1
|
Valle Vargas MF, Ruiz Pardo RY, Villamil-Díaz L, Alean J, Santagapita PR, Quintanilla-Carvajal MX. Encapsulation improves viability and stability of spray-dried Lactococcus lactis A12 for inclusion in fish feed. PLoS One 2025; 20:e0323000. [PMID: 40424401 PMCID: PMC12112376 DOI: 10.1371/journal.pone.0323000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 05/29/2025] Open
Abstract
During probiotics manufacturing, drying is a crucial process for stabilization of probiotics after fermentation, since drying condition could affect viability and functionality as well as physical properties such as moisture content and water activity, which play key role in stability of dried probiotics during storage. Therefore, this study aimed to evaluate the effect of spray-drying parameters on the survival of Lactococcus lactis A12 after drying and exposure to gastrointestinal conditions. A combined mixture-process design was carried out by evaluating three factors: whey (10-30% w/v), maltodextrin (10-30% w/v), and atomization pressure (1.0-1.5 bar). As the main results, a high concentration of whey (30% w/v), low concentration of maltodextrin (10% w/v), and high atomization pressure (1.4 bar) improved survival of spray-dried L. lactis A12 after drying and exposure to pH 3.00 or bile salts with survival rates ranged within 69.25 to 86.24%, 65.89-98.93%, and 89.09-100%, respectively. Under optimal conditions, spray-dried probiotic powder with wall materials (encapsulated) exhibited higher glass transition temperature (64.44 vs 12.65 °C), and lower hygroscopicity (12.65 vs 64.44%) than spray-dried probiotic without wall materials (non-encapsulated). Moreover, SD probiotic powder exhibited the highest survival rate (85.88%) at 4 °C during 60 days of storage in comparison to 25 °C and 37 °C which did not survive. Finally, spray-dried L. lactis A12 was included in fish feed and exhibited a survival rate of 80.83% when it was stored at 4 °C after 60 days. It can be concluded that the use of encapsulating materials, particularly whey and maltodextrin, improved the physical and thermal stability of L. lactis A12 powder during drying and storage. Also, the results from the stability of supplemented fish feed suggested that L. lactis A12 could be included in fish feed.
Collapse
Affiliation(s)
- Marcelo Fernando Valle Vargas
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana. Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Ruth Yolanda Ruiz Pardo
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana. Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Luisa Villamil-Díaz
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana. Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Jader Alean
- Universidad de La Guajira, Facultad de Ingeniería, Riohacha, La Guajira, Colombia
| | - Patricio Román Santagapita
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, & Centro de Investigación en Hidratos de Carbono (CIHIDECAR, UBA-CONICET), Buenos Aires, Argentina.
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana. Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
2
|
Cornejo-Granados F, Gallardo-Becerra L, Romero-Hidalgo S, Lopez-Zavala AA, Cota-Huízar A, Cervantes-Echeverría M, Sotelo-Mundo RR, Ochoa-Leyva A. Host genome drives the microbiota enrichment of beneficial microbes in shrimp: exploring the hologenome perspective. Anim Microbiome 2025; 7:50. [PMID: 40405248 PMCID: PMC12100935 DOI: 10.1186/s42523-025-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/18/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Pacific Whiteleg shrimp (Litopenaeus vannamei) is an important model for breeding programs to improve global aquaculture productivity. However, the interaction between host genetics and microbiota in enhancing productivity remains poorly understood. We investigated the effect of two shrimp genetic lines, Fast-Growth (Gen1) and Disease-Resistant (Gen2), on the microbiota of L. vannamei. RESULTS Using genome-wide SNP microarray analysis, we confirmed that Gen1 and Gen2 represented distinct genetic populations. After confirming that the rearing pond did not significantly influence the microbiota composition, we determined that genetic differences explained 15.8% of the microbiota variability, with a stronger selective pressure in the hepatopancreas than in the intestine. Gen1, which exhibited better farm productivity, fostered a microbiota with greater richness, diversity, and resilience than Gen2, along with a higher abundance of beneficial microbes. Further, we demonstrated that a higher abundance of beneficial microbes was associated with healthier shrimp vs. diseased specimens, suggesting that Gen1 could improve shrimp's health and productivity by promoting beneficial microbes. Finally, we determined that the microbiota of both genetic lines was significantly different from their wild-type counterparts, suggesting farm environments and selective breeding programs strongly alter the natural microbiome. CONCLUSIONS This study highlights the importance of exploring the hologenome perspective, where integrating host genetics and microbiome composition can enhance breeding programs and farming practices.
Collapse
Affiliation(s)
- Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Secretaría de Salud (INMEGEN), Periférico Sur No. 4809, 14610, México, DF, México
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Blvd., Rosales y Luis Encinas, 83000, Hermosillo, Sonora, México
| | - Andrés Cota-Huízar
- Camarones El Renacimiento SPR de RI, Justino Rubio No. 26, Col Ejidal, 81330, Higuera de Zaragoza, Sinaloa, México
| | - Melany Cervantes-Echeverría
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas Num. 46. Col. La Victoria, 83304, Hermosillo, Sonora, México
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
Shi Z, Li Y, Shi W, Mu Z, Han Q, Zhang W. Glutamicibacter sp. ZY1 antagonizes pathogenic Vibrio parahaemolyticus via iron competition. Appl Environ Microbiol 2025; 91:e0000925. [PMID: 40272177 DOI: 10.1128/aem.00009-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/19/2025] [Indexed: 04/25/2025] Open
Abstract
Probiotics are prior agents for treating bacterial infection with advantages of inhibiting pathogenic bacteria and improving immune responses of hosts, thus increasing the survival rate of cultured animals. In this study, one Vibrio parahaemolyticus YDE17 pathogenic to shrimp and its antagonist Glutamicibacter sp. ZY1 were screened, and ZY1 showed stable inhibitory effects on diverse Vibrio spp., especially V. parahaemolyticus. ZY1 secreted inhibitory substances into supernatant, and the activity of inhibitory substances did not change after being treated under different temperatures, proteinase K, and pH (6-10), which indicated that the inhibitory substances might be small molecules, which led us to trace the siderophore production. The siderophore production of YDE17 co-incubated with the cell-free supernatant of ZY1 was greater than that of YDE17 alone, which indicated that the cell-free supernatant of ZY1 created iron-limiting conditions for YDE17. This finding was confirmed by iron supplementation assays, in which the inhibitory activity of the cell-free supernatant of ZY1 on YDE17 as well as the siderophore production of YDE17 decreased in the presence of FeCl3. The effect of iron on inhibition was further confirmed by in vivo infection. The relative percent survival of ZY1 to shrimp challenged by YDE17 was 83.3%, but the survival rates of shrimp challenged with YDE17/ZY1/FeCl3 were similar to that of YDE17, both of which were significantly lower than the 70% survival rate of shrimps simultaneously challenged by ZY1/YDE17. Our study offers a new probiotic resource to control vibriosis, which works through iron competition with the opportunistic pathogens of Vibrio spp.IMPORTANCEBacteria belonging to Vibrio spp., especially Vibrio parahaemolyticus, are important opportunistic pathogens infecting a wide range of hosts including fish, shrimp, shellfish, and crab. Antibiotics are effective but show the disadvantages of antibiotic generation, microecology destruction, and biological toxicology; thus, new treatments of Vibrio infection are urgently recommended. In our present study, Glutamicibacter sp. ZY1, belonging to the phylum Actinomycetes, was selected and showed high inhibitory activity to inhibit V. parahaemolyticus pathogenic to shrimp. Glutamicibacter sp. ZY1 antagonized V. parahaemolyticus YDE17 through producing siderophore to compete for iron, based on the results of both in vitro and in vivo experiments under different iron levels. This study offers a new strategy to control Vibrio infection in aquaculture.
Collapse
Affiliation(s)
- Zhili Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Ya Li
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Zhixin Mu
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Cui L, Wang B, Luo K, Liu Y, Xie Y, Liu L, Chen J, Fan G, Liu S, Tian X. The diversity, composition, network characteristics and community assembly of intestinal microbiome in sea cucumber reflect the differences in habitats and aquaculture practices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124487. [PMID: 39923616 DOI: 10.1016/j.jenvman.2025.124487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
The possible differentiation of microbiomes in various habitats and aquaculture practices has rarely been studied until now. Here, the microbiomes of five different culture systems for sea cucumber Apostichopus japonicus were compared, including outdoor pond, indoor workshop, net cage, suspension cage, marine ranching. Samples of intestinal contents from sea cucumber, surrounding water and sediment were collected from these culture systems. Significant differentiations in microbial diversity, composition, function were found in various culture systems. Microbial source-tracking analysis indicated that intestinal microbiomes of sea cucumber were more similar to sediment than to surrounding water. Totally, 23 shared core operational taxonomic units (OTUs) were identified in intestinal microbiome of sea cucumber in these systems, belong to following orders: Rhodobacterales (15), Rhizobiales (3), Flavobacteriales (2), Verrucomicrobiales (1), Campylobacterales (1), unclassified (1). Meanwhile, unique core OTUs in various systems tended to aggregate toward oligotrophic, potentially beneficial, or pathogenic bacteria. Microbial network characteristics in marine ranching and suspension cage systems were consistent with those in high-stress habitats, exhibiting lower diversity, complexity, modularity, dominated by positive interactions. Conversely, opposite trends were observed in indoor workshop, outdoor pond, net cage systems. Strong diffusion limitations on intestinal microbial community of sea cucumber, particularly in marine ranching system, were elucidated. Distinct characteristics of microbiome in various culture systems reflected differences in habitats and aquaculture practices. These findings provide new insights into impact of aquaculture systems on microbial community in aquatic animals, could contribute to healthy aquaculture practices for sea cucumber industry.
Collapse
Affiliation(s)
- Liang Cui
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Bing Wang
- BGI Research Institute, Qingdao, 266555, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yang Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | - Longzhen Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China
| | | | - Guangyi Fan
- BGI Research Institute, Qingdao, 266555, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, China.
| |
Collapse
|
5
|
Valle-Vargas MF, Rojas-Muñoz YV, Ruiz-Pardo RY, Villamil-Díaz L, Quintanilla-Carvajal MX. Improving the survival under gastric conditions of a potential multistrain probiotic produced in co-culture. AMB Express 2025; 15:20. [PMID: 39915371 PMCID: PMC11803006 DOI: 10.1186/s13568-024-01810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Process and culture medium composition in bioreactor could be optimized in order to find the best conditions that improve survival of probiotic microorganism under exposure to gastric conditions such low pH and bile salts. Therefore, this study aimed to optimize agitation, yeast extract, and di-sodium phosphate (Na2HPO4) concentration to improve the survival under gastric conditions of a multistrain consortium produced in a laboratory bioreactor. Viability, survival low pH (3.00), bile salt tolerance, and antagonistic activity against the pathogen Streptococcus agalactiae were evaluated. As the main result, a high concentration of di-sodium phosphate (2.63% w/v) increased the viability of L. lactis A12 (9.05 to 9.46 Log10 CFU/mL) and Priestia species (0.00 to 6.88 Log10 CFU/mL), survival to pH 3.00 (60 to 93%), survival of bile salts (58- 93%) antagonistic activity (8.74 to 15.56 mm), and final pH of culture medium (4.34 to 6.95). Optimal conditions that improved probiotics characteristics were 150 RPM, 0.83% w/v yeast extract, and 2.63% w/v Na2HPO4. Co-culture of L. lactis A12 with Priestia species improved significantly (p < 0.05) the antagonistic activity (10.41 mm) against S. agalactiae compared to mono-culture (7.70 mm). Our results suggested that was possible to produce a potential multistrain preparation in a lab bioreactor with high viability of L. lactis A12 (9.33 Log10 CFU/mL), high survival to gastric conditions (> 85%), and with antagonistic activity against fish pathogen. This preparation could be used as a feed additive intended for fish nutrition.
