1
|
Cappio Barazzone E, Diard M, Hug I, Larsson L, Slack E. Diagnosing and engineering gut microbiomes. EMBO Mol Med 2024; 16:2660-2677. [PMID: 39468301 PMCID: PMC11554810 DOI: 10.1038/s44321-024-00149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024] Open
Abstract
The microbes, nutrients and toxins that we are exposed to can have a profound effect on the composition and function of the gut microbiome. Thousands of peer-reviewed publications link microbiome composition and function to health from the moment of birth, right through to centenarians, generating a tantalizing glimpse of what might be possible if we could intervene rationally. Nevertheless, there remain relatively few real-world examples where successful microbiome engineering leads to beneficial health effects. Here we aim to provide a framework for the progress needed to turn gut microbiome engineering from a trial-and-error approach to a rational medical intervention. The workflow starts with truly understanding and accurately diagnosing the problems that we are trying to fix, before moving on to developing technologies that can achieve the desired changes.
Collapse
Affiliation(s)
- Elisa Cappio Barazzone
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Médéric Diard
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Isabelle Hug
- Basel Research Centre for Child Health, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Louise Larsson
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Laboratory for Mucosal Immunology, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland.
- Basel Research Centre for Child Health, Basel, Switzerland.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Wang Q, Xiong J, He Y, He J, Cai M, Luo Z, Zhang T, Zhou X. Effect of L-arabinose and lactulose combined with Lactobacillus plantarum on obesity induced by a high-fat diet in mice. Food Funct 2024; 15:5073-5087. [PMID: 38656276 DOI: 10.1039/d4fo00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.
Collapse
Affiliation(s)
- Qiong Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jialu Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yalun He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Juncheng He
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Miaomiao Cai
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Zexian Luo
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiang Zhou
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Videla LA, Valenzuela R, Zúñiga-Hernández J, Del Campo A. Relevant Aspects of Combined Protocols for Prevention of N(M)AFLD and Other Non-Communicable Diseases. Mol Nutr Food Res 2024; 68:e2400062. [PMID: 38506156 DOI: 10.1002/mnfr.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Indexed: 03/21/2024]
Abstract
Obesity is a global health issue characterized by the excessive fat accumulation, leading to an increased risk of chronic noncommunicable diseases (NCDs), including metabolic dysfunction-associated fatty liver disease (MAFLD), which can progress from simple steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, there are no approved pharmacological protocols for prevention/treatment of MAFLD, and due the complexity lying beneath these mechanisms, monotherapies are unlikely to be efficacious. This review article analyzes the possibility that NCDs can be prevented or attenuated by the combination of bioactive substances, as they could promote higher response rates, maximum reaction results, additive or synergistic effects due to compounds having similar or different mechanisms of action and/or refraining possible side effects, related to the use of lower doses and exposures times than monotherapies. Accordingly, prevention of mouse MAFLD is observed with the combination of the omega-3 docosahexaenoic acid with the antioxidant hydroxytyrosol, whereas attenuation of mild cognitive impairment is attained by folic acid plus cobalamin in elderly patients. The existence of several drawbacks underlying published monotherapies or combined trials, opens space for adequate and stricter experimental and clinical tryouts to achieve meaningful outcomes with human applicability.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, 8380453, Chile
| | - Jessica Zúñiga-Hernández
- Biomedical Sciences Department, Faculty of Health Sciences, University of Talca, Talca, 3465548, Chile
| | - Andrea Del Campo
- Cellular Physiology and Bioenergetic Laboratory, School of Chemistry and Pharmacy, Faculty of Chemistry and Pharmacy, Pontifical Catholic University of Chile, Santiago, 7820436, Chile
| |
Collapse
|
4
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
5
|
Savytska M, Kyriienko D, Komisarenko I, Kovalchuk O, Falalyeyeva T, Kobyliak N. Probiotic for Pancreatic β-Cell Function in Type 2 Diabetes: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Diabetes Ther 2023; 14:1915-1931. [PMID: 37713103 PMCID: PMC10570251 DOI: 10.1007/s13300-023-01474-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Many clinical studies have proved the effectiveness of probiotics in metabolic disorders associated with insulin resistance. However, the impact of probiotic therapy on pancreatic β-cell function is ambiguous. The influence of probiotic supplementation vs. placebo on β-cell function in people with type 2 diabetes (T2D) was assessed in a double-blind, single-center, randomized, placebo-controlled trial (RCT). METHODS Sixty-eight patients with T2D were selected for participation in the RCT. Patients were randomly allocated to consumption of live multistrain probiotics or a placebo for 8 weeks, administered as a sachet formulation in double-blind treatment. The primary main outcome was the assessment of β-cell function as change in C-peptide and HOMA-β (homeostasis model assessment-estimated β-cell function), which was calculated using the HOMA2 calculator (Diabetes Trials Unit, University of Oxford). Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables, and cytokines levels. Analysis of covariance was used to assess the difference between groups. RESULTS Supplementation with live multiprobiotic was associated with slight significant improvement of β-cell function (HOMA-β increased from 32.48 ± 13.12 to 45.71 ± 25.18; p = 0.003) and reduction of fasting glucose level (13.03 ± 3.46 vs 10.66 ± 2.63 mmol/L and 234.63 ± 62.36 vs 192.07 ± 47.46 mg/dL; p < 0.001) and HbA1c (8.86 ± 1.28 vs 8.48 ± 1.22; p = 0.043) as compared to placebo. Probiotic therapy significantly affects chronic systemic inflammation in people with T2D by reducing pro-inflammatory cytokine levels. CONCLUSIONS Probiotic therapies modestly improved β-cell function in patients with T2D. Modulating the gut microbiota represents a new diabetes treatment and should be tested in more extensive studies. TRIAL REGISTRATION NCT05765292.
