapse
Affiliation(s)
- Qing Xie
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| | - Jared Wiemann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
25
|
Wang H, Xie Q, Xu XG. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv Drug Deliv Rev 2022; 180:114080. [PMID: 34906646 DOI: 10.1016/j.addr.2021.114080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Small biomolecules at the subcellular level are building blocks for the manifestation of complex biological activities. However, non-intrusive in situ investigation of biological systems has been long daunted by the low spatial resolution and poor sensitivity of conventional light microscopies. Traditional infrared (IR) spectro-microscopy can enable label-free visualization of chemical bonds without extrinsic labeling but is still bound by Abbe's diffraction limit. This review article introduces a way to bypass the optical diffraction limit and improve the sensitivity for mid-IR methods - using tip-enhanced light nearfield in atomic force microscopy (AFM) operated in tapping and peak force tapping modes. Working principles of well-established scattering-type scanning near-field optical microscopy (s-SNOM) and two relatively new techniques, namely, photo-induced force microscopy (PiFM) and peak force infrared (PFIR) microscopy, will be briefly presented. With ∼ 10-20 nm spatial resolution and monolayer sensitivity, their recent applications in revealing nanoscale chemical heterogeneities in a wide range of biological systems, including biomolecules, cells, tissues, and biomaterials, will be reviewed and discussed. We also envision several future improvements of AFM-based tapping and peak force tapping mode nano-IR methods that permit them to better serve as a versatile platform for uncovering biological mechanisms at the fundamental level.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
26
|
Ural MS, Dartois E, Mathurin J, Desmaële D, Collery P, Dazzi A, Deniset-Besseau A, Gref R. Quantification of drug loading in polymeric nanoparticles using AFM-IR technique: a novel method to map and evaluate drug distribution in drug nanocarriers. Analyst 2022; 147:5564-5578. [DOI: 10.1039/d2an01079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atomic force microscopy-infrared spectroscopy allows individual nanoparticle mapping and determination of their drug loading.
Collapse
Affiliation(s)
- M. Seray Ural
- Institut de Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Saclay, 91405, Orsay, France
| | - Emmanuel Dartois
- Institut de Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Saclay, 91405, Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Didier Desmaële
- Institut Galien (IGPS), CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Philippe Collery
- Society for the Coordination of Therapeutic Research, 20220, Algajola, France
| | - Alexandre Dazzi
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
27
|
Goh CF, Lane ME. Advanced structural characterisation of pharmaceuticals using nano-thermal analysis (nano-TA). Adv Drug Deliv Rev 2022; 180:114077. [PMID: 34896130 DOI: 10.1016/j.addr.2021.114077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
The production of drug delivery systems fabricated at the nano scale comes with the challenges of identifying reliable characterisation tools, especially for solid dosage forms. A full understanding of physicochemical properties of solid-state systems at a high spatial resolution is essential to monitor their manufacturability, processability, performance (dissolution) and stability. Nano-thermal analysis (nano-TA), a hybrid of atomic force microscopy (AFM) and thermal analysis, has emerged as a solution to address the need for complete characterisation of samples with surface heterogeneity. Nano-TA provides not only physical information using conventional AFM but also the thermal behaviour of these systems as an additional chemical dimension. In this review, the principles and techniques of nano-TA are discussed with emphasis on recent pharmaceutical applications. Building on nano-TA, the combination of this approach with infrared spectroscopic analysis is briefly introduced. The challenges and considerations for future development of nano-TA characterisation are also outlined.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
28
|
V. D. dos Santos AC, Tranchida D, Lendl B, Ramer G. Nanoscale chemical characterization of a post-consumer recycled polyolefin blend using tapping mode AFM-IR. Analyst 2022; 147:3741-3747. [DOI: 10.1039/d2an00823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tapping mode AFM-IR reveals the presence of contaminants, PP inclusions within the PE phase, and EPR rubber at the interphase between PP and PE in a real-world polyolefin recyclate.
