1
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2025; 22:90-104. [PMID: 39198624 PMCID: PMC11750620 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Weeks O, Gao X, Basu S, Galdieri J, Chen K, Burns CG, Burns CE. Embryonic alcohol exposure in zebrafish predisposes adults to cardiomyopathy and diastolic dysfunction. Cardiovasc Res 2024; 120:1607-1621. [PMID: 38900908 PMCID: PMC11535724 DOI: 10.1093/cvr/cvae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
AIMS Fetal alcohol spectrum disorders (FASDs) impact up to 0.8% of the global population. However, cardiovascular health outcomes in adult patients, along with predictive biomarkers for cardiac risk stratification, remain unknown. Our aim was to utilize a longitudinal cohort study in an animal model to evaluate the impact of embryonic alcohol exposure (EAE) on cardiac structure, function, and transcriptional profile across the lifespan. METHODS AND RESULTS Using zebrafish, we characterized the aftereffects of EAE in adults binned by congenital heart defect (CHD) severity. Chamber sizes were quantified on dissected adult hearts to identify structural changes indicative of cardiomyopathy. Using echocardiography, we quantified systolic function based on ejection fraction and longitudinal strain, and diastolic function based on ventricular filling dynamics, ventricular wall movement, and estimated atrial pressures. Finally, we performed RNA-sequencing on EAE ventricles and assessed how differentially expressed genes (DEGs) correlated with cardiac function. Here, we demonstrate that EAE causes cardiomyopathy and diastolic dysfunction through persistent alterations to ventricular wall structure and gene expression. Following abnormal ventricular morphogenesis, >30% of all EAE adults developed increased atrial-to-ventricular size ratios, abnormal ventricular filling dynamics, and reduced myocardial wall relaxation during early diastole despite preserved systolic function. RNA-sequencing of the EAE ventricle revealed novel and heart failure-associated genes (slc25a33, ankrd9, dusp2, dusp4, spry4, eya4, and edn1) whose expression levels were altered across the animal's lifespan or correlated with the degree of diastolic dysfunction detected in adulthood. CONCLUSION Our study identifies EAE as a risk factor for adult-onset cardiomyopathy and diastolic dysfunction, regardless of CHD status, and suggests novel molecular indicators of adult EAE-induced heart disease.
Collapse
Affiliation(s)
- Olivia Weeks
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Xinlei Gao
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Sandeep Basu
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jennifer Galdieri
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kaifu Chen
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - C Geoffrey Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Caroline E Burns
- Division of Basic and Translational Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Guivala SJ, Bode KA, Okun JG, Kartal E, Schwedhelm E, Pohl LV, Werner S, Erbs S, Thiele H, Büttner P. Interactions between the gut microbiome, associated metabolites and the manifestation and progression of heart failure with preserved ejection fraction in ZSF1 rats. Cardiovasc Diabetol 2024; 23:299. [PMID: 39143579 PMCID: PMC11325580 DOI: 10.1186/s12933-024-02398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.
Collapse
Affiliation(s)
- Salmina J Guivala
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Konrad A Bode
- Department Molecular Diagnostics, Laboratory Dr. Limbach and Colleagues, Am Breitspiel 15, 69126, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Ece Kartal
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Luca V Pohl
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sarah Werner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sandra Erbs
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Holger Thiele
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Petra Büttner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| |
Collapse
|
4
|
Rosalia L, Wang SX, Ozturk C, Huang W, Bonnemain J, Beatty R, Duffy GP, Nguyen CT, Roche ET. Soft robotic platform for progressive and reversible aortic constriction in a small-animal model. Sci Robot 2024; 9:eadj9769. [PMID: 38865476 DOI: 10.1126/scirobotics.adj9769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
Our understanding of cardiac remodeling processes due to left ventricular pressure overload derives largely from animal models of aortic banding. However, these studies fail to enable control over both disease progression and reversal, hindering their clinical relevance. Here, we describe a method for progressive and reversible aortic banding based on an implantable expandable actuator that can be finely tuned to modulate aortic banding and debanding in a rat model. Through catheterization, imaging, and histologic studies, we demonstrate that our platform can recapitulate the hemodynamic and structural changes associated with pressure overload in a controllable manner. We leveraged soft robotics to enable noninvasive aortic debanding, demonstrating that these changes can be partly reversed because of cessation of the biomechanical stimulus. By recapitulating longitudinal disease progression and reversibility, this animal model could elucidate fundamental mechanisms of cardiac remodeling and optimize timing of intervention for pressure overload.
Collapse
Affiliation(s)
- Luca Rosalia
- Health Sciences and Technology Program, Harvard University - Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Caglar Ozturk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Huang
- Koch Institute For Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute, College of Medicine Nursing and Health Sciences, University of Galway, Galway H91 W2TY, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute, College of Medicine Nursing and Health Sciences, University of Galway, Galway H91 W2TY, Ireland
| | - Christopher T Nguyen
- Department of Cardiovascular Medicine, Radiology, and Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Fisher SM, Murally AR, Rajabally Z, Almas T, Azhar M, Cheema FH, Malone A, Hasan B, Aslam N, Saidi J, O'Neill J, Hameed A. Large animal models to study effectiveness of therapy devices in the treatment of heart failure with preserved ejection fraction (HFpEF). Heart Fail Rev 2024; 29:257-276. [PMID: 37999821 DOI: 10.1007/s10741-023-10371-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Our understanding of the complex pathophysiology of Heart failure with preserved ejection fraction (HFpEF) is limited by the lack of a robust in vivo model. Existing in-vivo models attempt to reproduce the four main phenotypes of HFpEF; ageing, obesity, diabetes mellitus and hypertension. To date, there is no in vivo model that represents all the haemodynamic characteristics of HFpEF, and only a few have proven to be reliable for the preclinical evaluation of potentially new therapeutic targets. HFpEF accounts for 50% of all the heart failure cases and its incidence is on the rise, posing a huge economic burden on the health system. Patients with HFpEF have limited therapeutic options available. The inadequate effectiveness of current pharmaceutical therapeutics for HFpEF has prompted the development of device-based treatments that target the hemodynamic changes to reduce the symptoms of HFpEF. However, despite the potential of device-based solutions to treat HFpEF, most of these therapies are still in the developmental stage and a relevant HFpEF in vivo model will surely expedite their development process. This review article outlines the major limitations of the current large in-vivo models in use while discussing how these designs have helped in the development of therapy devices for the treatment of HFpEF.
Collapse
Affiliation(s)
- Shane Michael Fisher
- Health Sciences Centre, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Anjali Rosanna Murally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Zahra Rajabally
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
- School of Medicine, RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Talal Almas
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Maimoona Azhar
- Graduate Entry Medicine, School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, 123 St. Stephen's Green, Dublin, D02 YN77, Ireland
| | - Faisal H Cheema
- Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX, USA
| | - Andrew Malone
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Babar Hasan
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Nadeem Aslam
- Division of Cardiothoracic Sciences, Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Jemil Saidi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland
| | - Jim O'Neill
- Department of Cardiology, Connolly Hospital, Blanchardstown, Dublin, Ireland.
| | - Aamir Hameed
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland - RCSI University of Medicine and Health Sciences, 123 St. Stephen's Green, Dublin 2, Dublin, D02 YN77, Ireland.
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin (TCD), Dublin, Ireland.
| |
Collapse
|
6
|
Jasińska-Stroschein M. Searching for Effective Treatments in HFpEF: Implications for Modeling the Disease in Rodents. Pharmaceuticals (Basel) 2023; 16:1449. [PMID: 37895920 PMCID: PMC10610318 DOI: 10.3390/ph16101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While the prevalence of heart failure with preserved ejection fraction (HFpEF) has increased over the last two decades, there still remains a lack of effective treatment. A key therapeutic challenge is posed by the absence of animal models that accurately replicate the complexities of HFpEF. The present review summarizes the effects of a wide spectrum of therapeutic agents on HF. METHODS Two online databases were searched for studies; in total, 194 experimental protocols were analyzed following the PRISMA protocol. RESULTS A diverse range of models has been proposed for studying therapeutic interventions for HFpEF, with most being based on pressure overload and systemic hypertension. They have been used to evaluate more than 150 different substances including ARNIs, ARBs, HMGR inhibitors, SGLT-2 inhibitors and incretins. Existing preclinical studies have primarily focused on LV diastolic performance, and this has been significantly improved by a wide spectrum of candidate therapeutic agents. Few experiments have investigated the normalization of pulmonary congestion, exercise capacity, animal mortality, or certain molecular hallmarks of heart disease. CONCLUSIONS The development of comprehensive preclinical HFpEF models, with multi-organ system phenotyping and physiologic stress-based functional testing, is needed for more successful translation of preclinical research to clinical trials.