Collapse
Affiliation(s)
- Maryana Savytska
- Normal Physiology Department, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Iuliia Komisarenko
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine
| | | | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Medical Laboratory CSD, Kyiv, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv, Ukraine.
- Medical Laboratory CSD, Kyiv, Ukraine.
| |
Collapse
|
6
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
7
|
Lee Y, Oh H, Jo M, Cho H, Park Y. Synergistic effect of n-3 PUFA and probiotic supplementation on bone loss induced by chronic mild stress through the brain–gut–bone axis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Mao Z, Liu S, Yu T, Su J, Chai K, Weng S. Yunpi Heluo decoction reduces ectopic deposition of lipids by regulating the SIRT1-FoxO1 autophagy pathway in diabetic rats. PHARMACEUTICAL BIOLOGY 2022; 60:579-588. [PMID: 35244516 PMCID: PMC8916783 DOI: 10.1080/13880209.2022.2042567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/03/2023]
Abstract
CONTEXT Yunpi Heluo (YPHL) decoction is a Chinese herbal formula with particular advantages for treating type 2 diabetes. Yet, its exact mechanism of action is not fully understood. OBJECTIVE To examine the therapeutic effect of YPHL on ectopic lipid deposition (EDL) in Zucker diabetic fatty (ZDF) rats and the underlying mechanism. MATERIALS AND METHODS The ZDF Rats were randomized into five groups, including model, YPHL (200 mg/kg/d for 10 weeks), SIRT1-overexpression (injected with HBAAV2/9-r-SIRT1-3'-flag-GFP), NC (injected with HBAAV2/9-CMV-GFP as blank control) and control group. Pancreatic β-cells obtained from high-lipid-high-glucose fed rats were treated with YPHL (10 mg/mL) for 48 h. Lipid deposition and autophagosomes were analyzed by transmission electron microscopy. Intracellular H2O2 and ROS concentrations were measured by flow cytometry. SIRT1, FOXO1, LC3 and P62 mRNA and protein levels were analyzed using qRT-PCR and Western blots. RESULTS Compared with the model group, blood glucose levels in YPHL and si-SIRT1 groups were reduced by 19.3% and 27.9%, respectively. In high-lipid-high-glucose cells treated with YPHL, lipid droplets were reduced and decrease in apoptosis rate (38.6%), H2O2 (31.2%) and ROS (44.5%) levels were observed. After YPHL intervention or SIRT1 overexpression, LC3 and p62 expression increased. Protein expression of SIRT1 and LC3 in model, si-SIRT1, si-NC and si-SIRT1 + YPHL groups was lower than those in control group, while FoxO1 expression was increased. All of these protein level alterations were reversed in the si-NC + YPHL group. DISCUSSION AND CONCLUSIONS YPHL reduced EDL by regulating the SIRT1-FoxO1 autophagy pathway in diabetic rats, which could lead to future perspectives for the treatment of diabetes.
Collapse
Affiliation(s)
- Zhujun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiyu Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinglan Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kefu Chai
- College of Basic Medicine, Zhejiang Chinese Medical University, Ningbo, China
| | - Siying Weng
- Department of Endocrinology, Ningbo Municipal Hospital of TCM, Affliated Hospital of Zhejiang Chinese Medical University, Ningbo, China
| |
Collapse
|
9
|
Salehi‐Sahlabadi A, Kord‐Varkaneh H, Kocaadam‐Bozkurt B, Seraj SS, Alavian SM, Hekmatdoost A. Wheat germ improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: A randomized, placebo‐controlled, double‐blind clinical trial. Phytother Res 2022; 36:4201-4209. [PMID: 35843540 DOI: 10.1002/ptr.7553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/19/2023]
Affiliation(s)
- Ammar Salehi‐Sahlabadi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamed Kord‐Varkaneh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Betul Kocaadam‐Bozkurt
- Faculty of Health Sciences, Department of Nutrition and Dietetics Erzurum Technical University Erzurum Turkey
| | | | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases Baqiyatallh University of Medical Sciences Tehran Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Effectiveness of omega-3 and prebiotics on adiponectin, leptin, liver enzymes lipid profile and anthropometric indices in patients with non-alcoholic fatty liver disease: A randomized controlled trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Li HY, Zhou DD, Gan RY, Huang SY, Zhao CN, Shang A, Xu XY, Li HB. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021; 13:nu13093211. [PMID: 34579087 PMCID: PMC8470858 DOI: 10.3390/nu13093211] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic diseases are serious threats to public health and related to gut microbiota. Probiotics, prebiotics, synbiotics, and postbiotics (PPSP) are powerful regulators of gut microbiota, thus possessing prospects for preventing metabolic diseases. Therefore, the effects and mechanisms of PPSP on metabolic diseases targeting gut microbiota are worth discussing and clarifying. Generally, PPSP benefit metabolic diseases management, especially obesity and type 2 diabetes mellitus. The underlying gut microbial-related mechanisms are mainly the modulation of gut microbiota composition, regulation of gut microbial metabolites, and improvement of intestinal barrier function. Moreover, clinical trials showed the benefits of PPSP on patients with metabolic diseases, while the clinical strategies for gestational diabetes mellitus, optimal formula of synbiotics and health benefits of postbiotics need further study. This review fully summarizes the relationship between probiotics, prebiotics, synbiotics, postbiotics, and metabolic diseases, presents promising results and the one in dispute, and especially attention is paid to illustrates potential mechanisms and clinical effects, which could contribute to the next research and development of PPSP.