Collapse
Affiliation(s)
| | | | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria
| | - Georg Ramer
- Institute of Chemical Technologies and Analytics, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
29
|
A possible role of gas-phase electrophoretic mobility molecular analysis (nES GEMMA) in extracellular vesicle research. Anal Bioanal Chem 2021; 413:7341-7352. [PMID: 34622320 PMCID: PMC8626398 DOI: 10.1007/s00216-021-03692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022]
Abstract
The emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible.
Collapse
|
30
|
Pavlidis G, Schwartz JJ, Matson J, Folland T, Liu S, Edgar JH, Caldwell JD, Centrone A. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic ( 10B) hexagonal boron nitride at room temperature. APL MATERIALS 2021; 9:10.1063/5.0061941. [PMID: 37720466 PMCID: PMC10502608 DOI: 10.1063/5.0061941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared ( 6.4 - 7.4 μ m ) HPhPs in large (up to 120 × 250 μ m 2 near-monoisotopic > 99 % B 10 ) hexagonal boron nitride (hBN) flakes. Wide ( ≈ 40 μ m ) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses 0.05 μ m - 1 resolution) enable precise measurements of HPhP lifetimes (up to ≈ 4.2 p s and propagation lengths (up to ≈ 25 and ≈ 17 μ m for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈ 99 % B 10 hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons' lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons' propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices.
Collapse
Affiliation(s)
- Georges Pavlidis
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| | - Jeffrey J. Schwartz
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Joseph Matson
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Thomas Folland
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Song Liu
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - James H. Edgar
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - Josh D. Caldwell
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Andrea Centrone
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
31
|
Jakob DS, Li N, Zhou H, Xu XG. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102495. [PMID: 34310045 DOI: 10.1002/smll.202102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Kelvin probe force microscopy (KPFM) is a popular technique for mapping the surface potential at the nanoscale through measurement of the Coulombic force between an atomic force microscopy (AFM) tip and sample. The lateral resolution of conventional KPFM variants is limited to between ≈35 and 100 nm in ambient conditions due to the long-range nature of the Coulombic force. In this article, a novel way of generating the Coulombic force in tapping mode KPFM without the need for an external AC driving voltage is presented. A field-effect transistor (FET) is used to directly switch the electrical connectivity of the tip and sample on and off periodically. The resulting Coulomb force induced by Fermi level alignment of the tip and sample results in a detectable change of the cantilever oscillation at the FET-switching frequency. The resulting FET-switched KPFM delivers a spatial resolution of ≈25 nm and inherits the high operational speed of the AFM tapping mode. Moreover, the FET-switched KPFM is integrated with photoinduced force microscopy (PiFM), enabling simultaneous acquisitions of high spatial resolution chemical distributions and surface potential maps. The integrated FET-switched KPFM with PiFM is expected to facilitate characterizations of nanoscale electrical properties of photoactive materials, semiconductors, and ferroelectric materials.
Collapse
Affiliation(s)
- Devon S Jakob
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| | - Nengxu Li
- Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Huanping Zhou
- Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA, 18015, USA
| |
Collapse
|
32
|
Shakouri A, Kahroba H, Hamishekar H, Abdolalizadeh J. Nanoencapsulation of Hirudo medicinalis proteins in liposomes as a nanocarrier for inhibiting angiogenesis through targeting VEGFA in the Breast cancer cell line (MCF-7). BIOIMPACTS 2021; 12:115-126. [PMID: 35411300 PMCID: PMC8905592 DOI: 10.34172/bi.2021.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022]
Abstract
Introduction: Breast cancer is the most serious cause of women’s death throughout the world. Using nanocarrier vehicles to the exact site of cancer upgrades the therapeutic efficiency of the drugs. Capsulation of active proteins in the vesicular liposomes’ hydrophilic core is essential to develop a therapeutic protein carrier system. We aimed to encapsulate the medicinal leech saliva extract (LSE) and assess the inhibition of angiogenesis of breast cancer cells by targeting vascular endothelial growth factor A (VEGFA). Methods: In this research, enhanced formulation of liposomal protein was determined by zeta potential analysis, droplet size, drug release assay, and transmission electron microscopy (TEM). Furthermore, a cytotoxicity assay of liposomal LSE was performed to determine the cytotoxic activity of components. For assessing the expression of VEGFA, P53, and hypoxia-inducible factor subunit alpha (HIF1a) genes, Real-Time PCR was applied. Results: Nano liposome was chosen as an enhanced formulation due to its much smaller size (46.23 nm). Liposomal LSE had more practical actions on the MCF-7 cells. As noticed by DAPI staining, apoptosis was extensively greater in treated MCF-7 cells. Wound healing assay demonstrated that MCF-7 cells could not sustain growth at the presence of liposomal LSE and expression of the VEGFA gene was declined in treated cells. Downregulation of VEGFA was evaluated with western blotting technique. Conclusion: It can be concluded that our investigation of the tests confirmed the fact that nano liposomal LSE is a novel promising formulation for anticancer drugs and can significantly improve the penetration of protein drugs to cancer cells.
