1
|
Laiman V, Peng SW, Choridah L, Heriyanto DS, Yuliani FS, Lee KY, Lai CH, Chang JH, Lee YL, Ho SC, Wu SM, Han CL, Lin CW, Chung KF, Chuang HC. ITIH4 attenuates acute lung injury by Fe-containing particulate matter in mice via Hippo pathway in type II alveolar epithelial cells. Respir Res 2025; 26:201. [PMID: 40437524 PMCID: PMC12121068 DOI: 10.1186/s12931-025-03256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Metals in particulate matter (PM), like iron (Fe), were associated with lung injury. Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) was suggested to inhibit lung inflammation. However, the effect of metals in PM, particularly Fe, on lung inflammation involving ITIH4 remained unclear. METHODS We investigated the effects of recombinant ITIH4 (rITIH4) against acute lung injury in C57BL/6JNarl and B6.Sftpc-CreERT2;Ai14(RCL-tdT)-D mice exposed to Fe-containing PM. Mice were exposed to diesel exhaust particles (DEP) or soluble iron (FeCl₃) via intratracheal instillation, while rITIH4 treatment was administered intranasally after exposure. Lung function, Fe levels (both bulk and single-cell by inductively-coupled plasma mass spectrometry (ICP-MS) and single-cell ICP-MS, respectively), inflammatory cell infiltration, and Hippo pathway regulation in type II alveolar epithelial cells (AECII) were assessed. RESULTS We observed correlation between lung function changes and Fe levels, both in bulk and single-cell Fe in peripheral blood mononuclear cells. Single-cell RNA sequencing of the control group identified AECII-related cells characterized by high Sftpc, Sftpa1, Mzb1, B3 gnt5, Cacna1e, and Agbl1 expression. rITIH4 treatment in DEP-exposed mice restored Hippo pathway Cdh1, Itih4, Pdpn, Wwtr1, and Yap1 in AECII. rITIH4 reversed DEP- and Fe-induced increases in neutrophil infiltration, neutrophil-to-lymphocyte ratio, and monocyte depletion in bronchoalveolar lavage fluid (BALF). rITIH4 reduced BALF CXCL1/KC levels by DEP and serum 8-isoprostane levels by Fe. rITIH4 also reduced DEP-induced lung damage, increased ⍺-catenin and p-YAP in Fe-exposed mice, and pTAZ/TAZ ratio in both DEP- and Fe-exposed mice. rITIH4 increased pYAP/YAP ratio in DEP-exposed mice while decreasing LC3BII/I ratio in Fe-exposed mice. CONCLUSION ITIH4 attenuated acute lung injury in mice exposed to PM, specifically Fe, by modulating the Hippo pathway in AECII.
Collapse
Affiliation(s)
- Vincent Laiman
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lina Choridah
- Department of Radiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Didik Setyo Heriyanto
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Fara Silvia Yuliani
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Departments of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Wei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hsiao-Chi Chuang
- Collaboration Research Center for Precision Oncology Based Omics - PKR PrOmics, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
2
|
Zheng P, Jia Q, Li Z, Jiang HB, Zhou L. Enhanced osteogenic and angiogenic capabilities of adipose-derived stem cells in fish collagen scaffolds for treatment of femoral head osteonecrosis. Sci Rep 2025; 15:18300. [PMID: 40419685 DOI: 10.1038/s41598-025-03015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating condition that often leads to femoral head collapse due to insufficient blood supply and impaired bone regeneration. However, effective treatment options for this condition are limited. This study explored a novel fish collagen (FC) scaffold combined with adipose-derived stem cells (ADSCs) to enhance osteogenesis and angiogenesis in ONFH. ADSCs were isolated and cultured on FC scaffolds to evaluate their biocompatibility and differentiation capacity. Osteogenic and angiogenic differentiation potentials were assessed in vitro, and the FC/ADSC combination was further evaluated in vivo using a rat model of ONFH. The molecular mechanisms were investigated via gene expression profiling and Hippo signaling pathway analysis. The FC scaffolds promoted ADSCs adhesion, proliferation, and migration without cytotoxicity. In vitro, FC/ADSCs significantly enhanced mineralization and capillary-like structure formation compared to the controls. FC/ADSCs improved bone regeneration and neovascularization in the femoral head in vivo, as confirmed by histological and immunohistochemical analyses. Mechanistically, the Hippo pathway is activated, increasing HIF-1α expression, which enhances osteogenic and angiogenic differentiation. FC scaffolds combined with ADSCs provide a promising therapeutic strategy for ONFH by facilitating bone regeneration and vascularization through the p-YAP/HIF-1α/VEGF axis. This scaffold-cell approach represents a potential advancement in ONFH treatment.
Collapse
Affiliation(s)
- Pinxuan Zheng
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Jia
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
- The CONVERSATIONALIST club & Department of Dental Digitalization, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China
| | - Zhongzhe Li
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China
| | - Heng Bo Jiang
- The CONVERSATIONALIST club & Department of Dental Digitalization, School of Stomatology, Shandong First Medical University, Jinan, Shandong, China.
| | - Lu Zhou
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, China.
| |
Collapse
|
3
|
Ciuba K, Piotrowska A, Chaudhury D, Dehingia B, Duński E, Behr R, Soroczyńska K, Czystowska-Kuźmicz M, Abbas M, Bulanda E, Gawlik-Zawiślak S, Pietrzak S, Figiel I, Włodarczyk J, Verkhratsky A, Niedbała M, Kaspera W, Wypych T, Wilczyński B, Pękowska A. Molecular signature of primate astrocytes reveals pathways and regulatory changes contributing to human brain evolution. Cell Stem Cell 2025; 32:426-444.e14. [PMID: 39909043 DOI: 10.1016/j.stem.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/08/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025]
Abstract
Astrocytes contribute to the development and regulation of the higher-level functions of the brain, the critical targets of evolution. However, how astrocytes evolve in primates is unsettled. Here, we obtain human, chimpanzee, and macaque induced pluripotent stem-cell-derived astrocytes (iAstrocytes). Human iAstrocytes are bigger and more complex than the non-human primate iAstrocytes. We identify new loci contributing to the increased human astrocyte. We show that genes and pathways implicated in long-range intercellular signaling are activated in the human iAstrocytes and partake in controlling iAstrocyte complexity. Genes downregulated in human iAstrocytes frequently relate to neurological disorders and were decreased in adult brain samples. Through regulome analysis and machine learning, we uncover that functional activation of enhancers coincides with a previously unappreciated, pervasive gain of "stripe" transcription factor binding sites. Altogether, we reveal the transcriptomic signature of primate astrocyte evolution and a mechanism driving the acquisition of the regulatory potential of enhancers.
