1
|
Seynhaeve AL, Liu H, Priester MI, Valentijn M, van Holten-Neelen C, Brouwer RW, van Brakel M, Dik WA, van IJcken WF, Debets R, Stubbs AP, ten Hagen TL. CXCL10 Secreted by Pericytes Mediates TNFα-Induced Vascular Leakage in Tumors and Enhances Extravasation of Nanoparticle-Based Chemotherapeutics. Cancer Res 2025; 85:1596-1610. [PMID: 40009768 PMCID: PMC12046328 DOI: 10.1158/0008-5472.can-24-3833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
TNFα induces vascular permeability and plays an important role in inflammation. In addition, TNFα-induced vascular leakage is involved in the increased extravasation of nanoparticle-formulated chemotherapeutic drugs, improving drug delivery and subsequent tumor response. In this study, we uncovered a positive correlation between the presence of pericytes in the tumor-associated vasculature and TNFα-induced leakage and drug delivery, especially when drugs were encapsulated in nanoparticles. RNA sequencing and pathway analysis identified high expression of C-X-C motif chemokine ligand 10 (CXCL10) in TNFα-stimulated pericytes. In addition, TNFα increased CXCL10 protein production by pericytes in vitro. In animal studies, tumor types with vessels with high pericyte coverage showed enhanced permeability and extravasation of drugs encapsulated in nanoparticles following treatment with TNFα, which could be blocked with a CXCL10-neutralizing antibody. In contrast, tumors harboring vessels with low pericyte numbers did not display increased drug extravasation in response to TNFα. Lack of pericyte coverage could be compensated by coadministration of CXCL10. These findings reveal a mechanism by which TNFα induces CXCL10 release from pericytes, resulting in increased endothelial permeability, vascular leakage, and drug delivery. Significance: TNFα stimulates tumor-associated pericytes to produce CXCL10 that mediates vascular leakage and assists in the intratumoral delivery of nanoparticle-encapsulated chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ann L.B. Seynhaeve
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hui Liu
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjolein I. Priester
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mike Valentijn
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Conny van Holten-Neelen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rutger W.W. Brouwer
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mandy van Brakel
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew P. Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Timo L.M. ten Hagen
- Precision Medicine in Oncology, Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Nanotechnology Innovation Center Erasmus, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
3
|
Zhang S, Wang H. Targeting the lung tumour stroma: harnessing nanoparticles for effective therapeutic interventions. J Drug Target 2025; 33:60-86. [PMID: 39356091 DOI: 10.1080/1061186x.2024.2410462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Lung cancer remains an influential global health concern, necessitating the development of innovative therapeutic strategies. The tumour stroma, which is known as tumour microenvironment (TME) has a central impact on tumour expansion and treatment resistance. The stroma of lung tumours consists of numerous cells and molecules that shape an environment for tumour expansion. This environment not only protects tumoral cells against immune system attacks but also enables tumour stroma to attenuate the action of antitumor drugs. This stroma consists of stromal cells like cancer-associated fibroblasts (CAFs), suppressive immune cells, and cytotoxic immune cells. Additionally, the presence of stem cells, endothelial cells and pericytes can facilitate tumour volume expansion. Nanoparticles are hopeful tools for targeted drug delivery because of their extraordinary properties and their capacity to devastate biological obstacles. This review article provides a comprehensive overview of contemporary advancements in targeting the lung tumour stroma using nanoparticles. Various nanoparticle-based approaches, including passive and active targeting, and stimuli-responsive systems, highlighting their potential to improve drug delivery efficiency. Additionally, the role of nanotechnology in modulating the tumour stroma by targeting key components such as immune cells, extracellular matrix (ECM), hypoxia, and suppressive elements in the lung tumour stroma.
Collapse
Affiliation(s)
- Shushu Zhang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Hui Wang
- Cancer Center (Oncology) Department, the Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Koirala A, Marshak-Rothstein A, Ksander BR, Gregory-Ksander M. Fas Ligand enhances vessel maturation and inhibits vascular leakage associated with age-related macular degeneration. RESEARCH SQUARE 2024:rs.3.rs-4331250. [PMID: 38766158 PMCID: PMC11100875 DOI: 10.21203/rs.3.rs-4331250/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neovascular age-related macular degeneration (AMD), results from choroidal neovascularization (CNV), retinal edema and loss of photoreceptors. Previous studies suggested that Fas Ligand (FasL) on retinal pigment epithelial cells inhibited CNV by inducing apoptosis of infiltrating Fas+ vascular endothelial cells. However, induction of apoptosis depends on membrane-bound (mFasL) while the FasL cleavage product (sFasL) is neuroprotective. To better understand how FasL regulates the development of CNV, we used a mouse model of laser CNV to evaluate the development of CNV in mice with a FasL cleavage site mutation (ΔCS) and can only express the membrane-bound form of FasL. There was no significant difference in CNV size and area of vascular leakage in homozygous FasLΔCS/ΔCS mice when compared to wild type mice. Unexpectedly, heterozygous FasLΔCS/WT mice developed significantly less vascular leakage and showed accelerated neovessel maturation. However, CNV was not prevented in heterozygous FasLΔCS/WT mice if the Fas receptor was deleted in myeloid cells (FasLΔCS/+ Fasflox/flox CreLysM). Thus, FasL-mediated CNV inhibition depends on the extent of FasL cleavage, and on FasL engagement of Fas+ myeloid cells. Moreover, accelerated neovessel maturation prevents vascular leakage in AMD.
Collapse
Affiliation(s)
- Adarsha Koirala
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | - Bruce R. Ksander
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
7
|
McWhorter R, Bonavida B. The Role of TAMs in the Regulation of Tumor Cell Resistance to Chemotherapy. Crit Rev Oncog 2024; 29:97-125. [PMID: 38989740 DOI: 10.1615/critrevoncog.2024053667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Tumor-associated macrophages (TAMs) are the predominant cell infiltrate in the immunosuppressive tumor microenvironment (TME). TAMs are central to fostering pro-inflammatory conditions, tumor growth, metastasis, and inhibiting therapy responses. Many cancer patients are innately refractory to chemotherapy and or develop resistance following initial treatments. There is a clinical correlation between the level of TAMs in the TME and chemoresistance. Hence, the pivotal role of TAMs in contributing to chemoresistance has garnered significant attention toward targeting TAMs to reverse this resistance. A prerequisite for such an approach requires a thorough understanding of the various underlying mechanisms by which TAMs inhibit response to chemotherapeutic drugs. Such mechanisms include enhancing drug efflux, regulating drug metabolism and detoxification, supporting cancer stem cell (CSCs) resistance, promoting epithelial-mesenchymal transition (EMT), inhibiting drug penetration and its metabolism, stimulating angiogenesis, impacting inhibitory STAT3/NF-κB survival pathways, and releasing specific inhibitory cytokines including TGF-β and IL-10. Accordingly, several strategies have been developed to overcome TAM-modulated chemoresistance. These include novel therapies that aim to deplete TAMs, repolarize them toward the anti-tumor M1-like phenotype, or block recruitment of monocytes into the TME. Current results from TAM-targeted treatments have been unimpressive; however, the use of TAM-targeted therapies in combination appears promising These include targeting TAMs with radiotherapy, chemotherapy, chemokine receptor inhibitors, immunotherapy, and loaded nanoparticles. The clinical limitations of these strategies are discussed.
Collapse
Affiliation(s)
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747, USA
| |
Collapse
|
8
|
Nowosad A, Marine JC, Karras P. Perivascular niches: critical hubs in cancer evolution. Trends Cancer 2023; 9:897-910. [PMID: 37453870 DOI: 10.1016/j.trecan.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Tumors are heterogeneous ecosystems in which cancer cells coexist within a complex tumor immune microenvironment (TIME). The malignant, stromal, and immune cell compartments establish a plethora of bidirectional cell-cell communication crosstalks that influence tumor growth and metastatic dissemination, which we are only beginning to understand. Cancer cells either co-opt or promote the formation of new blood and lymphatic vessels to cope with their need for nutrients and oxygen. Recent studies have highlighted additional key roles for the tumor vasculature and have identified the perivascular niche as a cellular hub, where intricate and dynamic cellular interactions promote cancer stemness, immune evasion, dormancy, and metastatic spreading. Here, we review these findings, and discuss how they may be exploited therapeutically.