Collapse
Affiliation(s)
- Amir Shakouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishekar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Zhang W, Wang K, Hu X, Zhang X, Chang S, Zhang H. Nanometer-Sized Boron Loaded Liposomes Containing Fe 3O 4 Magnetic Nanoparticles and Tributyl Borate and Anti-Albumin from Bovine Serum Antibody for Thermal Neutron Detection. MATERIALS 2021; 14:ma14113040. [PMID: 34204954 PMCID: PMC8199906 DOI: 10.3390/ma14113040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 11/27/2022]
Abstract
A shortage in the supply of 3He used for thermal neutron detector makes researchers to find 3He alternatives for developing new neutron detectors. Here, we prepared a neutron-sensitive composite liposome with tributyl borate and encapsulating with Fe3O4@oleic acid nanoparticles (Fe3O4@OA NPs), methylene blue (MB), or anti-albumin from bovine serum (anti-BSA). The tributyl borate compound was characterized by Fourier transform infrared spectroscopy (FT-IR). In addition, the morphology, element compositions, and magnetic properties of the composite liposome were investigated with transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating sample magnetometer (VSM), respectively. The results indicated that a typical ellipsoidal magnetic liposome structure was obtained, and the lengths of the minor axis and major axis were 49 ± 1 nm and 87 ± 3 nm, respectively. Under thermal neutron irradiation, the structure of composite liposome was destroyed, and encapsulated reporter molecules were released, which was detected by ultraviolet–visible (UV–vis) spectroscopy and surface plasmon resonance (SPR) technology. The response of this sensor based on a destructive assay shows a good correlation with neutron doses. Besides, the sensor has a neutron to gamma-ray rejection ratio of 1568 at a thermal neutron flux rate of 135.6 n/cm2·s, which makes it a promising alternative to 3He.
Collapse
Affiliation(s)
- Wei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China; (W.Z.); (K.W.); (X.H.); (X.Z.)
| | - Kaikai Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China; (W.Z.); (K.W.); (X.H.); (X.Z.)
| | - Xiaodan Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China; (W.Z.); (K.W.); (X.H.); (X.Z.)
| | - Xiaohong Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China; (W.Z.); (K.W.); (X.H.); (X.Z.)
| | - Shuquan Chang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China; (W.Z.); (K.W.); (X.H.); (X.Z.)
- Correspondence: (S.C.); (H.Z.)
| | - Haiqian Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China; (W.Z.); (K.W.); (X.H.); (X.Z.)