Collapse
Affiliation(s)
- Marcelo Fernando Valle-Vargas
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - Yesica Vanesa Rojas-Muñoz
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - Ruth Yolanda Ruiz-Pardo
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - Luisa Villamil-Díaz
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia.
| |
Collapse
|
6
|
Ziemniczak HM, Conceição LMA, Godoy AC, Neu DH, Rodrigues AT, de Campos CM, Acunha RMG, Gandra JR, Saturnino KC, de Pádua Pereira U, Honorato CA. Probiotic-based adsorbent mitigates aflatoxin B1 toxicity in Piaractus mesopotamicus: assessing well-being via changes in tissue architecture and digestive enzyme activity. Vet Res Commun 2025; 49:94. [PMID: 39878892 DOI: 10.1007/s11259-025-10663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Aflatoxin is a mycotoxin produced by fungi of the genus Aspergillus that is present in various foods. Probiotics are well-established products in aquaculture, and due to their effective contribution to the intestine, they can be used as an aflatoxin adsorbent. This study evaluated the effects of aflatoxin B1 (AFB1) on enzymatic activity and intestinal function in Piaractus mesopotamicus (pacu) fingerlings fed diets containing a probiotic-based adsorbent (PBA). Seventy-two fish with an average weight of 12 ± 1.30 g were used in the study. The experiment was conducted over 15 days using a completely randomized design with six diet treatments (AFB1 per kg of formulated diet) and two replicates. These treatments were: control without AFB1; 25.0 µg of AFB1; 400.0 µg of AFB1; control diet without AFB1 + PBA; 25.0 µg of AFB1 + PBA; and 400.0 µg of AFB1 + PBA. After the experimental period, the digestive enzymes protease, amylase, and lipase from the stomach, pyloric caeca, and intestine were quantified. The height and width of the intestinal villi, pyloric caeca, and stomach wall were measured. Fish fed the 400.0 µg of AFB1 diet showed reduced feed consumption, even though they ingested higher amounts of AFB1 compared to those fed the other experimental diets. The best zootechnical performance parameters were observed in fish fed the control diet without AFB1 + PBA. Changes (p < 0.05) were observed in the amount of protease in the stomach, pyloric caeca, and intestine; in the amount of amylase in the intestine; and the amount of lipase in the pyloric caeca and intestine. Changes were observed (p < 0.05) in the length of the stomach wall and the anterior and posterior intestines. Changes in the width of the stomach and anterior intestine walls were observed as a result of diet. Our results suggest that the use of probiotics as an aflatoxin adsorbent in pacu diets is beneficial from a physiological perspective and may also enhance growth.
Collapse
Affiliation(s)
- Henrique M Ziemniczak
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | - Leticia Maria Albuquerque Conceição
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | - Antonio Cesar Godoy
- Departamento de Pesquisa em Recursos Naturais, Instituto Federal de Educação, Ciência e Tecnologia do Paraná, Avenida Cívica, 475, Assis Chateaubriand, Paraná, 85935-000, Argentina.
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil.
| | - Dacley Hertes Neu
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| | | | - Cristiane Meldau de Campos
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil
| | - Rubia Mara Gomes Acunha
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Klaus C Saturnino
- Universidade Federal de Jataí, BR 364, km 195, Setor Parque Industrial nº 3800, Jataí, GO, Brasil
| | - Ulisses de Pádua Pereira
- Universidade Federal de Jataí, BR 364, km 195, Setor Parque Industrial nº 3800, Jataí, GO, Brasil
| | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, Cidade Universitária, Dourados, MS, Brasil
| |
Collapse
|
7
|
Begum A, Rabbane MG, Moniruzzaman M, Hasan MR, Chang X. Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity. Biol Trace Elem Res 2025:10.1007/s12011-025-04524-1. [PMID: 39881065 DOI: 10.1007/s12011-025-04524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.00 (control), 0.05, and 0.40 mg/L for 30 days and assessed fish health, muscle quality, and intestinal bacterial diversity. We observed significant Cd bioaccumulation in the fish muscle and intestine at 0.40 mg/L treatment, adversely impacting fish health with lower growth indices, higher mortality, behavioral aberrations, and clinical anomalies. More interestingly, Cd exposure decreased muscle quality by reducing nutrient levels, including fat, protein, iron, zinc, mono and polyunsaturated fatty acids, and increasing free amino acids and saturated fatty acids. Elevated oxidative stress markers, including total superoxide dismutase (T-SOD), catalase (CAT), and hydrogen peroxide (H2O2), were detected in the muscles, indicating degraded quality as a result of damage to cellular structures including proteins, lipids, and DNA. Simultaneously, we found Cd exposure altered fish intestinal microbial diversity, impairing muscle nutrient assimilation, thereby influencing muscle quality. Functional predictions suggested a decrease in pathways related to fermentation and chemoheterotrophy in the exposed groups. Overall, this study highlights how Cd toxicity jeopardizes fish health and deteriorates muscle quality which needs to be addressed for human benefit.
Collapse
Affiliation(s)
- Ayesha Begum
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, People's Republic of China
- Department of Applied Food Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh
| | - Md Golam Rabbane
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Rakibul Hasan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr. Qudrat-I-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
8
|
Todorov SD, Lima JMS, Bucheli JEV, Popov IV, Tiwari SK, Chikindas ML. Probiotics for Aquaculture: Hope, Truth, and Reality. Probiotics Antimicrob Proteins 2024; 16:2007-2020. [PMID: 38801620 DOI: 10.1007/s12602-024-10290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil.
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - Joao Marcos Scafuro Lima
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, 05508-000, SP, Brazil
| | - Jorge Enrique Vazquez Bucheli
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Bioestadistica y Genetica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Mexico City, Mexico
| | - Igor Vitalievich Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1, Rostov-On-Don 344002, Rostov, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, the State University of New Jersey, RutgersNew Brunswick, NJ 08901, USA
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| |
Collapse
|
9
|
Sonkar V, Venu V, Nishil B, Thatikonda S. Review on antibiotic pollution dynamics: insights to occurrence, environmental behaviour, ecotoxicity, and management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51164-51196. [PMID: 39155346 DOI: 10.1007/s11356-024-34567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Antibiotic contamination poses a significant global concern due to its far-reaching impact on public health and the environment. This comprehensive review delves into the prevalence of various antibiotic classes in environmental pollution and their interactions with natural ecosystems. Fluoroquinolones, macrolides, tetracyclines, and sulphonamides have emerged as prevalent contaminants in environmental matrices worldwide. The concentrations of these antibiotics vary across diverse environments, influenced by production practices, consumer behaviours, and socio-economic factors. Low- and low-middle-income countries face unique challenges in managing antibiotic contamination, with dominant mechanisms like hydrolysis, sorption, and biodegradation leading to the formation of toxic byproducts. Ecotoxicity reports reveal the detrimental effects of these byproducts on aquatic and terrestrial ecosystems, further emphasizing the gravity of the issue. Notably, monitoring the antibiotic parent compound alone may be inadequate for framing effective control and management strategies for antibiotic pollution. This review underscores the imperative of a comprehensive, multi-sectoral approach to address environmental antibiotic contamination and combat antimicrobial resistance. It also advocates for the development and implementation of tailored national action plans that consider specific environmental conditions and factors. Thus, an approach is crucial for safeguarding both public health and the delicate balance of our natural ecosystems.
Collapse
Affiliation(s)
- Vikas Sonkar
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Vishnudatha Venu
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Benita Nishil
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
10
|
Valle Vargas MF, Quintanilla-Carvajal MX, Villamil-Diaz L, Ruiz Pardo RY, Moyano FJ. Assessment of Encapsulated Probiotic Lactococcus lactis A12 Viability Using an In Vitro Digestion Model for Tilapia. Animals (Basel) 2024; 14:1981. [PMID: 38998093 PMCID: PMC11240612 DOI: 10.3390/ani14131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Probiotics face harsh conditions during their transit through the gastrointestinal tract (GIT) of fish because of low-pH environments and intestine fluid. Therefore, the evaluation of probiotic viability under simulated gastrointestinal conditions is an important step to consider for probiotic supplementation in fish feed prior to in vivo trials. Therefore, this study aimed to evaluate the effect of stomach and intestinal simulated conditions on the viability of encapsulated Lactococcus lactis A12 using an in vitro digestion model for tilapia. A Box Behnken design was used to evaluate the potential effect of three factors, namely stomach pH, residence time in the stomach, and enzyme quantity, on the viability of encapsulated Lactococcus lactis A12. As the main results, low pH (4.00), long residence time (4 h), and enzyme quantity (2.68 U of total protease activity) led to lower final cell counts after the phases of the stomach and intestine. Encapsulated probiotic bacteria showed higher viability (p < 0.05) and antibacterial activity (p < 0.05) against the pathogen Streptococcus agalactiae than non-encapsulated bacteria. The results suggest that L. lactis A12 survives in GIT conditions and that the proposed in vitro model could be used to explore the viability of probiotic bacteria intended for fish feed supplementation.
Collapse
Affiliation(s)
- Marcelo Fernando Valle Vargas
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | - Luisa Villamil-Diaz
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | - Ruth Yolanda Ruiz Pardo
- Grupo de Investigación en Procesos Agroindustriales (GIPA), Doctorado en Biociencias, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, 250001 Chía, Cundinamarca, Colombia
| | | |
Collapse
|
11
|
Qosimah D, Amri IA, Pratama DAOA, Permata FS, Noorhamdani N, Widasmara D, Sabri J. Hexane extract from black soldier fly prepupae: A novel immunomodulatory strategy against Aeromonas hydrophila infection in zebrafish. Vet World 2024; 17:1655-1660. [PMID: 39185043 PMCID: PMC11344120 DOI: 10.14202/vetworld.2024.1655-1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Aeromonas hydrophila infections in fish result in significant financial losses within aquaculture. Previous research indicates black soldier fly (BSF) prepupae provide immunomodulatory benefits through their fatty acids, chitin, and proteins. The study evaluated the impact of hexane extract from black soldier fly prepupae (HEBP) on interleukin (IL)-4 and IL-10 cytokine expression in zebrafish, both infected and uninfected with A. hydrophila. Materials and Methods Adult zebrafish (aged 4-5 months) was assigned to a negative control group (fed commercial feed), a positive control group (commercial feed + A. hydrophila infection at 107 colony-forming unit/mL), and three treatment groups (T1, T2, T3) that received HEBP at doses of 1000; 2000 and 4000 mg/kg feed for 30 days, respectively. A. hydrophila infection was introduced on day 31 through immersion. Analysis of IL-4 and IL-10 expression in the head kidney trunk region (body without head and tail) through quantitative polymerase chain reaction was conducted on day 33. Results The HEBP modulated the immune response to A. hydrophila infection at a concentration of 1000 mg/kg feed, as evidenced by an increase in IL-4 and IL-10 expression in the groups not infected with the bacteria. However, these cytokines were decreased in the infected groups. Conclusion A feed concentration of 1000 mg/kg HEBP was identified as optimal for cytokine modulation. This discovery marks a significant advancement in the development and benefit of a natural extract-based immunomodulator in a zebrafish model, which is potentially immunotherapeutic against bacterial infections in fish for the aquaculture industry.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Laboratory of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| | - Indah Amalia Amri
- Laboratory of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| | - Dyah Ayu Oktavianie A. Pratama
- Laboratory of Veterinary Anatomical Pathology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| | - Fajar Shodiq Permata
- Laboratory of Veterinary Anatomy and Histology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Noorhamdani Noorhamdani
- Department of Medical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java 65145, Indonesia
| | - Dhelya Widasmara
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar Regional Hospital, Jl. Jaksa Agung Suprapto 2, Malang, East Java 65111, Indonesia
| | - Jasni Sabri
- Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia
| |
Collapse
|
12
|
Dandi SO, Abarike ED, Abobi SM, Doke DA, Lyche JL, Addo S, Edziyie RE, Obiakara-Amaechi AI, Øystein E, Mutoloki S, Cudjoe KS. Knowledge, Attitudes, and Practices of Antibiotic Use among Small-, Medium-, and Large-Scale Fish Farmers of the Stratum II of the Volta Lake of Ghana. Antibiotics (Basel) 2024; 13:582. [PMID: 39061263 PMCID: PMC11273686 DOI: 10.3390/antibiotics13070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Antibiotic residue in food products and the resulting antibiotic-resistant bacteria represent a significant global public health threat. The misuse of antibiotics is a primary contributor to this issue. This study investigated the knowledge, attitudes, and practices (KAP) regarding antibiotic use among cage fish farmers on Ghana's Volta Lake. METHOD We conducted a cross-sectional survey with 91 cage fish farmers across three scales: small, medium, and large. A semi-structured questionnaire complemented by personal observations provided comprehensive data. We used several statistical methods for analysis: Pearson Chi-Square and Spearman correlation tests to examine relationships and trends among variables, logistic regression to analyze variable interactions, and Cronbach's alpha to check internal consistency. Additionally, Kendall's coefficient was used to rank challenges, utilizing STATA and SPSS for these calculations. RESULTS The survey revealed that 58.55% of cage fish farmers earn an average of 10,000 USD annually, with 35.16% having over 16 years of experience. From the survey, all sampled populations admitted to antibiotic applications in their farming operation. Knowledge of antibiotic types was mainly influenced by peers (46.15%), with tetracycline being the most recognized and used. There was a significant reliance on the empirical use of antibiotics, with 52.75% of farmers using them based on personal experience and 40.66% without a prescription. When initial treatments failed, 41.76% of the farmers would change or combine drugs. Older farmers (over 51 years) and those with tertiary education demonstrated significantly better KAP scores regarding antibiotic use. Strong correlations were also found among knowledge, attitudes, and practices in antibiotic usage. CONCLUSIONS The findings indicate a need for improved education on antibiotic use among fish farmers to reduce misuse and enhance awareness of the potential consequences. This study provides foundational data for designing interventions to address these issues in the context of cage fish farming on Volta Lake.