Collapse
Affiliation(s)
- Ada Nowosad
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Mieville V, Griffioen AW, Benamran D, Nowak-Sliwinska P. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878:188942. [PMID: 37343729 DOI: 10.1016/j.bbcan.2023.188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Renal cell carcinoma (RCC) and its principal subtype, clear cell RCC, are the most diagnosed kidney cancer. Despite substantial improvement over the last decades, current pharmacological intervention still fails to achieve long-term therapeutic success. RCC is characterized by a high intra- and inter-tumoral heterogeneity and is heavily influenced by the crosstalk of the cells composing the tumor microenvironment, such as cancer-associated fibroblasts, endothelial cells and immune cells. Moreover, multiple physicochemical properties such as pH, interstitial pressure or oxygenation may also play an important role. These elements are often poorly recapitulated in in vitro models used for drug development. This inadequate recapitulation of the tumor is partially responsible for the current lack of an effective and curative treatment. Therefore, there are needs for more complex in vitro or ex vivo drug screening models. In this review, we discuss the current state-of-the-art of RCC models and suggest strategies for their further development.
Collapse
Affiliation(s)
- Valentin Mieville
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
10
|
Hoffmann E, Gerwing M, Krähling T, Hansen U, Kronenberg K, Masthoff M, Geyer C, Höltke C, Wachsmuth L, Schinner R, Hoerr V, Heindel W, Karst U, Eisenblätter M, Maus B, Helfen A, Faber C, Wildgruber M. Vascular response patterns to targeted therapies in murine breast cancer models with divergent degrees of malignancy. Breast Cancer Res 2023; 25:56. [PMID: 37221619 DOI: 10.1186/s13058-023-01658-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy. METHODS Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry. RESULTS Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage. CONCLUSION DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.
Collapse
Grants
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
- 446302350, 194468054, 431460824 Deutsche Forschungsgemeinschaft
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany.
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Tobias Krähling
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | - Carsten Höltke
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Verena Hoerr
- Clinic of Radiology, University of Münster, Münster, Germany
- Heart Center Bonn, Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Walter Heindel
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Michel Eisenblätter
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty OWL, University of Bielefeld, Bielefeld, Germany
| | - Bastian Maus
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Anne Helfen
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Clinic of Radiology, University of Münster, Münster, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms232315335. [PMID: 36499660 PMCID: PMC9740594 DOI: 10.3390/ijms232315335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Extracellular vesicles (EVs) serve as central mediators in communication between tumor and non-tumor cells. These interactions are largely dependent on the function of the endothelial barrier and the set of receptors present on its surface, as endothelial cells (ECs) are a plenteous source of EVs. The molecular basis for EV secretion and action in the tumor microenvironment (TME) has not been fully elucidated to date. Emerging evidence suggests a prominent role of inflammatory pathways in promoting tumor progression and metastasis. Although transforming growth factor β (TGF-β) is a cytokine with strong immunomodulatory and protective activity in benign and early-stage cancer cells, it plays a pro-tumorigenic role in advanced cancer cells, which is known as the "TGF-β paradox". Thus, the aim of this review is to describe the correlation between EV release, TGF-β-dependent inflammation, and dysregulation of downstream TGF-β signaling in the context of cancer development.
Collapse
|
12
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Carrasco JL, Madrid JF, Rodríguez Bello A. Comparison of the Behavior of Perivascular Cells (Pericytes and CD34+ Stromal Cell/Telocytes) in Sprouting and Intussusceptive Angiogenesis. Int J Mol Sci 2022; 23:ijms23169010. [PMID: 36012273 PMCID: PMC9409369 DOI: 10.3390/ijms23169010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Perivascular cells in the pericytic microvasculature, pericytes and CD34+ stromal cells/telocytes (CD34+SCs/TCs), have an important role in angiogenesis. We compare the behavior of these cells depending on whether the growth of endothelial cells (ECs) from the pre-existing microvasculature is toward the interstitium with vascular bud and neovessel formation (sprouting angiogenesis) or toward the vascular lumen with intravascular pillar development and vessel division (intussusceptive angiogenesis). Detachment from the vascular wall, mobilization, proliferation, recruitment, and differentiation of pericytes and CD34+SCs/TCs, as well as associated changes in vessel permeability and functionality, and modifications of the extracellular matrix are more intense, longer lasting over time, and with a greater energy cost in sprouting angiogenesis than in intussusceptive angiogenesis, in which some of the aforementioned events do not occur or are compensated for by others (e.g., sparse EC and pericyte proliferation by cell elongation and thinning). The governing mechanisms involve cell-cell contacts (e.g., peg-and-socket junctions between pericytes and ECs), multiple autocrine and paracrine signaling molecules and pathways (e.g., vascular endothelial growth factor, platelet-derived growth factor, angiopoietins, transforming growth factor B, ephrins, semaphorins, and metalloproteinases), and other factors (e.g., hypoxia, vascular patency, and blood flow). Pericytes participate in vessel development, stabilization, maturation and regression in sprouting angiogenesis, and in interstitial tissue structure formation of the pillar core in intussusceptive angiogenesis. In sprouting angiogenesis, proliferating perivascular CD34+SCs/TCs are an important source of stromal cells during repair through granulation tissue formation and of cancer-associated fibroblasts (CAFs) in tumors. Conversely, CD34+SCs/TCs have less participation as precursor cells in intussusceptive angiogenesis. The dysfunction of these mechanisms is involved in several diseases, including neoplasms, with therapeutic implications.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain
| | - Juan Francisco Madrid
- Department of Cell Biology and Histology, School of Medicine, Campus of International Excellence “Campus Mare Nostrum”, IMIB-Arrixaca, University of Murcia, 30120 Murcia, Spain
| | - Aixa Rodríguez Bello
- Department of Bioquímica, Microbiología, Biología Celular y Genética, University of La Laguna, 38071 Tenerife, Spain
| |
Collapse
|
13
|
Ni N, Wang W, Sun Y, Sun X, Leong DT. Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials 2022; 287:121640. [PMID: 35772348 DOI: 10.1016/j.biomaterials.2022.121640] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
All intravenous delivered nanomedicine needs to escape from the blood vessel to exert their therapeutic efficacy at their designated site of action. Failure to do so increases the possibility of detrimental side effects and negates their therapeutic intent. Many powerful anticancer nanomedicine strategies rely solely on the tumor derived enhanced permeability and retention (EPR) effect for the only mode of escaping from the tumor vasculature. However, not all tumors have the EPR effect nor can the EPR effect be induced or controlled for its location and timeliness. In recent years, there have been exciting developments along the lines of inducing endothelial leakiness at the tumor to decrease the dependence of EPR. Physical disruption of the endothelial-endothelial cell junctions with coordinated biological intrinsic pathways have been proposed that includes various modalities like ultrasound, radiotherapy, heat and even nanoparticles, appear to show good progress towards the goal of inducing endothelial leakiness. This review explains the intricate and complex biological background behind the endothelial cells with linkages on how updated reported nanomedicine strategies managed to induce endothelial leakiness. This review will also end off with fresh insights on where the future of inducible endothelial leakiness holds.