Collapse
Affiliation(s)
- Katarzyna Ciuba
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Piotrowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Debadeep Chaudhury
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bondita Dehingia
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Eryk Duński
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Platform Stem Cell Biology and Regeneration, Kellnerweg 4, 37077 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Lower Saxony, 37077 Göttingen, Germany
| | - Karolina Soroczyńska
- Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | | | - Misbah Abbas
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Edyta Bulanda
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Sylwia Gawlik-Zawiślak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Sylwia Pietrzak
- Department of Genetics Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Neurosciences, University of the Basque Country, CIBERNED 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania
| | - Marcin Niedbała
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Plac Medyków 141-200 Sosnowiec, Poland
| | - Tomasz Wypych
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Bartosz Wilczyński
- Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
4
|
Wang Q, Hao W, Guo C, Cao H, Wang B, Li X, Yu R, Xu L, Li J. The regenerative wound healing effects and molecular mechanism of Isaria cicadae Miquel rice fermentation extract. Appl Microbiol Biotechnol 2025; 109:40. [PMID: 39928145 PMCID: PMC11811436 DOI: 10.1007/s00253-025-13412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/16/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
Human skin wounds primarily heal through reparative wound healing without pilosebaceous units or other appendages, rather than regenerative wound healing. Hair follicle (HF) regeneration is a significant challenge for skin wound healing. The effects and underlying mechanisms of Isaria cicadae Miquel rice fermentation extract (IMFRE) remain unclear, although it has anti-inflammatory, antioxidant, and reparative effects on oxidative damage in keratinocytes. We assessed the regenerative wound healing ability of IMFRE and its related molecular mechanisms through experimental validation and network pharmacology analysis. Our findings suggest that IMFRE could be an important potential solution for regenerative wound healing of skin hair follicle by utilizing the Hippo pathway regulatory mechanism. KEY POINTS: • IMFRE was found to significantly enhance the wound healing rate of mouse skin. • CK15 and CD34 were significantly increased by high-dose IMFRE intervention. • IMFRE could inhibit EGFR, GPCR, and Integrin expression.
Collapse
Affiliation(s)
- Qin Wang
- Wuxi Institute of Inspection, Testing and Certification, Wuxi, Jiangsu, China
| | - Wenwen Hao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Beiqi Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingyang Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruilian Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Li Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Li
- Wuxi Institute of Inspection, Testing and Certification, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
6
|
Zheng G, Yan Z, Zou J, Zou X, Chai K, Zhang G. AR and YAP crosstalk: impacts on therapeutic strategies in prostate cancer. Front Oncol 2025; 15:1520808. [PMID: 39963114 PMCID: PMC11830605 DOI: 10.3389/fonc.2025.1520808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer ranks as one of the most common types of cancer affecting men worldwide, and its progression is shaped by a diverse array of influencing factors. The AR signaling pathway plays a pivotal role in the pathogenesis of prostate cancer. While existing anti-androgen treatments show initial efficacy, they ultimately do not succeed in halting the advancement to CRPC. Recent studies have identified alterations in the Hippo-YAP signaling pathway within prostate cancer, highlighting intricate crosstalk with the AR signaling pathway. In this review, we examine the interactions and underlying mechanisms between AR and YAP, the key molecules in these two signaling pathways. AR regulates the stability and function of YAP by modulating its transcription, translation, and phosphorylation status, while YAP exerts both promotional and inhibitory regulatory effects on AR. Based on these findings, this paper investigates their significant roles in the onset, progression, and therapeutic resistance of prostate cancer, and discusses the clinical potential of YAP in prostate cancer treatment.
Collapse
Affiliation(s)
- Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Lee H, Cho SW, Cha HS, Tae K, Choi CY. Transient activation of YAP/TAZ confers resistance to morusin-induced apoptosis. BMC Mol Cell Biol 2025; 26:4. [PMID: 39833669 PMCID: PMC11744988 DOI: 10.1186/s12860-025-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The Hippo signaling pathway involves a kinase cascade that controls phosphorylation of the effector proteins YAP and TAZ, leading to regulation of cell growth, tissue homeostasis, and apoptosis. Morusin, a compound extracted from Morus alba, has shown potential in cancer therapy by targeting multiple signaling pathways, including the PI3K/Akt/mTOR, JAK/STAT, MAPK/ERK, and apoptosis pathways. This study explores the effects of morusin on YAP activation and its implications for apoptosis resistance. RESULTS Our investigation revealed that morusin induces transient YAP activation, characterized by the dephosphorylation of YAP at S127 and nuclear localization, followed by gradual rephosphorylation in multiple cancer cells. Notably, this activation occurs independently of the canonical Hippo pathway and involves the LATS1/2, MINK1, and MAPK pathways during the YAP inactivation stage. Furthermore, morusin-induced stress granule formation was significantly impaired in YAP/TAZ-depleted cells, suggesting a role in apoptosis resistance. Additionally, the expression of constitutively active MINK1 maintained YAP activation and reduced apoptosis, indicating that prolonged YAP activation can enhance resistance to cell death. CONCLUSIONS These findings suggest that YAP/TAZ are crucial in resistance to morusin-induced apoptosis, and targeting YAP/TAZ could enhance the anti-cancer efficacy of morusin. Our study provides new insights into the molecular mechanisms of morusin, highlighting potential therapeutic strategies against cancer by disrupting apoptosis resistance.
Collapse
Affiliation(s)
- Hoyeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo Sun Cha
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kun Tae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
8
|
Li X, Zhou J, Tang NX, Chai Y, Zhou M, Gao A, Lu Z, Min H. Molecular Mechanisms of Synergistic Effect of PRIMA-1 met and Oxaliplatin in Colorectal Cancer With Different p53 Status. Cancer Med 2025; 14:e70530. [PMID: 39757707 PMCID: PMC11702439 DOI: 10.1002/cam4.70530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The toxicity and drug resistance associated with oxaliplatin (L-OHP) limit its long-term use for colorectal cancer (CRC) patients. p53 mutation is a common genetic trait of CRC. PRIMA-1met (APR-246, eprenetapopt) restores the DNA-binding capacity of different mutant P53 proteins. PRIMA-1met has progressed to the Phase III clinical trial. Our study explores the combination therapy of PRIMA-1met and L-OHP for CRC with different p53 status. METHODS Cell viability was assessed with Cell Counting Kit-8 (CCK-8) assay and combination index (CI) was calculated using The Chou-Talalay method. We also employed wound healing assay and colony formation assay to determine the effect of L-OHP, PRIMA-1met and their combination. Weighted gene co-expression network analysis (WGCNA) of RNA-seq data was conducted to identify key modules and central genes related to different treatment modalities. Xenograft CRC mouse model was used to assess the combination treatment in vivo. RESULTS Our findings showed heightened cytotoxicity and inhibition of migration, and colony formation in CRC cells treated with both drugs, irrespective of p53 status, presenting a promising avenue for addressing L-OHP resistance and toxicity. RNA-seq analysis revealed differential responses between p53-wide type HCT116 and p53-mutant DLD-1 cells, with pathway alterations implicated in tumorigenesis. WGCNA identified key modules and hub genes associated with combination therapy response. In vivo studies demonstrated enhanced efficacy of combined therapy over PRIMA-1met alone, while mitigating L-OHP-induced toxicity. CONCLUSIONS In summary, our research reveals the differential molecular mechanisms of combined PRIMA-1met and L-OHP in CRC with wild type p53 and mutant p53. Our data not only demonstrate that this combined regimen exerts synergistic anti-CRC effect in vitro and in vivo, but also suggest the benefit of PRIMA-1met on prevention of L-OHP-related side effects. These findings underscore the clinical potential of PRIMA-1met-L-OHP combination therapy in CRC, offering enhanced efficacy and reduced toxicity, warranting further clinical investigation.