Collapse
Affiliation(s)
- Samuel O. Dandi
- Department of Aquaculture and Fisheries Sciences, Faculty of Biosciences, University for Development Studies, Tamale P.O. Box TL 1350, Ghana; (S.O.D.); (S.M.A.)
| | - Emmanuel D. Abarike
- Department of Aquaculture and Fisheries Sciences, Faculty of Biosciences, University for Development Studies, Tamale P.O. Box TL 1350, Ghana; (S.O.D.); (S.M.A.)
| | - Seth M. Abobi
- Department of Aquaculture and Fisheries Sciences, Faculty of Biosciences, University for Development Studies, Tamale P.O. Box TL 1350, Ghana; (S.O.D.); (S.M.A.)
| | - Dzigbodi A. Doke
- Department of Environment and Sustainability, Faculty of Natural Resources and Environment, University for Development Studies, Tamale P.O. Box TL 1350, Ghana;
| | - Jan L. Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway; (J.L.L.); (E.Ø.); (S.M.)
| | - Samuel Addo
- Department of Marine and Fisheries Sciences, School of Biological Sciences, University of Ghana, Accra P.O. Box LG 25, Ghana;
| | - Regina E. Edziyie
- Department of Fisheries and Watershed Management, Faculty of Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi P.O. Box Up 1279, Ghana;
| | | | - Evensen Øystein
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway; (J.L.L.); (E.Ø.); (S.M.)
| | - Stephen Mutoloki
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway; (J.L.L.); (E.Ø.); (S.M.)
| | | |
Collapse
|
13
|
Srifani A, Mirnawati M, Marlida Y, Rizal Y, Nurmiati N, Lee KW. Identification of novel probiotic lactic acid bacteria from soymilk waste using the 16s rRNA gene for potential use in poultry. Vet World 2024; 17:1001-1011. [PMID: 38911076 PMCID: PMC11188893 DOI: 10.14202/vetworld.2024.1001-1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim In-feed antibiotics have been used as antibiotic growth promoters (AGPs) to enhance the genetic potential of poultry. However, the long-term use of AGPs is known to lead to bacterial resistance and antibiotic residues in poultry meat and eggs. To address these concerns, alternatives to AGPs are needed, one of which is probiotics, which can promote the health of livestock without having any negative effects. In vitro probiotic screening was performed to determine the ability of lactic acid bacteria (LAB) isolated from soymilk waste to be used as a probiotic for livestock. Materials and Methods Four LAB isolates (designated F4, F6, F9, and F11) isolated from soymilk waste were used in this study. In vitro testing was performed on LAB isolates to determine their resistance to temperatures of 42°C, acidic pH, bile salts, hydrophobicity to the intestine, and ability to inhibit pathogenic bacteria. A promising isolate was identified using the 16S rRNA gene. Result All LAB isolates used in this study have the potential to be used as probiotics. On the basis of the results of in vitro testing, all isolates showed resistance to temperatures of 42°C and low pH (2.5) for 3 h (79.87%-94.44%) and 6 h (76.29%-83.39%), respectively. The survival rate at a bile salt concentration of 0.3% ranged from 73.24% to 90.39%, whereas the survival rate at a bile salt concentration of 0.5% ranged from 56.28% to 81.96%. All isolates showed the ability to attach and colonize the digestive tract with a hydrophobicity of 87.58%-91.88%. Inhibitory zones of LAB against pathogens ranged from 4.80-15.15 mm against Staphylococcus aureus, 8.85-14.50 mm against Salmonella enteritidis, and 6.75-22.25 mm against Escherichia coli. Although all isolates showed good ability as probiotics, isolate F4 showed the best probiotic ability. This isolate was identified as Lactobacillus casei strain T22 (JQ412731.1) using the 16S rRNA gene. Conclusion All isolates in this study have the potential to be used as probiotics. However, isolate F4 has the best probiotic properties and is considered to be the most promising novel probiotic for poultry.
Collapse
Affiliation(s)
- Anifah Srifani
- PMDSU Program, Graduate Program of Animal Feed and Nutrition Department, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Mirnawati Mirnawati
- Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Yetti Marlida
- Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Yose Rizal
- Department of Animal Feed and Nutrition, Faculty of Animal Science, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Nurmiati Nurmiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, West Sumatera, Indonesia
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
14
|
Asha AA, Haque MM, Hossain MK, Hasan MM, Bashar A, Hasan MZ, Shohan MH, Farin NN, Schneider P, Bablee AL. Effects of Commercial Probiotics on the Growth Performance, Intestinal Microbiota and Intestinal Histomorphology of Nile Tilapia ( Oreochromis niloticus) Reared in Biofloc Technology (BFT). BIOLOGY 2024; 13:299. [PMID: 38785781 PMCID: PMC11117564 DOI: 10.3390/biology13050299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Though different types of commercial probiotics are supplemented in biofloc technology (BFT), very little information is available on their effects on the farmed fish. Therefore, this study focused on evaluating the effects of three most commonly used commercial probiotics on the growth performance, intestinal histomorphology, and intestinal microbiota of Nile tilapia (Oreochromis niloticus) reared in BFT. Tilapia fry, with an average weight of 3.02 ± 0.50 g, were stocked at a density of 60 fry/0.2 m3, and cultured for 90 days. Three commercial probiotics were administered, with three replications for each: a single-genus multi-species probiotic (Bacillus spp.) (T1), a multi-genus multi-species probiotic (Bacillus sp., Lactobacillus sp., Nitrosomonas sp., Nitrobacter sp.) (T2), and a multi-species probiotic (Bacillus spp.) combined with enzymes including amylase, protease, cellulase, and xylanase (T3). The results showed significant variations in growth and feed utilization, with T3 outperforming other treatments in terms of weight gain, liver weight, and intestine weight. Adding Bacillus spp. with enzymes (T3) to water significantly increased the histomorphological parameters (villi length, villi depth, crypt depth, muscle thickness, intestinal thickness) as well as microbes (total viable count and total lactic acid bacteria) of intestine of fish compared to T1 and T2, leading to improved digestion and absorption responses. It is concluded that the supplementation of commercial probiotics has potential benefits on farmed fish species in BFT.
Collapse
Affiliation(s)
- Ayesha Akter Asha
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Md. Kabir Hossain
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahmudul Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Abul Bashar
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Md. Zahid Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Mobin Hossain Shohan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Nawshin Nayla Farin
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| | - Petra Schneider
- Department of Water, Environment, Civil Engineering and Safety, Magdeburg-Stendal University of Applied Sciences, 3655 Magdeburg, Germany;
| | - Alif Layla Bablee
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.A.); (M.M.H.); (M.M.H.); (A.B.); (M.Z.H.); (M.H.S.); (N.N.F.)
| |
Collapse
|
15
|
Li X, Lin X, Chen W, Leng X. Dietary sodium butyrate positively modulated intestinal microbial community, but did not promote growth of largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:745-755. [PMID: 38261258 DOI: 10.1007/s10695-024-01303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
This study investigated the effects of dietary sodium butyrate (NaB) on growth, serum biochemical indices, intestine histology, and gut microbiota of largemouth bass (Micropterus salmoides). A basal diet was formulated and used as the control diet (Con), and five additional diets were prepared by supplementing NaB (50%) in the basal diet at 2.0, 4.0, 8.0, 12.0, and 16.0 g/kg inclusion (NaB-2, NaB-4, NaB-8, NaB-12, and NaB-16 diets). Then, the six diets were fed to triplicate groups of largemouth bass juveniles (2.4 ± 0.1 g) for 8 weeks. NaB supplementation linearly and quadratically affected weight gain (WG) and feed intake (FI) (P < 0.05). The NaB-16 group displayed lower WG (- 6.8%) and FI than the Con group (P < 0.05), while no differences were found in WG and feed conversion ratio between the other NaB groups and Con group (P > 0.05). Serum alkaline phosphatase and lysozyme activities were higher in the NaB groups (P < 0.05), and D-lactate content was lower in the NaB-12 group (P < 0.05) than the control. Intestinal lipase activity in NaB-2, NaB-4 group, and villi width in NaB-8 group were also higher than those in the Con group (P < 0.05). Compared to the Con group, the intestinal abundances of Firmicutes and Mycoplasma were increased and the abundances of Proteobacteria, Achromobacter and Plesiomonas were decreased in NaB-4 and NaB-16 groups (P < 0.05). In conclusion, dietary NaB did not promote the growth of juvenile largemouth bass, but positively modulated the intestinal microbial community.
Collapse
Affiliation(s)
- Xiaoqin Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
| | - Xia Lin
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenjie Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - XiangJun Leng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
16
|
Morgan AN, Fogelson SB, Wills PS, Mincer T, Mejri S, Page A. Hematological changes in Florida pompano (Trachinotus carolinus) supplemented with β-glucan and Pediococcus acidilactici synbiotic. JOURNAL OF FISH BIOLOGY 2024; 104:1091-1111. [PMID: 38174614 DOI: 10.1111/jfb.15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Florida pompano (Trachinotus carolinus) are a species of growing interest for commercial aquaculture. Effective health monitoring is crucial to the successful growout of the species, and prophylactic and therapeutic use of chemicals and antibiotics has been the traditional strategy for promoting stock health. However, concerns about antimicrobial resistance, chemical residues in seafood products and the environment, and resultant immunosuppression have prompted the industry to identify alternative management strategies, including supplementation with prebiotics, probiotics, and combinations of both (synbiotics). The objectives of this study are to determine and compare hematological, plasma biochemical, and plasma protein electrophoresis data of synbiotic-supplemented (β-glucan and Pediococcus acidilactici) and non-supplemented Florida pompano. Reference intervals for blood analytes are provided for both groups and for subgroups (females, males, large, and small fish) where statistically significant results exist. There are no differences between the hematological and plasma biochemistry analytes between the supplemented and control groups, except for blood urea nitrogen and carbon dioxide, indicating a possible effect of synbiotic supplementation on gill function and osmoregulation. Sex-related and size-related differences are observed within each of the control and supplemented groups; however, biometric measurements do not strongly correlate with blood analytes. These data represent baseline hematological and plasma biochemical data in the Florida pompano and indicate the safety of synbiotic supplementation in this commercially important species. This study serves to further the commercialization of Florida pompano by providing blood analyte reference intervals for health monitoring in the aquaculture setting.
Collapse
Affiliation(s)
- Ashley N Morgan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | | | - Paul S Wills
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Tracy Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Sahar Mejri
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| |
Collapse
|
17
|
Li W, Lim CH, Zhao Z, Wang Y, Conway PL, Loo SCJ. In Vitro Profiling of Potential Fish Probiotics, Enterococcus hirae Strains, Isolated from Jade Perch, and Safety Properties Assessed Using Whole Genome Sequencing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10244-0. [PMID: 38498111 DOI: 10.1007/s12602-024-10244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 03/20/2024]
Abstract
The demands of intensified aquaculture production and escalating disease prevalence underscore the need for efficacious probiotic strategies to enhance fish health. This study focused on isolating and characterising potential probiotics from the gut microbiota of the emerging aquaculture species jade perch (Scortum barcoo). Eighty-seven lactic acid bacteria and 149 other bacteria were isolated from the digestive tract of five adult jade perch. The screening revealed that 24 Enterococcus hirae isolates inhibited the freshwater pathogens Aeromonas sobria and Streptococcus iniae. Co-incubating E. hirae with the host gut suspensions demonstrated a two- to five-fold increase in the size of growth inhibition zones compared to the results when using gut suspensions from tilapia (a non-host), indicating host-specificity. Genome analysis of the lead isolate, E. hirae R44, predicted the presence of antimicrobial compounds like enterolysin A, class II lanthipeptide, and terpenes, which underlay its antibacterial attributes. Isolate R44 exhibited desirable probiotic characteristics, including survival at pH values within the range of 3 to 12, bile tolerance, antioxidant activity, ampicillin sensitivity, and absence of transferable antimicrobial resistance genes and virulence factors commonly associated with hospital Enterococcus strains (IS16, hylEfm, and esp). This study offers a foundation for sourcing host-adapted probiotics from underexplored aquaculture species. Characterisation of novel probiotics like E. hirae R44 can expedite the development of disease mitigation strategies to support aquaculture intensification.