Collapse
Affiliation(s)
- Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Weiyi Wang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yu Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou, 310009, PR China
| | - Xiao Sun
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
14
|
Zeng Y, Yu T, Zhang S, Song G, Meng T, Yuan H, Hu F. Combination of tumor vessel normalization and immune checkpoint blockade for breast cancer treatment via multifunctional nanocomplexes. Biomater Sci 2022; 10:4140-4155. [PMID: 35726757 DOI: 10.1039/d2bm00600f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor vessel normalization can alleviate hypoxia, reduce the intratumoral infiltration of immunosuppressive cells and increase the intratumoral infiltration of immune effector cells (CD8+ T cells), further reversing the immunosuppressive microenvironment. Here, nanocomplexes (lipo/St@FA-COSA/BMS-202) which can accurately deliver drugs to tumor tissues and release different drugs at different sites with different rates were prepared to combine tumor vessel normalization with immune checkpoint blockade. The results of drug release in vitro showed that in a pH 6.5 release medium, lipo/St@FA-COSA/BMS-202 rapidly released the vascular normalizing drug (sunitinib, St) and slowly released the PD-1/PD-L1-blocking drug (BMS-202). The results of in vivo experiments showed that the rapidly released St normalized tumor vessels and formed an immunosupportive microenvironment which improved the anti-tumor efficacy of BMS-202. In conclusion, the drug delivery strategy significantly inhibited tumor growth and had excellent anti-tumor efficacy, which can provide a potential approach for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tong Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Brown EL, Lefebvre TL, Sweeney PW, Stolz BJ, Gröhl J, Hacker L, Huang Z, Couturier DL, Harrington HA, Byrne HM, Bohndiek SE. Quantification of vascular networks in photoacoustic mesoscopy. PHOTOACOUSTICS 2022; 26:100357. [PMID: 35574188 PMCID: PMC9095888 DOI: 10.1016/j.pacs.2022.100357] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.
Collapse
Affiliation(s)
- Emma L. Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Thierry L. Lefebvre
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul W. Sweeney
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Bernadette J. Stolz
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Janek Gröhl
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Lina Hacker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Ziqiang Huang
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
16
|
Manocha E, Consonni A, Baggi F, Ciusani E, Cocce V, Paino F, Tremolada C, Caruso A, Alessandri G. CD146+ Pericytes Subset Isolated from Human Micro-Fragmented Fat Tissue Display a Strong Interaction with Endothelial Cells: A Potential Cell Target for Therapeutic Angiogenesis. Int J Mol Sci 2022; 23:ijms23105806. [PMID: 35628617 PMCID: PMC9144360 DOI: 10.3390/ijms23105806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Pericytes (PCs) are mesenchymal stromal cells (MSCs) that function as support cells and play a role in tissue regeneration and, in particular, vascular homeostasis. PCs promote endothelial cells (ECs) survival which is critical for vessel stabilization, maturation, and remodeling. In this study, PCs were isolated from human micro-fragmented adipose tissue (MFAT) obtained from fat lipoaspirate and were characterized as NG2+/PDGFRβ+/CD105+ cells. Here, we tested the fat-derived PCs for the dispensability of the CD146 marker with the aim of better understanding the role of these PC subpopulations on angiogenesis. Cells from both CD146-positive (CD146+) and negative (CD146−) populations were observed to interact with human umbilical vein ECs (HUVECs). In addition, fat-derived PCs were able to induce angiogenesis of ECs in spheroids assay; and conditioned medium (CM) from both PCs and fat tissue itself led to the proliferation of ECs, thereby marking their role in angiogenesis stimulation. However, we found that CD146+ cells were more responsive to PDGF-BB-stimulated migration, adhesion, and angiogenic interaction with ECs, possibly owing to their higher expression of NCAM/CD56 than the corresponding CD146− subpopulation. We conclude that in fat tissue, CD146-expressing cells may represent a more mature pericyte subpopulation that may have higher efficacy in controlling and stimulating vascular regeneration and stabilization than their CD146-negative counterpart.
Collapse
Affiliation(s)
- Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.C.); (G.A.)
- Correspondence:
| | - Alessandra Consonni
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.C.); (F.B.)
| | - Fulvio Baggi
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (A.C.); (F.B.)
| | - Emilio Ciusani
- Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Valentina Cocce
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (V.C.); (F.P.)
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (V.C.); (F.P.)
| | - Carlo Tremolada
- Department of Stem Cells and Regenerative Medicine, Image Institute, 20122 Milan, Italy;
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.C.); (G.A.)
| | - Giulio Alessandri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; (A.C.); (G.A.)
- Department of Stem Cells and Regenerative Medicine, Image Institute, 20122 Milan, Italy;
| |
Collapse
|
17
|
Ribatti D, Pezzella F. Vascular Co-Option and Other Alternative Modalities of Growth of Tumor Vasculature in Glioblastoma. Front Oncol 2022; 12:874554. [PMID: 35433447 PMCID: PMC9005970 DOI: 10.3389/fonc.2022.874554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Non-angiogenic tumors grow in the absence of angiogenesis by two main mechanisms: cancer cells infiltrating and occupying the normal tissues to exploit pre-existing vessels (vascular co-option); the cancer cells themselves forms channels able to provide blood flow (the so called vasculogenic mimicry). In the original work on vascular co-option initiated by Francesco Pezzella, the non-angiogenic cancer cells were described as “exploiting” pre-existing vessels. Vascular co-option has been described in primary and secondary (metastatic) sites. Vascular co-option is defined as a process in which tumor cells interact with and exploit the pre-existing vasculature of the normal tissue in which they grow. As part of this process, cancer cells first migrate toward vessels of the primary tumor, or extravasate at a metastatic site and rest along the ab-luminal vascular surface. The second hallmark of vascular co-option is the interaction of cancer cells with the ab-luminal vascular surface. The first evidence for this was provided in a rat C6 glioblastoma model, showing that the initial tumor growth phase was not always avascular as these initial tumors can be vascularized by pre-existing vessels. The aim of this review article is to analyze together with vascular co-option, other alternative mode of vascularization occurring in glioblastoma multiforme (GBM), including vasculogenic mimicry, angiotropism and trans-differentiation of glioblastoma stem cells.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Francesco Pezzella
- Nuffield Division of Laboratory Science, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
18
|
Pharmacological PDGFRβ inhibitors imatinib and sunitinib cause human brain pericyte death in vitro. Toxicol Appl Pharmacol 2022; 444:116025. [DOI: 10.1016/j.taap.2022.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
|
19
|
Kumar V, Ramnarayanan K, Sundar R, Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK, Tay ST, Ho SWT, Tan ALK, Ishimoto T, Kim G, Shabbir A, Chen Q, Zhang B, Xu S, Lam KP, Lum HYJ, Teh M, Yong WP, So JBY, Tan P. Single-Cell Atlas of Lineage States, Tumor Microenvironment, and Subtype-Specific Expression Programs in Gastric Cancer. Cancer Discov 2022; 12:670-691. [PMID: 34642171 PMCID: PMC9394383 DOI: 10.1158/2159-8290.cd-21-0683] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 01/07/2023]
Abstract
Gastric cancer heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of gastric cancer (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histologic subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations. Many lineage states exhibited distinct cancer-associated expression profiles, individually contributing to a combined tumor-wide molecular collage. We observed increased plasma cell proportions in diffuse-type tumors associated with epithelial-resident KLF2 and stage-wise accrual of cancer-associated fibroblast subpopulations marked by high INHBA and FAP coexpression. Single-cell comparisons between patient-derived organoids (PDO) and primary tumors highlighted inter- and intralineage similarities and differences, demarcating molecular boundaries of PDOs as experimental models. We complemented these findings by spatial transcriptomics, orthogonal validation in independent bulk RNA-sequencing cohorts, and functional demonstration using in vitro and in vivo models. Our results provide a high-resolution molecular resource of intra- and interpatient lineage states across distinct gastric cancer subtypes. SIGNIFICANCE We profiled gastric malignancies at single-cell resolution and identified increased plasma cell proportions as a novel feature of diffuse-type tumors. We also uncovered distinct cancer-associated fibroblast subtypes with INHBA-FAP-high cell populations as predictors of poor clinical prognosis. Our findings highlight potential origins of deregulated cell states in the gastric tumor ecosystem. This article is highlighted in the In This Issue feature, p. 587.
Collapse
Affiliation(s)
- Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Nisha Padmanabhan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Mayu Koiwa
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Vivien Koh
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Shamaine Wei Ting Ho
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Guowei Kim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Asim Shabbir
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore
| | - Biyan Zhang
- Singapore Immunology Network (SIgN), A*STAR, Singapore
| | - Shengli Xu
- Singapore Immunology Network (SIgN), A*STAR, Singapore.,Department of Physiology, National University of Singapore, Singapore
| | - Kong-Peng Lam
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore.,Singapore Immunology Network (SIgN), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Ming Teh
- Department of Pathology, National University Health System, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok Yan So
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Surgery, University Surgical Cluster, National University Health System, Singapore.,Division of Surgical Oncology, National University Cancer Institute, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore.,Corresponding Author: Patrick Tan, Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore. Phone: 65-6516-1783; Fax: 65-6221-2402; E-mail:
| |
Collapse
|
20
|
Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success? Cancers (Basel) 2021; 14:cancers14010083. [PMID: 35008251 PMCID: PMC8750110 DOI: 10.3390/cancers14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ. The aim of this review is to highlight the role of physical compression in the success of metastasis. We will especially focus on nuclear squeezing and nuclear envelope rupture and explain how they can actively participate in the creation of genomic heterogeneity as well as supporting metastasis growth. Abstract During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.