Collapse
Affiliation(s)
- Xiao‐lan Li
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuPeople's Republic of China
| | - Jianbiao Zhou
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- NUS Centre for Cancer Research, National University of SingaporeSingapore
| | | | - Yi Chai
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Meng Zhou
- Changzhou No. 4 People's HospitalChangzhou CityJiangsu ProvincePeople's Republic of China
| | - Ai‐di Gao
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuPeople's Republic of China
| | - Zhong‐kai Lu
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuPeople's Republic of China
| | - Han Min
- Department of GastroenterologyThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal HospitalSuzhouJiangsuPeople's Republic of China
| |
Collapse
|
9
|
Li C, Liu X, Chen X, Zhang J, Liao Y, Fan Z, Zhang X. Bu-Sui-Dan Enhances Osteoblast Differentiation by Upregulating VGLL4 to Counteract TEAD4-Mediated RUNX2 Transcription Suppression in Ovariectomized Rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118690. [PMID: 39142621 DOI: 10.1016/j.jep.2024.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postmenopausal osteoporosis (PMOP) has been considered as a major causative factor for bone-joint pain and inducing pathologic fractures. Bu-Sui-Dan (BSD), a classic ancient herbal formula, has been shown to exhibit osteoprotective effects by promoting bone marrow development and bone growth. However, the exact mechanism of BSD are still unexplored. AIM OF STUDY The study aimed to investigate the protective effect of BSD against osteoporotic injury, and to explore whether BSD regulated BMSCs' osteogenic differentiation by targeting VGLL4, which in turn improved PMOP. MATERIALS AND METHODS The anti-osteoporotic effect of BSD was studied in ovariectomized (OVX) rats and bone marrow mesenchymal stem cells (BMSCs). Micro-CT imaging and HE staining were performed, and the levels of osteogenic protein RUNX2 and osteogenesis-related factor VGLL4 were determined. Co-immunoprecipitation (Co-IP) was further employed to delve into the effects of BSD on the interactions between TEAD4 and RUNX2. The key osteogenic factors 1ALP, COLl1A1, and Osterix expression were detected by RT-qPCR. Co-IP and proximity ligation assay (PLA) were employed to scrutinize the influence of BSD on TEAD4 and RUNX2 inter-binding. Moreover, VGLL4 knockdown in BMSCs was conducted to confirm the role of VGLL4 in the therapeutic mechanism of BSD. RESULTS BSD showed a dose-dependent protective effect against osteoporotic injury, as evidenced by improvement in bone volume, bone microarchitecture, and histomorphometry. Additionally, BSD treatment increased the levels of RUNX2 and its downstream target genes including ALP, COL1A1, and Osterix. Moreover, BSD upregulated VGLL4 expression and lessened TEAD4-RUNX2 interactions. In BMSCs experiment, BSD-containing serum could promote osteogenic differentiation of BMSCs, boosted the expression of osteogenesis-related factors and VGLL4 level. The knockdown of VGLL4 in BMSCs diminished the promotion effect of BSD in osteoblast differentiation, suggesting that VGLL4 play a vital role in the therapeutic effects exerted by BSD. CONCLUSION BSD ameliorated osteoporosis injury and promoted osteoblast differentiation through upregulation of VGLL4 levels, which in turn antagonized TEAD4-mediated RUNX2 transcriptional repression. Our study implied that BSD may be an osteoporosis therapeutic agent.
Collapse
Affiliation(s)
- Chao Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China.
| | - Xiaofeng Liu
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Xi Chen
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Jiayan Zhang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Yitao Liao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Zhihong Fan
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Xian Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
10
|
Semik-Gurgul E, Pawlina-Tyszko K, Gurgul A, Szmatoła T, Rybińska J, Ząbek T. In search of epigenetic hallmarks of different tissues: an integrative omics study of horse liver, lung, and heart. Mamm Genome 2024; 35:600-620. [PMID: 39143382 PMCID: PMC11522055 DOI: 10.1007/s00335-024-10057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
DNA methylation and microRNA (miRNA) expression are epigenetic mechanisms essential for regulating tissue-specific gene expression and metabolic processes. However, high-resolution transcriptome, methylome, or miRNAome data is only available for a few model organisms and selected tissues. Up to date, only a few studies have reported on gene expression, DNA methylation, or miRNA expression in adult equine tissues at the genome-wide level. In the present study, we used RNA-Seq, miRNA-seq, and reduced representation bisulfite sequencing (RRBS) data from the heart, lung, and liver tissues of healthy cold-blooded horses to identify differentially expressed genes (DEGs), differentially expressed miRNA (DE miRNA) and differentially methylated sites (DMSs) between three types of horse tissues. Additionally, based on integrative omics analysis, we described the observed interactions of epigenetic mechanisms with tissue-specific gene expression alterations. The obtained data allowed identification from 4067 to 6143 DMSs, 9733 to 11,263 mRNAs, and 155 to 185 microRNAs, differentially expressed between various tissues. We pointed out specific genes whose expression level displayed a negative correlation with the level of CpG methylation and miRNA expression and revealed biological processes that they enrich. Furthermore, we confirmed and validated the accuracy of the Next-Generation Sequencing (NGS) results with bisulfite sequencing PCR (BSP) and quantitative PCR (qPCR). This comprehensive analysis forms a strong foundation for exploring the epigenetic mechanisms involved in tissue differentiation, especially the growth and development of the equine heart, lungs, and liver.
Collapse
Affiliation(s)
- Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland.
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Justyna Rybińska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Ząbek
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| |
Collapse
|
11
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
12
|
Yarmohammadi F, Karimi G. Serum and glucocorticoid-regulated kinase 1 (SGK1) as an emerging therapeutic target for cardiac diseases. Pharmacol Res 2024; 208:107369. [PMID: 39209082 DOI: 10.1016/j.phrs.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Cardiac diseases encompass a wide range of conditions that affect the structure and function of the heart. These conditions are a leading cause of morbidity and mortality worldwide. The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a serine/threonine kinase that plays a significant role in various cellular processes, including cell survival and stress response. Alterations in SGK1 activity can have significant impacts on health and disease. Multiple research findings have indicated that SGK1 is associated with heart disease due to its involvement in cardiac hypertrophy and fibrosis. This article reviews different signaling pathways associated with SGK1 activity in various heart conditions, including the SGK1/NF-κB and PI3K/SGK1 pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Guo P, Yang R, Zhong S, Ding Y, Wu J, Wang Z, Wang H, Zhang J, Tu N, Zhou H, Chen S, Wang Q, Li D, Chen W, Chen L. Urolithin A attenuates hexavalent chromium-induced small intestinal injury by modulating PP2A/Hippo/YAP1 pathway. J Biol Chem 2024; 300:107669. [PMID: 39128717 PMCID: PMC11408861 DOI: 10.1016/j.jbc.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.
Collapse
Affiliation(s)
- Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nannan Tu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Graham K, Lienau P, Bader B, Prechtl S, Naujoks J, Lesche R, Weiske J, Kuehnlenz J, Brzezinka K, Potze L, Zanconato F, Nicke B, Montebaur A, Bone W, Golfier S, Kaulfuss S, Kopitz C, Pilari S, Steuber H, Hayat S, Kamburov A, Steffen A, Schlicker A, Buchgraber P, Braeuer N, Font NA, Heinrich T, Kuhnke L, Nowak-Reppel K, Stresemann C, Steigemann P, Walter AO, Blotta S, Ocker M, Lakner A, von Nussbaum F, Mumberg D, Eis K, Piccolo S, Lange M. Discovery of YAP1/TAZ pathway inhibitors through phenotypic screening with potent anti-tumor activity via blockade of Rho-GTPase signaling. Cell Chem Biol 2024; 31:1247-1263.e16. [PMID: 38537632 DOI: 10.1016/j.chembiol.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 07/21/2024]
Abstract
This study describes the identification and target deconvolution of small molecule inhibitors of oncogenic Yes-associated protein (YAP1)/TAZ activity with potent anti-tumor activity in vivo. A high-throughput screen (HTS) of 3.8 million compounds was conducted using a cellular YAP1/TAZ reporter assay. Target deconvolution studies identified the geranylgeranyltransferase-I (GGTase-I) complex as the direct target of YAP1/TAZ pathway inhibitors. The small molecule inhibitors block the activation of Rho-GTPases, leading to subsequent inactivation of YAP1/TAZ and inhibition of cancer cell proliferation in vitro. Multi-parameter optimization resulted in BAY-593, an in vivo probe with favorable PK properties, which demonstrated anti-tumor activity and blockade of YAP1/TAZ signaling in vivo.