Collapse
Affiliation(s)
- Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China;
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (H.-Y.L.); (D.-D.Z.); (S.-Y.H.); (A.S.); (X.-Y.X.)
- Correspondence: ; Tel.: +86-20-8733-2391
| |
Collapse
|
12
|
Kavyani M, Saleh-Ghadimi S, Dehghan P, Abbasalizad Farhangi M, Khoshbaten M. Co-supplementation of camelina oil and a prebiotic is more effective for in improving cardiometabolic risk factors and mental health in patients with NAFLD: a randomized clinical trial. Food Funct 2021; 12:8594-8604. [PMID: 34338703 DOI: 10.1039/d1fo00448d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This trial evaluated the effects of co-supplementing Camelina sativa oil (CSO) and a prebiotic as modulators of the gut microbiota on cardiometabolic risk factors and mental health in NAFLD patients. In all, 44 subjects with NAFLD were allocated to either an intervention (20 g d-1 CSO + resistant dextrin) or a placebo (20 g d-1 CSO + maltodextrin) group and received a calorie-restricted diet (-500 kcal d-1) for 12 weeks. Fasting plasma levels of gucose, insulin, hs-CRP, endotoxin, antioxidant enzyme activity, total antioxidant capacity (TAC), malondialdehyde (MDA), 8-iso-prostaglandin F2α, and uric acid were measured at the baseline and post-intervention. The depression, anxiety and stress scale (DASS) and the general health questionnaire (GHQ) were used to assess mental health. Co-supplementing CSO and resistant dextrin significantly decreased the level of insulin concentration (-0.84 μU ml-1, p = 0.011), HOMA-IR (-0.27, p = 0.021), hs-CRP (-1.25 pg ml-1, p = 0.023), endotoxin (-3.70 EU mL-1, p = 0.001), cortisol (-2.43, p = 0.033), GHQ (-5.03, p = 0.035), DASS (-9.01, p = 0.024), and MDA (-0.54 nmol mL-1, p = 0.021) and increased the levels of TAC (0.16 mmol L-1, p = 0.032) and superoxide dismutase (106.32 U g-1 Hb, p = 0.45) in the intervention group compared with the placebo group. No significant changes were observed in the levels of other biomarkers. Co-supplementing CSO and resistant dextrin in combination with a low-calorie diet may improve metabolic risk factors and mental health in NAFLD patients.
Collapse
Affiliation(s)
- Maryam Kavyani
- Student research committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Saleh-Ghadimi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdieh Abbasalizad Farhangi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. and Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Karbalaei M, Keikha M, Kobyliak N, Khatib Zadeh Z, Yousefi B, Eslami M. Alleviation of halitosis by use of probiotics and their protective mechanisms in the oral cavity. New Microbes New Infect 2021; 42:100887. [PMID: 34123388 PMCID: PMC8173312 DOI: 10.1016/j.nmni.2021.100887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Regarding the relation of halitosis with oral infections and its effects on social relations between humans, the present study investigated the positive effects of probiotics on prevention or treatment of halitosis. The causative agents of halitosis are volatile sulphur compounds (VSCs), and halitosis is divided into oral and non-oral types according to the source of the VSCs. H2S and CH3SH are two main halitosis metabolites-produced following the degradation of proteins by bacteria in the mouth-however, CH3SCH3 has a non-oral origin, and is a blood neutral molecule. Just as much as halitosis is important in medicine, its psychological aspects are also considered, which can even lead to suicide. Today, the use of probiotics as a new therapeutic in many roles is in progress. Most probiotics are used for the treatment of gastrointestinal tract disorders, but various studies on the alleviation of halitosis by use of probiotics have reported satisfactory results. The genera Lactobacillus, Streptococcus and Weissella are among the most useful probiotics for the prevention or treatment of halitosis in the oral cavity.
Collapse
Affiliation(s)
- M. Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - M. Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - N.M. Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Z. Khatib Zadeh
- School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - B. Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - M. Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Zhao L, Zhu X, Xia M, Li J, Guo AY, Zhu Y, Yang X. Quercetin Ameliorates Gut Microbiota Dysbiosis That Drives Hypothalamic Damage and Hepatic Lipogenesis in Monosodium Glutamate-Induced Abdominal Obesity. Front Nutr 2021; 8:671353. [PMID: 33996881 PMCID: PMC8116593 DOI: 10.3389/fnut.2021.671353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Monosodium glutamate (MSG)-induced abdominal obesity, conventionally caused by hypothalamic damage, is a critical risk factor for health problem. Microbiota-gut-brain axis plays important roles in a variety of metabolic diseases. However, whether gut microbiota is involved in the pathogenesis for MSG-induced abdominal obesity and the effect of quercetin on it remains unclear. Herein, we find that MSG-induced gut microbiota dysbiosis contributes to neuronal damage in the hypothalamus, as indicated by antibiotics-induced microbiota depletion and co-house treatment. Inspired by this finding, we investigate the mechanism in-depth for MSG-induced abdominal obesity. Liver transcriptome profiling shows retinol metabolism disorder in MSG-induced abdominal obese mice. In which, retinol saturase (RetSat) in the liver is notably up-regulated, and the downstream lipogenesis is correspondingly elevated. Importantly, microbiota depletion or co-house treatment eliminates the difference of RetSat expression in the liver, indicating gut microbiota changes are responsible for liver retinol metabolism disorder. Moreover, this study finds dietary quercetin could modulate MSG-induced gut microbiota dysbiosis, alleviate hypothalamic damage and down-regulate liver RetSat expression, thus ameliorating abdominal obesity. Our study enriches the pathogenesis of MSG-induced abdominal obesity and provides a prebiotic agent to ameliorate abdominal obesity.