Collapse
|
21
|
Qiu Y, Wang N, Guo T, Liu S, Tang X, Zhong Z, Chen Q, Wu H, Li X, Wang J, Zhang S, Ou Y, Wang B, Ma K, Gu W, Cao J, Chen H, Duan Y. Establishment of a 3D model of tumor-driven angiogenesis to study the effects of anti-angiogenic drugs on pericyte recruitment. Biomater Sci 2021; 9:6064-6085. [PMID: 34136892 DOI: 10.1039/d0bm02107e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-β in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.
Collapse
Affiliation(s)
- Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Zhiyong Zhong
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, P. R. China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Xiajing Li
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Yimeng Ou
- Department of General Surgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, P. R. China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, P. R. China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, P. R. China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
22
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
23
|
He JS, Liu SJ, Zhang YR, Chu XD, Lin ZB, Zhao Z, Qiu SH, Guo YG, Ding H, Pan YL, Pan JH. The Application of and Strategy for Gold Nanoparticles in Cancer Immunotherapy. Front Pharmacol 2021; 12:687399. [PMID: 34163367 PMCID: PMC8215714 DOI: 10.3389/fphar.2021.687399] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy of malignant tumor is a verified and crucial anti-tumor strategy to help patients with cancer for prolonging prognostic survival. It is a novel anticancer tactics that activates the immune system to discern and damage cancer cells, thereby prevent them from proliferating. However, immunotherapy still faces many challenges in view of clinical efficacy and safety issues. Various nanomaterials, especially gold nanoparticles (AuNPs), have been developed not only for anticancer treatment but also for delivering antitumor drugs or combining other treatment strategies. Recently, some studies have focused on AuNPs for enhancing cancer immunotherapy. In this review, we summarized how AuNPs applicated as immune agents, drug carriers or combinations with other immunotherapies for anticancer treatment. AuNPs can not only act as immune regulators but also deliver immune drugs for cancer. Therefore, AuNPs are candidates for enhancing the efficiency and safety of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yun-long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jing-hua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Tsai WC, Chang KM, Kao KJ. Dynamic Contrast Enhanced MRI and Intravoxel Incoherent Motion to Identify Molecular Subtypes of Breast Cancer with Different Vascular Normalization Gene Expression. Korean J Radiol 2021; 22:1021-1033. [PMID: 34047501 PMCID: PMC8236363 DOI: 10.3348/kjr.2020.0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/15/2022] Open
Abstract
Objective To assess the expression of vascular normalization genes in different molecular subtypes of breast cancer and to determine whether molecular subtypes with a higher vascular normalization gene expression can be identified using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI). Materials and Methods This prospective study evaluated 306 female (mean age ± standard deviation, 50 ± 10 years), recruited between January 2014 and August 2017, who had de novo breast cancer larger than 1 cm in diameter (308 tumors). DCE MRI followed by IVIM DWI studies using 11 different b-values (0 to 1200 s/mm2) were performed on a 1.5T MRI system. The Tofts model and segmented biexponential IVIM analysis were used. For each tumor, the molecular subtype (according to six [I-VI] subtypes and PAM50 subtypes), expression profile of genes for vascular normalization, pericytes, and normal vascular signatures were determined using freshly frozen tissue. Statistical associations between imaging parameters and molecular subtypes were examined using logistic regression or linear regression with a significance level of p = 0.05. Results Breast cancer subtypes III and VI and PAM50 subtypes luminal A and normal-like exhibited a higher expression of genes for vascular normalization, pericyte markers, and normal vessel function signature (p < 0.001 for all) compared to other subtypes. Subtypes III and VI and PAM50 subtypes luminal A and normal-like, versus the remaining subtypes, showed significant associations with Ktrans, kep, vp, and IAUGCBN90 on DEC MRI, with relatively smaller values in the former. The subtype grouping was significantly associated with D, with relatively less restricted diffusion in subtypes III and VI and PAM50 subtypes luminal A and normal-like. Conclusion DCE MRI and IVIM parameters may identify molecular subtypes of breast cancers with a different vascular normalization gene expression.
Collapse
Affiliation(s)
- Wan Chen Tsai
- Department of Radiology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan.,School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Kai Ming Chang
- Department of Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | - Kuo Jang Kao
- Department of Research, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| |
Collapse
|
25
|
Hoque MM, Abdelazim H, Jenkins-Houk C, Wright D, Patel BM, Chappell JC. The cerebral microvasculature: Basic and clinical perspectives on stroke and glioma. Microcirculation 2021; 28:e12671. [PMID: 33171539 PMCID: PMC11064683 DOI: 10.1111/micc.12671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Microvascular networks are vital components of the cardiovascular system, performing many key roles in maintaining the health and homeostasis of the tissues and organs in which they develop. As discussed in this review, the molecular and cellular components within the microcirculation orchestrate critical processes to establish functional capillary beds, including organization of endothelial cell (EC) polarity, guiding investment of vascular pericytes (PCs), and building the specialized extracellular matrix (ECM) that comprises the vascular basement membrane (vBM). Herein, we further discuss the unique features of the microvasculature in the central nervous system (CNS), focusing on the cells contributing to the neurovascular unit (NVU) that form and maintain the blood-brain barrier (BBB). With a focus on vascular PCs, we offer basic and clinical perspectives on neurovascular-related pathologies that involve defects within the cerebral microvasculature. Specifically, we present microvascular anomalies associated with glioblastoma multiforme (GBM) including defects in vascular-immune cell interactions and associated clinical therapies targeting microvessels (ie, vascular-disrupting/anti-angiogenic agents and focused ultrasound). We also discuss the involvement of the microcirculation in stroke responses and potential therapeutic approaches. Our goal was to compare the cellular and molecular changes that occur in the microvasculature and NVU, and to provide a commentary on factors driving disease progression in GBM and stroke. We conclude with a forward-looking perspective on the importance of microcirculation research in developing clinical treatments for these devastating conditions.
Collapse
Affiliation(s)
- Maruf M. Hoque
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hanaa Abdelazim
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Dawn Wright
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Biraj M. Patel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Radiology, Carilion Clinic, Roanoke, VA, 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Guyon J, Chapouly C, Andrique L, Bikfalvi A, Daubon T. The Normal and Brain Tumor Vasculature: Morphological and Functional Characteristics and Therapeutic Targeting. Front Physiol 2021; 12:622615. [PMID: 33746770 PMCID: PMC7973205 DOI: 10.3389/fphys.2021.622615] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio- and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tissue and in glioblastoma. Brain vessels are of various sizes and composed of several vascular cell types. Non-vascular cells such as astrocytes or microglia also interact with the vasculature and play important roles. We also discuss in vitro engineered artificial blood vessels which may represent useful models for better understanding the tumor-vessel interaction. Finally, we summarize results from clinical trials with anti-angiogenic therapy alone or in combination, and discuss the value of these approaches for targeting glioblastoma.