Collapse
Affiliation(s)
- Keith Graham
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Prechtl
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Jan Naujoks
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Joerg Weiske
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Julia Kuehnlenz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Krzysztof Brzezinka
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Lisette Potze
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Francesca Zanconato
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Barbara Nicke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Anna Montebaur
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Wilhelm Bone
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sven Golfier
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefan Kaulfuss
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Charlotte Kopitz
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sabine Pilari
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Holger Steuber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Sikander Hayat
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Atanas Kamburov
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Andreas Schlicker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Philipp Buchgraber
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Nico Braeuer
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Nuria Aiguabella Font
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Tobias Heinrich
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Lara Kuhnke
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Katrin Nowak-Reppel
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Patrick Steigemann
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Annette O Walter
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Simona Blotta
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Matthias Ocker
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Ashley Lakner
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Martin Lange
- Bayer AG, Pharmaceuticals, Research & Development, Muellerstr. 178, 13353 Berlin, Germany; Nuvisan ICB GmbH, Muellerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
15
|
Su W, Guo Y, Wang Q, Ma L, Zhang Q, Zhang Y, Geng Y, Jin T, Guo J, Yang R, Niu Z, Ren L, Wang Y, Ning Z, Li W, He W, Sun J, Li T, Li Z, Shan H, Liang H. YAP1 inhibits the senescence of alveolar epithelial cells by targeting Prdx3 to alleviate pulmonary fibrosis. Exp Mol Med 2024; 56:1643-1654. [PMID: 38945958 PMCID: PMC11297023 DOI: 10.1038/s12276-024-01277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 07/02/2024] Open
Abstract
The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qianqian Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Lu Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Qing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yiding Geng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Ruoxuan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Zhihui Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Lingxue Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Zhiwei Ning
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Wenyue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
16
|
Chen L, Li C, Li B, Zhou X, Bai Y, Zou X, Zhou Z, He Q, Chen B, Wang M, Xue Y, Jiang Z, Feng J, Zhou T, Liu Z, Xu P. Evolutionary divergence of subgenomes in common carp provides insights into speciation and allopolyploid success. FUNDAMENTAL RESEARCH 2024; 4:589-602. [PMID: 38933191 PMCID: PMC11197550 DOI: 10.1016/j.fmre.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 06/28/2024] Open
Abstract
Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyu Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bijun Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoqing Zou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhixiong Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Baohua Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Mei Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yaguo Xue
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhou Jiang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jianxin Feng
- Henan Academy of Fishery Science, Zhengzhou 450044, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse 13244, USA
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
17
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
18
|
Ma L, Gao F, Dong W, Song Q, Jia Y. Association Study between SNPs in MST1 and MST2 and H. pylori Infection as well as Noncardia Gastric Carcinogenesis. Dig Dis 2024; 42:230-239. [PMID: 38295774 DOI: 10.1159/000536507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/26/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Gastric cancer (GC) remains a global health challenge, and H. pylori infection is a main risk factor for noncardia GC. The present study aimed to investigate the association between single nucleotide polymorphisms (SNPs) in mammalian sterile 20-like kinase 1 (MST1) and MST2, H. pylori (H. pylori) infection, and the risk of noncardia gastric cancer (GC). METHODS A case-control study was conducted using enzyme-linked immunosorbent assay (ELISA) and TaqMan method to detect the titer of anti-H. pylori antibody in normal human serum and genotype 9 SNPs of MST1 and MST2 genes among 808 samples. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between SNPs and H. pylori infection, as well as the risk of noncardia gastric cancer in codominant, dominant, overdominant, recessive, and log-additive genetic models. Haplotypes were constructed using the Haploview 4.2 software. RESULTS The CC genotype of MST2 SNP rs10955176 was associated with a reduced risk of H. pylori infection compared to the TT + CT genotype. None of other SNPs were associated with H. pylori infection. The TT genotype of MST2 SNP rs7827435 was associated with a reduced risk of noncardia gastric cancer compared to the AA + AT genotype. None of the SNPs were associated with noncardia gastric cancer. There were no associations between haplotypes and H. pylori infection or the risk of noncardia gastric cancer. CONCLUSIONS The CC genotype of rs10955176 and the TT genotype of rs7827435 may serve as protective factors against H. pylori infection and noncardia gastric cancer risk, respectively.
Collapse
Affiliation(s)
- Licong Ma
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Fang Gao
- School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou, China
| | - Wenjie Dong
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Qiang Song
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| | - Yanbin Jia
- School of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, China
| |
Collapse
|
19
|
Wang H, Zhang Y, Zhong B, Geng Y, Hao J, Jin Q, Hou W. Cysteine and glycine-rich protein 2 retards platelet-derived growth factor-BB-evoked phenotypic transition of airway smooth muscle cells by decreasing YAP/TAZ activity. Cell Biochem Funct 2024; 42:e3896. [PMID: 38081793 DOI: 10.1002/cbf.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Hao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoyan Jin
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Hou
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
21
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
22
|
Ma M, Zhong Z, Zhu Y, Gu Y, Jin R, Meng Z, Wang Y, Yu FX. Phosphorylation of NF2 at Serine-13 by MAP4K family kinases mediates pathological angiogenesis. Protein Cell 2023; 14:137-142. [PMID: 36929007 PMCID: PMC10019571 DOI: 10.1093/procel/pwac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mingyue Ma
- Institute of Pediatrics, Children’s Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
23
|
Nikołajuk A, Stefanowicz M, Strączkowski M, Karczewska-Kupczewska M. Changes in Adipose Tissue Gene Expression of the Core Components of the Hippo Signaling Pathway in Young Adults with Uncomplicated Overweight or Obesity Following Weight Loss. J Nutr 2023; 153:665-672. [PMID: 36805181 DOI: 10.1016/j.tjnut.2023.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Appropriate adipogenesis leads to the "healthy" expansion of adipose tissue and is a crucial component in maintaining metabolic homeostasis. The Hippo signaling network may balance adipocyte proliferation/differentiation regulating adipogenic footpath. OBJECTIVES Our study aimed to assess subcutaneous adipose tissue (SAT) expression of genes involved in Hippo signaling network in subjects with marked overweight or obesity after dietary intervention (DI) in relation to obesity and insulin sensitivity. METHODS Forty overweight or obese subjects (O/O) [mean ± SD age 33 ± 7 y, 45% men, BMI (in kg/m2) 32.9 ± 3.1] completed DI [low-calorie diet (20 kcal/kg of proper body weight) for 12 wks]. The control group comprising 20 normal-weight subjects (mean ± SD age: 24 ± 2 y, 40% men, BMI: 22.4 ± 2.3 ) was examined at baseline only. Hyperinsulinemic-euglycemic clamp and SAT biopsy with gene expression analysis were performed. Student's t-test for unpaired and paired samples and Pearson correlation analysis were applied. This is an exploratory analysis of the DI program. RESULTS SAT mRNA expression of mammalian sterile 20-like kinase 2 (MST2) encoded by serine/threonine kinase 3 gene (STK3)-->, large tumor suppressor kinase 2 (LATS2), and salvador family WW domain containing protein 1 (SAV1), the upstream members of the Hippo pathway, were decreased (21%, 40%, and 36%, respectively) in O/O in comparison with weight subjects individuals before DI (all P < 0.05). At baseline, positive correlations between SAT SAV1, LATS2 expression and adiponectin (ADIPOQ) (r = 0.50, P < 0.001; r = 0.53, P = 0.004, respectively) and solute carrier family 2 member 4 (SLC2A4) (r = 0.35, P = 0.007; r = 0.28, P = 0.03, respectively) expression were observed in the entire study group. Body weight of the O/O group decreased during DI (11.2 ± 3.8 kg, P < 0.001), and there was an increase in insulin sensitivity (by 27%) and SAT expression of STK3, LATS2 (both by 19%), and SAV1 (by 26%) (all P < 0.05). After DI, SAT SLC2A4 expression was correlated with STK3 (r = 0.47, P = 0.003), LATS2 (r = 0.56, P < 0.001), and yes-associated protein (r = 0.50, P = 0.001) expression. CONCLUSIONS Obesity is associated with altered mRNA expression of upstream effectors of the Hippo pathway in SAT in young adults. DI may improve adipogenic capacity. J Nutr 20XX;xx:xx-xx.