Collapse
Affiliation(s)
- Lijun Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiang Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxuan Xia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - An-Yuan Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Abenavoli L, Procopio AC, Scarpellini E, Polimeni N, Aquila I, Larussa T, Boccuto L, Luzza F. Gut microbiota and non-alcoholic fatty liver disease: a narrative review. Minerva Gastroenterol (Torino) 2021; 67:339-347. [PMID: 33871224 DOI: 10.23736/s2724-5985.21.02896-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gastrointestinal tract of the adult human represents the habitat of the ecological community of commensal, symbiotic and pathogenic microorganisms, defined as the gut microbiota, which has more than 100 trillion microorganisms representing one of the most complex ecosystems. Colonization of the gastrointestinal tract by microorganisms begins at the time of birth. Contrary to what was previously hypothesized, a large number of fundamental functions for the host are attributed to the gut microbiota to date. The gut microbiota, therefore, does not represent a passive set of microbes hosted inside the human organism but plays a crucial role in the balance of the organism itself. An alteration of the microbiota is a phenomenon known as dysbiosis. The latter can be implicated in the development of complex liver diseases like non-alcoholic fatty liver disease. The aim of this review is to describe the most interesting data linking the development of non-alcoholic fatty liver disease with the gut microbiota and, therefore, to underline the importance of the microbiota itself, as a potential therapeutic target in the treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy -
| | - Anna C Procopio
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Emidio Scarpellini
- Clinical Nutrition Unit and Internal Medicine Unit, Madonna del Soccorso General Hospital, San Benedetto del Tronto, Ascoli Piceno, Italy
| | - Natale Polimeni
- Digestive Disease Endoscopy Unit, Madonna della Consolazione Hospital, Reggio Calabria, Italy
| | - Isabella Aquila
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Tiziana Larussa
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luigi Boccuto
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Francesco Luzza
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
16
|
Probiotic Composition and Chondroitin Sulfate Regulate TLR-2/4-Mediated NF-κB Inflammatory Pathway and Cartilage Metabolism in Experimental Osteoarthritis. Probiotics Antimicrob Proteins 2021; 13:1018-1032. [PMID: 33459997 DOI: 10.1007/s12602-020-09735-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The therapeutic potential of using probiotics to treat osteoarthritis (OA) has only recently been recognized, with a small number of animal and human studies having been undertaken. The aim of this study was to describe the effect of a probiotic composition (PB) and chondroitin sulfate (CS), administered separately or in combination, on Tlr2, Tlr4, Nfkb1, and Comp gene expression in cartilage and levels of cytokines (IL-6, IL-8, TGF-β1, IGF-1) and COMP, ACAN, CHI3L1, CTSK, and TLR-2 in serum during monoiodoacetate (MIA)-induced OA in rats. Expression of Tlr2, Tlr4, Nfkb1, and Comp in cartilage was analyzed using one-step SYBR Green real-time RT-PCR. The levels of IL-6, IL-8, TGF-β1, IGF-1, COMP, ACAN, CHI3L1, CTSK, and TLR-2 were measured in serum by enzyme-linked immunosorbent assay. Experimental OA caused an upregulation in Tlr2, Tlr4, Nfkb1, and downregulation of Comp expression in the cartilage. MIA-OA caused a significant increase of TLR-2 soluble form and IL-6, IL-8, TGF-β1, COMP, ACAN, CHI3L1, and CTSK levels in the blood serum; the level of IGF-1, on contrary, decreased. Separate administration of PB and CS raised expression of Comp and reduced Tlr2, Tlr4, and Nfkb1 expressions in cartilage. The levels of the studied markers of cartilage metabolism in serum were decreased or increased (IGF-1). The combined use of PB and CS was more effective than separate application approaching above-mentioned parameters to control. The outcomes of our research prove that multistrain live probiotic composition amplifies the positive action of CS in osteoarthritis attenuation and necessitates further investigation with large-scale randomized controlled trial.
Collapse
|
17
|
Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr) 2020; 48:771-788. [PMID: 32763025 DOI: 10.1016/j.aller.2020.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Allergic diseases have been a global problem over the past few decades. The effect of allergic diseases on healthcare systems and society is generally remarkable and is considered as one of the most common causes of chronic and hospitalized disease. The functional ability of probiotics to modulate the innate/acquired immune system leads to the initiation of mucosal/systemic immune responses. Gut microbiota plays a beneficial role in food digestion, development of the immune system, control/growth of the intestinal epithelial cells and their differentiation. Prescribing probiotics causes a significant change in the intestinal microflora and modulates cytokine secretion, including networks of genes, TLRs, signaling molecules and increased intestinal IgA responses. The modulation of the Th1/Th2 balance is done by probiotics, which suppress Th2 responses with shifts to Th1 and thereby prevent allergies. In general, probiotics are associated with a decrease in inflammation by increasing butyrate production and induction of tolerance with an increase in the ratio of cytokines such as IL-4, IL-10/IFN-γ, Treg/TGF-β, reducing serum eosinophil levels and the expression of metalloproteinase-9 which contribute to the improvement of the allergic disease's symptoms. Finally, it can be said that the therapeutic approach to immunotherapy and the reduction of the risk of side effects in the treatment of allergic diseases is the first priority of treatment and the final approach that completes the first priority in maintaining the condition and sustainability of the tolerance along with the recovery of the individual.