Collapse
Affiliation(s)
- Wenrui Li
- NTU Institute for Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, 61 Nanyang Drive, Singapore, 637335, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chiun Hao Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongtian Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Patricia Lynne Conway
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Centre for Marine Science Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
18
|
Domínguez-Maqueda M, García-Márquez J, Tapia-Paniagua ST, González-Fernández C, Cuesta A, Espinosa-Ruíz C, Esteban MÁ, Alarcón FJ, Balebona MC, Moriñigo MÁ. Evaluation of the Differential Postbiotic Potential of Shewanella putrefaciens Pdp11 Cultured in Several Growing Conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1-18. [PMID: 38153608 PMCID: PMC10869407 DOI: 10.1007/s10126-023-10271-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The increased knowledge of functional foods has led to the development of a new generation of health products, including those containing probiotics and products derived from them. Shewanella putrefaciens Pdp11 (SpPdp11) is a strain described as a probiotic that exerts important beneficial effects on several farmed fish. However, the use of live probiotic cells in aquaculture has limitations such as uncertain survival and shelf life, which can limit their efficacy. In addition, its efficacy can vary across species and hosts. When probiotics are administered orally, their activity can be affected by the environment present in the host and by interactions with the intestinal microbiota. Furthermore, live cells can also produce undesired substances that may negatively impact the host as well as the risk of potential virulence reversion acquired such as antibiotic resistance. Therefore, new alternatives emerged such as postbiotics. Currently, there is no knowledge about the postbiotic potential of SpPdp11 in the aquaculture industry. Postbiotic refers to the use of bacterial metabolites, including extracellular products (ECPs), to improve host physiology. However, the production of postbiotic metabolites can be affected by various factors such as cultivation conditions, which can affect bacterial metabolism. Thus, the objective of this study was to evaluate the postbiotic potential of ECPs from SpPdp11 under different cultivation conditions, including culture media, temperature, growth phase, and salinity. We analyzed their hydrolytic, antibacterial, antiviral, and cytotoxic capacity on several fish cell lines. The results obtained have demonstrated how each ECP condition can exert a different hydrolytic profile, reduce the biofilm formation by bacterial pathogens relevant to fish, lower the titer of nervous necrosis virus (NNV), and exert a cytotoxic effect on different fish cell lines. In conclusion, the ECPs obtained from SpPdp11 have different capacities depending on the cultivation conditions used. These conditions must be considered in order to recover the maximum number of beneficial capacities or to choose the appropriate conditions for specific activities.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Silvana T Tapia-Paniagua
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain.
| | - Carmen González-Fernández
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - Alberto Cuesta
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - Cristóbal Espinosa-Ruíz
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Departamento de Biología Celular e Histología, Facultad de Ciencias, Universidad de Murcia, Murcia, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, Almería, Spain
| | - María Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
19
|
González-Pech RA, Li VY, Garcia V, Boville E, Mammone M, Kitano H, Ritchie KB, Medina M. The Evolution, Assembly, and Dynamics of Marine Holobionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:443-466. [PMID: 37552896 DOI: 10.1146/annurev-marine-022123-104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.
Collapse
Affiliation(s)
- Raúl A González-Pech
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vivian Y Li
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Vanessa Garcia
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Elizabeth Boville
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | - Marta Mammone
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| | | | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina, Beaufort, South Carolina, USA;
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; , , , , ,
| |
Collapse
|
20
|
Lu T, Wang C, Guo M, Li C, Shao Y. Effects of dietary Vibrio sp. 33 on growth, innate immunity, gut microbiota profile and disease resistance against Vibrio splendidus of juvenile sea cucumber Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105081. [PMID: 37839671 DOI: 10.1016/j.dci.2023.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
To investigate the ability of Vibrio sp. V33 supplementation on the growth performance, innate immunity, intestinal microbiota, and disease resistance of the juvenile sea cucumber Apostichopus japonicus, a feeding experiment was conducted. Our results revealed that dietary Vibrio sp. V33 could significantly enhanced sea cucumber growth rate, and the immune parameters including total coelomocytes counts (TCC), phagocytosis, respiratory burst, immune-related enzyme activities (acid phosphatase, alkaline phosphatase, superoxide dismutase, catalase, superoxide dismutase, and nitric oxide synthetase) were all markedly improved in coelomocytes of sea cucumbers fed with V33 (P < 0.05). Furthermore, the composition of the bacterial community in the intestinal contents of the sea cucumber was surveyed by 16S rRNA sequencing. Beta diversity analysis indicated that the bacterial compositions of sea cucumbers were significantly different between V33 and Control groups. At the phylum level, Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most prevalent phyla in sea cucumber gut microbiota. The abundance of Firmicutes (20.58%), Bacteroidetes (9.77%), and Verrucomicrobia (3.04%) were significantly higher in V33 group when compared with Control. Moreover, genus Mycobacterium was markedly decreased to 0.5% after V33 feeding, while the abundance of genus Rhodococcus was significantly increased by 6.9-fold (P < 0.01) under the same condition, indicating V33 diet might promotes the colonization of beneficial bacteria in the gut of sea cucumber. After Vibrio splendidus challenge, the survival rate of juvenile sea cucumbers fed with V33 diet was significantly higher than that fed with Control diet. All our current results suggested that the Vibrio sp. V33 could used as a probiotic for healthier production of sea cucumbers in aquaculture.
Collapse
Affiliation(s)
- Tianyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chengyang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China.
| |
Collapse
|
21
|
Jiang D, Li S, Liang Y, Xu R, Qi Q, Wang B, Zhang C. 16S rRNA and transcriptome analysis of the FOS-mediated alleviation of Aeromonas hydrophila-induced intestinal damage in Megalobrama amblycephala. Int J Biol Macromol 2023; 253:127040. [PMID: 37742888 DOI: 10.1016/j.ijbiomac.2023.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
This study was conducted to elucidate the effects of FOS that alleviate Aeromonas hydrophila-induced intestinal damage. The results showed that A. hydrophila disrupted the intestinal structure and increased intestinal permeability, causing abnormalities in mucosal pathology. Additionally, A. hydrophila induced an imbalance in the intestinal flora and disturbed its stability. Dietary FOS ameliorated the injury to the intestinal structure of fish, but also in part improved the condition of the intestinal tight junction complex. Transcriptomic analysis showed that 120 genes were up-regulated and 320 genes were down-regulated. The intestinal immune network for the IgA production signalling pathway was enriched following A. hydrophila infection, and the change in the FOS group was mainly in the Tight junction signalling pathway. Similarly, dietary FOS reduced the disruption of the intestinal microbiota induced by A. hydrophila and improved the intestinal microbiota's stability; FOS was also partially implicated in the upregulation of Tight junction and Adhesion junction pathways by transcriptomic analysis. After further analysis, it was found that fish fed FOS had upregulated expression of genes related to apoptosis, antigen presentation, and the T-cell-mediated immune response in the intestine compared with those in the A. hydrophila group, which may be related to changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Dongxue Jiang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Shengnan Li
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Yuexia Liang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Ruiyi Xu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Qian Qi
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China
| | - Bingke Wang
- Henan Academy of Fishery Sciences, Zhengzhou 450040, People's Republic of China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, People's Republic of China.
| |
Collapse
|
22
|
Touraki M, Chanou A, Mavridou V, Tsertseli V, Tsiridi M, Panteris E. Administration of probiotics affects Artemia franciscana metanauplii intestinal ultrastructure and offers resistance against a Photobacterium damselae ssp . piscicida induced oxidative stress response. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100113. [PMID: 37671319 PMCID: PMC10475491 DOI: 10.1016/j.fsirep.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
The effects of Photobacterium damselae ssp. piscicida (Phdp) on immune responses and intestinal ultrastructure of Artemia franciscana following infection and their amelioration by the probiotic bacteria Bacillus subtilis, Lactobacillus plantarum and Lactococcus lactis were evaluated. Pathogen growth inhibition in coculture with each probiotic and its virulence against Artemia were confirmed with an LC50 of 105 CFU mL-1. Phdp administration to Artemia at sublethal levels resulted in depletion of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase activities, extensive lipid peroxidation and reduced survival. Following a combined administration of each probiotic and the pathogen, enzyme activities and survival were significantly higher, while lipid peroxidation was reduced, compared to the infected group with no probiotic treatment (P < 0.05). The transmission electron microscopy study revealed that pathogen infection resulted in disarranged and fragmented microvilli, formation of empty or pathogen containing cytoplasmic vacuoles and damaged mitochondria. In the probiotic-treated and Phdp-infected series, intestinal cells showed normal appearance, except for the presence of pathogen-containing vacuoles and highly ordered but laterally stacked microvilli. The results of the present study indicate that Phdp induces cell death through an oxidative stress response and probiotics enhance Artemia immune responses to protect it against the Phdp induced damage.
Collapse
Affiliation(s)
- Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Anna Chanou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Mavridou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Vasiliki Tsertseli
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Maria Tsiridi
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), Thessaloniki 54 124, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
23
|
Zheng YD, Huang BW, Zhang X, Liu CF, Xin LS, Wang CM, Bai CM. The Probiotic Bacillus hwajinpoensis Colonizes the Digestive System of Crassostrea gigas Larvae and Protects Them from Vibrio alginolyticus Infection. Microorganisms 2023; 11:2918. [PMID: 38138062 PMCID: PMC10745402 DOI: 10.3390/microorganisms11122918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The Pacific oyster Crassostrea gigas is one of the most important cultured marine species around the world. Production of Pacific oysters in China has depended primarily on hatchery produced seeds since 2016, with the successful introduction and development of triploid oysters. However, the seed supply of Pacific oysters is threatened by recurring mass mortality events in recent years. Vibriosis is the most commonly encountered disease associated with intensive oyster culture in hatcheries and nurseries. Vibrio alginolyticus and Bacillus hwajinpoensis were the two strains with pathogenic and probiotic effects, respectively, identified during the Pacific oyster larvae production. To monitor their colonization process in Pacific oyster larvae, green fluorescent protein (GFP) and red fluorescent protein (RFP) were labeled to the pathogenic V. alginolyticus and the probiotic B. hwajinpoensis stain, respectively. The pathogenic and probiotic effects of the two strains during the colonization process were then assessed. Stabile expression of GFP and RFP were observed in corresponding stains, and the capabilities of growth, biofilm formation and in vitro adhesion of GFP- and RFP- tagged stains were not significantly different from those of the wild-type strains. Usage of probiotics of 105 CFU/mL significantly inhibited the growth of pathogenic V. alginolyticus and reduced the mortality of D-sharped larvae. Both the pathogenic and probiotic strains employed a similar route to enter and colonize the oyster larvae, which indicates that competing with pathogens for binding and spreading sites were one of the mechanisms of B. hwajinpoensis to provide the probiotic effects to oyster larvae. In summary, employment of fluorescence-tagged pathogenic and probiotic strains simultaneously provides us with an excellent bioassay model to investigate the potential mechanisms of probiotics.