Collapse
Affiliation(s)
- Joris Guyon
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France
| | - Candice Chapouly
- INSERM, Biology of Cardiovascular Diseases, U1034, University Bordeaux, Pessac, France
| | - Laetitia Andrique
- INSERM, LAMC, U1029, University Bordeaux, Pessac, France.,VoxCell 3D Plateform, UMS TBMcore 3427, Bordeaux, France
| | | | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
| |
Collapse
|
27
|
Desai SA, Manjappa A, Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: an overview. J Egypt Natl Canc Inst 2021; 33:4. [PMID: 33555490 DOI: 10.1186/s43046-021-00059-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) is one of the key cancers affecting the bone tissues, primarily occurred in children and adolescence. Recently, chemotherapy followed by surgery and then post-operative adjuvant chemotherapy is widely used for the treatment of OS. However, the lack of selectivity and sensitivity to tumor cells, the development of multi-drug resistance (MDR), and dangerous side effects have restricted the use of chemotherapeutics. MAIN BODY There is an unmet need for novel drug delivery strategies for effective treatment and management of OS. Advances in nanotechnology have led to momentous progress in the design of tumor-targeted drug delivery nanocarriers (NCs) as well as functionalized smart NCs to achieve targeting and to treat OS effectively. The present review summarizes the drug delivery challenges in OS, and how organic nanoparticulate approaches are useful in overcoming barriers will be explained. The present review describes the various organic nanoparticulate approaches such as conventional nanocarriers, stimuli-responsive NCs, and ligand-based active targeting strategies tested against OS. The drug conjugates prepared with copolymer and ligand having bone affinity, and advanced promising approaches such as gene therapy, gene-directed enzyme prodrug therapy, and T cell therapy tested against OS along with their reported limitations are also briefed in this review. CONCLUSION The nanoparticulate drugs, drug conjugates, and advanced therapies such as gene therapy, and T cell therapy have promising and potential application in the effective treatment of OS. However, many of the above approaches are still at the preclinical stage, and there is a long transitional period before their clinical application.
Collapse
Affiliation(s)
- Sujit Arun Desai
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Rd, Mahal, Jagatpura, Jaipur, Rajasthan, 302017, India. .,Annasaheb Dange College of D Pharmacy, Ashta, Tal: Walwa, Dist., Sangli, Maharashtra, 416301, India.
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist., Kolhapur, Maharashtra, 416113, India
| | - Preeti Khulbe
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Rd, Mahal, Jagatpura, Jaipur, Rajasthan, 302017, India
| |
Collapse
|
28
|
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2020; 6:1973-1987. [PMID: 33426371 PMCID: PMC7773537 DOI: 10.1016/j.bioactmat.2020.12.010] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.
Collapse
Key Words
- AC-NPs, antigen-capturing nanoparticles
- ANG2, angiopoietin-2
- APCs, antigen-presenting cells
- Ab, antibodies
- Ag, antigen
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- BBB, blood-brain barrier
- BTK, Bruton's tyrosine kinase
- Bcl-2, B-cell lymphoma 2
- CAFs, cancer associated fibroblasts
- CAP, cleavable amphiphilic peptide
- CAR-T, Chimeric antigen receptor-modified T-cell therapy
- CCL, chemoattractant chemokines ligand
- CTL, cytotoxic T lymphocytes
- CTLA4, cytotoxic lymphocyte antigen 4
- CaCO3, calcium carbonate
- Cancer immunotherapy
- DCs, dendritic cells
- DMMA, 2,3-dimethylmaleic anhydrid
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSF/Cu, disulfiram/copper
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- EPG, egg phosphatidylglycerol
- EPR, enhanced permeability and retention
- FAP, fibroblast activation protein
- FDA, the Food and Drug Administration
- HA, hyaluronic acid
- HB-GFs, heparin-binding growth factors
- HIF, hypoxia-inducible factor
- HPMA, N-(2-hydroxypropyl) methacrylamide
- HSA, human serum albumin
- Hypoxia
- IBR, Ibrutinib
- IFN-γ, interferon-γ
- IFP, interstitial fluid pressure
- IL, interleukin
- LMWH, low molecular weight heparin
- LPS, lipopolysaccharide
- M2NP, M2-like TAM dual-targeting nanoparticle
- MCMC, mannosylated carboxymethyl chitosan
- MDSCs, myeloid-derived suppressor cells
- MPs, microparticles
- MnO2, manganese dioxide
- NF-κB, nuclear factor κB
- NK, nature killer
- NO, nitric oxide
- NPs, nanoparticles
- Nanoparticles
- ODN, oligodeoxynucleotides
- PD-1, programmed cell death protein 1
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PHDs, prolyl hydroxylases
- PLGA, poly(lactic-co-glycolic acid)
- PS, photosensitizer
- PSCs, pancreatic stellate cells
- PTX, paclitaxel
- RBC, red-blood-cell
- RLX, relaxin-2
- ROS, reactive oxygen species
- SA, sialic acid
- SPARC, secreted protein acidic and rich in cysteine
- TAAs, tumor-associated antigens
- TAMs, tumor-associated macrophages
- TDPA, tumor-derived protein antigens
- TGF-β, transforming growth factor β
- TIE2, tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2
- TIM-3, T cell immunoglobulin domain and mucin domain-3
- TLR, Toll-like receptor
- TME, tumor microenvironment
- TNF-α, tumor necrosis factor alpha
- TfR, transferrin receptor
- Tregs, regulatory T cells
- Tumor microenvironment
- UPS-NP, ultra-pH-sensitive nanoparticle
- VDA, vasculature disrupting agent
- VEGF, vascular endothelial growth factor
- cDCs, conventional dendritic cells
- melittin-NP, melittin-lipid nanoparticle
- nMOFs, nanoscale metal-organic frameworks
- scFv, single-chain variable fragment
- siRNA, small interfering RNA
- tdLNs, tumor-draining lymph nodes
- α-SMA, alpha-smooth muscle actin
Collapse
|
29
|
Tong F, Xiong CJ, Wei CH, Wang Y, Liang ZW, Lu H, Pan HJ, Dong JH, Zheng XF, Wu G, Dong XR. Hypo-fractionation radiotherapy normalizes tumor vasculature in non-small cell lung cancer xenografts through the p-STAT3/HIF-1 alpha signaling pathway. Ther Adv Med Oncol 2020; 12:1758835920965853. [PMID: 33193827 PMCID: PMC7605032 DOI: 10.1177/1758835920965853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Hypo-fractionation radiotherapy (HFRT) was considered to be an important treatment for non-small cell lung cancer (NSCLC), but the radiobiological effects of HFRT on NSCLC remain unclear. The aim of this study was to investigate specific biological effect of HFRT on tumor angiogenesis, compared with conventional radiotherapy (CRT). Methods: The subcutaneous xenograft models and the dorsal skinfold window chamber (DSWC) models of nude mice bearing H460 and HCC827 NSCLC cells were irradiated with doses of 0 Gy (sham group), 22 Gy delivered into 11 fractions (CRT group) or 12 Gy delivered into 1 fraction (HFRT group). At certain time-points after irradiation, the volumes, hypoxic area, coverage rate of pericyte and micro-vessel density (MVD) of the subcutaneous xenograft models were detected, and the tumor vasculature was visualized in the DSMC model. The expressions of phosphorylated signal transducer and activator of transcription (p-STAT3), hypoxia-inducible factor 1-α (HIF-1α), CXCL12 and VEGFA were detected. Results: Compared with the CRT groups, HFRT showed more-efficient tumor growth-suppression, accompanied by a HFRT-induced window-period, during which vasculature was normalized, tumor hypoxia was improved and MVD was decreased. Moreover, during the window-period, the signal levels of p-STAT3/HIF-1α pathway and the expressions of its downstream angiogenic factors (VEGFA and CXCL12) were inhibited by HFRT. Conclusion: Compared with CRT, HFRT induced tumor vasculature normalization by rendering the remaining vessels less tortuous and increasing pericyte coverage of tumor blood vessels, thereby ameliorating tumor hypoxia and enhancing the tumor-killing effect. Moreover, HFRT might exert the aforementioned effects through p-STAT3/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Jin Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Hua Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Wen Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Jiao Pan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hua Dong
- Experimental Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Feng Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Rong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
30
|
Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J Control Release 2020; 327:512-532. [DOI: 10.1016/j.jconrel.2020.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
|
31
|
Chandra A, Rick J, Yagnik G, Aghi MK. Autophagy as a mechanism for anti-angiogenic therapy resistance. Semin Cancer Biol 2020; 66:75-88. [PMID: 31472232 PMCID: PMC7047534 DOI: 10.1016/j.semcancer.2019.08.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a lysosomal-dependent degradation process that is highly conserved and maintains cellular homeostasis by sequestering cytosolic material for degradation either non-specifically by non-selective autophagy, or targeting specific proteins aggregates by selective autophagy. Autophagy serves as a protective mechanism defending the cell from stressors and also plays an important role in enabling tumor cells to overcome harsh conditions arising in their microenvironment during growth as well as oxidative and non-oxidative injuries secondary to therapeutic stressors. Recently, autophagy has been implicated to cause tumor resistance to anti-angiogenic therapy, joining an existing literature implicating autophagy in cancer resistance to conventional DNA damaging chemotherapy and ionizing radiation. In this review, we discuss the role of angiogenesis in malignancy, mechanisms of resistance to anti-angiogenic therapy in general, the role of autophagy in driving malignancy, and the current literature in autophagy-mediated anti-angiogenic therapy resistance. Finally, we provide future insight into the current challenges of using autophagy inhibitors in the clinic and provides tips for future studies to focus on to effectively target autophagy in overcoming resistance to anti-angiogenic therapy.