Collapse
Affiliation(s)
- M Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - A Bahar
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - M Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - N M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - B Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
18
|
Eslami M, Sadrifar S, Karbalaei M, Keikha M, Kobyliak NM, Yousefi B. Importance of the Microbiota Inhibitory Mechanism on the Warburg Effect in Colorectal Cancer Cells. J Gastrointest Cancer 2020; 51:738-747. [PMID: 31735976 DOI: 10.1007/s12029-019-00329-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
METHODS AND RESULTS Colorectal cancer (CRC) is the third most common cancer in the world. Genetic backgrounds, lifestyle, and diet play an important role in CRC risk. The human gut microbiota has an influence on many features of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including CRC. It seems Warburg effect hypothesis corresponds to the early beginning of carcinogenesis because of eventual failure in the synthesis of a pyruvate dehydrogenase complex in cooperation with a supply of glucose in carbohydrates rich diets. From investigation among previous publications, we attempted to make it clear importance of Warburg effect in tumors; it also discusses the mechanisms of probiotics in inhibiting tumor progression and reverse Warburg effect of probiotics in modulating the microbiota and CRC therapies. These effects were observed in some clinical trials, the application of probiotics as a therapeutic agent against CRC still requirements further investigation. CONCLUSION Fiber is fermented by colonic bacteria into SCFAs such as butyrate/acetate, which may play a vital role in normal homeostasis by promoting turnover of the colonic epithelium. Butyrate enters the nucleus and functions as a histone deacetylase inhibitor (HDACi). Because cancerous colonocytes undertake the Warburg effect pathway, their favored energy source is glucose instead of butyrate. Therefore, accumulation of moderate concentrations of butyrate in cancerous colonocytes and role as HDACi. Probiotics have been shown to play a protective role against cancer development by modulating intestinal microbiota and immune response.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sina Sadrifar
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazarii M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
19
|
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Molochek N, Savchuk O, Kyriienko D, Komisarenko I. Probiotic and omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance, improves glycemia and obesity parameters in individuals with type 2 diabetes: A randomised controlled trial. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.obmed.2020.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Kobyliak N, Falalyeyeva T, Tsyryuk O, Eslami M, Kyriienko D, Beregova T, Ostapchenko L. New insights on strain-specific impacts of probiotics on insulin resistance: evidence from animal study. J Diabetes Metab Disord 2020; 19:289-296. [PMID: 32550178 PMCID: PMC7270447 DOI: 10.1007/s40200-020-00506-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS сomparative animal study of effectiveness of intermittent administration of lyophilized single-, three- and alive multistrain probiotic in short courses on insulin resistance (IR) in rats with experimental obesity. METHODS 70 rats were divided into 7 groups (n = 10 in each). Rats of group I were left intact. Newborn rats in groups II-VII were administered monosodium glutamate (MSG) (4 mg/g) by injection. Rats in group II (MSG-obesity group) were left untreated. The rats in groups III-V received lyophilized mono-probiotics B.animalis VKL, B.animalis VKB, L.casei IMVB-7280 respectively. The rats in group VI received all three of these probiotic strains mixed together. Group VII was treated with multi-probiotic "Symbiter", containing 14 different live probiotic strains (Lactobacillus, Bifidobacterium, Propionibacterium, Acetobacter genera). RESULTS Treatment of newborn rats with MSG lead to the development of obesity in all MSG-obesity rats and up to 20-70% after probiotic administration. Additions to probiotic composition, with preference to alive strains (group VII), led to significantly lower rates of obesity, decrease in HOMA-IR (p < 0.001), proinflammatory cytokines levels - IL-1β (p = 0.003), IL-12Bp40 (p < 0.001) and elevation of adiponectin (p = 0.003), TGF-β (p = 0.010) in comparison with MSG-obesity group. Analysis of results in groups treated with single-strain probiotics (groups III-V) shows significant decrease in HOMA-IR, but changes were less pronounced as compared to mixture groups and did not achieve intact rats level. Other metabolic parameters were not affected significantly by single strains. CONCLUSION Our findings provide major clues for how to design and use probiotics with more efficient compositions in obesity and IR management and may bring new insights into how host-microbe interactions contribute to such protective effects.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department Endocrinology, Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601 Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Olena Tsyryuk
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Tetyana Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Liudmila Ostapchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| |
Collapse
|
21
|
Korotkyi O, Dvorshchenko K, Falalyeyeva T, Sulaieva O, Kobyliak N, Abenavoli L, Fagoonee S, Pellicano R, Ostapchenko L. Combined effects of probiotic and chondroprotector during osteoarthritis in rats. Panminerva Med 2020; 62:93-101. [PMID: 32192320 DOI: 10.23736/s0031-0808.20.03841-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a joint affection, defined by articular cartilage demolition, risks of which rise with age. The aim of this study was to compare the efficacy of chondroitin sulfate (CS) course and multistrain live probiotic (LP) administered alone or in combination on the expression of TLR-2, TLR-4, TNF-α and NF-κB in articular cartilage, subchondral bone and synovial membrane during OA in rats. METHODS OA was induced in male rats by injecting monoiodoacetate (MIA) in right hind knee. Therapeutic groups received 3 mg/kg of chondroprotector (ChP) CS for 28 days and/or 140 mg/kg of LP diet for 14 days. The expression of TLR-2, TLR-4, TNF-α and NF-κB in articular cartilage, subchondral bone and synovial membrane were determined with immunohistochemical staining kits (Thermo Fisher Scientific). RESULTS It was established that MIA injection is associated with long-term structural changes in joint tissues that corresponded to OA-like features and associated with activation of pathogen-recognizing molecules and proinflammatory signaling pathways expression. Separate therapy with ChP and probiotics slightly decreased OA score limiting cell death and subchondral bone resorption. However, these changes were not associated with a significant decrease in TLR-2, TLR-4, NF-kB and TNF-α expression. On the other hand, the combination of ChP and LP treatment significantly decreased OA score. This correlated with a decrease in TLR-2, TLR-4, NF-kB and TNF-α expression in chondrocytes and synovial cells. CONCLUSIONS The outcomes of our research prove that ChPs amplify the positive action of LPs in OA attenuation.