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210096, China
- Correspondence: (S.C.); (H.Z.)
| |
Collapse
|
34
|
Weiss VU, Denderz N, Allmaier G, Marchetti‐Deschmann M. Online hyphenation of size-exclusion chromatography and gas-phase electrophoresis facilitates the characterization of protein aggregates. Electrophoresis 2021; 42:1202-1208. [PMID: 33651392 PMCID: PMC8252587 DOI: 10.1002/elps.202100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/07/2022]
Abstract
Gas-phase electrophoresis yields size distributions of polydisperse, aerosolized analytes based on electrophoretic principles. Nanometer-sized, surface-dry, single-charged particles are separated in a high laminar sheath flow of particle-free air and an orthogonal tunable electric field. Additionally, nano Electrospray Gas-Phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA) data are particle-number based. Therefore, small particles can be detected next to larger ones without a bias, for example, native proteins next to their aggregates. Analyte transition from the liquid to the gas phase is a method inherent prerequisite. In this context, nonvolatile sample buffers influence results. In the worst case, the (bio-)nanoparticle signal is lost due to an increased baseline and unspecific clustering of nonvolatile components. We present a novel online hyphenation of liquid chromatography and gas-phase electrophoresis, coupling a size-exclusion chromatography (SEC) column to an advanced nES GEMMA. Via this novel approach, it is possible to (i) separate analyte multimers already present in liquid phase from aggregates formed during the nES process, (ii) differentiate liquid phase and spray-induced multimers, and (iii) to remove nonvolatile buffer components online before SEC-nES GEMMA analysis. Due to these findings, SEC-nES GEMMA has the high potential to help to understand aggregation processes in biological buffers adding the benefit of actual size determination for noncovalent assemblies formed in solution. As detection and characterization of protein aggregation in large-scale pharmaceutical production or sizing of noncovalently bound proteins are findings directly related to technologically and biologically relevant situations, we proposed the presented method to be a valuable addition to LC-MS approaches.
Collapse
Affiliation(s)
- Victor U. Weiss
- Institute for Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Natalia Denderz
- Institute for Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | - Günter Allmaier
- Institute for Chemical Technologies and AnalyticsTU Wien (Vienna University of Technology)ViennaAustria
| | | |
Collapse
|
35
|
Dou T, Zhou L, Kurouski D. Unravelling the Structural Organization of Individual α-Synuclein Oligomers Grown in the Presence of Phospholipids. J Phys Chem Lett 2021; 12:4407-4414. [PMID: 33945282 DOI: 10.1021/acs.jpclett.1c00820] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) is a severe neurological disorder that affects more than 1 million people in the U.S. alone. A hallmark of PD is the formation of intracellular α-synuclein (α-Syn) protein aggregates called Lewy bodies (LBs). Although this protein does not have a particular localization in the central neural system, α-Syn aggregates are primarily found in certain areas of the midbrain, hypothalamus, and thalamus. Microscopic analysis of LBs reveals fragments of lipid-rich membranes, organelles, and vesicles. These and other pieces of experimental evidence suggest that α-Syn aggregation can be triggered by lipids. In this study, we used atomic force microscope infrared spectroscopy (AFM-IR) to investigate the structural organization of individual α-Syn oligomers grown in the presence of two different phospholipids vesicles. AFM-IR is a modern optical nanoscopy technique that has single-molecule sensitivity and subdiffraction spatial resolution. Our results show that α-Syn oligomers grown in the presence of phosphatidylcholine have a distinctly different structure than oligomers grown in the presence of phosphatidylserine. We infer that this occurs because of specific charges adopted by lipids, which in turn governs protein aggregation. We also found that the protein to phospholipid ratio has a substantial impact on the structure of α-Syn oligomers. These findings demonstrate that α-Syn is far more complex than expected from the perspective of the structural organization of oligomeric species.
Collapse
|
36
|
Schwartz JJ, Le ST, Krylyuk S, Richter CA, Davydov AV, Centrone A. Substrate-mediated hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2021; 10:10.1515/nanoph-2020-0640. [PMID: 36451975 PMCID: PMC9706547 DOI: 10.1515/nanoph-2020-0640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent lattice vibrations that exist in strongly optically anisotropic media, including two-dimensional materials (e.g., MoO3). These polaritons propagate through the material's volume with long lifetimes, enabling novel mid-infrared nanophotonic applications by compressing light to sub-diffractional dimensions. Here, the dispersion relations and HPhP lifetimes (up to ≈12 ps) in single-crystalline α-MoO3 are determined by Fourier analysis of real-space, nanoscale-resolution polariton images obtained with the photothermal induced resonance (PTIR) technique. Measurements of MoO3 crystals deposited on periodic gratings show longer HPhPs propagation lengths and lifetimes (≈2×), and lower optical compressions, in suspended regions compared with regions in direct contact with the substrate. Additionally, PTIR data reveal MoO3 subsurface defects, which have a negligible effect on HPhP propagation, as well as polymeric contaminants localized under parts of the MoO3 crystals, which are derived from sample preparation. This work highlights the ability to engineer substrate-defined nanophotonic structures from layered anisotropic materials.