Collapse
Affiliation(s)
- Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
24
|
Molecular insights of Hippo signaling in the chick developing lung. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194904. [PMID: 36572276 DOI: 10.1016/j.bbagrm.2022.194904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hippo signaling pathway and its effector YAP have been recognized as an essential growth regulator during embryonic development. Hippo has been studied in different contexts; nevertheless, its role during chick lung branching morphogenesis remains unknown. Therefore, this work aims to determine Hippo role during early pulmonary organogenesis in the avian animal model. The current study describes the spatial distribution of Hippo signaling members in the embryonic chick lung by in situ hybridization. Overall, their expression is comparable to their mammalian counterparts. Moreover, the expression levels of phosphorylated-YAP (pYAP) and total YAP revealed that Hippo signaling is active in the embryonic chick lung. Furthermore, the presence of pYAP in the cytoplasm demonstrated that the Hippo machinery distribution is maintained in this tissue. In vitro studies were performed to assess the role of the Hippo signaling pathway in lung branching. Lung explants treated with a YAP/TEAD complex inhibitor (verteporfin) displayed a significant reduction in lung size and branching and decreased expression of ctgf (Hippo target gene) compared to the control. This approach also revealed that Hippo seems to modulate the expression of key molecular players involved in lung branching morphogenesis (sox2, sox9, axin2, and gli1). Conversely, when treated with dobutamine, an upstream regulator that promotes YAP phosphorylation, explant morphology was not severely affected. Overall, our data indicate that Hippo machinery is present and active in the early stages of avian pulmonary branching and that YAP is likely involved in the regulation of lung growth.
Collapse
|
25
|
Comparisons between Plant and Animal Stem Cells Regarding Regeneration Potential and Application. Int J Mol Sci 2023; 24:ijms24054392. [PMID: 36901821 PMCID: PMC10002278 DOI: 10.3390/ijms24054392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Regeneration refers to the process by which organisms repair and replace lost tissues and organs. Regeneration is widespread in plants and animals; however, the regeneration capabilities of different species vary greatly. Stem cells form the basis for animal and plant regeneration. The essential developmental processes of animals and plants involve totipotent stem cells (fertilized eggs), which develop into pluripotent stem cells and unipotent stem cells. Stem cells and their metabolites are widely used in agriculture, animal husbandry, environmental protection, and regenerative medicine. In this review, we discuss the similarities and differences in animal and plant tissue regeneration, as well as the signaling pathways and key genes involved in the regulation of regeneration, to provide ideas for practical applications in agriculture and human organ regeneration and to expand the application of regeneration technology in the future.
Collapse
|
26
|
Ko HS, Laiman V, Tsao PN, Chen CM, Chuang HC. Alteration in branching morphogenesis via YAP/TAZ in fibroblasts of fetal lungs in an LPS-induced inflammation model. Mol Med 2023; 29:16. [PMID: 36717779 PMCID: PMC9887856 DOI: 10.1186/s10020-023-00613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chorioamnionitis is a common cause of preterm birth and leads to serious complications in newborns. The objective of this study was to investigate the role of the Hippo signaling pathway in lung branching morphogenesis under a lipopolysaccharide (LPS)-induced inflammation model. MATERIALS AND METHODS IMR-90 cells and ex vivo fetal lungs were treated with 0, 10, 30, or 50 μg/ml LPS for 24 and 72 h. Supernatant levels of lactate dehydrogenase (LDH), interleukin (IL)-6, IL-8, Chemokine (C-X-C motif) ligand 1(CXCL1), branching and the surface area ratio, Yes-associated protein (YAP), transcription coactivator with PDZ-binding motif (TAZ), fibroblast growth factor 10 (FGF10), fibroblast growth factor receptor II (FGFR2), SRY-box transcription factor 2 (SOX2), SOX9, and sirtuin 1 (SIRT1) levels were examined. Differentially expressed genes in fetal lungs after LPS treatment were identified by RNA-sequencing. RESULTS LPS at 50 μg/ml increased IL-6 and IL-8 in IMR-90 cells and increased IL-6, CXCL1 and LDH in fetal lungs. The branching ratio significantly increased by LPS at 30 μg/ml compared to the control but the increased level had decreased by 50 μg/ml LPS exposure. Exposure to 50 μg/ml LPS increased phosphorylated (p)-YAP, p-YAP/YAP, and p-TAZ/TAZ in IMR-90 cells, whereas 50 μg/ml LPS decreased FGF10 and SOX2. Consistently, p-YAP/YAP and p-TAZ/TAZ were increased in fibronectin+ cells of fetal lungs. Moreover, results of RNA-sequencing in fetal lungs showed that SMAD, FGF, IκB phosphorylation, tissue remodeling and homeostasis was involved in branching morphogenesis following exposure to 50 μg/ml LPS. The p-SIRT1/SIRT1 ratio increased in IMR-90 cells by LPS treatment. CONCLUSIONS This study showed that regulation of the Hippo pathway in fibroblasts of fetal lungs was involved in branching morphogenesis under an inflammatory disease such as chorioamnionitis.