Collapse
|
7
|
Büttner P, Werner S, Böttner J, Ossmann S, Schwedhelm E, Thiele H. Systemic Effects of Homoarginine Supplementation on Arginine Metabolizing Enzymes in Rats with Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 24:14782. [PMID: 37834229 PMCID: PMC10572665 DOI: 10.3390/ijms241914782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A restoration of low homoarginine (hArg) levels in obese ZSF1 rats (O-ZSF1) before (S1-ZSF1) and after (S2-ZSF1) the manifestation of heart failure with preserved ejection fraction (HFpEF) did not affect the worsening of cardiac HFpEF characteristics. Here, potential regulation of key enzymes of arginine metabolism in other organs was analyzed. Arginase 2 (ARG2) was reduced >35% in the kidney and small intestine of hArg-supplemented rats compared to O-ZSF1. Glycine amidinotransferase (GATM) was 29% upregulated in the kidneys of S1-ZSF1. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) levels were reduced >50% in the livers of O-ZSF1 but restored in S2-ZSF1 compared to healthy rats (L-ZSF1). In the skeletal muscle, iNOS was lower in O-ZSF1 and further decreased in S1-ZSF1 and S2-ZSF1 compared to L-ZSF1. iNOS levels were lower in the liver of the S2-ZSF1 group but higher in the kidneys of S1-ZSF1 compared to L-ZSF1. Supplementation with hArg in an in vivo HFpEF model resulted in the inhibition of renal ARG2 and an increase in GATM expression. This supplementation might contribute to the stabilization of intestinal iNOS and ARG2 imbalances, thereby enhancing barrier function. Additionally, it may offer protective effects in skeletal muscle by downregulating iNOS. In the conceptualization of hArg supplementation studies, the current disease progression stage as well as organ-specific enzyme regulation should be considered.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Susann Ossmann
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| |
Collapse
|
8
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 PMCID: PMC11932539 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
9
|
Kovilakath A, Wohlford G, Cowart LA. Circulating sphingolipids in heart failure. Front Cardiovasc Med 2023; 10:1154447. [PMID: 37229233 PMCID: PMC10203217 DOI: 10.3389/fcvm.2023.1154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Lack of significant advancements in early detection and treatment of heart failure have precipitated the need for discovery of novel biomarkers and therapeutic targets. Over the past decade, circulating sphingolipids have elicited promising results as biomarkers that premonish adverse cardiac events. Additionally, compelling evidence directly ties sphingolipids to these events in patients with incident heart failure. This review aims to summarize the current literature on circulating sphingolipids in both human cohorts and animal models of heart failure. The goal is to provide direction and focus for future mechanistic studies in heart failure, as well as pave the way for the development of new sphingolipid biomarkers.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - George Wohlford
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran's Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
10
|
Nogueira-Ferreira R, Santos I, Ferreira R, Fontoura D, Sousa-Mendes C, Falcão-Pires I, Lourenço A, Leite-Moreira A, Duarte IF, Moreira-Gonçalves D. Exercise training impacts skeletal muscle remodelling induced by metabolic syndrome in ZSF1 rats through metabolism regulation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166709. [PMID: 37030522 DOI: 10.1016/j.bbadis.2023.166709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
Metabolic syndrome (MetS), characterized by a set of conditions that include obesity, hypertension, and dyslipidemia, is associated with increased cardiovascular risk. Exercise training (EX) has been reported to improve MetS management, although the underlying metabolic adaptations that drive its benefits remain poorly understood. This work aims to characterize the molecular changes induced by EX in skeletal muscle in MetS, focusing on gastrocnemius metabolic remodelling. 1H NMR metabolomics and molecular assays were employed to assess the metabolic profile of skeletal muscle tissue from lean male ZSF1 rats (CTL), obese sedentary male ZSF1 rats (MetS-SED), and obese male ZF1 rats submitted to 4 weeks of treadmill EX (5 days/week, 60 min/day, 15 m/min) (MetS-EX). EX did not counteract the significant increase of body weight and circulating lipid profile, but had an anti-inflammatory effect and improved exercise capacity. The decreased gastrocnemius mass observed in MetS was paralleled with glycogen degradation into small glucose oligosaccharides, with the release of glucose-1-phosphate, and an increase in glucose-6-phosphate and glucose levels. Moreover, sedentary MetS animals' muscle exhibited lower AMPK expression levels and higher amino acids' metabolism such as glutamine and glutamate, compared to lean animals. In contrast, the EX group showed changes suggesting an increase in fatty acid oxidation and oxidative phosphorylation. Additionally, EX mitigated MetS-induced fiber atrophy and fibrosis in the gastrocnemius muscle. EX had a positive effect on gastrocnemius metabolism by enhancing oxidative metabolism and, consequently, reducing susceptibility to fatigue. These findings reinforce the importance of prescribing EX programs to patients with MetS.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal.
| | - Inês Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Dulce Fontoura
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - André Lourenço
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal; Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
11
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
12
|
Peters AE, Tromp J, Shah SJ, Lam CSP, Lewis GD, Borlaug BA, Sharma K, Pandey A, Sweitzer NK, Kitzman DW, Mentz RJ. Phenomapping in heart failure with preserved ejection fraction: insights, limitations, and future directions. Cardiovasc Res 2023; 118:3403-3415. [PMID: 36448685 PMCID: PMC10144733 DOI: 10.1093/cvr/cvac179] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous entity with complex pathophysiology and manifestations. Phenomapping is the process of applying statistical learning techniques to patient data to identify distinct subgroups based on patterns in the data. Phenomapping has emerged as a technique with potential to improve the understanding of different HFpEF phenotypes. Phenomapping efforts have been increasing in HFpEF over the past several years using a variety of data sources, clinical variables, and statistical techniques. This review summarizes methodologies and key takeaways from these studies, including consistent discriminating factors and conserved HFpEF phenotypes. We argue that phenomapping results to date have had limited implications for clinical care and clinical trials, given that the phenotypes, as currently described, are not reliably identified in each study population and may have significant overlap. We review the inherent limitations of aggregating and utilizing phenomapping results. Lastly, we discuss potential future directions, including using phenomapping to optimize the likelihood of clinical trial success or to drive discovery in mechanisms of the disease process of HFpEF.
Collapse
Affiliation(s)
- Anthony E Peters
- Division of Cardiology, Duke University School of Medicine,
Durham, North Carolina 27708, USA
- Duke Clinical Research Institute, Durham, North
Carolina 27701, USA
| | - Jasper Tromp
- Saw Swee Hock School of Public Health, National University of Singapore
& the National University Health System, Singapore
- Department of Cardiology, University Medical Center
Groningen, Groningen, The
Netherlands
- Duke-National University of Singapore Medical School,
Singapore
| | - Sanjiv J Shah
- Division of Cardiology, Northwestern University Feinberg School of
Medicine, Chicago, IL, USA
| | - Carolyn S P Lam
- Department of Cardiology, University Medical Center
Groningen, Groningen, The
Netherlands
- Duke-National University of Singapore Medical School,
Singapore
- National Heart Centre Singapore, Singapore
| | - Gregory D Lewis
- Division of Cardiology, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic,
Rochester, Minnesota, USA
| | - Kavita Sharma
- Division of Cardiology, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Ambarish Pandey
- Division of Cardiology, University of Texas Southwestern Medical
Center, Dallas, Texas, USA
| | - Nancy K Sweitzer
- Cardiovascular Medicine, Sarver Heart Center, University of
Arizona, Tucson, Arizona, USA
| | - Dalane W Kitzman
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake
Forest School of Medicine, Winston-Salem, North
Carolina, USA
- Sections on Geriatrics, Department of Internal Medicine, Wake Forest School
of Medicine, Winston-Salem, North Carolina,
USA
| | - Robert J Mentz
- Division of Cardiology, Duke University School of Medicine,
Durham, North Carolina 27708, USA
- Duke Clinical Research Institute, Durham, North
Carolina 27701, USA
| |
Collapse
|
13
|
van der Velden J, Asselbergs FW, Bakkers J, Batkai S, Bertrand L, Bezzina CR, Bot I, Brundel BJJM, Carrier L, Chamuleau S, Ciccarelli M, Dawson D, Davidson SM, Dendorfer A, Duncker DJ, Eschenhagen T, Fabritz L, Falcão-Pires I, Ferdinandy P, Giacca M, Girao H, Gollmann-Tepeköylü C, Gyongyosi M, Guzik TJ, Hamdani N, Heymans S, Hilfiker A, Hilfiker-Kleiner D, Hoekstra AG, Hulot JS, Kuster DWD, van Laake LW, Lecour S, Leiner T, Linke WA, Lumens J, Lutgens E, Madonna R, Maegdefessel L, Mayr M, van der Meer P, Passier R, Perbellini F, Perrino C, Pesce M, Priori S, Remme CA, Rosenhahn B, Schotten U, Schulz R, Sipido KR, Sluijter JPG, van Steenbeek F, Steffens S, Terracciano CM, Tocchetti CG, Vlasman P, Yeung KK, Zacchigna S, Zwaagman D, Thum T. Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2022; 118:3016-3051. [PMID: 34999816 PMCID: PMC9732557 DOI: 10.1093/cvr/cvab370] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular diseases represent a major cause of morbidity and mortality, necessitating research to improve diagnostics, and to discover and test novel preventive and curative therapies, all of which warrant experimental models that recapitulate human disease. The translation of basic science results to clinical practice is a challenging task, in particular for complex conditions such as cardiovascular diseases, which often result from multiple risk factors and comorbidities. This difficulty might lead some individuals to question the value of animal research, citing the translational 'valley of death', which largely reflects the fact that studies in rodents are difficult to translate to humans. This is also influenced by the fact that new, human-derived in vitro models can recapitulate aspects of disease processes. However, it would be a mistake to think that animal models do not represent a vital step in the translational pathway as they do provide important pathophysiological insights into disease mechanisms particularly on an organ and systemic level. While stem cell-derived human models have the potential to become key in testing toxicity and effectiveness of new drugs, we need to be realistic, and carefully validate all new human-like disease models. In this position paper, we highlight recent advances in trying to reduce the number of animals for cardiovascular research ranging from stem cell-derived models to in situ modelling of heart properties, bioinformatic models based on large datasets, and state-of-the-art animal models, which show clinically relevant characteristics observed in patients with a cardiovascular disease. We aim to provide a guide to help researchers in their experimental design to translate bench findings to clinical routine taking the replacement, reduction, and refinement (3R) as a guiding concept.