Collapse
Affiliation(s)
| | | | | | | | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Sharmila Fagoonee
- Institute of Biostructures and Bioimaging, Molecular Biotechnology Center, National Research Council (CNR), Turin, Italy
| | | | | |
Collapse
|
22
|
|
23
|
Korotkyi OH, Vovk AA, Dranitsina AS, Falalyeyeva TM, Dvorshchenko KO, Fagoonee S, Ostapchenko LI. The influence of probiotic diet and chondroitin sulfate administration on Ptgs2, Tgfb1 and Col2a1 expression in rat knee cartilage during monoiodoacetate-induced osteoarthritis. Minerva Med 2019; 110:419-424. [PMID: 30938133 DOI: 10.23736/s0026-4806.19.06063-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
BACKGROUND Osteoarthritis (OA) is a common worldwide disease induced by a wide range of biochemical processes, mainly inflammation and degradation of collagen. The aim of this study, was to describe the effect of a multistrain probiotic (PB) and chondroitin sulfate (CS), administered separately or in combination, on the expression of Ptgs2, Tgfb1 and Col2a1 during monoiodoacetate-induced OA in male rats. METHODS OA was induced in male rats by injecting monoiodoacetate in right hind knee. Therapeutic groups received 3 mg/kg of CS for 28 days and/or 1.4 g/kg of multistrain PB for 14 days. Knee cartilage were taken 30 days after monoiodoacetate injection. RNA was extracted and the expression of Ptgs2, Tgfb1 and Col2a1 were analyzed using SYBR Green 1-step real-time quantitative polymerase chain reaction. RESULTS Induction of OA caused an upregulation in Ptgs2, Tgfb1 expression, and downregulation of Col2a1. Separate administration of PB and CS reduced Ptgs2 and Tgfb1 expressions. Their combined administration significantly decreased the expression of these pro-inflammatory cytokines, comparable to controls. Expression of Col2a1 showed similar behavior, with upregulation in therapeutic group with separate administration and the cumulative effects in case of co-administration. CONCLUSIONS The multistrain PB diet may offer a perspective to improve the standard treatment of OA and, necessitates further investigation with clinical trials.
Collapse
Affiliation(s)
| | - Andrii A Vovk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | | |
Collapse
|
24
|
Korotkyi O, Vovk A, Galenova T, Vovk T, Dvorschenko K, Luzza F, Abenavoli L, Kobyliak N, Falalyeyeva T, Ostapchenko L. Effect of probiotic on serum cytokines and matrix metalloproteinases profiles during monoiodoacetate-induced osteoarthritis in rats. MINERVA BIOTECNOL 2019. [DOI: 10.23736/s1120-4826.19.02548-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Kyriachenko Y, Falalyeyeva T, Korotkyi O, Molochek N, Kobyliak N. Crosstalk between gut microbiota and antidiabetic drug action. World J Diabetes 2019; 10:154-168. [PMID: 30891151 PMCID: PMC6422856 DOI: 10.4239/wjd.v10.i3.154] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes (T2D) is a disorder characterized by chronic inflated blood glucose levels (hyperglycemia), at first due to insulin resistance and unregulated insulin secretion but with tendency towards global spreading. The gut microbiota is recognized to have an influence on T2D, although surveys have not formed a clear overview to date. Because of the interactions between gut microbiota and host homeostasis, intestinal bacteria are believed to play a large role in various diseases, including metabolic syndrome, obesity and associated disease. In this review, we highlight the animal and human studies which have elucidated the roles of metformin, α-glucosidase inhibitors, glucagon-like peptide-1 agonists, peroxisome proliferator-activated receptors γ agonists, inhibitors of dipeptidyl peptidase-4, sodium/glucose cotransporter inhibitors, and other less studied medications on gut microbiota. This review is dedicated to one of the most widespread diseases, T2D, and the currently used antidiabetic drugs and most promising new findings. In general, the gut microbiota has been shown to have an influence on host metabolism, food consumption, satiety, glucose homoeostasis, and weight gain. Altered intestinal microbiota composition has been noticed in cardiovascular diseases, colon cancer, rheumatoid arthritis, T2D, and obesity. Therefore, the main effect of antidiabetic drugs is on the microbiome composition, basically increasing the short-chain fatty acids-producing bacteria, responsible for losing weight and suppressing inflammation.