Collapse
Affiliation(s)
- Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Son T. Le
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
37
|
V. D. dos Santos AC, Heydenreich R, Derntl C, Mach-Aigner AR, Mach RL, Ramer G, Lendl B. Nanoscale Infrared Spectroscopy and Chemometrics Enable Detection of Intracellular Protein Distribution. Anal Chem 2020; 92:15719-15725. [PMID: 33259186 PMCID: PMC7745202 DOI: 10.1021/acs.analchem.0c02228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Determination of the intracellular location of proteins is one of the fundamental tasks of microbiology. Conventionally, label-based microscopy and super-resolution techniques are employed. In this work, we demonstrate a new technique that can determine intracellular protein distribution at nanometer spatial resolution. This method combines nanoscale spatial resolution chemical imaging using the photothermal-induced resonance (PTIR) technique with multivariate modeling to reveal the intracellular distribution of cell components. Here, we demonstrate its viability by imaging the distribution of major cellulases and xylanases in Trichoderma reesei using the colocation of a fluorescent label (enhanced yellow fluorescence protein, EYFP) with the target enzymes to calibrate the chemometric model. The obtained partial least squares model successfully shows the distribution of these proteins inside the cell and opens the door for further studies on protein secretion mechanisms using PTIR.
Collapse
Affiliation(s)
| | - Rosa Heydenreich
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Christian Derntl
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Astrid R. Mach-Aigner
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Robert L. Mach
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| |
Collapse
|
38
|
Wang H, Wang L, Janzen E, Edgar JH, Xu XG. Total Internal Reflection Peak Force Infrared Microscopy. Anal Chem 2020; 93:731-736. [DOI: 10.1021/acs.analchem.0c01176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Le Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506, United States
| | - James H. Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506, United States
| | - Xiaoji G. Xu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
39
|
Li Y, Mei T, Han S, Han T, Sun Y, Zhang H, An F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Zhao D, Zhang Z, Li C, Xiao X, Li J, Liu X, Cheng H. Yellow-Emitting Hydrophobic Carbon Dots via Solid-Phase Synthesis and Their Applications. ACS OMEGA 2020; 5:22587-22595. [PMID: 32923818 PMCID: PMC7482243 DOI: 10.1021/acsomega.0c03239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 05/04/2023]
Abstract
The preparation and application of hydrophobic carbon dots (HCDs) are now the hotspots in the field of nanomaterials. This paper reports the fast synthesis of long-wavelength-emitting HCDs (yellow-emitting, λem = 541 nm) through a solid-phase route, with l-cysteine hydrochloride anhydrous and citric acid as carbon sources and dicyclohexylcarbodiimide as a dehydrating agent, reacting at 180 °C for 40 min, with a quantum yield of 30%. The solid-phase route avoids the usage of organic reagents during the synthesis process and is thus environmentally friendly. The obtained HCDs can be simply separated into HCDs-L (less density) and HCDs-W (higher density) with differences in physical (polarity, density), optical, and chemical properties. The differences in HCDs-L, HCDs-W, and water-soluble CDs (WCDs) were compared through various characterization methods, and the synthesis and luminescence mechanisms of HCDs were investigated. Meanwhile, HCDs were employed in the fields of LED lamp production and solid fluorescent shaping material. The prepared HCDs were then modified into WCDs through the liposomal embedding method. The HCDs prepared by the new solid-phase route exhibit stable and highly efficient photoluminescence ability and will have a promising outlook in their applications in various fields.