Collapse
Grants
- R01 HL150359 NHLBI NIH HHS
- RG/16/14/32397 British Heart Foundation
- FS/18/37/33642 British Heart Foundation
- PG/17/64/33205 British Heart Foundation
- PG/15/88/31780 British Heart Foundation
- FS/RTF/20/30009, NH/19/1/34595, PG/18/35/33786, CS/17/4/32960, PG/15/88/31780, and PG/17/64/33205 British Heart Foundation
- NC/T001488/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- PG/18/44/33790 British Heart Foundation
- CH/16/3/32406 British Heart Foundation
- FS/RTF/20/30009 British Heart Foundation
- NWO-ZonMW
- ZonMW and Heart Foundation for the translational research program
- Dutch Cardiovascular Alliance (DCVA)
- Leducq Foundation
- Dutch Research Council
- Association of Collaborating Health Foundations (SGF)
- UCL Hospitals NIHR Biomedical Research Centre, and the DCVA
- Netherlands CardioVascular Research Initiative CVON
- Stichting Hartekind and the Dutch Research Counsel (NWO) (OCENW.GROOT.2019.029)
- National Fund for Scientific Research, Belgium and Action de Recherche Concertée de la Communauté Wallonie-Bruxelles, Belgium
- Netherlands CardioVascular Research Initiative CVON (PREDICT2 and CONCOR-genes projects), the Leducq Foundation
- ERA PerMed (PROCEED study)
- Netherlands Cardiovascular Research Initiative
- Dutch Heart Foundation
- German Centre of Cardiovascular Research (DZHH)
- Chest Heart and Stroke Scotland
- Tenovus Scotland
- Friends of Anchor and Grampian NHS-Endowments
- National Institute for Health Research University College London Hospitals Biomedical Research Centre
- German Centre for Cardiovascular Research
- European Research Council (ERC-AG IndivuHeart), the Deutsche Forschungsgemeinschaft
- European Union Horizon 2020 (REANIMA and TRAINHEART)
- German Ministry of Education and Research (BMBF)
- Centre for Cardiovascular Research (DZHK)
- European Union Horizon 2020
- DFG
- National Research, Development and Innovation Office of Hungary
- Research Excellence Program—TKP; National Heart Program
- Austrian Science Fund
- European Union Commission’s Seventh Framework programme
- CVON2016-Early HFPEF
- CVON She-PREDICTS
- CVON Arena-PRIME
- European Union’s Horizon 2020 research and innovation programme
- Deutsche Forschungsgemeinschaft
- Volkswagenstiftung
- French National Research Agency
- ERA-Net-CVD
- Fédération Française de Cardiologie, the Fondation pour la Recherche Médicale
- French PIA Project
- University Research Federation against heart failure
- Netherlands Heart Foundation
- Dekker Senior Clinical Scientist
- Health Holland TKI-LSH
- TUe/UMCU/UU Alliance Fund
- south African National Foundation
- Cancer Association of South Africa and Winetech
- Netherlands Heart Foundation/Applied & Engineering Sciences
- Dutch Technology Foundation
- Pie Medical Imaging
- Netherlands Organisation for Scientific Research
- Dr. Dekker Program
- Netherlands CardioVascular Research Initiative: the Dutch Heart Foundation
- Dutch Federation of University Medical Centres
- Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences for the GENIUS-II project
- Netherlands Organization for Scientific Research (NWO) (VICI grant); the European Research Council
- Incyte s.r.l. and from Ministero dell’Istruzione, Università e Ricerca Scientifica
- German Center for Cardiovascular Research (Junior Research Group & Translational Research Project), the European Research Council (ERC Starting Grant NORVAS),
- Swedish Heart-Lung-Foundation
- Swedish Research Council
- National Institutes of Health
- Bavarian State Ministry of Health and Care through the research project DigiMed Bayern
- ERC
- ERA-CVD
- Dutch Heart Foundation, ZonMw
- the NWO Gravitation project
- Ministero dell'Istruzione, Università e Ricerca Scientifica
- Regione Lombardia
- Netherlands Organisation for Health Research and Development
- ITN Network Personalize AF: Personalized Therapies for Atrial Fibrillation: a translational network
- MAESTRIA: Machine Learning Artificial Intelligence Early Detection Stroke Atrial Fibrillation
- REPAIR: Restoring cardiac mechanical function by polymeric artificial muscular tissue
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- European Union H2020 program to the project TECHNOBEAT
- EVICARE
- BRAV3
- ZonMw
- German Centre for Cardiovascular Research (DZHK)
- British Heart Foundation Centre for Cardiac Regeneration
- British Heart Foundation studentship
- NC3Rs
- Interreg ITA-AUS project InCARDIO
- Italian Association for Cancer Research
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science and Institute of Health Informatics, University College London, London, UK
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sandor Batkai
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Luc Bertrand
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Connie R Bezzina
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Ilze Bot
- Heart Center, Department of Experimental Cardiology, Amsterdam UMC, Location Academic Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Bianca J J M Brundel
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Steven Chamuleau
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, Fisciano (SA), Italy
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, Aberdeen, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK
| | - Andreas Dendorfer
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Larissa Fabritz
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
- University Center of Cardiovascular Sciences and Department of Cardiology, University Heart Center Hamburg, Germany and Institute of Cardiovascular Sciences, University of Birmingham, UK
| | - Ines Falcão-Pires
- UnIC - Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Portugal
| | - Péter Ferdinandy
- Cardiometabolic Research Group and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Mauro Giacca
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Henrique Girao
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | | | - Mariann Gyongyosi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Tomasz J Guzik
- Instutute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Nazha Hamdani
- Division Cardiology, Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Andres Hilfiker
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiovascular Complications in Pregnancy and in Oncologic Therapies, Comprehensive Cancer Centre, Philipps-Universität Marburg, Germany
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Sébastien Hulot
- Université de Paris, INSERM, PARCC, F-75015 Paris, France
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, F-75015 Paris, France
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Linda W van Laake
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Robert-Koch-Str. 27B, 48149 Muenster, Germany
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56124 Pisa, Italy
- Department of Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, TX, USA
| | - Lars Maegdefessel
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Mayr
- King’s British Heart Foundation Centre, King’s College London, London, UK
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500AE Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Filippo Perbellini
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, IRCCS, Milan, Italy
| | - Silvia Priori
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, Pavia, Italy
- University of Pavia, Pavia, Italy
| | - Carol Ann Remme
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Bodo Rosenhahn
- Institute for information Processing, Leibniz University of Hanover, 30167 Hannover, Germany
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Karin R Sipido
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Regenerative Medicine Center Utrecht, Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van Steenbeek
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- DZHK, Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center for Clinical and Translational Research (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| | - Patricia Vlasman
- Amsterdam UMC, Vrije Universiteit, Physiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Amsterdam UMC, Vrije Universiteit, Surgery, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences and Cardiovascular Department, Centre for Translational Cardiology, Azienda Sanitaria Universitaria Integrata Trieste, Trieste, Italy
- International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Dayenne Zwaagman
- Amsterdam UMC, Heart Center, Cardiology, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - Thomas Thum
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
14
|
Li C, Qin D, Hu J, Yang Y, Hu D, Yu B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front Immunol 2022; 13:947147. [PMID: 36483560 PMCID: PMC9723346 DOI: 10.3389/fimmu.2022.947147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of heart failure with preserved ejection fraction is increasing in patients with obesity, diabetes, hypertension, and in the aging population. However, there is a lack of adequate clinical treatment. Patients with obesity-related heart failure with preserved ejection fraction display unique pathophysiological and phenotypic characteristics, suggesting that obesity could be one of its specific phenotypes. There has been an increasing recognition that overnutrition in obesity causes adipose tissue expansion and local and systemic inflammation, which consequently exacerbates cardiac remodeling and leads to the development of obese heart failure with preserved ejection fraction. Furthermore, overnutrition leads to cellular metabolic reprogramming and activates inflammatory signaling cascades in various cardiac cells, thereby promoting maladaptive cardiac remodeling. Growing evidence indicates that the innate immune response pathway from the NLRP3 inflammasome, to interleukin-1 to interleukin-6, is involved in the generation of obesity-related systemic inflammation and heart failure with preserved ejection fraction. This review established the existence of obese heart failure with preserved ejection fraction based on structural and functional changes, elaborated the inflammation mechanisms of obese heart failure with preserved ejection fraction, proposed that NLRP3 inflammasome activation may play an important role in adiposity-induced inflammation, and summarized the potential therapeutic approaches.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China,*Correspondence: Bilian Yu,
| |
Collapse
|
15
|
Jasińska-Stroschein M. Searching for an experimental rodent model of heart failure with preserved ejection fraction: Re-visited. Biomed Pharmacother 2022; 152:113251. [PMID: 35714511 DOI: 10.1016/j.biopha.2022.113251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently accounts for over 50% of all heart failure cases. It displays a large number of comorbidities, and the pathophysiological mechanisms underlying the disease remain uncertain and treatment options are limited. The heterogeneity and complexity of the disease, and its specific comorbidities, can limit the number of animal models that could ideally mimic it. The current study describes and compares the efficacy of the most popular approaches from a quantitative point of view. A review and meta-analysis of more than 500 experimental protocols was performed with special attention to these models created to induce heart failure by the most common comorbidities associated with human HFpEF, e.g., hypertension, diabetes, obesity and aging. The analysis included a wide spectrum of outcomes (alterations in body weight, lung and left ventricle weights, laboratory, hemodynamic, echocardiographic, and histopathological data as well as animal mortality) and possible covariates that could determine the utility of the particular model, such as animal age, species, experimental period and genetic modification. A wide range of systemic hypertension as well as diabetes (obesity) - related animal models are used for pre-clinical studies on heart failure, but some of them fail to replicate HFpEF. Future studies should include an evaluation of other features besides diastolic dysfunction that confirm that this is an HFpEF model, or the potential to progress to heart failure with reduced ejection fraction (HFrEF).
Collapse
|
16
|
Ferro F, Spelat R, Valente C, Contessotto P. Understanding How Heart Metabolic Derangement Shows Differential Stage Specificity for Heart Failure with Preserved and Reduced Ejection Fraction. Biomolecules 2022; 12:biom12070969. [PMID: 35883525 PMCID: PMC9312956 DOI: 10.3390/biom12070969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF) is a clinical condition defined by structural and functional abnormalities in the heart that gradually result in reduced cardiac output (HFrEF) and/or increased cardiac pressures at rest and under stress (HFpEF). The presence of asymptomatic individuals hampers HF identification, resulting in delays in recognizing patients until heart dysfunction is manifested, thus increasing the chance of poor prognosis. Given the recent advances in metabolomics, in this review we dissect the main alterations occurring in the metabolic pathways behind the decrease in cardiac function caused by HF. Indeed, relevant preclinical and clinical research has been conducted on the metabolite connections and differences between HFpEF and HFrEF. Despite these promising results, it is crucial to note that, in addition to identifying single markers and reliable threshold levels within the healthy population, the introduction of composite panels would strongly help in the identification of those individuals with an increased HF risk. That said, additional research in the field is required to overcome the current drawbacks and shed light on the pathophysiological changes that lead to HF. Finally, greater collaborative data sharing, as well as standardization of procedures and approaches, would enhance this research field to fulfil its potential.
Collapse
Affiliation(s)
- Federico Ferro
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34125 Trieste, Italy
- Correspondence:
| | - Renza Spelat
- Neurobiology Sector, International School for Advanced Studies (SISSA), 34136 Trieste, Italy;
| | - Camilla Valente
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| | - Paolo Contessotto
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.V.); (P.C.)