Collapse
Affiliation(s)
- Ankush Chandra
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, United States of America (USA); School of Medicine, Wayne State University, Detroit, MI, United States of America (USA).
| | - Jonathan Rick
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, United States of America (USA).
| | - Garima Yagnik
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, United States of America (USA).
| | - Manish K Aghi
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, United States of America (USA).
| |
Collapse
|
32
|
Peleli M, Moustakas A, Papapetropoulos A. Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. Int J Mol Sci 2020; 21:E7371. [PMID: 33036204 PMCID: PMC7582718 DOI: 10.3390/ijms21197371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC-TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC-TC interaction.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| |
Collapse
|
33
|
Bosseboeuf E, Raimondi C. Signalling, Metabolic Pathways and Iron Homeostasis in Endothelial Cells in Health, Atherosclerosis and Alzheimer's Disease. Cells 2020; 9:cells9092055. [PMID: 32911833 PMCID: PMC7564205 DOI: 10.3390/cells9092055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells drive the formation of new blood vessels in physiological and pathological contexts such as embryonic development, wound healing, cancer and ocular diseases. Once formed, all vessels of the vasculature system present an endothelial monolayer (the endothelium), lining the luminal wall of the vessels, that regulates gas and nutrient exchange between the circulating blood and tissues, contributing to maintaining tissue and vascular homeostasis. To perform their functions, endothelial cells integrate signalling pathways promoted by growth factors, cytokines, extracellular matrix components and signals from mechanosensory complexes sensing the blood flow. New evidence shows that endothelial cells rely on specific metabolic pathways for distinct cellular functions and that the integration of signalling and metabolic pathways regulates endothelial-dependent processes such as angiogenesis and vascular homeostasis. In this review, we provide an overview of endothelial functions and the recent advances in understanding the role of endothelial signalling and metabolism in physiological processes such as angiogenesis and vascular homeostasis and vascular diseases. Also, we focus on the signalling pathways promoted by the transmembrane protein Neuropilin-1 (NRP1) in endothelial cells, its recently discovered role in regulating mitochondrial function and iron homeostasis and the role of mitochondrial dysfunction and iron in atherosclerosis and neurodegenerative diseases.
Collapse
|
34
|
Perrot CY, Herrera JL, Fournier-Goss AE, Komatsu M. Prostaglandin E2 breaks down pericyte-endothelial cell interaction via EP1 and EP4-dependent downregulation of pericyte N-cadherin, connexin-43, and R-Ras. Sci Rep 2020; 10:11186. [PMID: 32636414 PMCID: PMC7341885 DOI: 10.1038/s41598-020-68019-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
A close association between pericytes and endothelial cells (ECs) is crucial to the stability and function of capillary blood vessels and microvessels. The loss or dysfunction of pericytes results in significant disruption of these blood vessels as observed in pathological conditions, including cancer, diabetes, stroke, and Alzheimer’s disease. Prostaglandin E2 (PGE2) is a lipid mediator of inflammation, and its tissue concentration is elevated in cancer and neurological disorders. Here, we show that the exposure to PGE2 switches pericytes to a fast-migrating, loosely adhered phenotype that fails to intimately interact with ECs. N-cadherin and connexin-43 in adherens junction and gap junction between pericytes and ECs are downregulated by EP-4 and EP-1-dependent mechanisms, leading to breakdown of the pericyte–EC interaction. Furthermore, R-Ras, a small GTPase important for vascular normalization and vessel stability, is transcriptionally repressed by PGE2 in an EP4-dependent manner. Mouse dermal capillary vessels lose pericyte coverage substantially upon PGE2 injection into the skin. Our results suggest that EP-mediated direct disruption of pericytes by PGE2 is a key process for vascular destabilization. Restoring pericyte–EC interaction using inhibitors of PGE2 signaling may offer a therapeutic strategy in cancer and neurological disorders, in which pericyte dysfunction contributes to the disease progression.
Collapse
Affiliation(s)
- Carole Y Perrot
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ashley E Fournier-Goss
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, 33701, USA. .,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
35
|
Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 2020; 8:6765-6781. [PMID: 32315375 DOI: 10.1039/d0tb00649a] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The delivery of drugs to tumors by nanoparticles is a rapidly growing field. However, the complex tumor microenvironment (TME) barriers greatly hinder drug delivery to tumors. In this study, we first summarized the barriers in TME, including anomalous vasculature, rigid extracellular matrix, hypoxia, acidic pH, irregular enzyme level, altered metabolism pathway and immunosuppressive conditions. To overcome these barriers, many strategies have been developed, such as modulating TME, active targeting by ligand modification and biomimetic strategies, and TME-responsive drug delivery strategies to improve nanoparticle penetration, cellular uptake and drug release. Although extensive progress has been achieved, there are still many challenges, which are discussed in the last section. Overall, we carefully discuss the landscape of TME, development for improving drug delivery, and challenges that need to be further addressed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| | | | | | | |
Collapse
|
36
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
37
|
Tamura R, Sato M, Morimoto Y, Ohara K, Kosugi K, Oishi Y, Kuranari Y, Murase M, Yoshida K, Toda M. Quantitative assessment and clinical relevance of VEGFRs-positive tumor cells in refractory brain tumors. Exp Mol Pathol 2020; 114:104408. [PMID: 32088190 DOI: 10.1016/j.yexmp.2020.104408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/14/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)1 and 2 signaling is a potent activator of tumor angiogenesis. Although the expressions of VEGFR1 and VEGFR2 were initially thought to be limited to the endothelial cells, it is now known that both the receptors are expressed in tumor cells. This is the first study wherein VEGFRs-positive tumor cells are quantitatively evaluated for brain tumors with upregulated VEGF/VEGFR signaling. The percentage of VEGFRs-positive tumor cells was quantitatively evaluated in various brain tumors (10 glioblastomas, 22 neurofibromatosis type 2 [NF2]-related schwannomas, 21 sporadic schwannomas, 27 chordomas, 36 meningiomas, 29 hemangioblastomas, 11 hemangiopericytoma, and 13 ependymomas) using immunohistochemistry. VEGF-A expression was also analyzed using quantitative real-time polymerase chain reaction. Double immunofluorescence staining using anti-PDGFR-β and anti-CD34 antibody, microvessel density, and vessel diameter were analyzed to evaluate the vascular characteristics. Chordomas demonstrated an extremely higher percentage of VEGFR1 and VEGFR2-positive tumor cells than other tumors. In contrast, meningiomas and hemangiopericytomas showed few VEGFRs-positive tumor cells. The percentage of positive tumor cells in chordomas, hemangioblastomas, and NF2 schwannomas was associated with clinical courses, such as shorter progression free survival, and growth speed. Glioblastomas and NF2 schwannomas showed larger tumor vessels without pericyte coverage. The present study is the first to quantitatively analyze VEGFR1- and VEGFR2- positive tumor cells in various types of refractory brain tumors. This novel parameter significantly correlated with the progressive clinical courses.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mizuto Sato
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kentaro Ohara
- Department of pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yuki Kuranari
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Makoto Murase
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
38
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
39
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
40
|
Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, Lombardo C, Longo A, Giurdanella G, Anfuso CD, Lupo G. Pericytes in Microvessels: From "Mural" Function to Brain and Retina Regeneration. Int J Mol Sci 2019; 20:ijms20246351. [PMID: 31861092 PMCID: PMC6940987 DOI: 10.3390/ijms20246351] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