Collapse
|
41
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
42
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
43
|
A Quantum Cascade Laser-Based Multi-Gas Sensor for Ambient Air Monitoring. SENSORS 2020; 20:s20071850. [PMID: 32225096 PMCID: PMC7181263 DOI: 10.3390/s20071850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
Abstract
A quantum cascade laser-based sensor for ambient air monitoring is presented and five gases, affecting the air quality, can be quantified. The light sources are selected to measure CO, NO, NO2, N2O and SO2. The footprint of the measurement setup is designed to fit in two standard 19” rack (48 cm × 65 cm) with 4 height units (18 cm) whereas one is holding the optical components and the other one contains the electronics and data processing unit. The concentrations of the individual analytes are measured using 2f-Wavelength Modulation Spectroscopy (2f-WMS) and a commercially available multipass gas cell defines the optical path. In addition, CO can also be measured with a dispersion-based technique, which allows one to cover a wider concentration range than 2f-WMS. The performance of this prototype has been evaluated in the lab and detection limits in the range of 1ppbv have been achieved. Finally, the applicability of this prototype for ambient air monitoring is shown in a five-week measurement campaign in cooperation with the Municipal Department for Environmental Protection (MA 22) of Vienna, Austria.
Collapse
|
44
|
Nano electrospray differential mobility analysis based size-selection of liposomes and very-low density lipoprotein particles for offline hyphenation to MALDI mass spectrometry. J Pharm Biomed Anal 2020; 179:112998. [PMID: 31780280 DOI: 10.1016/j.jpba.2019.112998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022]
Abstract
Gas-phase electrophoresis of single-charged analytes (nanoparticles) enables their separation according to the surface-dry particle size (Electrophoretic Mobility Diameter, EMD), which corresponds to the diameter of spherical shaped particles. Employing a nano Electrospray Differential Mobility Analyzer (nES DMA), also known as nES Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA), allows sizing/size-separation and determination of particle-number concentrations. Separations are based on a constant high laminar sheath flow and a tunable, orthogonal electric field enabling scanning of EMDs in the nanometer size range. Additionally, keeping the voltage constant, only nanoparticles of a given EMD pass the instrument and can be collected on corresponding supporting materials for subsequent nanoparticle analyses applying e.g. microscopic, immunologic or spectroscopic techniques. In our proof-of-concept study we now focus for the first time on mass spectrometric (MS) characterization of DMA size-selected material. We carried out size-selection of liposomes, vesicles consisting of a lipid bilayer and an aqueous lumen employed as carriers in e.g. pharmaceutic, cosmetic or nutritional applications. Particles of 85 nm EMD were collected on gold-coated silicon wafers. Subsequently, matrix was applied and Matrix-Assisted Laser Desorption / Ionization (MALDI) MS carried out. However, we not only focused on plain liposomes but also demonstrated the applicability of our approach for very heterogeneous low density lipoprotein (VLDL) particles, a transporter of lipid metabolism. Our novel offline hyphenation of gas-phase electrophoresis (termed nES DMA or nES GEMMA) and MALDI-MS opens the avenue to the molecular characterization of size-select nanoparticles of complex nature.
Collapse
|
45
|
Ramer G, Tuteja M, Matson JR, Davanco M, Folland TG, Kretinin A, Taniguchi T, Watanabe K, Novoselov KS, Caldwell JD, Centrone A. High- Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. NANOPHOTONICS 2020; 9:10.1515/nanoph-2020-0048. [PMID: 33365225 PMCID: PMC7754710 DOI: 10.1515/nanoph-2020-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q-factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high-Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.