| |
Collapse
|
17
|
Zhang M, Shu H, Chen C, He Z, Zhou Z, Wang DW. Epoxyeicosatrienoic acid: A potential therapeutic target of heart failure with preserved ejection fraction. Biomed Pharmacother 2022; 153:113326. [PMID: 35759865 DOI: 10.1016/j.biopha.2022.113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) reduces the quality of life, costs substantial medical resources, and has a high mortality. However, we lack an effective therapy for HFpEF due to our limited knowledge of its mechanism. Therefore, it is crucial to explore novel therapeutics, such as those with endogenous protective roles, and seek new targeted therapies. Epoxyeicosatrienoic acids (EETs) are endogenous bioactive metabolites of arachidonic acids produced by cytochrome P450 (CYP) epoxygenases. EETs can function as endogenous cardioprotective factors with potent inhibitory roles in inflammation, endothelial dysfunction, cardiac remodeling, and fibrosis, which are the fundamental mechanisms of HFpEF. This suggests that EETs have the potential function to protect against HFpEF. Therefore, we present an overview of the ever-expanding world of EETs and how they might help alleviate the pathophysiology underlying HFpEF to provide new insights for research in this field.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Zhou Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
18
|
Stadiotti I, Santoro R, Scopece A, Pirola S, Guarino A, Polvani G, Maione AS, Ascione F, Li Q, Delia D, Foiani M, Pompilio G, Sommariva E. Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction? Front Cardiovasc Med 2022; 9:878268. [PMID: 35811699 PMCID: PMC9259931 DOI: 10.3389/fcvm.2022.878268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterized by impaired left ventricular (LV) diastolic function, with normal LV ejection fraction. Aortic valve stenosis can cause an HFpEF-like syndrome by inducing sustained pressure overload (PO) and cardiac remodeling, as cardiomyocyte (CM) hypertrophy and fibrotic matrix deposition. Recently, in vivo studies linked PO maladaptive myocardial changes and DNA damage response (DDR) activation: DDR-persistent activation contributes to mouse CM hypertrophy and inflammation, promoting tissue remodeling, and HF. Despite the wide acknowledgment of the pivotal role of the stromal compartment in the fibrotic response to PO, the possible effects of DDR-persistent activation in cardiac stromal cell (C-MSC) are still unknown. Finally, this novel mechanism was not verified in human samples. This study aims to unravel the effects of PO-induced DDR on human C-MSC phenotypes. Human LV septum samples collected from severe aortic stenosis with HFpEF-like syndrome patients undergoing aortic valve surgery and healthy controls (HCs) were used both for histological tissue analyses and C-MSC isolation. PO-induced mechanical stimuli were simulated in vitro by cyclic unidirectional stretch. Interestingly, HFpEF tissue samples revealed DNA damage both in CM and C-MSC. DDR-activation markers γH2AX, pCHK1, and pCHK2 were expressed at higher levels in HFpEF total tissue than in HC. Primary C-MSC isolated from HFpEF and HC subjects and expanded in vitro confirmed the increased γH2AX and phosphorylated checkpoint protein expression, suggesting a persistent DDR response, in parallel with a higher expression of pro-fibrotic and pro-inflammatory factors respect to HC cells, hinting to a DDR-driven remodeling of HFpEF C-MSC. Pressure overload was simulated in vitro, and persistent activation of the CHK1 axis was induced in response to in vitro mechanical stretching, which also increased C-MSC secreted pro-inflammatory and pro-fibrotic molecules. Finally, fibrosis markers were reverted by the treatment with a CHK1/ATR pathway inhibitor, confirming a cause-effect relationship. In conclusion we demonstrated that, in severe aortic stenosis with HFpEF-like syndrome patients, PO induces DDR-persistent activation not only in CM but also in C-MSC. In C-MSC, DDR activation leads to inflammation and fibrosis, which can be prevented by specific DDR targeting.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Rosaria Santoro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
- *Correspondence: Rosaria Santoro
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Sergio Pirola
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Anna Guarino
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Gianluca Polvani
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Flora Ascione
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Qingsen Li
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Domenico Delia
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Marco Foiani
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| |
Collapse
|
19
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
20
|
van Ham WB, Kessler EL, Oerlemans MI, Handoko ML, Sluijter JP, van Veen TA, den Ruijter HM, de Jager SC. Clinical Phenotypes of Heart Failure With Preserved Ejection Fraction to Select Preclinical Animal Models. JACC Basic Transl Sci 2022; 7:844-857. [PMID: 36061340 PMCID: PMC9436760 DOI: 10.1016/j.jacbts.2021.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
To better define HFpEF clinically, patients are nowadays often clustered into phenogroups, based on their comorbidities and symptoms Many animal models claim to mimic HFpEF, but phenogroups are not yet regularly used to cluster them HFpEF animals models often lack reports of clinical symptoms of HF, therefore mainly presenting as extended models of LVDD, clinically seen as a prestate of HFpEF We investigated if clinically relevant phenogroups can guide selection of animal models aiming at better defined animal research
At least one-half of the growing heart failure population consists of heart failure with preserved ejection fraction (HFpEF). The limited therapeutic options, the complexity of the syndrome, and many related comorbidities emphasize the need for adequate experimental animal models to study the etiology of HFpEF, as well as its comorbidities and pathophysiological changes. The strengths and weaknesses of available animal models have been reviewed extensively with the general consensus that a “1-size-fits-all” model does not exist, because no uniform HFpEF patient exists. In fact, HFpEF patients have been categorized into HFpEF phenogroups based on comorbidities and symptoms. In this review, we therefore study which animal model is best suited to study the different phenogroups—to improve model selection and refinement of animal research. Based on the published data, we extrapolated human HFpEF phenogroups into 3 animal phenogroups (containing small and large animals) based on reports and definitions of the authors: animal models with high (cardiac) age (phenogroup aging); animal models focusing on hypertension and kidney dysfunction (phenogroup hypertension/kidney failure); and models with hypertension, obesity, and type 2 diabetes mellitus (phenogroup cardiometabolic syndrome). We subsequently evaluated characteristics of HFpEF, such as left ventricular diastolic dysfunction parameters, systemic inflammation, cardiac fibrosis, and sex-specificity in the different models. Finally, we scored these parameters concluded how to best apply these models. Based on our findings, we propose an easy-to-use classification for future animal research based on clinical phenogroups of interest.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elise L. Kessler
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University of Utrecht, Utrecht, the Netherlands
| | | | - M. Louis Handoko
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Joost P.G. Sluijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University of Utrecht, Utrecht, the Netherlands
| | - Toon A.B. van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hester M. den Ruijter
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia C.A. de Jager
- Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Address for correspondence: Dr Saskia C.A. de Jager, Laboratory for Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584 CX, the Netherlands.
| |
Collapse
|
21
|
Toledo C, Ortolani D, Ortiz FC, Marcus NJ, Del Rio R. Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:863963. [PMID: 35492622 PMCID: PMC9039230 DOI: 10.3389/fphys.2022.863963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
A strong association between chemoreflex hypersensitivity, disordered breathing, and elevated sympathetic activity has been shown in experimental and human heart failure (HF). The contribution of chemoreflex hypersensitivity in HF pathophysiology is incompletely understood. There is ample evidence that increased peripheral chemoreflex drive in HF with reduced ejection fraction (HFrEF; EF<40%) leads to pathophysiological changes in autonomic and cardio-respiratory control, but less is known about the neural mechanisms mediating cardio-respiratory disturbances in HF with preserved EF (HFpEF; EF>50%). Importantly, it has been shown that activation of the central chemoreflex worsens autonomic dysfunction in experimental HFpEF, an effect mediated in part by the activation of C1 catecholaminergic neurons neighboring the retrotrapezoid nucleus (RTN), an important region for central chemoreflex control of respiratory and autonomic function. Accordingly, the main purpose of this brief review is to discuss the possible role played by activation of central chemoreflex pathways on autonomic function and its potential role in precipitating disordered breathing in HFpEF. Improving understanding of the contribution of the central chemoreflex to the pathophysiology of HFpEF may help in development of novel interventions intended to improve cardio-respiratory outcomes in HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Rodrigo Del Rio,
| |
Collapse
|
22
|
Kobak KA, Zarzycka W, Chiao YA. Age and Sex Differences in Heart Failure With Preserved Ejection Fraction. FRONTIERS IN AGING 2022; 3:811436. [PMID: 35821846 PMCID: PMC9261310 DOI: 10.3389/fragi.2022.811436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multi-organ disorder that represents about 50% of total heart failure (HF) cases and is the most common form of HF in the elderly. Because of its increasing prevalence caused by the aging population, high mortality and morbidity, and very limited therapeutic options, HFpEF is considered as one of the greatest unmet medical needs in cardiovascular medicine. Despite its complex pathophysiology, numerous preclinical models have been established in rodents and in large animals to study HFpEF pathophysiology. Although age and sex differences are well described in HFpEF population, there are knowledge gaps in sex- and age-specific differences in established preclinical models. In this review, we summarize various strategies that have been used to develop HFpEF models and discuss the knowledge gaps in sex and age differences in HFpEF.
Collapse
|
23
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
24
|
Fopiano KA, Jalnapurkar S, Davila AC, Arora V, Bagi Z. Coronary Microvascular Dysfunction and Heart Failure with Preserved Ejection Fraction - implications for Chronic Inflammatory Mechanisms. Curr Cardiol Rev 2022; 18:e310821195986. [PMID: 34488616 PMCID: PMC9413735 DOI: 10.2174/1573403x17666210831144651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Coronary Microvascular Dysfunction (CMD) is now considered one of the key underlying pathologies responsible for the development of both acute and chronic cardiac complications. It has been long recognized that CMD contributes to coronary no-reflow, which occurs as an acute complication during percutaneous coronary interventions. More recently, CMD was proposed to play a mechanistic role in the development of left ventricle diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF). Emerging evidence indicates that a chronic low-grade pro-inflammatory activation predisposes patients to both acute and chronic cardiovascular complications raising the possibility that pro-inflammatory mediators serve as a mechanistic link in HFpEF. Few recent studies have evaluated the role of the hyaluronan-CD44 axis in inflammation-related cardiovascular pathologies, thus warranting further investigations. This review article summarizes current evidence for the role of CMD in the development of HFpEF, focusing on molecular mediators of chronic proinflammatory as well as oxidative stress mechanisms and possible therapeutic approaches to consider for treatment and prevention.
Collapse
Affiliation(s)
- Katie Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sawan Jalnapurkar
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University Augusta, GA 30912, USA
| | - Alec C Davila
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vishal Arora
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
25
|
Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, Kumar RA, Balazic E, Muscato DR, Ryan TE, van der Pijl RJ, Shen S, Ottenheijm CAC, Ferreira LF. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 132:106-125. [PMID: 34792407 PMCID: PMC8742741 DOI: 10.1152/japplphysiol.00170.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Collapse
Affiliation(s)
- Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Lauren Betancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrea M Noriega
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Suzanne C Brinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Eliza Balazic
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
In silico identification of potential calcium dynamics and sarcomere targets for recovering left ventricular function in rat heart failure with preserved ejection fraction. PLoS Comput Biol 2021; 17:e1009646. [PMID: 34871310 PMCID: PMC8675924 DOI: 10.1371/journal.pcbi.1009646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 01/28/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state. We developed a computational model of the ZSF1 rat model of heart failure with preserved ejection fraction. We validated that the model can link simulated pharmacological interventions from cellular to whole heart pump function. Our computational model identified calcium dynamics as the main determinant of left ventricular contractile behaviour. We demonstrated that the highest degree of LV function recovery could be achieved when calcium dynamics is manipulated in conjunction with both thin and thick filament kinetics.
Collapse
|
27
|
Xu L, Balzarolo M, Robinson EL, Lorenz V, Verde GD, Joray L, Mochizuki M, Kaufmann BA, Valstar G, de Jager SCA, den Ruijter HM, Heymans S, Pfister O, Kuster GM. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovasc Res 2021; 118:2973-2984. [PMID: 34849611 DOI: 10.1093/cvr/cvab349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1β- and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45+ immune cells isolated from healthy mouse hearts, but was negligible in cardiac CD31+ endothelial cells. However, in vitro, Nox1 expression increased in response to LPS in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodeling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD. TRANSLATIONAL PERSPECTIVE In their multifactorial pathogenesis, diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF) still remain poorly understood. They frequently occur in patients with obesity and metabolic syndrome. Microvascular inflammation and dysfunction have recently been recognized as major driving forces. We show that genetic deletion of Nox1 prevents cardiac inflammation, remodeling and dysfunction in metabolic disease in mice and find NOX1 upregulated in peripheral monocytes of patients with DD. These findings add to our understanding how obesity, inflammation and heart disease are linked, which is a prerequisite to find therapeutic strategies beyond the control of co-morbidities in HFpEF.