Collapse
Affiliation(s)
- Yevheniia Kyriachenko
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Tetyana Falalyeyeva
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Oleksandr Korotkyi
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Nataliia Molochek
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Nazarii Kobyliak
- Endocrinology Department, Bogomolets National Medical University, Kyiv 01601, Ukraine
| |
Collapse
|
26
|
Kobyliak N, Abenavoli L, Falalyeyeva T, Mykhalchyshyn G, Boccuto L, Kononenko L, Kyriienko D, Komisarenko I, Dynnyk O. Beneficial effects of probiotic combination with omega-3 fatty acids in NAFLD: a randomized clinical study. Minerva Med 2018; 109:418-428. [PMID: 30221912 DOI: 10.23736/s0026-4806.18.05845-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The manipulation of gut microbiota via administration of probiotics has been proposed as a potential strategy for the treatment of non-alcoholic fatty liver disease (NAFLD). Hence, we performed a double-blind single center randomized placebo-controlled trial (RCT) to evaluate the efficacy of coadministration of probiotics with omega-3 vs. placebo in type-2 diabetic patients with NAFLD. METHODS A total of 48 patients met the criteria for inclusion. They were randomly assigned to receive "Symbiter Omega" combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or placebo for 8-weeks. The primary main outcomes were the change in fatty liver index (FLI) and liver stiffness (LS) measured by Shear Wave Elastography (SWE). Secondary outcomes were the changes in transaminases level, serum lipids and cytokines levels. RESULTS In probiotic-omega group, FLI significantly decreased from 83.53±2.60 to 76.26±2.96 (P<0.001) while no significant changes were observed in the placebo group (82.86±2.45 to 81.09±2.84; P=0.156). Changes of LS in both groups were insignificant. Analysis of secondary outcomes showed that the coadministration of probiotics with omega-3 lead to significant reduction of serum gamma-glutamyl transpeptidase, triglycerides, and total cholesterol. Chronic systemic inflammatory markers after intervention decrease significantly only in Symbiter Omega group: IL-1β (P=0.029), TNF-α (P<0.001), IL-8 (P=0.029), IL-6 (P=0.003), and INF-γ (P=0.016). CONCLUSIONS Coadministration of a live multi-strain probiotic mixture with omega-3 fatty acids once daily for 8 weeks to patients with NAFLD can reduce liver fat, improve serum lipids, metabolic profile, and reduce chronic systemic inflammatory state.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine -
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | | | - Galyna Mykhalchyshyn
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Luigi Boccuto
- Research Department, Greenwood Genetic Center, Greenwood School of Health Research, Clemson University, Clemson, SC, USA
| | - Liudmyla Kononenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Dmytro Kyriienko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
- Kyiv City Clinical Endocrinology Center, Kyiv, Ukraine
| | - Iuliia Komisarenko
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Oleg Dynnyk
- Bogomolets Institute of Physiology of the Ukrainian National Academy of Science, Kyiv, Ukraine
| |
Collapse
|
27
|
Belemets N, Kobyliak N, Falalyeyeva T, Kuryk O, Sulaieva O, Vovk T, Beregova T, Ostapchenko L. Polyphenol Compounds Melanin Prevented Hepatic Inflammation in Rats with Experimental Obesity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Melanin produced by yeast Nadsoniella nigra strain X-1 lead to significant reduction of steatosis, lobular inflammation and ballooning degeneration, according to NAFLD activity score (NAS), in liver of rats with monosodium glutamate (MSG) induced obesity. These histological changes were associated with substantial decrease of TNF-α expression in sinusoid cells that prevented NF-kB activation in hepatocytes.
Collapse
Affiliation(s)
- Natalia Belemets
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, 01610, Pushkinska 22a, Kyiv, Ukraine
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Olena Kuryk
- Scientific-Practical Center for Prophylactic and Clinical Medicine, Kyiv, Ukraine
| | | | - Tetyana Vovk
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Tetyana Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| | - Liudmila Ostapchenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine
| |
Collapse
|
28
|
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O, Kobyliak N. Obeticholic Acid: A New Era in the Treatment of Nonalcoholic Fatty Liver Disease. Pharmaceuticals (Basel) 2018; 11:104. [PMID: 30314377 PMCID: PMC6315965 DOI: 10.3390/ph11040104] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
The main treatments for patients with nonalcoholic fatty liver disease (NAFLD) are currently based on lifestyle changes, including ponderal decrease and dietary management. However, a subgroup of patients with nonalcoholic steatohepatitis (NASH), who are unable to modify their lifestyle successfully, may benefit from pharmaceutical support. Several drugs targeting pathogenic mechanisms of NAFLD have been evaluated in clinical trials for the treatment of NASH. Farnesoid X receptor (FXR) is a nuclear key regulator controlling several processes of the hepatic metabolism. NAFLD has been proven to be associated with abnormal FXR activity. Obeticholic acid (OCA) is a first-in-class selective FXR agonist with anticholestatic and hepato-protective properties. Currently, OCA is registered for the treatment of primary biliary cholangitis. However, promising effects of OCA on NASH and its metabolic features have been reported in several studies.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 8810 Catanzaro, Italy.
| | - Tetyana Falalyeyeva
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC 29646, USA.
- School of Health Research, Clemson University, Clemson, SC 29646, USA.
| | - Olena Tsyryuk
- School of Medicine, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64/13, 01601 Kiev, Ukraine.
| | - Nazarii Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Pushkinska 22a, 01610 Kiev, Ukraine.
| |
Collapse
|
29
|
Han R, Ma J, Li H. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front Med 2018; 12:645-657. [PMID: 30178233 DOI: 10.1007/s11684-018-0645-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
30
|
Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: Randomized clinical trial. Diabetes Metab Syndr 2018; 12:617-624. [PMID: 29661605 DOI: 10.1016/j.dsx.2018.04.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Probiotics have beneficial effect on obesity related disorders in animal models. Despite a large number of animal data, randomized placebo-controlled trials (RCT) concluded that probiotics have a moderate effect on glycemic control-related parameters. However, effect of probiotics on insulin resistance are inconsistent. AIM In a double-blind single center RCT, effect of alive multistrain probiotic vs. placebo on insulin resistance in type 2 diabetes patient were assessed. METHODS A total of 53 patients met the criteria for inclusion. They were randomly assigned to receive multiprobiotic "Symbiter" (concentrated biomass of 14 probiotic bacteria genera Bifidobacterium, Lactobacillus, Lactococcus, Propionibacterium) or placebo for 8-weeks administered as a sachet formulation. The primary main outcome was the change HOMA-IR (homeostasis model assessment-estimated insulin resistance) which calculated using Matthews et al.'s equation. Secondary outcomes were the changes in glycemic control-related parameters, anthropomorphic variables and cytokines. RESULTS Supplementation with alive multiprobiotic for 8 weeks was associated with significant reduction of HOMA-IR from 6.85 ± 0.76 to 5.13 ± 0.49 (p = 0.047), but remained static in the placebo group. With respect to our secondary outcomes, HbA1c insignificant decreased by 0.09% (p = 0.383) and 0.24% (p = 0.068) respectively in placebo and probiotics groups. However, in probiotic responders (n = 22, patient with decrease in HOMA-IR) after supplementation a significant reduction in HbA1c by 0.39% (p = 0.022) as compared to non-responders was observed. In addition, from markers of chronic systemic inflammatory state only TNF-α and IL-1β changes significantly after treatment with probiotics. CONCLUSION Probiotic therapies modestly improved insulin resistance in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| | - Tetyana Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601, Ukraine.