Collapse
Affiliation(s)
- Georg Ramer
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Mohit Tuteja
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Joseph R. Matson
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Marcelo Davanco
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| | - Thomas G. Folland
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrey Kretinin
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kostya S. Novoselov
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK; Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing, 400714, China
| | - Joshua D. Caldwell
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| |
Collapse
|
46
|
Roman M, Wrobel TP, Panek A, Paluszkiewicz C, Kwiatek WM. Nanoscale AFM-IR spectroscopic imaging of lipid heterogeneity and effect of irradiation in prostate cancer cells. NANOTECHNOLOGY 2019; 30:425502. [PMID: 31300624 DOI: 10.1088/1361-6528/ab31dd] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent development of the AFM-IR technique, which combines nanoscale imaging with chemical contrast through infrared spectroscopy, opened up new fields for exploration, which were out of reach for other modalities, e.g. Raman spectroscopy. Lipid droplets (LDs) are key organelles, which are associated with stress response mechanisms in cells and their size falls into that niche. LDs composition is heterogeneous and varies depending on cancer cell type and the tumor microenvironment. Prostate cancer cells show a unique lipid metabolism manifested by an increased requirement for lipid accumulation in cytosolic LDs. In the current work, AFM-IR nanoimaging was undertaken to analyze lipids in untreated and x-ray irradiated PC-3 prostate cancer cells. Cells poor in LDs showed slightly increased lipid signal in cytoplasm close to the nucleus. On the other hand, high lipid signal coming from LDs accumulation could be found in any part of the cytoplasmic region. The observed behavior was found to be independent from irradiation and its dose. According to the band assignment of the collected AFM-IR spectra, the main components of LDs were assigned to cholesteryl esters. The size of LDs present in cells poor in lipids was found to be of less than 1 μm, whereas LDs aggregates spread out over a few microns. Analysis of AFM-IR spectra shows relative homogeneity of LDs composition in single cells and heterogeneity of LDs content within the PC-3 cell population.
Collapse
Affiliation(s)
- Maciej Roman
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | | | | | | |
Collapse
|
47
|
Wang L, Jakob DS, Wang H, Apostolos A, Pires MM, Xu XG. Generalized Heterodyne Configurations for Photoinduced Force Microscopy. Anal Chem 2019; 91:13251-13259. [PMID: 31545025 DOI: 10.1021/acs.analchem.9b03712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photoinduced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photoinduced force from the light-matter interaction. So far, PiFM has been operated in only one heterodyne configuration. In this Article, we generalize heterodyne configurations of PiFM by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide the PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and the polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for PiFM deliver new avenues for chemical imaging and broadband spectroscopy at ∼10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, to polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and the related tapping-mode AFM-IR and provide possibilities for an additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.
Collapse
Affiliation(s)
- Le Wang
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Devon S Jakob
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Haomin Wang
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Alexis Apostolos
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Marcos M Pires
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Xiaoji G Xu
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
48
|
Ma X, Beltran V, Ramer G, Pavlidis G, Parkinson DY, Thoury M, Meldrum T, Centrone A, Berrie BH. Revealing the Distribution of Metal Carboxylates in Oil Paint from the Micro- to Nanoscale. Angew Chem Int Ed Engl 2019; 58:11652-11656. [PMID: 31226237 PMCID: PMC9798385 DOI: 10.1002/anie.201903553] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Oil paints comprise pigments, drying oils, and additives that together confer desirable properties, but can react to form metal carboxylates (soaps) that may damage artworks over time. To obtain information on soap formation and aggregation, we introduce a new tapping-mode measurement paradigm for the photothermal induced resonance (PTIR) technique that enables nanoscale IR spectroscopy and imaging on highly heterogenous and rough paint thin sections. PTIR is used in combination with μ-computed tomography and IR microscopy to determine the distribution of metal carboxylates in a 23-year old oil paint of known formulation. Results show that heterogeneous agglomerates of Al-stearate and a Zn-carboxylate complex with Zn-stearate nano-aggregates in proximity are distributed randomly in the paint. The gradients of zinc carboxylates are unrelated to the Al-stearate distribution. These measurements open a new chemically sensitive nanoscale observation window on the distribution of metal soaps that can bring insights for understanding soap formation in oil paint.