Collapse
Affiliation(s)
- Lifen Xu
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melania Balzarolo
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Vera Lorenz
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lydia Joray
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michika Mochizuki
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Beat A Kaufmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stephane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Belgium, Leuven.,Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, Maastricht, 6229 ER The Netherlands.,ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, Utrecht, 3511 EP The Netherlands
| | - Otmar Pfister
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
28
|
Liehn EA, Lupan AM, Diaconu R, Ioana M, Streata I, Manole C, Burlacu A. Heart function assessment during aging in apolipoprotein E knock-out mice. Discoveries (Craiova) 2021; 9:e136. [PMID: 34816004 PMCID: PMC8605688 DOI: 10.15190/d.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Apolipoprotein (apo) E isoforms have strong correlations with metabolic and cardiovascular diseases. However, it is not clear if apoE has a role in development of non-ischemic cardiomyopathy. Our study aims to analyze the involvement of apoE in non-ischemic cardiomyopathy. METHODS AND RESULTS Serial echo-cardiographic measurements were performed in old wildtype and apoE deficient (apoE-/-) mice. Morphological and functional cardiac parameters were in normal range in both groups at the age of 12 month. At the age of 18 months, both groups had shown ventricular dilation and increased heart rates. However, the apoE-/- mice presented signs of diastolic dysfunction by hypertrophic changes in left ventricle, due probably to arterial hypertension. The right ventricle was not affected by age or genotype. CONCLUSION: Even in the absence of high fat diet, apoE deficiency in mice induces mild changes in the cardiac function of the left ventricle during aging, by developing diastolic dysfunction, which leads to heart failure with preserved ejection fraction. However, further studies are necessary to conclude over the role of apoE in cardiac physiology and its involvement in development of heart failure.
Collapse
Affiliation(s)
- Elisa A Liehn
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Department of Cardiology, Angiology and Intensive Care, Medical Faculty, University Hospital Aachen, Aachen, Germany.,Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana-Mihaela Lupan
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| | - Rodica Diaconu
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania.,Department of Cardiology, Angiology and Intensive Care, Medical Faculty, University Hospital Aachen, Aachen, Germany
| | - Mihai Ioana
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ioana Streata
- Human Genetic Laboratory, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Catalin Manole
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Alexandrina Burlacu
- Nicolae Simionescu Institute of Cellular Biology and Pathology, Bucharest, Romania
| |
Collapse
|
29
|
Miyagi C, Miyamoto T, Kuroda T, Karimov JH, Starling RC, Fukamachi K. Large animal models of heart failure with preserved ejection fraction. Heart Fail Rev 2021; 27:595-608. [PMID: 34751846 DOI: 10.1007/s10741-021-10184-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/14/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction and multiple comorbidities. The number of patients is continuously increasing, with no improvement in its unfavorable prognosis, and there is a strong need for novel treatments. New devices and drugs are difficult to assess at the translational preclinical step due to the lack of high-fidelity large animal models of HFpEF. In this review, we describe the summary of historical and evolving techniques for developing large animal models. The representative methods are pressure overload models, including (1) aortic banding, (2) aortic stent, (3) renal hypertension, and (4) mineralocorticoid-induced hypertension. Diet-induced metabolic syndromes are also used. A new technique with an inflatable balloon inside the left ventricle can be used during acute/chronic in vivo surgeries to simulate HFpEF-like hemodynamics for pump-based therapies. Canines and porcine are most widely used, but other non-rodent animals (sheep, non-human primates, felines, or calves) have been used. Feline models present the most well-simulated HFpEF pathology, but small size is a concern, and the information is still very limited. The rapid and reliable establishment of large animal models for HFpEF, and novel methodology based on the past experimental attempts with large animals, are needed.
Collapse
Affiliation(s)
- Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Randall C Starling
- Department of Cardiovascular Medicine, Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA.,Kaufman Center for Heart Failure Treatment and Recovery, Cleveland Clinic, Cleveland, OH, USA
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
30
|
Oliveira MI, Leite S, Barros A, Lourenço AP, Mendes C, Schmidt C, Santos M, Leite-Moreira A, Moreira-Gonçalves D. Histological and haemodynamic characterization of right ventricle in sedentary and trained rats with heart failure with preserved ejection fraction. Exp Physiol 2021; 106:2457-2471. [PMID: 34676608 DOI: 10.1113/ep089516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Right ventricle (RV) dysfunction is highly prevalent in heart failure with preserved ejection fraction (HFpEF), nearly doubling the risk of death: what are the RV functional and structural changes in HFpEF and how does aerobic exercise impact them? What is the main finding and its importance? The HFpEF ZSF1 rat model presents RV structural and functional changes mimicking the human condition. Aerobic exercise prevented the decline in V ̇ O 2 max , lowered surrogate markers of RV overload (e.g., higher mean and maximum systolic pressure) and improved diastolic dysfunction (e.g., end-diastolic pressure and relaxation time constant). This emphasizes the importance of using exercise to manage HFpEF. ABSTRACT Right ventricle (RV) dysfunction is highly prevalent in heart failure with preserved ejection fraction (HFpEF) and is a marker of poor prognosis. We assessed the obese ZSF1 rat model of HFpEF to ascertain if these animals also develop RV dysfunction and evaluated whether aerobic exercise could prevent this. Obese ZSF1 rats were randomly allocated to an aerobic exercise training group (n = 7; treadmill running, 5 days/week, 60 min/day, 15 m/min for 5 weeks) or to a sedentary group (n = 7). We used lean ZSF1 rats (n = 7) as the control group. After 5 weeks, rats were submitted to an exercise tolerance test and invasive haemodynamic evaluation, killed and samples from the RV collected for histological analysis. Obese sedentary ZSF1 rats showed lower V ̇ O 2 max , RV pressure overload (e.g., higher mean and maximum systolic pressure) and diastolic dysfunction (e.g., higher minimum and end-diastolic pressure and relaxation time constant), paralleled by RV cardiomyocyte hypertrophy. Except for cardiomyocyte hypertrophy, aerobic exercise prevented these functional changes. Our data support that this model of HFpEF shows functional and structural changes in the RV that resemble the human HFpEF phenotype, reinforcing its utility to understand this pathophysiology and to adress novel therapeutic targets to manage HFpEF. In addition, we showed that aerobic exercise is cardioprotective for the RV. A deeper knowledge of the mechanisms underlying the benefits of aerobic exercise could also lead to the identification of therapeutic targets to be further explored.
Collapse
Affiliation(s)
- Maria Isilda Oliveira
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Sara Leite
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,USF Anta, ACeS Gaia/Espinho, Porto, Portugal
| | - António Barros
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André P Lourenço
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Anesthesiology, São João University Hospital, Porto, Portugal
| | - Cláudia Mendes
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cristine Schmidt
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Mário Santos
- CardioVascular Research Group, Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Cardiology Department, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Center (UnIC) and Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Cardiothoracic Surgery, São João University Hospital, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Centre of Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Campos-Martins A, Bragança B, Correia-de-Sá P, Fontes-Sousa AP. Pharmacological Tuning of Adenosine Signal Nuances Underlying Heart Failure With Preserved Ejection Fraction. Front Pharmacol 2021; 12:724320. [PMID: 34489711 PMCID: PMC8417789 DOI: 10.3389/fphar.2021.724320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) roughly represents half of the cardiac failure events in developed countries. The proposed 'systemic microvascular paradigm' has been used to explain HFpHF presentation heterogeneity. The lack of effective treatments with few evidence-based therapeutic recommendations makes HFpEF one of the greatest unmet clinical necessities worldwide. The endogenous levels of the purine nucleoside, adenosine, increase significantly following cardiovascular events. Adenosine exerts cardioprotective, neuromodulatory, and immunosuppressive effects by activating plasma membrane-bound P1 receptors that are widely expressed in the cardiovascular system. Its proven benefits have been demonstrated in preclinical animal tests. Here, we provide a comprehensive and up-to-date critical review about the main therapeutic advantages of tuning adenosine signalling pathways in HFpEF, without discounting their side effects and how these can be seized.
Collapse
Affiliation(s)
- Alexandrina Campos-Martins
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Department of Cardiology, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
32
|
Gibb AA, Murray EK, Eaton DM, Huynh AT, Tomar D, Garbincius JF, Kolmetzky DW, Berretta RM, Wallner M, Houser SR, Elrod JW. Molecular Signature of HFpEF: Systems Biology in a Cardiac-Centric Large Animal Model. JACC Basic Transl Sci 2021; 6:650-672. [PMID: 34466752 PMCID: PMC8385567 DOI: 10.1016/j.jacbts.2021.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/11/2021] [Accepted: 07/11/2021] [Indexed: 12/30/2022]
Abstract
In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.
Collapse
Key Words
- BCAA, branched chain amino acids
- DAG, diacylglycerol
- ECM, extracellular matrix
- EF, ejection fraction
- ESI, electrospray ionization
- ETC, electron transport chain
- FC, fold change
- FDR, false discovery rate
- GO, gene ontology
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LA, left atrial
- LAV, left atrial volume
- LV, left ventricle/ventricular
- MS/MS, tandem mass spectrometry
- RCR, respiratory control ratio
- RI, retention index
- UPLC, ultraperformance liquid chromatography
- heart failure
- m/z, mass to charge ratio
- metabolomics
- mitochondria
- preserved ejection fraction
- systems biology
- transcriptomics
Collapse
Affiliation(s)
- Andrew A. Gibb
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Emma K. Murray
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Deborah M. Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Anh T. Huynh
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Joanne F. Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Devin W. Kolmetzky
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Remus M. Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Division of Cardiology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Steven R. Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - John W. Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Address for correspondence: Dr John W. Elrod, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad Street, MERB 949, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
33
|
Tourki B, Halade GV. Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Front Cardiovasc Med 2021; 8:695952. [PMID: 34409075 PMCID: PMC8367012 DOI: 10.3389/fcvm.2021.695952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| |
Collapse
|
34
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
35
|
Fusco-Allison G, Li DK, Hunter B, Jackson D, Bannon PG, Lal S, O'Sullivan JF. Optimizing the discovery and assessment of therapeutic targets in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:3643-3655. [PMID: 34342166 PMCID: PMC8497375 DOI: 10.1002/ehf2.13504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
There is an urgent need for models that faithfully replicate heart failure with preserved ejection fraction (HFpEF), now recognized as the most common form of heart failure in the world. In vitro approaches have several shortcomings, most notably the immature nature of stem cell‐derived human cardiomyocytes [induced pluripotent stem cells (iPSC)] and the relatively short lifespan of primary cardiomyocytes. Three‐dimensional ‘organoids’ incorporating mature iPSCs with other cell types such as endothelial cells and fibroblasts are a significant advance, but lack the complexity of true myocardium. Animal models can replicate many features of human HFpEF, and rodent models are the most common, and recent attempts to incorporate haemodynamic, metabolic, and ageing contributions are encouraging. Differences relating to species, physiology, heart rate, and heart size are major limitations for rodent models. Porcine models mitigate many of these shortcomings and approximate human physiology more closely, but cost and time considerations limit their potential for widespread use. Ex vivo analysis of failing hearts from animal models offer intriguing possibilities regarding cardiac substrate utilisation, but are ultimately subject to the same constrains as the animal models from which the hearts are obtained. Ex vivo approaches using human myocardial biopsies can uncover new insights into pathobiology leveraging myocardial energetics, substrate turnover, molecular changes, and systolic/diastolic function. In collaboration with a skilled cardiothoracic surgeon, left ventricular endomyocardial biopsies can be obtained at the time of valvular surgery in HFpEF patients. Critically, these tissues maintain their disease phenotype, preserving inter‐relationship of myocardial cells and extracellular matrix. This review highlights a novel approach, where ultra‐thin myocardial tissue slices from human HFpEF hearts can be used to assess changes in myocardial structure and function. We discuss current approaches to modelling HFpEF, describe in detail the novel tissue slice model, expand on exciting opportunities this model provides, and outline ways to improve this model further.