Collapse
Affiliation(s)
- Yu-Dong Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bo-Wen Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Xiang Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chen-Feng Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lu-Sheng Xin
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Chong-Ming Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| | - Chang-Ming Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (Y.-D.Z.); (B.-W.H.); (X.Z.); (C.-F.L.); (L.-S.X.); (C.-M.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Maricultural Organism Disease Control, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Ministry of Agriculture, Qingdao 266071, China
| |
Collapse
|
24
|
Ji Z, Lu X, Xue M, Fan Y, Tian J, Dong L, Zhu C, Wen H, Jiang M. The probiotic effects of host-associated Bacillus velezensis in diets for hybrid yellow catfish ( Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:114-125. [PMID: 38023381 PMCID: PMC10665805 DOI: 10.1016/j.aninu.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 12/01/2023]
Abstract
This study was to evaluate the potential of a host-associated Bacillus velezensis as a probiotic for hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂). Diets (B0 to B5) containing 0, 0.90 × 108, 0.80 × 109, 0.85 × 1010, 0.90 × 1011, 0.83 × 1012 CFU/kg B. velezensis YFI-E109 were fed to the fish with initial weight (3.07 ± 0.08 g) in a recirculating aquaculture system for six weeks with three replicates, respectively. Probiotic effects were analyzed based on growth, body composition, liver and gut morphology, gut microbiome, and liver metabolome. Analysis of the bacterial genome has shown that the most abundant genes in B. velezensis YFI-E109 were distributed in carbohydrate and amino acid metabolism. Fish in groups B3 and B4 had better growth performance, and higher intestinal amylase (AMS) and lipase (LPS) activities compared with other groups (P < 0.05). Fish in groups B0 and B5 showed significant liver damage, while this status improved in group B3. The liver malondialdehyde (MDA) content in group B3 was lower than that in other groups (P < 0.05). The abundance of Mycoplasma, Ralstonia and Acinetobacter was significantly reduced in B3 and B5 compared to B0. The amino acid and carbohydrate metabolism pathways were enriched in group B3 compared with group B0. In conclusion, dietary B. velezensis YFI-E109 supplementation has the potential to improve growth, liver metabolism, and liver and gut health, and reshape the gut microbiome of hybrid yellow catfish. Excessive B. velezensis YFI-E109 reduced the prebiotic effects. The recommended dietary supplementation of B. velezensis YFI-E109 is 0.31 × 1010 to 0.77 × 1011 CFU/kg for hybrid yellow catfish according to the quadratic regression method by plotting specific growth rate (SGR), feed conversion ratio (FCR), MDA and activities of AMS against dietary B. velezensis YFI-E109 levels.
Collapse
Affiliation(s)
- Zhehui Ji
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lixue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chuanzhong Zhu
- Fujian Key Laboratory of Functional Aquafeed and Culture Environment Control, Fujian DBN-HY Aquatic Science and Technology Group Co., Ltd, Zhao'an, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
25
|
Shao Y, Wang C, Lu T, Jiang J, Li C, Wang X. Dietary Bacillus cereus LS2 protects juvenile sea cucumber Apostichopus japonicus against Vibrio splendidus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109237. [PMID: 37984612 DOI: 10.1016/j.fsi.2023.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to investigate the effects of Bacillus cereus LS2 on the growth performance, innate immunity, intestinal microbiota, and disease resistance of sea cucumber Apostichopus japonicus. After feeding with LS2 for 30 days, results showed that dietary with LS2 had a significant improvement in the growth rate and immune parameters (including total coelomocytes counts, phagocytosis, respiratory burst, and immune-related enzymes) of juvenile sea cucumbers. Subsequently, transcriptome sequencing and qRT-PCR verification were performed to analyze the potential mechanism of LS2 diet and thus improve the immune response of A. japonicus. GO and KEGG pathway analysis indicated that LS2 can primarily activate the "Lectins" and "complement and coagulation cascades" pathways to modulate the innate immunity of the sea cucumbers. Furthermore, 16S rRNA sequencing was used to analyze the intestinal microbial composition of sea cucumbers after dietary with LS2. Results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the most prevalent phyla in A. japonicus intestinal microbiota. The abundance of Actinobacteria (46.20%) and Bacteroidetes (12.80%) were significantly higher in the LS2 group, whereas the relative abundance of Proteobacteria (49.98%) and Firmicutes (14.97%) were higher in the control group. The LDA scores of Nocardiaceae and Rhodococcus were also the highest taxa after the dietary administration of LS2, indicating that Actinobacteria phylum played a pivotal role in the intestinal microbial function of A. japonicus. Overall, these results suggested that feeding with Bacillus LS2 may be beneficial for A. japonicus farming.
Collapse
Affiliation(s)
- Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China.
| | - Chengyang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Tianyu Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Jianyang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, PR China
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, PR China
| |
Collapse
|
26
|
Ahmmed MK, Bhowmik S, Ahmmed F, Giteru SG, Islam SS, Hachem M, Hussain MA, Kanwugu ON, Agyei D, Defoirdt T. Utilisation of probiotics for disease management in giant freshwater prawn (Macrobrachium rosenbergii): Administration methods, antagonistic effects and immune response. JOURNAL OF FISH DISEASES 2023; 46:1321-1336. [PMID: 37658593 DOI: 10.1111/jfd.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) is a high-yielding prawn variety well-received worldwide due to its ability to adapt to freshwater culture systems. Macrobrachium rosenbergii is an alternative to shrimp typically obtained from marine and brackish aquaculture systems. However, the use of intensive culture systems can lead to disease outbreaks, particularly in larval and post-larval stages, caused by pathogenic agents such as viruses, bacteria, fungi, yeasts and protozoans. White tail disease (viral), white spot syndrome (viral) and bacterial necrosis are examples of economically significant diseases. Given the increasing antibiotic resistance of disease-causing microorganisms, probiotics have emerged as promising alternatives for disease control. Probiotics are live active microbes that are introduced into a target host in an adequate number or dose to promote its health. In the present paper, we first discuss the diseases that occur in M. rosenbergii production, followed by an in-depth discussion on probiotics. We elaborate on the common methods of probiotics administration and explain the beneficial health effects of probiotics as immunity enhancers. Moreover, we discuss the antagonistic effects of probiotics on pathogenic microorganisms. Altogether, this paper provides a comprehensive overview of disease control in M. rosenbergii aquaculture through the use of probiotics, which could enhance the sustainability of prawn culture.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Ahmmed
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen G Giteru
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Alliance Group Limited, Invercargill, New Zealand
| | - Shikder Saiful Islam
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna, Bangladesh
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet, Bangladesh
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Perdichizzi A, Meola M, Caccamo L, Caruso G, Gai F, Maricchiolo G. Live Yeast ( Saccharomyces cerevisiae var. boulardii) Supplementation in a European Sea Bass ( Dicentrarchus labrax) Diet: Effects on the Growth and Immune Response Parameters. Animals (Basel) 2023; 13:3383. [PMID: 37958138 PMCID: PMC10647322 DOI: 10.3390/ani13213383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The present study has been aimed at evaluating the effects of the dietary inclusion of the live yeasts, Saccharomyces cerevisiae var. boulardii (LSB) administered at increasing concentrations (0, 100, and 300 mg kg-1 of feed, here referred to as LSB 0, 100, 300) for 90 days, on the health conditions of European sea bass. The main zootechnical parameters, histological and morphological analyses, innate immunity response parameters (intestinal cytokine expression, lysozyme content, spontaneous hemolytic and hemagglutinating activities, antibacterial activities, and peroxidase activity) were measured as fish welfare parameters. LSB did not impair either growth parameters or the morphometric indexes. LSB down-regulated interleukin-1β transcription in the distal gut of fish treated with 5.4 × 105 CFU g-1 (LSB100) for 21 days. The interleukin-6 mRNA level decreased significantly in the proximal gut for both doses of yeast, after 21 days of feeding; the gene expression of interleukin-6 was significantly lower in the sea bass fed 10.81 × 105 CFU g-1 (LSB300) probiotic. The levels of TNF-α mRNA were not influenced by probiotic supplementation. Increases, although not significant, in the hematological and immunological parameters were also recorded. The data collected in the present study suggests that an LSB-supplemented diet acts on the gut immune system of sea bass by modulating the expression of the key inflammatory genes.
Collapse
Affiliation(s)
- Anna Perdichizzi
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| | - Martina Meola
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| | - Letteria Caccamo
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| | - Gabriella Caruso
- Institute of Polar Sciences (CNR), Spianata S. Raineri, 98122 Messina, Italy;
| | - Francesco Gai
- Institute of Sciences of Food Production (CNR), Largo Paolo Braccini, 10095 Grugliasco, Italy;
| | - Giulia Maricchiolo
- Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Spianata S. Raineri, 98122 Messina, Italy; (A.P.); (L.C.); (G.M.)
| |
Collapse
|
28
|
Mohammadian T, Momeni H, Kazemi M, Mesbah M, Abedini M, Zare M, Khosravi M, Osroosh E. Eubiotic Effect of a Dietary Bio-Aqua ® and Sodium Diformate (NaDF) on Salmo trutta caspius: Innate Immune System, Biochemical Indices, Antioxidant Defense, and Expression of Immunological and Growth-Related Genes. Probiotics Antimicrob Proteins 2023; 15:1342-1354. [PMID: 36074297 DOI: 10.1007/s12602-022-09965-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 10/14/2022]
Abstract
The present study investigated the effects of combined and singular oral administration of Bio-Aqua® with different dosages of sodium diformate (NaDF) on biochemical indices, innate immune responses, antioxidant effects, and expressions of immunological related genes of Caspian brown trout (Salmo trutta caspius). Fingerlings Salmo trutta caspius (n = 1800; initial weight 15 ± 3 g) were randomly allocated into five groups (120 fish group-1 in triplicates). Control diet: without any addition, G1, G2, G3, and G4 received diets containing 0.2 g kg-1 commercial probiotic Bio-Aqua® combined with 0, 0.5, 1.0, and 1.5% NaDF to the basal diet for 60 days according to recommended dosages reported in previous studies. Results indicated that serum bactericidal activity (G3 on day 60 and G1 on day 30) and classic complement in all groups (on day 60) (G1 and G2 on day 30) were significantly elevated (P < 0.05). The serum lysozyme, glucose, globulin, and albumin levels showed no significant differences between all groups compared to the control group (P > 0.05). On days 30 and 60 of the sampling, no significant difference was observed in the amount of superoxide disotase (SOD) and catalase (CAT) between the treatments (P > 0.05) but activity of malondialdehyde (MDA) was lower in G1 than the control (P < 0.05). The expression of the immune-regulating genes IL-10, IL-1β, GTP, FATP, and IGF was significantly improved in all probiotic + acidifier-treated groups (P < 0.05). The current findings showed that mixture of Bio-Aqua® and NaDF (1.5% + pro) is beneficial, as it effectively improves some immune parameters and expression of immunological and growth-related genes in Caspian brown trout.
Collapse
Affiliation(s)
- Takavar Mohammadian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Hossien Momeni
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Kazemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrzad Mesbah
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Member of Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Melika Abedini
- DVM, Graduated, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Zare
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Osroosh
- Department of Clinical Sciences, Faculty of Veterinary Medicine Shahid, Ph.D Student Aquatic Health, Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
29
|
De Marco G, Cappello T, Maisano M. Histomorphological Changes in Fish Gut in Response to Prebiotics and Probiotics Treatment to Improve Their Health Status: A Review. Animals (Basel) 2023; 13:2860. [PMID: 37760260 PMCID: PMC10525268 DOI: 10.3390/ani13182860] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal tract (GIT) promotes the digestion and absorption of feeds, in addition to the excretion of waste products of digestion. In fish, the GIT is divided into four regions, the headgut, foregut, midgut, and hindgut, to which glands and lymphoid tissues are associated to release digestive enzymes and molecules involved in the immune response and control of host-pathogens. The GIT is inhabited by different species of resident microorganisms, the microbiota, which have co-evolved with the host in a symbiotic relationship and are responsible for metabolic benefits and counteracting pathogen infection. There is a strict connection between a fish's gut microbiota and its health status. This review focuses on the modulation of fish microbiota by feed additives based on prebiotics and probiotics as a feasible strategy to improve fish health status and gut efficiency, mitigate emerging diseases, and maximize rearing and growth performance. Furthermore, the use of histological assays as a valid tool for fish welfare assessment is also discussed, and insights on nutrient absorptive capacity and responsiveness to pathogens in fish by gut morphological endpoints are provided. Overall, the literature reviewed emphasizes the complex interactions between microorganisms and host fish, shedding light on the beneficial use of prebiotics and probiotics in the aquaculture sector, with the potential to provide directions for future research.