| | - Galyna Mykhalchyshyn
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| | - Dmytro Kyriienko
- Kyiv City Clinical Endocrinology Center, Pushkinska Str., 22a, Kyiv, 01601, Ukraine.
| | - Iuliia Komissarenko
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601, Ukraine.
| |
Collapse
|
31
|
Kobyliak N, Falalyeyeva T, Boyko N, Tsyryuk O, Beregova T, Ostapchenko L. Probiotics and nutraceuticals as a new frontier in obesity prevention and management. Diabetes Res Clin Pract 2018; 141:190-199. [PMID: 29772287 DOI: 10.1016/j.diabres.2018.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The beneficial interaction between the microbiota and humans is how bacteria contained within the gut 'talk' to the immune system and in this landscape, probiotics and nutraceuticals play a major role. The study aims to determine whether probiotics plus nutraceuticals such as smectite or omega-3 are superior to probiotic alone on the monosodium glutamate (MSG) induced obesity model in rats. METHODS Totally, 75 rats divided into five groups were included (n = 15, in each). Rats in group I were intact. Newborn rats in groups II-V were injected with MSG. Group III (Symbiter) received 2.5 ml/kg of multiprobiotic "Symbiter" containing concentrated biomass of 14 probiotic bacteria genera. Groups IV (Symbiter-Omega) and V (Symbiter-Smectite) received a combination of probiotic biomass supplemented with flax and wheat germ oil (250 mg of each, concentration of omega-3 fatty acids 1-5%) or smectite gel (250 mg), respectively. RESULTS In all interventional groups, significant reductions of total body and visceral adipose tissue weight as compared to MSG-obesity were observed. However, the lowest prevalence of obesity was noted for Symbiter-Omega (20% vs 33.3% as compared to other interventional groups). Moreover, supplementation of probiotics with omega-3 lead to a more pronounced decrease in HOMA-IR (2.31 ± 0.13 vs 4.02 ± 0.33, p < 0.001) and elevation of adiponectin levels (5.67 ± 0.39 vs 2.61 ± 0.27, P < 0.001), compared to the obesity group. CONCLUSION Probiotics and nutraceuticals led to a significantly lower prevalence of obesity, reduction of insulin resistance, total and VAT weight. Our study demonstrated that supplementation of probiotics with omega-3 may have the most beneficial antiobesity properties.
Collapse
Affiliation(s)
- N Kobyliak
- Bogomolets National Medical University, Kyiv, Ukraine.
| | - T Falalyeyeva
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - N Boyko
- Uzhhorod National University, Uzhhorod, Ukraine
| | - O Tsyryuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - T Beregova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - L Ostapchenko
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
32
|
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients 2017; 9:nu9101124. [PMID: 29035308 PMCID: PMC5691740 DOI: 10.3390/nu9101124] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.
Collapse
|
33
|
Dai H, Wang W, Chen R, Chen Z, Lu Y, Yuan H. Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr Metab (Lond) 2017; 14:49. [PMID: 28775758 PMCID: PMC5539973 DOI: 10.1186/s12986-017-0206-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD), recognized as the liver manifestation of metabolic syndrome, is highly prevalent in the general population. Recent studies suggest that lipid accumulation product is significantly associated with metabolic abnormalities. The aim of this study was to assess the accuracy of lipid accumulation product (LAP) as an effective screening tool for diagnosing NAFLD in the general population. Methods A total of 40,459 subjects aged ≥18 years were enrolled in this cross-sectional study. LAP was calculated as [waist circumference (cm) – 65] × triglyceride concentration (mmol//L) in men and [waist circumference (cm) – 58] × triglyceride concentration (mmol/L) in women. Multiple logistic regression and receiver operating characteristic (ROC) analyses were performed. Results According to multiple logistic regression analyses, LAP was significantly associated with a higher prevalence and severity of NAFLD in both men and women. When assessed using ROC curve analyses, LAP exhibited high diagnostic accuracy for identifying NAFLD, and the areas under the curves (AUC) in men and women were 0.843 (95% CI 0.837, 0.849) and 0.887 (95% CI 0.882, 0.892), respectively. After further analyzed in different age groups, the diagnostic accuracy of LAP was found to be significantly better in younger age groups (aged 18-34 for men; aged 18-34 and 35-44 years for women) for both sexes. Conclusions LAP is significantly associated with the presence and severity of NAFLD, and has a high diagnostic accuracy for identifying NAFLD in the general population. The diagnostic accuracy of LAP was especially high among younger age groups. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0206-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haijiang Dai
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China.,Center of Health Management, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013 People's Republic of China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022 People's Republic of China
| | - Ruifang Chen
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China
| | - Zhiheng Chen
- Center of Health Management, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013 People's Republic of China
| | - Yao Lu
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China
| | - Hong Yuan
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, 138 Tong-Zi-Po Road, Changsha, Hunan 410013 People's Republic of China
| |
Collapse
|