Collapse
Affiliation(s)
- Gabrielle Fusco-Allison
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, Newtown, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Desmond K Li
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, Newtown, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin Hunter
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Dan Jackson
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Surgery, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul G Bannon
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Discipline of Surgery, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sean Lal
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - John F O'Sullivan
- Precision Cardiovascular Laboratory, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Heart Research Institute, Newtown, Sydney, New South Wales, Australia.,Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
36
|
Kitakata H, Endo J, Hashimoto S, Mizuno E, Moriyama H, Shirakawa K, Goto S, Katsumata Y, Fukuda K, Sano M. Imeglimin prevents heart failure with preserved ejection fraction by recovering the impaired unfolded protein response in mice subjected to cardiometabolic stress. Biochem Biophys Res Commun 2021; 572:185-190. [PMID: 34375928 DOI: 10.1016/j.bbrc.2021.07.090] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
The pathogenesis of heart failure with preserved ejection fraction (HFpEF) in obese diabetic patients has been implicated in metainflammation. Increased expression of inducible nitric oxide synthase (iNOS) and dysfunction of the unfolded protein response (UPR), especially inositol-requiring enzyme 1α-X-box binding protein 1 (IRE1α-Xbp1s) signaling in the heart, have been associated with HFpEF. We investigated the effect of imeglimin, a potential new treatment for type 2 diabetes, on the pathogenesis of HFpEF. We induced obesity, impaired glucose tolerance, and cardiac hypertrophy with fibrosis, fat accumulation, and diastolic dysfunction in wild-type mice with a high-fat diet (HFD) and the nitric oxide synthase (NOS) inhibitor l-NAME for 16 weeks. Treatment with imeglimin starting at 10 weeks not only improved their abnormal systemic glucose metabolism and visceral obesity but also their cardiac abnormalities. We found that imeglimin suppressed the upregulation of iNOS, and restored the expression of Xbp1s and the expression of the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1), which is responsible for the degradation of Forkhead box protein O1 (FoxO1), a direct transcriptional target of Xbp1s. It also suppressed the excessive transcriptional activity of FoxO1, which is located downstream of Xbp1s and is involved in the form development of HFpEF and cardiac adipogenesis. Imeglimin also restored the expression of Glutathione peroxidase 4 (GPX4), which protects cells against excess lipid peroxidation and governs a novel form of programmed cell death, called ferroptosis.
Collapse
Affiliation(s)
- Hiroki Kitakata
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shun Hashimoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Erika Mizuno
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Kohsuke Shirakawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shinichi Goto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | | | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
37
|
Withaar C, Meems LMG, Markousis-Mavrogenis G, Boogerd CJ, Silljé HHW, Schouten EM, Dokter MM, Voors AA, Westenbrink BD, Lam CSP, de Boer RA. The effects of liraglutide and dapagliflozin on cardiac function and structure in a multi-hit mouse model of heart failure with preserved ejection fraction. Cardiovasc Res 2021; 117:2108-2124. [PMID: 32871009 PMCID: PMC8318109 DOI: 10.1093/cvr/cvaa256] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is a multifactorial disease that constitutes several distinct phenotypes, including a common cardiometabolic phenotype with obesity and type 2 diabetes mellitus. Treatment options for HFpEF are limited, and development of novel therapeutics is hindered by the paucity of suitable preclinical HFpEF models that recapitulate the complexity of human HFpEF. Metabolic drugs, like glucagon-like peptide receptor agonist (GLP-1 RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2i), have emerged as promising drugs to restore metabolic perturbations and may have value in the treatment of the cardiometabolic HFpEF phenotype. We aimed to develop a multifactorial HFpEF mouse model that closely resembles the cardiometabolic HFpEF phenotype, and evaluated the GLP-1 RA liraglutide (Lira) and the SGLT2i dapagliflozin (Dapa). METHODS AND RESULTS Aged (18-22 months old) female C57BL/6J mice were fed a standardized chow (CTRL) or high-fat diet (HFD) for 12 weeks. After 8 weeks HFD, angiotensin II (ANGII), was administered for 4 weeks via osmotic mini pumps. HFD + ANGII resulted in a cardiometabolic HFpEF phenotype, including obesity, impaired glucose handling, and metabolic dysregulation with inflammation. The multiple hit resulted in typical clinical HFpEF features, including cardiac hypertrophy and fibrosis with preserved fractional shortening but with impaired myocardial deformation, atrial enlargement, lung congestion, and elevated blood pressures. Treatment with Lira attenuated the cardiometabolic dysregulation and improved cardiac function, with reduced cardiac hypertrophy, less myocardial fibrosis, and attenuation of atrial weight, natriuretic peptide levels, and lung congestion. Dapa treatment improved glucose handling, but had mild effects on the HFpEF phenotype. CONCLUSIONS We developed a mouse model that recapitulates the human HFpEF disease, providing a novel opportunity to study disease pathogenesis and the development of enhanced therapeutic approaches. We furthermore show that attenuation of cardiometabolic dysregulation may represent a novel therapeutic target for the treatment of HFpEF.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Benzhydryl Compounds/pharmacology
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Female
- Fibrosis
- Gene Expression Regulation
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/metabolism
- Glucosides/pharmacology
- Heart Failure, Diastolic/drug therapy
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Heart Failure, Diastolic/physiopathology
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Incretins/pharmacology
- Liraglutide/pharmacology
- Mice, Inbred C57BL
- Myocardium/metabolism
- Myocardium/pathology
- Signal Transduction
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Laura M G Meems
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Elisabeth M Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Martin M Dokter
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- National University Heart Centre, Singapore, Singapore
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
38
|
Baskal S, Büttner P, Werner S, Besler C, Lurz P, Thiele H, Tsikas D. Profile of urinary amino acids and their post-translational modifications (PTM) including advanced glycation end-products (AGEs) of lysine, arginine and cysteine in lean and obese ZSF1 rats. Amino Acids 2021; 54:643-652. [PMID: 34250558 PMCID: PMC9117358 DOI: 10.1007/s00726-021-03042-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with high mortality and has an increasing prevalence associated with the demographic change and limited therapeutic options. Underlying mechanisms are largely elusive and need to be explored to identify specific biomarkers and new targets, which mirror disease progression and intervention success. Obese ZSF1 (O-ZSF1) rats are a useful animal model, as they spontaneously develop hypertension, hyperlipidemia and glucose intolerance and finally HFpEF. The urinary profile of amino acids and their metabolites of post-translational modifications (PTM), including the advanced glycation end-products (AGEs) of lysine, arginine and cysteine, are poorly investigated in HFpEF and ZSF1 rats. The aim of the present study was to characterize the status of free amino acids and their metabolites of PTM and glycation in lean ZSF1 (L-ZSF1) and O-ZSF1 rats in urine aiming to find possible effects of glucose on the excretion of native and modified amino acids. In the urine of twelve L-ZSF1 and twelve O-ZFS1 rats collected at the age of 20 weeks, we measured the concentration of native and modified amino acids by reliable previously validated stable-isotope dilution gas chromatography-mass spectrometry (GC–MS) approaches. Serum glucose was 1.39-fold higher in the O-ZSF1 rats, while urinary creatinine concentration was 2.5-fold lower in the O-ZSF1 rats. We observed many differences in urinary amino acids excretion between L-ZSF1 and O-ZSF1 rats. The creatinine-corrected homoarginine excretion was twofold lower in the O-ZSF1 rats. We also observed distinct associations between the concentrations of serum glucose and urinary amino acids including their PTM and AGE metabolites in the L-ZSF1 and O-ZSF1 rats. Our study shows that PTM metabolites and AGEs are consistently lower in the L-ZSF1 than in the O-ZSF1 rats. Serum malondialdehyde (MDA) concentration was higher in the O-ZSF1 rats. These results suggest that hyperglycemia, hyperlipidemia and elevated oxidative stress in the O-ZSF1 rats favor PTM methylation of arginine and lysine and the glycation of lysine and cysteine. The area under the receiver operation characteristic (ROC) curve values were 0.996 for serum glucose, 0.951 for urinary creatinine, 0.939 for serum MDA, 0.885 for Nε-carboxyethyl-lysine, 0.830 for carboxyethyl-cysteine, and 0.792 for monomethyl-lysine. Non-invasive measurement of methylation and glycation products of arginine, lysine and cysteine residues in proteins in urine of L-ZSF1 and O-ZSF1 rats may be useful in studying pathophysiology and pharmacology of HFpEF.