Pericytes are branched cells located in the wall of capillary blood vessels that are found throughout the body, embedded within the microvascular basement membrane and wrapping endothelial cells, with which they establish a strong physical contact. Pericytes regulate angiogenesis, vessel stabilization, and contribute to the formation of both the blood-brain and blood-retina barriers by Angiopoietin-1/Tie-2, platelet derived growth factor (PDGF) and transforming growth factor (TGF) signaling pathways, regulating pericyte-endothelial cell communication. Human pericytes that have been cultured for a long period give rise to multilineage progenitor cells and exhibit mesenchymal stem cell (MSC) features. We focused our attention on the roles of pericytes in brain and ocular diseases. In particular, pericyte involvement in brain ischemia, brain tumors, diabetic retinopathy, and uveal melanoma is described. Several molecules, such as adenosine and nitric oxide, are responsible for pericyte shrinkage during ischemia-reperfusion. Anti-inflammatory molecules, such as IL-10, TGFβ, and MHC-II, which are increased in glioblastoma-activated pericytes, are responsible for tumor growth. As regards the eye, pericytes play a role not only in ocular vessel stabilization, but also as a stem cell niche that contributes to regenerative processes in diabetic retinopathy. Moreover, pericytes participate in melanoma cell extravasation and the genetic ablation of the PDGF receptor reduces the number of pericytes and aberrant tumor microvessel formation with important implications for therapy efficacy. Thanks to their MSC features, pericytes could be considered excellent candidates to promote nervous tissue repair and for regenerative medicine.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Floriana D’Angeli
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Maria Teresa Cambria
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Saverio Candido
- Section of General and Clinical Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Cesarina Giallongo
- Section of Haematology, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Mario Salmeri
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Cinzia Lombardo
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Anna Longo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Giovanni Giurdanella
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| |
Collapse
|
41
|
Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and Neurovascular Function in the Healthy and Diseased Brain. Front Cell Neurosci 2019; 13:282. [PMID: 31316352 PMCID: PMC6611154 DOI: 10.3389/fncel.2019.00282] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multi-functional cells embedded within the walls of capillaries throughout the body, including the brain. Pericytes were first identified in the 1870s, but little attention was paid to them during the following century. More recently, numerous vascular functions of pericytes have been identified including regulation of cerebral blood flow, maintenance of the blood-brain barrier (BBB), and control of vascular development and angiogenesis. Pericytes can also facilitate neuroinflammatory processes and possess stem cell-like properties. Pericytes form part of the neurovascular unit (NVU), a collection of cells that control interactions between neurons and the cerebral vasculature to meet the energy demands of the brain. Pericyte structure, expression profile, and function in the brain differ depending on their location along the vascular bed. Until recently, it has been difficult to accurately define the sub-types of pericytes, or to specifically target pericytes with pharmaceutical agents, but emerging techniques both in vitro and in vivo will improve investigation of pericytes and allow for the identification of their possible roles in diseases. Pericyte dysfunction is increasingly recognized as a contributor to the progression of vascular diseases such as stroke and neurodegenerative diseases such as Alzheimer's disease. The therapeutic potential of pericytes to repair cerebral blood vessels and promote angiogenesis due to their ability to behave like stem cells has recently been brought to light. Here, we review the history of pericyte research, the present techniques used to study pericytes in the brain, and current research advancements to characterize and therapeutically target pericytes in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Brad A. Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
42
|
Gill JH, Rockley KL, De Santis C, Mohamed AK. Vascular Disrupting Agents in cancer treatment: Cardiovascular toxicity and implications for co-administration with other cancer chemotherapeutics. Pharmacol Ther 2019; 202:18-31. [PMID: 31173840 DOI: 10.1016/j.pharmthera.2019.06.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
Destruction of the established tumour vasculature by a class of compound termed Vascular Disrupting Agents (VDAs) is showing considerable promise as a viable approach for the management of solid tumours. VDAs induce a rapid shutdown and collapse of tumour blood vessels, leading to ischaemia and consequent necrosis of the tumour mass. Their efficacy is hindered by the persistence of a viable rim of tumour cells, supported by the peripheral normal vasculature, necessitating their co-administration with additional chemotherapeutics for maximal therapeutic benefit. However, a major limitation for the use of many cancer therapeutics is the development of life-threatening cardiovascular toxicities, with significant consequences for treatment response and the patient's quality of life. The aim of this review is to outline VDAs as a cancer therapeutic approach and define the mechanistic basis of cardiovascular toxicities of current chemotherapeutics, with the overall objective of discussing whether VDA combinations with specific chemotherapeutic classes would be good or bad in terms of cardiovascular toxicity.
Collapse
Affiliation(s)
- Jason H Gill
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK; School of Pharmacy, Faculty of Medical Sciences, Newcastle University, UK.
| | - Kimberly L Rockley
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK
| | - Carol De Santis
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK
| | - Asma K Mohamed
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK
| |
Collapse
|
43
|
Fan Q, Tao Z, Yang H, Shi Q, Wang H, Jia D, Wan L, Zhang J, Cheng J, Lu X. Modulation of pericytes by a fusion protein comprising of a PDGFRβ-antagonistic affibody and TNFα induces tumor vessel normalization and improves chemotherapy. J Control Release 2019; 302:63-78. [PMID: 30930215 DOI: 10.1016/j.jconrel.2019.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
The delivery of anticancer drugs is hampered by tumor vessels with abnormal structure and function, which requires that vessel normalization be mediated by pharmaceutics. The current strategies for vessel normalization focus on direct modulation of endothelial cells (ECs), which frequently affect vessels in normal tissues. Modulating EC-supporting cells, such as pericytes (PCs), is a new direction. Here, we produced a fusion protein, Z-TNFα, by fusing the platelet-derived growth factor receptor β (PDGFRβ)- antagonistic affibody ZPDGFRβ to tumor necrosis factor α (TNFα). Owing to the affinity of fused ZPDGFRβ for PDGFRβ, Z-TNFα binds PDGFRβ+ PCs but not PDGFRβ- ECs. Low-dose (1 μg/mouse) Z-TNFα treatment remodeled the tumor vessels, thus reducing vessel permeability and increasing vessel perfusion. As a result, the Z-TNFα treatment improved the delivery of doxorubicin (DOX) and enhanced its antitumor effect, indicating that Z-TNFα induced normalization of tumor vessels. Mechanically, the tumor vessel normalization mediated by Z-TNFα might be attributed to the reduction of vascular endothelial growth factor (VEGF) secretion by PCs and the elevated expression of intercellular cell adhesion molecule-1 (ICAM-1) in PCs, which might suppress the proliferation and migration of ECs and simultaneously trigger interaction between perivascular macrophages and PCs. These results demonstrated that tumor-associated PCs could be considered novel target cells for vessel normalization, and Z-TNFα might be developed as a potential tool for antitumor combination therapy.
Collapse
Affiliation(s)
- Qing Fan
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dianlong Jia
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Wan
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, MOH, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
44
|
Predictive Value of Diminished Serum PDGF-BB after Curative Resection of Hepatocellular Cancer. JOURNAL OF ONCOLOGY 2019; 2019:1925315. [PMID: 30723501 PMCID: PMC6339767 DOI: 10.1155/2019/1925315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Purpose Platelet derived growth factor-BB (PDGF-BB) has emerged as one of the key cytokines in malignant transformation of different cells. PDGF-BB also exhibits a potent mitogenic effect on liver cells; studies have advocated clinical implications of monitoring serum PDGF-BB (sPDGF-BB) in patients with liver disease. We thus investigated the predictive relevance of perioperative sPDGF-BB after curative resection of hepatocellular carcinoma (HCC). Methods We evaluated perioperative sPDGF-BB in a prospective homogenous cohort of 40 patients diagnosed with HCC. During the first two-year follow-up, patients were evaluated every three months for postresection HCC recurrence. Results Patients who developed recurrence during two-year follow-up were found to have lower concentration of sPDGF-BB than those without recurrence in both pre- and postoperative settings (P < 0.05 and P < 0.001, resp.). We validated that the reduced postoperative sPDGF-BB (< 2133.29 pg/mL) was associated with an increased incidence of postresection HCC recurrence [area under curve (AUC) > 0.8, 95% confidence interval (CI) = 0.68 - 0.94, P < 0.001]; furthermore, we were able to demonstrate that postoperative sPDGF-BB was an independent predictor of HCC recurrence (hazard ratio = 5.64, 95% CI = 1.56 - 20.30, P < 0.01). Conclusions These findings provide a new insight into an association between diminished perioperative sPDGF-BB and HCC recurrence. Patients with low perioperative sPDGF-BB progressed early HCC recurrence. Therefore, evaluating perioperative sPDGF-BB may provide useful clinical information to characterize patients with postresection HCC recurrence.