Collapse
Affiliation(s)
- Hung-Shuo Ko
- grid.412896.00000 0000 9337 0481School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- grid.412896.00000 0000 9337 0481International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.8570.a0000 0001 2152 4506Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Dr. Sardjito Hospital, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Po-Nien Tsao
- grid.412094.a0000 0004 0572 7815Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Ming Chen
- grid.412897.10000 0004 0639 0994Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- grid.412896.00000 0000 9337 0481School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031 Taiwan ,grid.412896.00000 0000 9337 0481Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan ,grid.412896.00000 0000 9337 0481Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.7445.20000 0001 2113 8111National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
27
|
Lertpatipanpong P, Sillapachaiyaporn C, Oh G, Kang YH, Hwang CY, Baek SJ. Effect of cold atmospheric microwave plasma (CAMP) on wound healing in canine keratinocytes. Front Cell Dev Biol 2023; 11:1105692. [PMID: 36760362 PMCID: PMC9905446 DOI: 10.3389/fcell.2023.1105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Cutaneous wound healing is a biological process that occurs upon skin injury and involves different mechanisms to repair tissue damage. Improper healing or prolonged curation period of wound lesions may induce unpleasant complications. Cold atmospheric microwave plasma (CAMP) is an upcoming medical therapeutic option for skin infection and wound treatment. However, the molecular mechanisms of CAMP-mediated canine wound healing are not well characterized. Wound-healing activity was examined to elucidate the biological effects and molecular mechanisms of CAMP. Canine keratinocytes (CPEKs) were treated using CAMP, and their wound-healing activities were evaluated. The molecular mechanisms of that effect were examined, based on RNA-Seq analysis data, and verified using immunoblotting and polymerase chain reaction. It was found that the CAMP-treated cells exhibited a significant increase in cell migration evaluated by scratch assay in human keratinocytes (HaCaT) and canine keratinocytes (CPEK). Additionally, CAMP-treated CPEK cells showed a significant positive effect on cell invasion. The RNA-Seq data revealed that CAMP alters different genes and pathways in CPEK cells. Gene expression involved in the cell cycle, cell proliferation, angiogenesis, cell adhesion, and wound healing was upregulated in CAMP-treated cells compared with gas-activated media used as a control. The Hippo pathway was also analyzed, and the protein and mRNA levels of YAP were significantly increased in CAMP-treated cells. CAMP-treated CPEK cells indicated the downregulation of E-cadherin and upregulation of vimentin, Snail, and Slug at transcription and translation levels, contributing to a favorable effect on cell migration. Our findings suggested that CAMP treatment provided beneficial effects on the curative wound process through the induction of genes involved in wound healing, promotion of EMT, and increase in the molecular targets in the Hippo signaling pathway.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Chanin Sillapachaiyaporn
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Garam Oh
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Yeong-Hun Kang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,*Correspondence: Seung Joon Baek,
| |
Collapse
|
28
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
29
|
Li TY, Su W, Li LL, Zhao XG, Yang N, Gai JX, Lv X, Zhang J, Huang MQ, Zhang Q, Ji WH, Song XY, Zhou YH, Li XL, Shan HL, Liang HH. Critical role of PAFR/YAP1 positive feedback loop in cardiac fibrosis. Acta Pharmacol Sin 2022; 43:2862-2872. [PMID: 35396533 PMCID: PMC9622682 DOI: 10.1038/s41401-022-00903-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Aberrant activation of cardiac fibroblasts is the main cause and character of cardiac fibrosis, and inhibition of cardiac fibrosis becomes a promising treatment for cardiac diseases. Platelet-activating factor (PAF) and Hippo pathway is recently recognized as key signaling mechanisms in cardiovascular diseases. In this study we explored the potential roles of PAF and Hippo signaling pathway in cardiac fibrosis. Myocardial infarction (MI) was induced in mice by left anterior descending artery ligation. After 28 days, the mice were sacrificed, and the hearts were collected for analyses. We showed that PAF receptor (PAFR) and yes-associated protein 1 (YAP1, a key effector in the Hippo pathway) were significantly increased in the heart of MI mice. Increased expression of PAFR and YAP1 was also observed in angiotensin II (Ang II)-treated mouse cardiac fibroblasts. In mouse cardiac fibroblasts, forced expression of YAP1 increased cell viability, resulted in collagen deposition and promoted fibroblast-myofibroblast transition. We showed that PAF induced fibrogenesis through activation of YAP1 and promoted its nuclear translocation via interacting with PAFR, while YAP1 promoted the expression of PAFR by binding to and activating transcription factor TEAD1. More importantly, silencing PAFR or YAP1 by shRNA, or using transgenic mice to induce the conditional deletion of YAP1 in cardiac fibroblasts, impeded cardiac fibrosis and improved cardiac function in MI mice. Taken together, this study elucidates the role and mechanisms of PAFR/YAP1 positive feedback loop in cardiac fibrosis, suggesting a potential role of this pathway as novel therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Tian-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Liang-Liang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Guang Zhao
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China
| | - Na Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Gai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng-Qin Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei-Hang Ji
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiao-Ying Song
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yu-Hong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue-Lian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hong-Li Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Hai-Hai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
30
|
Lee CH, Hunt D, Roth JG, Chiu CC, Suhar RA, LeSavage BL, Seymour AJ, Lindsay C, Krajina B, Chen YT, Chang KH, Hsieh IC, Chu PH, Wen MS, Heilshorn SC. Tuning pro-survival effects of human induced pluripotent stem cell-derived exosomes using elastin-like polypeptides. Biomaterials 2022; 291:121864. [DOI: 10.1016/j.biomaterials.2022.121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
31
|
Zakaria MA, Kiew MC, Rajab NF, Chua EW, Masre SF. Rigid Tissue Increases Cytoplasmic pYAP Expression in Pre-Malignant Stage of Lung Squamous Cell Carcinoma (SCC) In Vivo. Curr Issues Mol Biol 2022; 44:4528-4539. [PMID: 36286025 PMCID: PMC9600365 DOI: 10.3390/cimb44100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
Increased tissue rigidity is able to activate the Hippo signaling pathway, leading to YAP inactivation by phosphorylation and translocation into the cytoplasm. Accumulating evidence suggests that cytoplasmic pYAP serves as a tumor suppressor and could be a prognostic biomarker for several solid cancers. However, the relationship between tissue rigidity and cytoplasmic pYAP expression in the early stage of lung squamous cell carcinoma (SCC) remains elusive; this was determined in this study by using a mouse model. Female BALB/c mice were assigned into two groups (n = 6; the vehicle (VC) and the pre-malignant (PM) group, which received 70% acetone and 0.04 M N-nitroso-tris-chloroethylurea (NTCU) for 15 weeks, respectively. In this study, the formation of hyperplasia and metaplasia lesions was found in the PM group, indicating the pre-malignant stage of lung SCC. The pre-malignant tissue appeared to be more rigid as characterized by significantly higher (p < 0.05) epithelium thickness, proliferative activity, and collagen content than the VC group. The PM group also had a significantly higher (p < 0.05) cytoplasmic pYAP protein expression than the VC group. In conclusion, increased tissue rigidity may contribute to the upregulation of cytoplasmic pYAP expression, which may act as a tumor suppressor in the early stage of lung SCC.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - May Chee Kiew
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Siti Fathiah Masre
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +60-137442907
| |
Collapse
|
32
|
Ballout F, Lu H, Chen L, Sriramajayam K, Que J, Meng Z, Wang TC, Giordano S, Zaika A, McDonald O, Peng D, El-Rifai W. APE1 redox function is required for activation of Yes-associated protein 1 under reflux conditions in Barrett's-associated esophageal adenocarcinomas. J Exp Clin Cancer Res 2022; 41:264. [PMID: 36045416 PMCID: PMC9434868 DOI: 10.1186/s13046-022-02472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is characterized by poor prognosis and low survival rate. Chronic gastroesophageal reflux disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE), a preneoplastic metaplastic condition, and its progression to EAC. Yes-associated protein 1 (YAP1) activation mediates stem-like properties under cellular stress. The role of acidic bile salts (ABS) in promoting YAP1 activation under reflux conditions remains unexplored. METHODS A combination of EAC cell lines, transgenic mice, and patient-derived xenografts were utilized in this study. mRNA expression and protein levels of APE1 and YAP1 were evaluated by qRT-PCR, western blot, and immunohistochemistry. YAP1 activation was confirmed by immunofluorescence staining and luciferase transcriptional activity reporter assay. The functional role and mechanism of regulation of YAP1 by APE1 was determined by sphere formation assay, siRNA mediated knockdown, redox-specific inhibition, and co-immunoprecipitation assays. RESULTS We showed that YAP1 signaling is activated in BE and EAC cells following exposure to ABS, the mimicry of reflux conditions in patients with GERD. This induction was consistent with APE1 upregulation in response to ABS. YAP1 activation was confirmed by its nuclear accumulation with corresponding up-regulation of YAP1 target genes. APE1 silencing inhibited YAP1 protein induction and reduced its nuclear expression and transcriptional activity, following ABS treatment. Further investigation revealed that APE1-redox-specific inhibition (E3330) or APE1 redox-deficient mutant (C65A) abrogated ABS-mediated YAP1 activation, indicating an APE1 redox-dependent mechanism. APE1 silencing or E3330 treatment reduced YAP1 protein levels and diminished the number and size of EAC spheroids. Mechanistically, we demonstrated that APE1 regulated YAP1 stability through interaction with β-TrCP ubiquitinase, whereas APE1-redox-specific inhibition induced YAP1 poly-ubiquitination promoting its degradation. CONCLUSION Our findings established a novel function of APE1 in EAC progression elucidating druggable molecular vulnerabilities via targeting APE1 or YAP1 for the treatment of EAC.