Collapse
Affiliation(s)
- Xiao Ma
- Scientific Research Department, Division of Conservation, National Gallery of Art, 2000B South Club Drive, Landover, MD 20785 (USA)
| | | | | | - Georges Pavlidis
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (USA)
| | - Dilworth Y. Parkinson
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720 (USA)
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette (France)
| | - Tyler Meldrum
- Department of Chemistry, The College of William & Mary, 540 Landrum Drive, Williamsburg, VA 23188 (USA)
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (USA)
| | - Barbara H. Berrie
- Scientific Research Department, Division of Conservation, National Gallery of Art, 2000B South Club Drive, Landover, MD 20785 (USA)
| |
Collapse
|
49
|
Ma X, Beltran V, Ramer G, Pavlidis G, Parkinson DY, Thoury M, Meldrum T, Centrone A, Berrie BH. Revealing the Distribution of Metal Carboxylates in Oil Paint from the Micro‐ to Nanoscale. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao Ma
- Scientific Research Department, Division of Conservation National Gallery of Art 2000B South Club Drive Landover MD 20785 USA
| | - Victoria Beltran
- IPANEMA CNRS ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461 Université Paris-Saclay 91128 Gif-sur-Yvette France
| | - Georg Ramer
- Nanoscale Device Characterization Division Physical Measurement Laboratory National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899 USA
- Maryland Nanocenter University of Maryland College Park MD 20742 USA
| | - Georges Pavlidis
- Nanoscale Device Characterization Division Physical Measurement Laboratory National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899 USA
| | - Dilworth Y. Parkinson
- Advanced Light Source Lawrence Berkeley National Laboratory 1 Cyclotron Rd. Berkeley CA 94720 USA
| | - Mathieu Thoury
- IPANEMA CNRS ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461 Université Paris-Saclay 91128 Gif-sur-Yvette France
| | - Tyler Meldrum
- Department of Chemistry William & Mary 540 Landrum Drive Williamsburg VA 23188 USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division Physical Measurement Laboratory National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899 USA
| | - Barbara H. Berrie
- Scientific Research Department, Division of Conservation National Gallery of Art 2000B South Club Drive Landover MD 20785 USA
| |
Collapse
|
50
|
Schwartz JJ, Chuang HJ, Rosenberger MR, Sivaram SV, McCreary KM, Jonker BT, Centrone A. Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25578-25585. [PMID: 31265230 PMCID: PMC6903401 DOI: 10.1021/acsami.9b06594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
van der Waals heterostructures (vdWHs) leverage the characteristics of two-dimensional (2D) material building blocks to create a myriad of structures with unique and desirable properties. Several commonly employed fabrication strategies rely on polymeric stamps to assemble layers of 2D materials into vertical stacks. However, the properties of such heterostructures frequently are degraded by contaminants, typically of unknown composition, trapped between the constituent layers. Such contaminants, therefore, impede studies of the intrinsic properties of heterostructures and hinder their application. Here, we use the photothermal induced resonance (PTIR) technique to obtain infrared spectra and maps of the contaminants down to a few attomoles and with nanoscale resolution. Heterostructures comprised of WSe2, WS2, and hexagonal boron nitride layers were found to contain significant amounts of poly(dimethylsiloxane) (PDMS) and polycarbonate, corresponding to the stamp materials used in their construction. Additionally, we verify that an atomic force microscope-based "nanosqueegee" technique is an effective method for locally removing contaminants by comparing spectra within as-fabricated and cleaned regions. Having identified the source of the contaminants, we demonstrate that cleaning PDMS stamps with isopropyl alcohol or toluene prior to vdWH fabrication reduces PDMS contamination within the structures. The general applicability of the PTIR technique for identifying the sources corrupting vdWHs provides valuable guidance for devising mitigation strategies (e.g., stamp cleaning or pre-/post-treatments) and enhances capabilities for producing materials with precisely engineered properties.
Collapse
Affiliation(s)
- Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, United States
| | - Hsun-Jen Chuang
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Matthew R. Rosenberger
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Saujan V. Sivaram
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kathleen M. McCreary
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Berend T. Jonker
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
- Corresponding Authors:,
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Corresponding Authors:,
| |
Collapse
|