Collapse
Affiliation(s)
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.D.M.); (M.M.)
| | | |
Collapse
|
30
|
Messina CM, Madia M, Manuguerra S, Espinosa-Ruiz C, Esteban MA, Santulli A. Dietary Inclusion of Halobacterium salinarum Modulates Growth Performances and Immune Responses in Farmed Gilthead Seabream ( Sparus aurata L.). Animals (Basel) 2023; 13:2743. [PMID: 37685007 PMCID: PMC10486991 DOI: 10.3390/ani13172743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The use of natural immunostimulants is considered the most promising alternative to promote fish health, productive performance and quality, increasing the aquaculture profitability, sustainability and social acceptance. The purpose of this study was to evaluate the effect of the integration of a potential probiotic strain, Halobacterium salinarum, belonging to the Archaea domain, in the formulated diets of farmed gilthead seabream (Sparus aurata L.) in terms of growth performances and immunity responses. The experiment was set up to test two different levels of inclusion of the bacteria in the diet: 0.05% (D1) and 0.1% (D2). The effects on fish growth performances; humoral (peroxidase, protease, antiprotease and IgM levels) and cellular immunity parameters (phagocytosis, respiratory burst and myeloperoxidase), along with bactericidal activity, were evaluated after 15 and 30 days of experimental feeding. The obtained results showed that the inclusion of H. salinarum at the highest concentration (D2 0.1%) improved growth performances, bactericidal activity against Vibrio anguillarum and some parameters related both to the humoral and cellular immune response, suggesting exploring other aspects of welfare in view of future supplementations of this probiotic strain in the diet of S. aurata.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (M.M.); (S.M.); (A.S.)
| | - Manfredi Madia
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (M.M.); (S.M.); (A.S.)
| | - Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (M.M.); (S.M.); (A.S.)
| | - Cristobal Espinosa-Ruiz
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (C.E.-R.); (M.A.E.)
| | - María Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (C.E.-R.); (M.A.E.)
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (M.M.); (S.M.); (A.S.)
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy
| |
Collapse
|
31
|
Rahman MA, Ashrafudoulla M, Akter S, Park SH, Ha SD. Probiotics and biofilm interaction in aquaculture for sustainable food security: A review and bibliometric analysis. Crit Rev Food Sci Nutr 2023; 64:12319-12335. [PMID: 37599629 DOI: 10.1080/10408398.2023.2249114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Aquaculture is one of the most significant food sources from the prehistoric period. As aquaculture intensifies globally, the prevalence and outbreaks of various pathogenic microorganisms cause fish disease and heavy mortality, leading to a drastic reduction in yield and substantial economic loss. With the modernization of the aquaculture system, a new challenge regarding biofilms or bacterial microenvironments arises worldwide, which facilitates pathogenic microorganisms to survive under unfavorable environmental conditions and withstand various treatments, especially antibiotics and other chemical disinfectants. However, we focus on the mechanistic association between those microbes which mainly form biofilm and probiotics in one of the major food production systems, aquaculture. In recent years, probiotics and their derivatives have attracted much attention in the fisheries sector to combat the survival strategy of pathogenic bacteria. Apart from this, Bibliometric analysis provides a comprehensive overview of the published literature, highlighting key research themes, emerging topics, and areas that require further investigation. This information is valuable for researchers, policymakers, and stakeholders in determining research priorities and allocating resources effectively.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Md Ashrafudoulla
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Shirin Akter
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| | - Si Hong Park
- Food Science and Technology Department, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- Food Science and Technology Department, Chung-Ang University, Anseong-Si, Republic of Korea
| |
Collapse
|
32
|
Kumar R, Huang MY, Chen CL, Wang HC, Lu HP. Resilience and probiotic interventions to prevent and recover from shrimp gut dysbiosis. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108886. [PMID: 37290613 DOI: 10.1016/j.fsi.2023.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
To counter the recurrent outbreaks of bacterial (acute hepatopancreatic necrosis disease; AHPND) and viral (white spot disease; WSD) shrimp diseases, which still remain a threat to the global industry, shrimp gut microbiota research has been gaining more attention in recent years, and the use of probiotics in aquaculture has had promising results in improving shrimp gut health and immunity. In this review based on our studies on AHPND and WSD, we summarize our current understanding of the shrimp gastrointestinal tract and the role of the microbiota in disease, as well as effects of probiotics. We focus particularly on the concept of microbiota resilience, and consider strategies that can be used to restore shrimp gut health by probiotic intervention at a crucial time during gut microbiota dysbiosis. Based on the available scientific evidence, we argue that the use of probiotics potentially has an important role in controlling disease in shrimp aquaculture.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Mei-Ying Huang
- Division of Aquaculture, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - Chih-Ling Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
33
|
Monzón-Atienza L, Bravo J, Serradell A, Montero D, Gómez-Mercader A, Acosta F. Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review. Animals (Basel) 2023; 13:2369. [PMID: 37508146 PMCID: PMC10376171 DOI: 10.3390/ani13142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
European sea bass production has increased in recent decades. This increase is associated with an annually rising demand for sea bass, which encourages the aquaculture industries to increase their production to meet that demand. However, this intensification has repercussions on the animals, causing stress that is usually accompanied by dysbiosis, low feed-conversion rates, and immunodepression, among other factors. Therefore, the appearance of pathogenic diseases is common in these industries after immunodepression. Seeking to enhance animal welfare, researchers have focused on alternative approaches such as probiotic application. The use of probiotics in European sea bass production is presented as an ecological, safe, and viable alternative in addition to enhancing different host parameters such as growth performance, feed utilization, immunity, disease resistance, and fish survival against different pathogens through inclusion in fish diets through vectors and/or in water columns. Accordingly, the aim of this review is to present recent research findings on the application of probiotics in European sea bass aquaculture and their effect on growth performance, microbial diversity, enzyme production, immunity, disease resistance, and survival in order to help future research.
Collapse
Affiliation(s)
- Luis Monzón-Atienza
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Jimena Bravo
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Antonio Gómez-Mercader
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
34
|
Coulibaly WH, Kouadio NR, Camara F, Diguță C, Matei F. Functional properties of lactic acid bacteria isolated from Tilapia (Oreochromis niloticus) in Ivory Coast. BMC Microbiol 2023; 23:152. [PMID: 37231432 DOI: 10.1186/s12866-023-02899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Probiotics have recently been applied in aquaculture as eco-friendly alternatives to antibiotics to improve fish health, simultaneously with the increase of production parameters. The present study aimed to investigate the functional potential of lactic acid bacteria (LAB) isolated from the gut of Tilapia (Oreochromis niloticus) originating from the aquaculture farm of Oceanologic Research Center in Ivory Coast. RESULTS Twelve LAB strains were identified by 16 S rDNA gene sequence homology analysis belonging to two genera Pediococcus (P. acidilactici and P. pentosaceus) and Lactobacillus (L. plantarum) with a predominance of P. acidilactici. Several aspects including functional, storage, and safety characteristics were taken into consideration in the selection process of the native LAB isolates as potential probiotics. All LAB isolates showed high antagonistic activity against bacterial pathogens like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. In addition, the LAB isolates exhibited different degrees of cell surface hydrophobicity in the presence of hexane, xylene, and chloroform as solvents and a good ability to form biofilm. The strong antioxidant activity expressed through the DPPH scavenging capacity of LAB intact cells and their cell-free supernatants was detected. LAB strains survived between 34.18% and 49.9% when exposed to low pH (1.5) and pepsin for 3 h. In presence of 0.3% bile salts, the growth rate ranged from 0.92 to 21.46%. Antibiotic susceptibility pattern of LAB isolates showed sensitivity or intermediate resistance to amoxicillin, cephalothin, chloramphenicol, imipenem, kanamycin, penicillin, rifampicin, streptomycin, tetracycline and resistance to oxacillin, gentamicin, and ciprofloxacin. No significant difference in antibiotic susceptibility pattern was observed between P. acidilactici and P. pentosaceus strains. The non-hemolytic activity was detected. Following the analysis of the enzyme profile, the ability of LAB isolates to produce either lipase or β-galactosidase or both enzymes was highlighted. Furthermore, the efficacy of cryoprotective agents was proved to be isolate-dependent, with LAB isolates having a high affinity for D-sorbitol and sucrose. CONCLUSION The explored LAB strains inhibited the growth of pathogens and survived after exposure to simulated gastrointestinal tract conditions. The safety and preservative properties are desirable attributes of these new probiotic strains hence recommended for future food and feed applications.
Collapse
Affiliation(s)
- Wahauwouélé Hermann Coulibaly
- Biotechnology and Food Microbiology Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| | - N'goran Richard Kouadio
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Fatoumata Camara
- Nutrition and Food Safety Laboratory, Food Science and Technology, Formation and Research Unit, University Nangui Abrogoua, 02 BP 801 Abidjan 02, Abidjan, Côte d'Ivoire
| | - Camelia Diguță
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania.
| | - Florentina Matei
- Applied Microbiology Laboratory, Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, 59 Mărăsti Blvd, Bucharest, 011464, Romania
| |
Collapse
|
35
|
Hasan I, Rimoldi S, Saroglia G, Terova G. Sustainable Fish Feeds with Insects and Probiotics Positively Affect Freshwater and Marine Fish Gut Microbiota. Animals (Basel) 2023; 13:1633. [PMID: 37238063 PMCID: PMC10215438 DOI: 10.3390/ani13101633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Aquaculture is the fastest-growing agricultural industry in the world. Fishmeal is an essential component of commercial fish diets, but its long-term sustainability is a concern. Therefore, it is important to find alternatives to fishmeal that have a similar nutritional value and, at the same time, are affordable and readily available. The search for high-quality alternatives to fishmeal and fish oil has interested researchers worldwide. Over the past 20 years, different insect meals have been studied as a potential alternate source of fishmeal in aquafeeds. On the other hand, probiotics-live microbial strains-are being used as dietary supplements and showing beneficial effects on fish growth and health status. Fish gut microbiota plays a significant role in nutrition metabolism, which affects a number of other physiological functions, including fish growth and development, immune regulation, and pathogen resistance. One of the key reasons for studying fish gut microbiota is the possibility to modify microbial communities that inhabit the intestine to benefit host growth and health. The development of DNA sequencing technologies and advanced bioinformatics tools has made metagenomic analysis a feasible method for researching gut microbes. In this review, we analyze and summarize the current knowledge provided by studies of our research group on using insect meal and probiotic supplements in aquafeed formulations and their effects on different fish gut microbiota. We also highlight future research directions to make insect meals a key source of proteins for sustainable aquaculture and explore the challenges associated with the use of probiotics. Insect meals and probiotics will undoubtedly have a positive effect on the long-term sustainability and profitability of aquaculture.
Collapse
Affiliation(s)
- Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (I.H.); (G.T.)
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (I.H.); (G.T.)
| | - Giulio Saroglia
- Medical Devices Area, Institute of Digital Technologies for Personalized Healthcare-MeDiTech, Scuola Universitaria Professionale della Svizzera Italiana, Via La Santa 1, CH-6962 Lugano, Switzerland;
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant, 3-21100 Varese, Italy; (I.H.); (G.T.)
| |
Collapse
|
36
|
Hoseinifar SH, Maradonna F, Faheem M, Harikrishnan R, Devi G, Ringø E, Van Doan H, Ashouri G, Gioacchini G, Carnevali O. Sustainable Ornamental Fish Aquaculture: The Implication of Microbial Feed Additives. Animals (Basel) 2023; 13:ani13101583. [PMID: 37238012 DOI: 10.3390/ani13101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621007, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, N9019 Tromsø, Norway
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
37
|
Zuo Z, Shang B, Liu H, Sun J, Li W, Liu Y, Sun J. Identification and evaluation of potential probiotics against skin-ulceration disease in the Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108769. [PMID: 37100310 DOI: 10.1016/j.fsi.2023.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
In this study, three highly pathogenic bacterial strains (Vibrio harveyi TB6, Vibrio alginolyticus TN1, and Vibrio parahaemolyticus TN3) were isolated from skin ulcers and intestines of diseased Chinese tongue sole (Cynoglossus semilaevis). The bacteria were investigated using hemolytic activity tests, in vitro co-culture with intestinal epithelial cells, and artificial infection of C. semilaevis. A further 126 strains were isolated from the intestines of healthy C. semilaevis. The three pathogens were used as indicator bacteria, and the antagonistic strains were identified from the 126 strains. The activities of exocrine digestive enzymes in the strains were also tested. Four strains with antibacterial and digestive enzyme activities were obtained and the best strains, Bacillus subtilis Y2 and Bacillus amyloliquefaciens Y9, were selected according to their ability to protect epithelial cells from infection. In addition, the effects of strains Y2 and Y9 at the individual level were investigated, finding that the activities of the immune-related enzymes superoxide dismutase, catalase, acid phosphatase, and peroxidase were significantly increased in the sera of the treatment group compared with the control group (p < 0.05). The specific growth rate (SGR, %) was also increased, especially in the Y2 group, and was significantly higher compared with the controls (p < 0.05). The result of the artificial infection test showed that the cumulative mortality within 72 h in the Y2 group was the lowest (50.5%), and in the Y9 group (68.5%) it was significantly lower than that in the control group (100%) (p < 0.05). Analysis of the intestinal microbial communities indicated that Y2 and Y9 could alter the composition of the intestinal flora, increasing both species richness and evenness, and inhibiting the growth of Vibrio in the intestine. These results suggested food supplemented with Y2 and Y9 could improve both immune function and disease resistance, as well as have a positive effect on the growth performance and the intestinal morphology of C. semilaevis.