Collapse
|
45
|
Pericytes in Sarcomas and Other Mesenchymal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:109-124. [PMID: 31147874 DOI: 10.1007/978-3-030-16908-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tumors of mesenchymal origin are a diverse group, with >130 distinct entities currently recognized by the World Health Organization. A subset of mesenchymal tumors grow or invade in a perivascular fashion, and their potential relationship to pericytes is a matter of ongoing interest. In fact, multiple intersections exist between pericytes and tumors of mesenchymal origin. First, pericytes are the likely cell of origin for a group of mesenchymal tumors with a common perivascular growth pattern. These primarily benign tumors grow in a perivascular fashion and diffusely express canonical pericyte markers such as CD146, smooth muscle actin (SMA), platelet-derived growth factor receptor beta (PDGFR-β), and RGS5. These benign tumors include glomus tumor, myopericytoma, angioleiomyoma, and myofibroma. Second and as suggested by animal models, pericytes may give rise to malignant sarcomas. This is not a suggestion that all sarcomas within a certain subtype arise from pericytes, but that genetic modifications within a pericyte cell type may give rise to sarcomas. Third, mesenchymal tumors that are likely not a pericyte derivative co-opt pericyte markers in certain contexts. These include the PEComa family of tumors and liposarcoma. Fourth and finally, as "guardians" that enwrap the microvasculature, nonneoplastic pericytes may be important in sarcoma disease progression.
Collapse
|
46
|
Zhu S, Gu Z, Zhao Y. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
47
|
Seynhaeve ALB, Oostinga D, van Haperen R, Eilken HM, Adams S, Adams RH, Ten Hagen TLM. Spatiotemporal endothelial cell - pericyte association in tumors as shown by high resolution 4D intravital imaging. Sci Rep 2018; 8:9596. [PMID: 29941944 PMCID: PMC6018425 DOI: 10.1038/s41598-018-27943-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell – pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.
Collapse
Affiliation(s)
- Ann L B Seynhaeve
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands.
| | - Douwe Oostinga
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| | - Hanna M Eilken
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149, Münster, Germany
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Department of Surgery, Erasmus MC, 3015CE, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Glioblastoma niches: from the concept to the phenotypical reality. Neurol Sci 2018; 39:1161-1168. [PMID: 29736738 DOI: 10.1007/s10072-018-3408-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/05/2018] [Indexed: 12/24/2022]
Abstract
Recently, the concept of niches as sites of tumor progression, invasion, and angiogenesis in glioblastoma (GB) has been extensively debated. Niches, considered the sites in which glioblastoma stem cells (GSCs) reside, have been classified as perivascular, perinecrotic, and invasive. However, from a neuropathological point of view, it is not easy to establish when a tumor structure can be considered a niche. The relevant literature has been reviewed in the light of our recent experience on the subject. As for perinecrotic niches, the occurrence of GSCs around necrosis is interpreted as triggered by hypoxia through HIF-1α. Our alternative hypothesis is that, together with progenitors, they are the cell constituents of hyper-proliferative areas of GB, where perinecrotic niches have developed, and they would, therefore, represent the remnants of GSCs/progenitors spared by the developing necrosis. Perivascular structures originate from both transport vessels and exchange vessels, i.e., venules, arterioles, or the undefinable neo-formed small vessels, but only those in which a direct contact between GSCs/progenitors and endothelial cells occurs can be called niches. Both pericytes and microglia/macrophages play a role in niche function: Macrophages of blood origin invade GB only after the appearance of "mother vessels" with consequent blood-brain barrier disruption. Not all vessel/tumor cell structures can be considered niches, that is, crucial sites of tumor progression, invasion, and angiogenesis.
Collapse
|
49
|
Luengo-Gil G, Gonzalez-Billalabeitia E, Perez-Henarejos SA, Navarro Manzano E, Chaves-Benito A, Garcia-Martinez E, Garcia-Garre E, Vicente V, Ayala de la Peña F. Angiogenic role of miR-20a in breast cancer. PLoS One 2018; 13:e0194638. [PMID: 29617404 PMCID: PMC5884522 DOI: 10.1371/journal.pone.0194638] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/07/2018] [Indexed: 01/02/2023] Open
Abstract
Background Angiogenesis is a key process for tumor progression and a target for treatment. However, the regulation of breast cancer angiogenesis and its relevance for clinical resistance to antiangiogenic drugs is still incompletely understood. Recent developments on the contribution of microRNA to tumor angiogenesis and on the oncogenic effects of miR-17-92, a miRNA cluster, point to their potential role on breast cancer angiogenesis. The aim of this work was to establish the contribution of miR-20a, a member of miR-17-92 cluster, to tumor angiogenesis in patients with invasive breast carcinoma. Methods Tube-formation in vitro assays with conditioned medium from MCF7 and MDA-MB-231 breast cancer cell lines were performed after transfection with miR-20a and anti-miR20a. For clinical validation of the experimental findings, we performed a retrospective analysis of a series of consecutive breast cancer patients (n = 108) treated with neoadjuvant chemotherapy and with a full characterization of their vessel pattern and expression of angiogenic markers in pre-treatment biopsies. Expression of members of the cluster miR-17-92 and of angiogenic markers was determined by RT-qPCR after RNA purification from FFPE samples. Results In vitro angiogenesis assays with endothelial cells and conditioned media from breast cancer cell lines showed that transfection with anti-miR20a in MDA-MB-231 significantly decreased mean mesh size and total mesh area, while transfection with miR-20a in MCF7 cells increased mean mesh size. MiR-20a angiogenic effects were abrogated by treatment with aflibercept, a VEGF trap. These results were supported by clinical data showing that mir-20a expression was higher in tumors with no estrogen receptor or with more extensive nodal involvement (cN2-3). A higher miR-20a expression was associated with higher mean vessel size (p = 0.015) and with an angiogenic pattern consisting in larger vessels, higher VEGFA expression and presence of glomeruloid microvascular proliferations (p<0.001). This association was independent of tumor subtype and VEGFA expression. Conclusions Transfection of breast cancer cells with miR-20a induces vascular changes in endothelial tube-formation assays. Expression of miR-20a in breast invasive carcinomas is associated with a distinctive angiogenic pattern consisting in large vessels, anomalous glomeruloid microvascular proliferations and high VEGFA expression. Our results suggest a role for miR-20a in the regulation of breast cancer angiogenesis, and raise the possibility of its use as an angiogenic biomarker.
Collapse
Affiliation(s)
- Gines Luengo-Gil
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- Department of Internal Medicine, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Enrique Gonzalez-Billalabeitia
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sergio Alejo Perez-Henarejos
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Esther Navarro Manzano
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | | | - Elena Garcia-Martinez
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Elisa Garcia-Garre
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- Department of Internal Medicine, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
| | - Francisco Ayala de la Peña
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer y Centro Regional de Hemodonación, Murcia, Spain
- Department of Internal Medicine, University of Murcia, Murcia, Spain
- IMIB-Arrixaca, Murcia, Spain
- * E-mail:
| |
Collapse
|
50
|
Halper J. Basic Components of Vascular Connective Tissue and Extracellular Matrix. ADVANCES IN PHARMACOLOGY 2017; 81:95-127. [PMID: 29310805 DOI: 10.1016/bs.apha.2017.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy.
Collapse
Affiliation(s)
- Jaroslava Halper
- College of Veterinary Medicine and AU/UGA Medical Partnership, The University of Georgia, Athens, GA, United States.
| |
Collapse
|