Collapse
Affiliation(s)
- Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Kannappan Sriramajayam
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, 10027, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy C Wang
- Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Silvia Giordano
- Department of Oncology, University of Torino and Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Oliver McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA.
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
33
|
Cao J, Zhang Y, Zhang P, Zhang Z, Zhang B, Feng Y, Li Z, Yang Y, Meng Q, He L, Cai Y, Wang Z, Li J, Chen X, Liu H, Hong A, Zheng W, Chen X. Turning gray selenium into a nanoaccelerator of tissue regeneration by PEG modification. Bioact Mater 2022; 15:131-144. [PMID: 35386336 PMCID: PMC8940942 DOI: 10.1016/j.bioactmat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases. It was found that selenium nanoparticles through FGFR、Wnt、VEGFR signal pathway to promote tissue regeneration; Development a new water-soluble, bio-compatible, zero oxidation state Nano-Se; Development a new efficient and safe nano-biologic agent for promoting tissue regeneration.
Collapse
Affiliation(s)
- Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zilei Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhixin Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qilin Meng
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jie Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Corresponding author.
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- Corresponding author.
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, China
- Corresponding author. Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
34
|
Deng F, Wu Z, Zou F, Wang S, Wang X. The Hippo–YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Front Cell Dev Biol 2022; 10:894737. [PMID: 35927987 PMCID: PMC9343807 DOI: 10.3389/fcell.2022.894737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The Hippo pathway and its downstream effectors, the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), control stem cell fate and cell proliferation and differentiation and are essential for tissue self-renewal and regeneration. YAP/TAZ are the core components of the Hippo pathway and they coregulate transcription when localized in the nucleus. The intestinal epithelium undergoes well-regulated self-renewal and regeneration programs to maintain the structural and functional integrity of the epithelial barrier. This prevents luminal pathogen attack, and facilitates daily nutrient absorption and immune balance. Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the entire digestive tract. Impaired mucosal healing is a prominent biological feature of IBD. Intestinal self-renewal is primarily dependent on functional intestinal stem cells (ISCs), especially Lgr5+ crypt base columnar (CBC) cells and transient-amplifying (TA) cells in the crypt base. However, intestinal wound healing is a complicated process that is often associated with epithelial cells, and mesenchymal and immune cells in the mucosal microenvironment. Upon intestinal injury, nonproliferative cells rapidly migrate towards the wound bed to reseal the damaged epithelium, which is followed by cell proliferation and differentiation. YAP is generally localized in the nucleus of Lgr5+ CBC cells, where it transcriptionally regulates the expression of the ISC marker Lgr5 and plays an important role in intestinal self-renewal. YAP/TAZ are the primary mechanical sensors of the cellular microenvironment. Their functions include expanding progenitor and stem cell populations, reprogramming differentiated cells into a primitive state, and mediating the regenerative function of reserve stem cells. Thus, YAP/TAZ play extremely crucial roles in epithelial repair after damage. This review provides an overview of the Hippo–YAP/TAZ signaling pathway and the processes of intestinal self-renewal and regeneration. In particular, we summarize the roles of YAP/TAZ in the phases of intestinal self-renewal and regeneration to suggest a potential strategy for IBD treatment.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| |
Collapse
|
35
|
Feichtinger M, Beier A, Migotti M, Schmid M, Bokhovchuk F, Chène P, Konrat R. Long-range structural preformation in yes-associated protein precedes encounter complex formation with TEAD. iScience 2022; 25:104099. [PMID: 35378854 PMCID: PMC8976148 DOI: 10.1016/j.isci.2022.104099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Yes-associated protein (YAP) is a partly intrinsically disordered protein (IDP) that plays a major role as the downstream element of the Hippo pathway. Although the structures of the complex between TEA domain transcription factors (TEADs) and the TEAD-binding domain of YAP are already well characterized, its apo state and the binding mechanism with TEADs are still not clearly defined. Here we characterize via a combination of different NMR approaches with site-directed mutagenesis and affinity measurements the intrinsically disordered solution state of apo YAP. Our results provide evidence that the apo state of YAP adopts several compact conformations that may facilitate the formation of the YAP:TEAD complex. The interplay between local secondary structure element preformation and long-range co-stabilization of these structured elements precedes the encounter complex formation with TEAD and we, therefore, propose that TEAD binding proceeds largely via conformational selection of the preformed compact substates displaying at least nanosecond lifetimes. Secondary structure elements are preformed in apo YAP Preformation of secondary structure elements is co-dependent Apo YAP exhibits long-range structural compaction YAP compaction has a kinetic contribution to the YAP:TEAD formation
Collapse
Affiliation(s)
- Michael Feichtinger
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Andreas Beier
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Mario Migotti
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Matthias Schmid
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Fedir Bokhovchuk
- Ichnos Sciences SA, Route de la Corniche 5A, 1066 Epalinges, Switzerland
| | - Patrick Chène
- Novartis Pharma AG, Postfach WSJ 386.4, 4002 Basel, Switzerland
| | - Robert Konrat
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
36
|
Qian X, Chen K, Chen L, Song H, Zhang Z. Presenilin is involved in larval-pupal metamorphosis development of Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21855. [PMID: 34811799 DOI: 10.1002/arch.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Disruption of the presenilin (ps) genes are the major genetic cause of familial Alzheimer's disease. The silkworm, Bombyx mori (B. mori), is an important model insect. The ps homologue gene in B. mori was identified and characterized. However, the role of ps in B. mori was poorly understood. Here, we found that Bmps was ubiquitously expressed in all the tested tissues during metamorphosis. In the current study, loss-of-function analysis of Bmps was performed by the binary transgenic CRISPR/cas9 system. Compared with the wild type, the developmental time of ∆Bmps animals were significantly delayed. In addition, ∆Bmps showed abnormal appendage including antenna, leg, wing and eye during pupal and adult stages. RNA-seq analysis indicated that apoptosis and proliferation related pathways were affected in ∆Bmps. Moreover, the Hippo pathway was affected by Bmps depletion in brain and wing disc. Our results suggest that PS is essential for maintaining the dynamic balance of apoptosis and proliferation during metamorphosis.
Collapse
Affiliation(s)
- Xiaoran Qian
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Lijuan Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongsheng Song
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Wang J, Liu C, He L, Xie Z, Bai L, Yu W, Wang Z, Lu Y, Gao D, Fu J, Zhang L, Zeng YA. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. eLife 2022; 11:75449. [PMID: 35285801 PMCID: PMC8920503 DOI: 10.7554/elife.75449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and OSE stem cells rapidly generate new cells for the repair. How the stem cell activation is triggered by the rupture and promptly turns on proliferation is unclear. Our previous study has identified that Protein C Receptor (Procr) marks OSE progenitors. In this study, we observed decreased adherent junction and selective activation of YAP signaling in Procr progenitors at OSE rupture site. OSE repair is impeded upon deletion of Yap1 in these progenitors. Interestingly, Procr+ progenitors show lower expression of Vgll4, an antagonist of YAP signaling. Overexpression of Vgll4 in Procr+ cells hampers OSE repair and progenitor proliferation, indicating that selective low Vgll4 expression in Procr+ progenitors is critical for OSE repair. In addition, YAP activation promotes transcription of the OSE stemness gene Procr. The combination of increased cell division and Procr expression leads to expansion of Procr+ progenitors surrounding the rupture site. These results illustrate a YAP-dependent mechanism by which the stem/progenitor cells recognize the murine ovulatory rupture, and rapidly multiply their numbers, highlighting a YAP-induced stem cell expansion strategy.