Collapse
Affiliation(s)
- Svetlana Baskal
- Institute of Toxicology, Hannover Medical School, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30623, Hannover, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Christian Besler
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University Leipzig, Leipzig, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30623, Hannover, Germany.
| |
Collapse
|
39
|
Lin C, Guo Y, Xia Y, Li C, Xu X, Qi T, Zhang F, Fan M, Hu G, Zhao H, Zhao H, Liu R, Gao E, Yan W, Tao L. FNDC5/Irisin attenuates diabetic cardiomyopathy in a type 2 diabetes mouse model by activation of integrin αV/β5-AKT signaling and reduction of oxidative/nitrosative stress. J Mol Cell Cardiol 2021; 160:27-41. [PMID: 34224725 DOI: 10.1016/j.yjmcc.2021.06.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Irisin, the cleaved form of the fibronectin type III domain containing 5 (FNDC5) protein, is involved in metabolism and inflammation. Recent findings indicated that irisin participated in cardiovascular physiology and pathology. In this study, we investigated the effects of FNDC5/irisin on diabetic cardiomyopathy (DCM) in type 2 diabetic db/db mice. Downregulation of myocardial FNDC5/irisin protein expression and plasma irisin levels was observed in db/db mice compared to db/+ controls. Moreover, echocardiography revealed that db/db mice exhibited normal cardiac systolic function and impaired diastolic function. Adverse structural remodeling, including cardiomyocyte apoptosis, myocardial fibrosis, and cardiac hypertrophy were observed in the hearts of db/db mice. Sixteen-week-old db/db mice were intramyocardially injected with adenovirus encoding FNDC5 or treated with recombinant human irisin via a peritoneal implant osmotic pump for 4 weeks. Both overexpression of myocardial FNDC5 and exogenous irisin administration attenuated diastolic dysfunction and cardiac structural remodeling in db/db mice. Results from in vitro studies revealed that FNDC5/irisin protein expression was decreased in high glucose (HG)/high fat (HF)-treated cardiomyocytes. Increased levels of inducible nitric oxide synthase (iNOS), NADPH oxidase 2 (NOX2), 3-nitrotyrosine (3-NT), reactive oxygen species (ROS), and peroxynitrite (ONOO-) in HG/HF-treated H9C2 cells provided evidence of oxidative/nitrosative stress, which was alleviated by treatment with FNDC5/irisin. Moreover, the mitochondria membrane potential (ΔΨm) was decreased and cytochrome C was released from mitochondria with increased levels of cleaved caspase-3 in HG/HF-treated H9C2 cells, indicating the presence of mitochondria-dependent apoptosis, which was partially reversed by FNDC5/irisin treatment. Mechanistic studies showed that activation of integrin αVβ5-AKT signaling and attenuation of oxidative/nitrosative stress were responsible for the cardioprotective effects of FNDC5/irisin. Therefore, FNDC5/irisin mediates cardioprotection in DCM by inhibiting myocardial apoptosis, myocardial fibrosis, and cardiac hypertrophy. These findings implicate that FNDC5/irisin as a potential therapeutic intervention for DCM, especially in type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Chen Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tingting Qi
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guangyu Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hang Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
40
|
Banga S, Heinze-Milne SD, Godin J, Howlett SE. Signs of diastolic dysfunction are graded by serum testosterone levels in aging C57BL/6 male mice. Mech Ageing Dev 2021; 198:111523. [PMID: 34166687 DOI: 10.1016/j.mad.2021.111523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
We investigated whether maladaptive, age-associated changes in heart structure and function were linked to circulating testosterone levels. Male C57BL/6 mice had a gonadectomy (GDX) or sham surgery at 4 weeks and effects of GDX on the heart were examined with echocardiography. Serum testosterone was measured with ELISA. Left ventricular (LV) mass increased with age but was smaller in GDX mice than sham at 18 months (144.0 ± 8.7 vs 118.2 ± 11.9 mg; p = 0.009). The isovolumic relaxation time (IVRT) declined with age but was prolonged in GDX mice at 18 months (10.5 ± 0.8 vs 12.5 ± 0.5 msec, p = 0.008). Ejection fraction did not change with age or GDX, but E/A ratios were lower in GDX mice than controls at 18 months (1.6 ± 0.2 vs 1.3 ± 0.1, p = 0.021). When links between serum testosterone and cardiac parameters were examined longitudinally in 18-24-month-old mice, LV mass declined with decreasing testosterone (β = 37.70, p = 0.016), however IVRT increased as testosterone decreased (β=-2.69, p = 0.036). Since longer IVRT and lower E/A ratios are signs of diastolic dysfunction, low circulating testosterone may promote or exacerbate diastolic dysfunction in older males. These findings suggest that lower testosterone directly modifies heart structure and function to promote maladaptive remodeling and diastolic dysfunction in the aging heart.
Collapse
Affiliation(s)
- Shubham Banga
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | | - Judith Godin
- Geriatric Medicine Research, Division of Geriatric Medicine, Nova Scotia Health Authority and Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
41
|
Monma Y, Shindo T, Eguchi K, Kurosawa R, Kagaya Y, Ikumi Y, Ichijo S, Nakata T, Miyata S, Matsumoto A, Sato H, Miura M, Kanai H, Shimokawa H. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Cardiovasc Res 2021; 117:1325-1338. [PMID: 32683442 DOI: 10.1093/cvr/cvaa221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Heart failure with preserved left ventricular ejection fraction (HFpEF) is a serious health problem worldwide, as no effective therapy is yet available. We have previously demonstrated that our low-intensity pulsed ultrasound (LIPUS) therapy is effective and safe for angina and dementia. In this study, we aimed to examine whether the LIPUS therapy also ameliorates cardiac diastolic dysfunction in mice. METHODS AND RESULTS Twelve-week-old obese diabetic mice (db/db) and their control littermates (db/+) were treated with either the LIPUS therapy [1.875 MHz, 32 cycles, Ispta (spatial peak temporal average intensity) 117-162 mW/cm2, 0.25 W/cm2] or placebo procedure two times a week for 4 weeks. At 20-week-old, transthoracic echocardiography and invasive haemodynamic analysis showed that cardiac diastolic function parameters, such as e', E/e', end-diastolic pressure-volume relationship, Tau, and dP/dt min, were all deteriorated in placebo-treated db/db mice compared with db/+ mice, while systolic function was preserved. Importantly, these cardiac diastolic function parameters were significantly ameliorated in the LIPUS-treated db/db mice. We also measured the force (F) and intracellular Ca2+ ([Ca2+]i) in trabeculae dissected from ventricles. We found that relaxation time and [Ca2+]i decay (Tau) were prolonged during electrically stimulated twitch contractions in db/db mice, both of which were significantly ameliorated in the LIPUS-treated db/db mice, indicating that the LIPUS therapy also improves relaxation properties at tissue level. Functionally, exercise capacity was also improved in the LIPUS-treated db/db mice. Histologically, db/db mice displayed progressed cardiomyocyte hypertrophy and myocardial interstitial fibrosis, while those changes were significantly suppressed in the LIPUS-treated db/db mice. Mechanistically, western blot showed that the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and Ca2+-handling molecules were up-regulated in the LIPUS-treated heart. CONCLUSIONS These results indicate that the LIPUS therapy ameliorates cardiac diastolic dysfunction in db/db mice through improvement of eNOS-NO-cGMP-PKG pathway and cardiomyocyte Ca2+-handling system, suggesting its potential usefulness for the treatment of HFpEF patients.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Fibrosis
- Heart Failure, Diastolic/genetics
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Diastolic/therapy
- Isolated Heart Preparation
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Stroke Volume
- Ultrasonic Therapy
- Ultrasonic Waves
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Mice
Collapse
Affiliation(s)
- Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yuta Kagaya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Sadamitsu Ichijo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoshi Miyata
- Department of Evidence-Based Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayana Matsumoto
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Miura
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Tohoku University Graduate School of Engineering, Sendai, Japan
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
42
|
Changes of Hematological and Hemorheological Parameters in Rabbits with Hypercholesterolemia. Metabolites 2021; 11:metabo11040249. [PMID: 33920738 PMCID: PMC8072928 DOI: 10.3390/metabo11040249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
Hypercholesterolemia plays an important role in the development of atherosclerosis, leading to endothelial dysfunction, ischemic events, and increased mortality. Numerous studies suggest the pivotal role of rheological factors in the pathology of atherosclerosis. To get a more detailed hematological and hemorheological profile in hypercholesterolemia, we carried out an experiment on rabbits. Animals were divided into two groups: the control group (Control) was kept on normal rabbit chow, the high-cholesterol diet group (HC) was fed with special increased cholesterol-containing food. Hematological parameters (Sysmex K-4500 automate), whole blood and plasma viscosity (Hevimet-40 capillary viscometer), red blood cell (RBC) aggregation (Myrenne MA-1 aggregometer), deformability and mechanical stability (LoRRca MaxSis Osmoscan ektacytometer) were tested. The white blood cell and platelet count, mean corpuscular volume, and mean corpuscular hemoglobin were significantly higher in the HC group, while the RBC count, hemoglobin, and hematocrit values were lower than the Control data. Viscosity values corrected to 40% hematocrit were higher in the HC group. The RBC aggregation significantly increased in the HC vs. the Control. The HC group showed significantly worse results both in RBCs' deformability and membrane stability. In conclusion, the atherogenic diet worsens the hematological and macro- and micro-rheological parameters, affecting blood flow properties and microcirculation.
Collapse
|
43
|
Chen J, Norling LV, Cooper D. Cardiac Dysfunction in Rheumatoid Arthritis: The Role of Inflammation. Cells 2021; 10:881. [PMID: 33924323 PMCID: PMC8070480 DOI: 10.3390/cells10040881] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis is a chronic, systemic inflammatory disease that carries an increased risk of mortality due to cardiovascular disease. The link between inflammation and atherosclerotic disease is clear; however, recent evidence suggests that inflammation may also play a role in the development of nonischemic heart disease in rheumatoid arthritis (RA) patients. We consider here the link between inflammation and cardiovascular disease in the RA community with a focus on heart failure with preserved ejection fraction. The effect of current anti-inflammatory therapeutics, used to treat RA patients, on cardiovascular disease are discussed as well as whether targeting resolution of inflammation might offer an alternative strategy for tempering inflammation and subsequent inflammation-driven comorbidities in RA.
Collapse
Affiliation(s)
- Jianmin Chen
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (J.C.); (L.V.N.)
| | - Lucy V. Norling
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (J.C.); (L.V.N.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (J.C.); (L.V.N.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
44
|
Schauer A, Adams V, Augstein A, Jannasch A, Draskowski R, Kirchhoff V, Goto K, Mittag J, Galli R, Männel A, Barthel P, Linke A, Winzer EB. Sacubitril/Valsartan Improves Diastolic Function But Not Skeletal Muscle Function in a Rat Model of HFpEF. Int J Mol Sci 2021; 22:3570. [PMID: 33808232 PMCID: PMC8036273 DOI: 10.3390/ijms22073570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The angiotensin receptor/neprilysin inhibitor Sacubitril/Valsartan (Sac/Val) has been shown to be beneficial in patients suffering from heart failure with reduced ejection fraction (HFrEF). However, the impact of Sac/Val in patients presenting with heart failure with preserved ejection fraction (HFpEF) is not yet clearly resolved. The present study aimed to reveal the influence of the drug on the functionality of the myocardium, the skeletal muscle, and the vasculature in a rat model of HFpEF. Female obese ZSF-1 rats received Sac/Val as a daily oral gavage for 12 weeks. Left ventricle (LV) function was assessed every four weeks using echocardiography. Prior to organ removal, invasive hemodynamic measurements were performed in both ventricles. Vascular function of the carotid artery and skeletal muscle function were monitored. Sac/Val treatment reduced E/é ratios, left ventricular end diastolic pressure (LVEDP) and myocardial stiffness as well as myocardial fibrosis and heart weight compared to the obese control group. Sac/Val slightly improved endothelial function in the carotid artery but had no impact on skeletal muscle function. Our results demonstrate striking effects of Sac/Val on the myocardial structure and function in a rat model of HFpEF. While vasodilation was slightly improved, functionality of the skeletal muscle remained unaffected.