Collapse
Affiliation(s)
- Zhihan Zuo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Bijiao Shang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Hongrui Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Jiacheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Wenyue Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Yichen Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, RP, China.
| |
Collapse
|
38
|
Bhatnagar A, Rathi P. Isolation and characterization of autochthonous probiotics from skin mucus and their in vivo validation with dietary probiotic bacteria on growth performance and immunity of Labeo calbasu (Hamilton, 1822). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:191-208. [PMID: 36622624 DOI: 10.1007/s10695-022-01168-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/23/2022] [Indexed: 05/04/2023]
Abstract
The present study was performed to isolate and identify antimicrobial bacteria from the skin mucus of Labeo calbasu and assess their effects as water additives alone and in synergism, with dietary probiotic bacteria Aneurinibacillus aneurinilyticus LC1 isolated from intestinal tracts of L. calbasu on physiology and survival of same fish. Eight treatments (T1-T8) were conducted in triplicate, containing 10 fishes (2.02 ± 0.01 g) in each treatment: T1, control group (diet without probiotics); T2-T4, a diet with water additive probiotics; Bacillus cereus LC1, B. albus LC7, and B. cereus LC10, respectively, at 1000 CFU ml-1; T5, a diet with dietary probiotic A. aneurinilyticus at 3000 CFU g-1, T6-T8, a diet with water additives Bacillus cereus LC1, B. albus LC7, and B. cereus LC10 at 1000 CFU ml-1 along with dietary probiotic A. aneurinilyticus at 3000 CFU g-1. Results revealed improved growth, nutritive physiology, immune response, water quality, and survival in fish of group T8 (fingerlings fed on a probiotic diet at 3000 CFU g-1 and reared in holding water treated with skin mucus bacteria B. cereus LC10 at 1000 CFU g-1) as compared to other treatments, suggesting autochthonous intestinal and cutaneous mucosal bacteria as robust candidates for their collective application in aquaculture.
Collapse
Affiliation(s)
- Anita Bhatnagar
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Pragati Rathi
- Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
39
|
Tseng KC, Huang HT, Huang SN, Yang FY, Li WH, Nan FH, Lin YJ. Lactobacillus plantarum isolated from kefir enhances immune responses and survival of white shrimp (Penaeus vannamei) challenged with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108661. [PMID: 36906049 DOI: 10.1016/j.fsi.2023.108661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Lactobacillus plantarum is known for its probiotics benefit to host, although the effects vary among strains. This study conducted a feeding experiment of three Lactobacillus strains, MRS8, MRS18 and MRS20, which were isolated from kefir and incorporated into the diets of shrimp to evaluate the effects of non-specific immunity, immune-related gene expression, and disease resistance of white shrimp (Penaeus vannamei) against Vibrio alginolyticus. To prepare the experimental feed groups, the basic feed was mixed with different concentrations of L. plantarum strains MRS8, MRS18, and MRS 20, which were incorporated at 0 CFU (control), 1 × 106 CFU (groups 8-6, 18-6, and 20-6), and 1 × 109 CFU (groups 8-9, 18-9, and 20-9) per gram of diet for an in vivo assay. During the rearing period for 28 days of feeding each group, immune responses, namely the total hemocyte count (THC), phagocytic rate (PR), phenoloxidase activity, and respiratory burst were examined on days 0, 1, 4, 7, 14, and 28. The results showed that groups 20-6, 18-9 and 20-9 improved THC, and groups 18-9 and 20-9 improved phenoloxidase activity and respiratory burst as well. The expression of immunity-related genes was also examined. Group 8-9 increased the expression of LGBP, penaeidin 2 (PEN2) and CP, group 18-9 increased the expression of proPO1, ALF, Lysozyme, penaeidin 3 (PEN3) and SOD, and group 20-9 increased the expression of LGBP, ALF, crustin, PEN2, PEN3, penaeidin 4 (PEN4) and CP (p < 0.05). Groups 18-6, 18-9, 2-6, and 20-9 were further used in the challenge test. After feeding for 7 days and 14 days, Vibrio alginolyticus was injected into white shrimp and observed the shrimp survival for 168 h. The results showed that compared to the control, all groups improved the survival rate. Especially, feeding group 18-9 for 14 days improved the survival rate of white shrimp (p < 0.05). After the challenge test for 14 days, the midgut DNA of survival white shrimps was extracted to analyze the colonization of L. plantarum. Among the groups, (6.61 ± 3.58) × 105 CFU/pre shrimp of L. plantarum in feeding group 18-9 and (5.86 ± 2.27) × 105 CFU/pre shrimp in group 20-9 were evaluated by qPCR. Taken together, group 18-9 had the best effects on the non-specific immunity, the immune-related gene expression, and the disease resistance, which might be due to the benefit of the probiotic colonization.
Collapse
Affiliation(s)
- Kuo-Chun Tseng
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Shu-Ning Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Fang-Yi Yang
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan.
| |
Collapse
|
40
|
Hosseini Dolatabad A, Heidary Dahooie J, Antucheviciene J, Azari M, Razavi Hajiagha SH. Supplier selection in the industry 4.0 era by using a fuzzy cognitive map and hesitant fuzzy linguistic VIKOR methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52923-52942. [PMID: 36843168 DOI: 10.1007/s11356-023-26004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Organizations will be increasingly concerned about maintaining their positions in today's changing world, the high-tech era, and the emergence of innovative technologies because of the industrial revolutions. Everyone has come to believe that to survive and continue their constructive roles, they must achieve competitive advantages by working based on the trends. It is undeniable that the introduction of Industry 4.0 has had a significant impact on enterprises, organizations, and, of course, supply chains. In the meantime, selecting a supplier is one of the main strategic decisions of the organization because choosing the right supplier leads to increasing profitability, improving market competition, better accountability, enhancing product quality, and reducing costs. While the issue of supplier evaluation has been one of the interesting topics for researchers in recent decades, its development in the fourth supply chain generation needs further consideration. In this regard, current technologies in the fourth-generation industrial revolution, methods, and criteria used in previous studies based on industry 4.0 and before that are reviewed separately. By reviewing previous articles and experts' opinions, thirteen sub-criteria considering industry 4.0 have been identified for selecting suppliers in three categories, economic, environmental, and social. The weight of each criterion has been determined using a set of fuzzy cognitive maps (FCMs) and considering the centrality of criteria in the concept of communication networks. To prioritize the suppliers, the hesitant fuzzy linguistic term sets (HFLTS) VIKOR method has been used in hesitant fuzzy linguistic terms. Finally, a case study is introduced to illustrate the effectiveness and usefulness of our integrated methodology and prioritize its four suppliers.
Collapse
Affiliation(s)
- Asana Hosseini Dolatabad
- Faculty of Management, University of Tehran, Jalal Al-E-Ahmad Ave., Nasr Bridge, Tehran, 14155-6311, Iran
| | - Jalil Heidary Dahooie
- Faculty of Management, University of Tehran, Jalal Al-E-Ahmad Ave., Nasr Bridge, Tehran, 14155-6311, Iran
| | - Jurgita Antucheviciene
- Department of Construction Management and Real Estate, Vilnius Gediminas Technical University, Sauletekio Al. 11, 10223, Vilnius, Lithuania.
| | - Mostafa Azari
- Faculty of Management, University of Tehran, Jalal Al-E-Ahmad Ave., Nasr Bridge, Tehran, 14155-6311, Iran
| | - Seyed Hossein Razavi Hajiagha
- Department of Management, Faculty of Management and Finance, Khatam University, Hakim Azam St., North Shiraz St., Mollasadra Ave., Tehran, 19395-3486, Iran
| |
Collapse
|
41
|
Zhao C, Men X, Dang Y, Zhou Y, Ren Y. Probiotics Mediate Intestinal Microbiome and Microbiota-Derived Metabolites Regulating the Growth and Immunity of Rainbow Trout (Oncorhynchus mykiss). Microbiol Spectr 2023; 11:e0398022. [PMID: 36916965 PMCID: PMC10101061 DOI: 10.1128/spectrum.03980-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Emerging evidence confirms using probiotics in promoting growth and immunity of farmed fish. However, the molecular mechanisms underlying the host-microbiome interactions mediated by probiotics are not fully understood. In this study, we used rainbow trout (Oncorhynchus mykiss) as a model to investigate the internal mechanisms of host-microbiome interactions influenced by two probiotic bacteria, Bacillus velezensis and Lactobacillus sakei. We carried out experiments, including intestinal histology, serum physiology, and transcriptome and combined intestinal microbiome and metabolite profiling. Our results showed that both probiotics had a positive effect on growth, immunity, serum enzyme activity, the gut microbiome, and resistance to Aeromonas salmonicida in rainbow trout. Moreover, the intestinal microbial structure was reshaped with increased relative abundance of potential beneficial bacteria, such as Ruminococcus, Lachnospiraceae ucg-004, Leptotrichia, Bacillus coagulans, Porphyromonadaceae, Anaerococcus, and Photobacterium in the B. velezensis group and Paenibacillaceae and Eubacterium hallii in the L. sakei group. Metabolomic profiling and transcriptome analysis revealed upregulated metabolites as biomarkers, i.e., sucrose and l-malic acid in the B. velezensis group, and N-acetyl-l-phenylalanine, N-acetylneuraminic acid, and hydroxyproline in the L. sakei group. Additionally, a multiomics combined analysis illustrated significant positive correlations between the relative abundance of microflora, metabolites, and gene expression associated with immunity and growth. This study highlights the significant role of probiotics as effectors of intestinal microbial activity and shows that different probiotics can have a species-specific effect on the physiological regulation of the host. These findings contribute to a better understanding of the complex host-microbiome interactions in rainbow trout and may have implications for the use of probiotics in aquaculture. IMPORTANCE Probiotics are kinds of beneficial live microbes that impart beneficial effects on the host. Recent studies have proven that when given supplementation with probiotics, farmed fish showed improved disease prevention and growth promotion. However, the underlying metabolic functions regarding their involvement in regulating growth phenotypes, nutrient utilization, and immune response are not yet well understood in the aquaculture field. Given the active interactions between the gut microbiota and fish immune and growth performance, we conducted the supplementation experiments with the probiotics Bacillus velezensis and Lactobacillus sakei. The results showed that probiotics mediated intestinal microbiome- and microbiota-derived metabolites regulating the growth and immunity of fish, and different probiotics participated in the species-specific physiological regulation of the host. This study contributed to a better understanding of the functional interactions associated with host health and gut microbiota species.
Collapse
Affiliation(s)
- Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xianhui Men
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yongji Dang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yangen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Yichao Ren
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
42
|
Rapoo SM, Budeli P, Thaoge ML. Recovery of Potential Starter Cultures and Probiotics from Fermented Sorghum (Ting) Slurries. Microorganisms 2023; 11:microorganisms11030715. [PMID: 36985287 PMCID: PMC10054160 DOI: 10.3390/microorganisms11030715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Fermented foods are thought to provide a source of probiotics that promote gut health. Consequently, isolation and characterization of fermented food strains and their applications in a controlled fermentation process or as probiotics present a new facet in this area of research. Therefore, the current study sought to identify dominant strains in sorghum-fermented foods (ting) and characterize their probiotic potential in vitro. Recovered isolates were identified as Lactobacillus helveticus, Lactobacillus amylolyticus, Lacticaseibacillus paracasei, Lacticaseibacillus paracasei subsp paracasei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Loigolactobacillus coryniformis and Loigolactobacillus coryniformis subsp torquens based on the their 16S rRNA sequences. Increased biomass was noted in seven out of nine under a low pH of 3 and a high bile concentration of 2% in vitro. Bactericidal activities of isolated LABs presented varying degrees of resistance against selected pathogenic bacteria ranging between (1.57 to 41 mm), (10 to 41 mm), and (11.26 to 42 mm) for Salmonella typhimurium ATTC 14028, Staphylococcus aureus ATTC 6538 and Escherichia coli ATTC8739, respectively. Ampicillin, erythromycin, mupirocin, tetracycline and chloramphenicol were able to inhibit growth of all selected LABs. Thus, isolates recovered from ting partially satisfy the potential candidacy for probiotics by virtue of being more tolerant to acid and bile, antibacterial activity and antibiotic resistance.