Collapse
Affiliation(s)
- Antje Schauer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Antje Augstein
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstrasse 76, 01307 Dresden, Germany; (A.J.); (J.M.)
| | - Runa Draskowski
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Keita Goto
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Jeniffer Mittag
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstrasse 76, 01307 Dresden, Germany; (A.J.); (J.M.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anita Männel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Peggy Barthel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Ephraim B. Winzer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| |
Collapse
|
45
|
Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front Cardiovasc Med 2021; 7:626699. [PMID: 33644125 PMCID: PMC7906971 DOI: 10.3389/fcvm.2020.626699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
Collapse
Affiliation(s)
- Knut Asbjørn Rise Langlo
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gustavo Jose Justo Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tina Syvertsen Overrein
- Division of Pathology and Medical Genetics, Department of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Volker Adams
- Department of Cardiology, Heart Center Dresden, TU Dresden, Dresden, Germany
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Ivar Hallan
- Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
46
|
Polina I, Spicer MJ, Domondon M, Schibalski RS, Sarsenova E, Sultanova RF, Ilatovskaya DV. Inhibition of neprilysin with sacubitril without RAS blockage aggravates renal disease in Dahl SS rats. Ren Fail 2021; 43:315-324. [PMID: 33541194 PMCID: PMC8901277 DOI: 10.1080/0886022x.2021.1879856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Salt-sensitive (SS) hypertension is accompanied with severe cardiorenal complications. In this condition, elevated blood pressure (BP) resulting from salt retention is associated with counterintuitively lower levels of atrial natriuretic peptide (ANP). In plasma, ANP is degraded by the neprilysin; therefore, pharmacological inhibition of this metalloprotease (i.e., with sacubitril) can be employed to increase ANP level. We have shown earlier that sacubitril in combination with valsartan (75 μg/day each) had beneficial effects on renal function in Dahl SS rats. The goal of this study was to evaluate the effects of a higher dose of sacubitril on renal damage in this model. To induce hypertension, male Dahl SS rats were fed a 4% NaCl diet (HS) for 21 days, and were administered sacubitril (125 μg/day) or vehicle via s.c. osmotic pumps. At the end of the HS challenge, both groups exhibited similar outcomes for GFR, heart weight, plasma electrolytes, BUN, and creatinine. Sacubitril exacerbated kidney hypertrophy, but did not affect levels of renal fibrosis. We also observed aggravated glomerular lesions and increased formation of protein casts in the sacubitril-treated animals compared to controls. Thus, in Dahl SS rats, administration of sacubitril without renin-angiotensin-system blockage had adverse effects on renal disease progression, particularly in regards to glomerular damage and protein cast formation. We can speculate that while ANP levels are increased because of neprilysin inhibition, there are off-target effects of sacubitril, which are detrimental to renal function in the SS hypertensive state.
Collapse
Affiliation(s)
- Iuliia Polina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Morgan J Spicer
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Mark Domondon
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Ryan S Schibalski
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | - Elizaveta Sarsenova
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Regina F Sultanova
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Daria V Ilatovskaya
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
47
|
Kessler EL, Oerlemans MIFJ, van den Hoogen P, Yap C, Sluijter JPG, de Jager SCA. Immunomodulation in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. J Cardiovasc Transl Res 2021; 14:63-74. [PMID: 32444946 PMCID: PMC7892675 DOI: 10.1007/s12265-020-10026-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
The heart failure (HF) epidemic is growing and approximately half of the HF patients have heart failure with preserved ejection fraction (HFpEF). HFpEF is a heterogeneous syndrome, characterized by a preserved left ventricular ejection fraction (LVEF ≥ 50%) with diastolic dysfunction, and is associated with high morbidity and mortality. Underlying comorbidities of HFpEF, i.e., hypertension, type 2 diabetes mellitus, obesity, and renal failure, lead to a systemic pro-inflammatory state, thereby affecting normal cardiac function. Increased inflammatory biomarkers predict incident HFpEF and are higher in patients with HFpEF as compared with heart failure with reduced ejection fraction (HFrEF). Randomized trials in HFpEF patients using traditional HF medication failed to demonstrate a clear benefit on hard endpoints (mortality and/or HF hospitalization). Therefore, therapies targeting underlying comorbidities and systemic inflammation in early HFpEF may provide better opportunities. Here, we provide an overview of the current state and future perspectives of immunomodulatory therapies for HFpEF.
Collapse
Affiliation(s)
- Elise L Kessler
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, 3511 EP, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martinus I F J Oerlemans
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Patricia van den Hoogen
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carmen Yap
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, Cardiology, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.
- Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, Netherlands.
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
48
|
Sharp TE, Scarborough AL, Li Z, Polhemus DJ, Hidalgo HA, Schumacher JD, Matsuura TR, Jenkins JS, Kelly DP, Goodchild TT, Lefer DJ. Novel Göttingen Miniswine Model of Heart Failure With Preserved Ejection Fraction Integrating Multiple Comorbidities. JACC Basic Transl Sci 2021; 6:154-170. [PMID: 33665515 PMCID: PMC7907541 DOI: 10.1016/j.jacbts.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023]
Abstract
A lack of preclinical large animal models of heart failure with preserved ejection fraction (HFpEF) that recapitulate this comorbid-laden syndrome has led to the inability to tease out mechanistic insights and to test novel therapeutic strategies. This study developed a large animal model that integrated multiple comorbid determinants of HFpEF in a miniswine breed that exhibited sensitivity to obesity, metabolic syndrome, and vascular disease with overt clinical signs of heart failure. The combination of a Western diet and 11-deoxycorticosterone acetate salt-induced hypertension in the Göttingen miniswine led to the development of a novel large animal model of HFpEF that exhibited multiorgan involvement and a full spectrum of comorbidities associated with human HFpEF.
Collapse
Key Words
- DBP, diastolic blood pressure
- DOCA, 11-deoxycorticosterone acetate
- EC50, half-maximal effective concentration
- EF, ejection fraction
- HDL, high-density lipoprotein
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IVGTT, intravenous glucose tolerance test
- LDL, low-density lipoprotein
- LV, left ventricle
- PCWP, pulmonary capillary wedge pressure
- SBP, systolic blood pressure
- TC, total cholesterol
- WD, Western diet
- animal models of human disease
- heart failure with preserved ejection fraction
- hypertension
- metabolic syndrome
- obesity
Collapse
Affiliation(s)
- Thomas E Sharp
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Amy L Scarborough
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - David J Polhemus
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Hunter A Hidalgo
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA.,Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Jeffery D Schumacher
- Department of Animal Care, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Timothy R Matsuura
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Stephen Jenkins
- Department of Cardiology, Heart and Vascular Institute, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Traci T Goodchild
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA.,Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - David J Lefer
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA.,Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| |
Collapse
|
49
|
The Degree of Cardiac Remodelling before Overload Relief Triggers Different Transcriptome and miRome Signatures during Reverse Remodelling (RR)-Molecular Signature Differ with the Extent of RR. Int J Mol Sci 2020; 21:ijms21249687. [PMID: 33353134 PMCID: PMC7766898 DOI: 10.3390/ijms21249687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
This study aims to provide new insights into transcriptome and miRome modifications occurring in cardiac reverse remodelling (RR) upon left ventricle pressure-overload relief in mice. Pressure-overload was established in seven-week-old C57BL/6J-mice by ascending aortic constriction. A debanding (DEB) surgery was performed seven weeks later in half of the banding group (BA). Two weeks later, cardiac function was evaluated through hemodynamics and echocardiography, and the hearts were collected for histology and small/bulk-RNA-sequencing. Pressure-overload relief was confirmed by the normalization of left-ventricle-end-systolic-pressure. DEB animals were separated into two subgroups according to the extent of cardiac remodelling at seven weeks and RR: DEB1 showed an incomplete RR phenotype confirmed by diastolic dysfunction persistence (E/e' ≥ 16 ms) and increased myocardial fibrosis. At the same time, DEB2 exhibited normal diastolic function and fibrosis, presenting a phenotype closer to myocardial recovery. Nevertheless, both subgroups showed the persistence of cardiomyocytes hypertrophy. Notably, the DEB1 subgroup presented a more severe diastolic dysfunction at the moment of debanding than the DEB2, suggesting a different degree of cardiac remodelling. Transcriptomic and miRomic data, as well as their integrated analysis, revealed significant downregulation in metabolic and hypertrophic related pathways in DEB1 when compared to DEB2 group, including fatty acid β-oxidation, mitochondria L-carnitine shuttle, and nuclear factor of activated T-cells pathways. Moreover, extracellular matrix remodelling, glycan metabolism and inflammation-related pathways were up-regulated in DEB1. The presence of a more severe diastolic dysfunction at the moment of pressure overload-relief on top of cardiac hypertrophy was associated with an incomplete RR. Our transcriptomic approach suggests that a cardiac inflammation, fibrosis, and metabolic-related gene expression dysregulation underlies diastolic dysfunction persistence after pressure-overload relief, despite left ventricular mass regression, as echocardiographically confirmed.
Collapse
|
50
|
Protective Effects of a Discontinuous Treatment with Alpha-Lipoic Acid in Obesity-Related Heart Failure with Preserved Ejection Fraction, in Rats. Antioxidants (Basel) 2020; 9:antiox9111073. [PMID: 33142857 PMCID: PMC7693016 DOI: 10.3390/antiox9111073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity induces hemodynamic and humoral changes that are associated with functional and structural cardiac remodeling, which ultimately result in the development of heart failure (HF) with preserved ejection fraction (HFpEF). In recent years, pharmacological studies in patients with HFpEF were mostly unsatisfactory. In these conditions, alternative new therapeutic approaches are necessary. The aim of our study was (1) to assess the effects of obesity on heart function in an experimental model and (2) to evaluate the efficacy of an alpha-lipoic acid (ALA) antioxidant treatment. Sprague-Dawley rats (7 weeks old) were either included in the control group (n = 6) or subjected to abdominal aortic banding (AAB) and divided into three subgroups, depending on their diet: standard (AAB + SD, n = 8), hypecaloric (AAB + HD, n = 8) and hypecaloric with discontinuous ALA treatment (AAB + HD + ALA, n = 9). Body weight (BW), glycemia, echocardiography parameters and plasma hydroperoxides were monitored throughout the study. After 36 weeks, plasma adiposity (leptin and adiponectin) and inflammation (IL-6 and TNF-alpha) markers, together with B-type natriuretic peptide and oxidative stress markers (end-products of lipid peroxidation and endogenous antioxidant systems) were assessed. Moreover, cardiac fiber diameters were measured. In our experiment, diet-induced obesity generated cardiometabolic disturbances, and in association with pressure-overload induced by AAB, it precipitated the onset of heart failure, cardiac hypertrophy and diastolic dysfunction, while producing a pro-oxidant and pro-inflammatory plasmatic status. In relationship with its antioxidant effects, the chronic ALA-discontinuous treatment prevented BW gain and decreased metabolic and cardiac perturbations, confirming its protective effects on the cardiovascular system.
Collapse
|