Collapse
|
43
|
Nakharuthai C, Boonanuntanasarn S, Kaewda J, Manassila P. Isolation of Potential Probiotic Bacillus spp. from the Intestine of Nile Tilapia to Construct Recombinant Probiotic Expressing CC Chemokine and Its Effectiveness on Innate Immune Responses in Nile Tilapia. Animals (Basel) 2023; 13:986. [PMID: 36978530 PMCID: PMC10044694 DOI: 10.3390/ani13060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aimed to investigate the potential probiotic Bacillus spp. from the intestine of Nile tilapia in order to construct a recombinant probiotic for the enhancement of the Nile tilapia immune response. One hundred bacterial isolates from the intestine of Nile tilapia were characterized for species identification using the 16s ribosomal RNA (rRNA). Only Bacillus isolates with exhibited antagonistic activity were investigated for their biological functions, which included protease-producing capacity, bile salts and pH tolerance, antibiotic susceptibility, and pathogenicity tests. According to the best results, Bacillus isolate B29, as closely related to B. subtilis, was selected to construct a recombinant probiotic for the delivery of CC chemokine protein (pBESOn-CC). The existence of recombinant probiotics was confirmed by Western blotting before the feeding trial. In addition, the CC chemokine mRNA level was quantified in the intestine of fish fed probiotics after 30 days of feeding. Total immunoglobulin, lysozyme activity, alternative complement 50 activity (ACH50), and phagocytic activity of fish fed either wild-type or recombinant probiotics were significantly increased, indicating that probiotics could stimulate the Nile tilapia immune system through different processes. Interestingly, the dietary supplementation of recombinant probiotics has a stronger immune response enhancement than the wild-type strain.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | | | | | | |
Collapse
|
44
|
Chouayekh H, Farhat-Khemakhem A, Karray F, Boubaker I, Mhiri N, Abdallah MB, Alghamdi OA, Guerbej H. Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass. Probiotics Antimicrob Proteins 2023; 15:30-43. [PMID: 35933471 DOI: 10.1007/s12602-022-09974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/18/2023]
Abstract
Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.
Collapse
Affiliation(s)
- Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia. .,Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia.
| | - Ameny Farhat-Khemakhem
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Insaf Boubaker
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia
| | - Hamadi Guerbej
- National Institute of Sea Sciences and Technologies, Monastir, Tunisia
| |
Collapse
|
45
|
Bahaddad SA, Almalki MHK, Alghamdi OA, Sohrab SS, Yasir M, Azhar EI, Chouayekh H. Bacillus Species as Direct-Fed Microbial Antibiotic Alternatives for Monogastric Production. Probiotics Antimicrob Proteins 2023; 15:1-16. [PMID: 35092567 PMCID: PMC8799964 DOI: 10.1007/s12602-022-09909-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/18/2023]
Abstract
Antibiotic growth promoters have been utilized for long time at subtherapeutic levels as feed supplements in monogastric animal rations. Because of their side-effects such as antibiotic resistance, reduction of beneficial bacteria in the gut, and dysbiosis, it is necessary to look for non-therapeutic alternatives. Probiotics play an important role as the key substitutes to antibacterial agents due to their many beneficial effects on the monogastric animal host. For instance, enhancement of the gut microbiota balance can contribute to improvement of feed utilization efficiency, nutrients absorption, growth rate, and economic profitability of livestock. Probiotics are defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host." They are available in diverse forms for use as feed supplements. Their utilization as feed additives assists in good digestion of feed ingredients and hence, making the nutrients available for promoting growth. Immunity can also be enhanced by supplementing probiotics to monogastrics diets. Moreover, probiotics can help in improving major meat quality traits and countering a variety of monogastric animals infectious diseases. A proper selection of the probiotic strains is required in order to confer optimal beneficial effects. The present review focuses on the general functional, safety, and technological screening criteria for selection of ideal Bacillus probiotics as feed supplements as well as their mechanism of action and beneficial effects on monogastric animals for improving production performance and health status.
Collapse
Affiliation(s)
- Shifa A Bahaddad
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Meshal H K Almalki
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
46
|
Diguță CF, Mihai C, Toma RC, Cîmpeanu C, Matei F. In Vitro Assessment of Yeasts Strains with Probiotic Attributes for Aquaculture Use. Foods 2022; 12:foods12010124. [PMID: 36613340 PMCID: PMC9818403 DOI: 10.3390/foods12010124] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate in vitro the probiotic potential of three yeasts strains (BB06, OBT05, and MT07) isolated from agro-food natural sources. Screening was performed, including several functional, technological, and safety aspects of the yeast strains, in comparison to a reference Saccharomyces boulardii, to identify the ones with suitable probiotic attributes in aquaculture. The yeast strains were identified by 5.8S rDNA-ITS region sequencing as Metschnikowia pulcherrima OBT05, Saccharomyces cerevisiae BB06, and Torulaspora delbrueckii MT07. All yeast strains were tolerant to different temperatures, sodium chloride concentrations, and wide pH ranges. S. cerevisiae BB06 showed a strong and broad antagonistic activity. Moreover, the S. cerevisiae strain exhibited a high auto-aggregation ability (92.08 ± 1.49%) and good surface hydrophobicity to hexane as a solvent (53.43%). All of the yeast strains have excellent antioxidant properties (>55%). The high survival rate in the gastrointestinal tract (GIT) can promote yeast isolates as probiotics. All yeast strains presented a resistance pattern to the antibacterial antibiotics. Non-hemolytic activity was detected. Furthermore, freeze-drying with cryoprotective agents maintained a high survival rate of yeast strains, in the range of 74.95−97.85%. According to the results obtained, the S. cerevisiae BB06 strain was found to have valuable probiotic traits.
Collapse
Affiliation(s)
- Camelia Filofteia Diguță
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Constanța Mihai
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
- Correspondence:
| | - Radu Cristian Toma
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Carmen Cîmpeanu
- Faculty of Land Reclamation and Environmental Engineering, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| | - Florentina Matei
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59, Mărăști Blvd., District 1, 011464 Bucharest, Romania
| |
Collapse
|
47
|
Xu Y, Huang Z, Zhang B, Yu C, Li L, Li X, Li Y. Intestinal bacterial community composition of juvenile Chinese mitten crab Eriocheir sinensis under different feeding times in lab conditions. Sci Rep 2022; 12:22206. [PMID: 36564429 PMCID: PMC9789113 DOI: 10.1038/s41598-022-26785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Feeding time is an important factor affecting the physiological activity and feeding rhythm of crustaceans. However, little is known about the factors and mechanisms contributing to variations in feeding time in aquatic species or their impacts. Moreover, the gut microbiome largely affects host physiology and is associated with diet. To investigate the effects of different feeding times on the composition of intestinal bacterial communities, high-throughput 16S rRNA sequencing was used to monitor the gut bacteria of the Chinese mitten crab Eriocheir sinensis over a 10-day period under different feeding times: 06:00 h, 12:00 h, 18:00 h, and 24:00 h. Weight gain of the day-fed groups was significantly higher than that of the night-fed groups. Two probiotics, Akkermansia muciniphila and Faecalibacterium prausnitzii, were detected in the intestines of crabs in the 12:00 group. In addition, the diversity and richness of the flora in the 12:00 group were slightly higher than those in the other treatment groups. These results collectively indicate that different feeding times change the intestinal flora composition of Chinese mitten crabs, and further identified specific feeding times associated with a more significant weight gain effect. Our findings provide important insights into improving farming strategies for Chinese mitten crabs.
Collapse
Affiliation(s)
- Yingkai Xu
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Ziwei Huang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Baoli Zhang
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Changyue Yu
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Lisong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Xiaodong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| | - Yingdong Li
- grid.412557.00000 0000 9886 8131Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Dongling Road 120, Shenyang, 110866 China
| |
Collapse
|
48
|
Enhancement of growth, innate immunity, and disease resistance by probiotic Enterococcus faecium MC-5 against Aeromonas hydrophila in Indian major carp Cirrhinus mrigala. Vet Immunol Immunopathol 2022; 253:110503. [DOI: 10.1016/j.vetimm.2022.110503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
|
49
|
Xin WG, Li XD, Lin YC, Jiang YH, Xu MY, Zhang QL, Wang F, Lin LB. Whole genome analysis of host-associated lactobacillus salivarius and the effects on hepatic antioxidant enzymes and gut microorganisms of Sinocyclocheilus grahami. Front Microbiol 2022; 13:1014970. [PMID: 36386721 PMCID: PMC9648147 DOI: 10.3389/fmicb.2022.1014970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/12/2022] [Indexed: 09/29/2023] Open
Abstract
As a fish unique to Yunnan Province in China, Sinocyclocheilus grahami hosts abundant potential probiotic resources in its intestinal tract. However, the genomic characteristics of the probiotic potential bacteria in its intestine and their effects on S. grahami have not yet been established. In this study, we investigated the functional genomics and host response of a strain, Lactobacillus salivarius S01, isolated from the intestine of S. grahami (bred in captivity). The results revealed that the total length of the genome was 1,737,623 bp (GC content, 33.09%), comprised of 1895 genes, including 22 rRNA operons and 78 transfer RNA genes. Three clusters of antibacterial substances related genes were identified using antiSMASH and BAGEL4 database predictions. In addition, manual examination confirmed the presence of functional genes related to stress resistance, adhesion, immunity, and other genes responsible for probiotic potential in the genome of L. salivarius S01. Subsequently, the probiotic effect of L. salivarius S01 was investigated in vivo by feeding S. grahami a diet with bacterial supplementation. The results showed that potential probiotic supplementation increased the activity of antioxidant enzymes (SOD, CAT, and POD) in the hepar and reduced oxidative damage (MDA). Furthermore, the gut microbial community and diversity of S. grahami from different treatment groups were compared using high-throughput sequencing. The diversity index of the gut microbial community in the group supplemented with potential probiotics was higher than that in the control group, indicating that supplementation with potential probiotics increased gut microbial diversity. At the phylum level, the abundance of Proteobacteria decreased with potential probiotic supplementation, while the abundance of Firmicutes, Actinobacteriota, and Bacteroidota increased. At the genus level, there was a decrease in the abundance of the pathogenic bacterium Aeromonas and an increase in the abundance of the potential probiotic bacterium Bifidobacterium. The results of this study suggest that L. salivarius S01 is a promising potential probiotic candidate that provides multiple benefits for the microbiome of S. grahami.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Mei-Yu Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, China
| |
Collapse
|
50
|
Leistikow KR, Beattie RE, Hristova KR. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. FRONTIERS IN ANTIBIOTICS 2022; 1:1003912. [PMID: 39816405 PMCID: PMC11732145 DOI: 10.3389/frabi.2022.1003912] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2025]
Abstract
The increasing global expansion of antimicrobial resistant infections warrants the development of effective antibiotic alternative therapies, particularly for use in livestock production, an agricultural sector that is perceived to disproportionately contribute to the antimicrobial resistance (AMR) crisis by consuming nearly two-thirds of the global antibiotic supply. Probiotics and probiotic derived compounds are promising alternative therapies, and their successful use in disease prevention, treatment, and animal performance commands attention. However, insufficient or outdated probiotic screening techniques may unintentionally contribute to this crisis, and few longitudinal studies have been conducted to determine what role probiotics play in AMR dissemination in animal hosts and the surrounding environment. In this review, we briefly summarize the current literature regarding the efficacy, feasibility, and limitations of probiotics, including an evaluation of their impact on the animal microbiome and resistome and their potential to influence AMR in the environment. Probiotic application for livestock is often touted as an ideal alternative therapy that might reduce the need for antibiotic use in agriculture and the negative downstream impacts. However, as detailed in this review, limited research has been conducted linking probiotic usage with reductions in AMR in agricultural or natural environments. Additionally, we discuss the methods, including limitations, of current probiotic screening techniques across the globe, highlighting approaches aimed at reducing antibiotic usage and ensuring safe and effective probiotic mediated health outcomes. Based on this information, we propose economic and logistical considerations for bringing probiotic therapies to market including regulatory roadblocks, future innovations, and the significant gaps in knowledge requiring additional research to ensure probiotics are suitable long-term options for livestock producers as an antibiotic alternative therapy.
Collapse
Affiliation(s)
- Kyle R. Leistikow
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Rachelle E. Beattie
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
| | | |
Collapse
|