Collapse
Affiliation(s)
- Jingqiang Wang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunye Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingli He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyao Xie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lanyue Bai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wentao Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zuoyun Wang
- Human Anatomy & Histoembryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
38
|
Hasebe T, Fujimoto K, Ishizuya-Oka A. Essential roles of YAP-TEAD complex in adult stem cell development during thyroid hormone-induced intestinal remodeling of Xenopus laevis. Cell Tissue Res 2022; 388:313-329. [PMID: 35211820 DOI: 10.1007/s00441-022-03600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
Abstract
During amphibian metamorphosis which is triggered by thyroid hormone (TH), the small intestine is extensively remodeled from the larval to adult form. In the Xenopus laevis intestine, some of the larval epithelial cells dedifferentiate into adult stem cells, which newly form the adult epithelium similar to the mammalian one. We have previously shown that TH-activated Shh, Wnt and Notch signaling pathways play important roles in adult epithelial development. Here we focus on the Hippo signaling pathway, which is known to interact with these pathways in the mammalian intestine. Our quantitative RT-PCR analysis indicates that the expression of genes involved in this pathway including YAP1, TAZ, TEAD1 and core kinases is differently regulated by TH in the metamorphosing intestine. Additionally, we show by in situ hybridization and immunohistochemistry that the transcriptional co-activator YAP1, a major effector of the Hippo signaling, is expressed in the adult stem cells and connective tissue cells surrounding them and that YAP1 protein is localized in either nucleus or cytoplasm of the stem cells. We further show that YAP1 binds its binding partner TEAD1 (transcription factor) in vivo and that their interaction is inhibited by verteporfin (VP). More importantly, by using VP in organ culture of the tadpole intestine, we experimentally demonstrate that the inhibition of YAP1-TEAD1 interaction decreases both TH-induced stem cells expressing LGR5 and nearby connective tissue cells in number and proliferation, leading to the failure of adult epithelial development. Our results indicate that YAP-TEAD complex is required for stem cell development during intestinal remodeling.
Collapse
Affiliation(s)
- Takashi Hasebe
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan.
| | - Kenta Fujimoto
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| | - Atsuko Ishizuya-Oka
- Department of Biology, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo, 180-0023, Japan
| |
Collapse
|
39
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
40
|
Wu X, Kasmani MY, Zheng S, Khatun A, Chen Y, Winkler W, Zander R, Burns R, Taparowsky EJ, Sun J, Cui W. BATF promotes group 2 innate lymphoid cell-mediated lung tissue protection during acute respiratory virus infection. Sci Immunol 2022; 7:eabc9934. [PMID: 35030033 DOI: 10.1126/sciimmunol.abc9934] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Moujtaba Y Kasmani
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shikan Zheng
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Achia Khatun
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yao Chen
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy Winkler
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Ryan Zander
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Weiguo Cui
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI 53213, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
41
|
Kudelova E, Holubekova V, Grendar M, Kolkova Z, Samec M, Vanova B, Mikolajcik P, Smolar M, Kudela E, Laca L, Lasabova Z. Circulating miRNA expression over the course of colorectal cancer treatment. Oncol Lett 2021; 23:18. [PMID: 34868358 PMCID: PMC8630815 DOI: 10.3892/ol.2021.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third-most common cancer type in males and the second-most common cancer type in females, and has the second-highest overall mortality rate worldwide. Approximately 50% of patients in stage I–III develop metastases, mostly localized to the liver. All physiological conditions occurring in the organism are also reflected in the levels of circulating microRNAs (miRNAs/miRs) in patients. miRNAs are a class of small, non-coding, single-stranded RNAs consisting of 18–25 nucleotides, which have important roles in various cellular processes. The aim of the present study was to evaluate a panel of seven circulating miRNAs (miR-106a-5p, miR-210-5p, miR-155-5p, miR-21-5p, miR-103a-3p, miR-191-5p and miR-16-5p) as biomarkers for monitoring patients undergoing adjuvant treatment of CRC. Total RNA was extracted from the plasma of patients with CRC prior to surgery, in the early post-operative period (n=60) and 3 months after surgery (n=14). The levels of the selected circulating miRNAs were measured with the miRCURY LNA miRNA PCR system and fold changes were calculated using the standard ∆∆Cq method. DIANA-miRPath analysis was used to evaluate the role of significantly deregulated miRNAs. The results indicated significant upregulation of miR-155-5p, miR-21-5p and miR-191-5p, and downregulation of miR-16-5p directly after the surgery. In paired follow-up samples, the most significant upregulation was detected for miR-106a-5p and miR-16-5p, and the most significant downregulation was for miR-21-5p. Pathway analysis outlined the role of the differentially expressed miRNAs in cancer development, but the same pathways are also involved in wound healing and regeneration of intestinal epithelium. It may be suggested that these processes should also be considered in studies investigating sensitive and easily detectable circulating biomarkers for recurrence in patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Veronika Holubekova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marian Grendar
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zuzana Kolkova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Samec
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Barbora Vanova
- Biomedical Center in Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin SK-03601, Slovak Republic
| |
Collapse
|
42
|
Zhaosong M, Na F, Shuling G, Jiacheng L, Ran W. Heterogeneity affects the differentiation potential of dental follicle stem cells through the TGF-β signaling pathway. Bioengineered 2021; 12:12294-12307. [PMID: 34927533 PMCID: PMC8810196 DOI: 10.1080/21655979.2021.2009974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
Adult mesenchymal stem cells play an important role in maintaining organ homeostasis owing to their unique ability to generate more specialized cell populations in a coordinated manner. Adult mesenchymal stem cells are heterogeneous, a feature that is essential for their functions. However, studies have not elucidated how heterogeneity of mesenchymal stem cells affects their differentiation capacity. The current study thus explored the heterogeneous Dental Follicle Stem Cells (DFSCs). A previous study by our research group reported that selecting sub-clones can cause artificial damage of the heterogeneous microenvironment of DFSCs. The finds showed a decrease in differentiation capacity of the three subclones, although the underlying mechanism was not elucidated. In this study, cells were harvested and prepared for gene expression microarray analysis. Sequence data was used in gene ontology and pathway enrichment analysis. The results showed that downregulation of the TGF-β signaling pathway was the main cause of changes in differentiation of sub-clones. Additional analyses revealed that the Hippo pathway, WNT pathway and signaling pathways regulating the pluripotency of stem cells were also implicated in these changes, through a cross talk with TGF-β signaling pathway through Bmp2, Bmp4, and Bambi. In vivo implantation experiments and osteogenic induction showed that differentiation capacity of DFSCs was significantly reduced in the sub-clones. In summary, the findings of the current study show that differentiation potential of DFSCs is correlated with the heterogeneous microenvironment and TGF-β signaling pathway significantly modulates these biological processes.
Collapse
Affiliation(s)
- Meng Zhaosong
- Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fu Na
- Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Guo Shuling
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Liu Jiacheng
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Ran
- School of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
43
|
Zhang L, Ma S, Wei P, Zhao Y, Mu Y, Wu J, Jing W, Zhao B, Deng J, Liu Z. Small Intestinal Submucosa Membrane Modified by Fusion Peptide-Mediated Extracellular Vesicles to Promote Tissue Regeneration. Adv Healthc Mater 2021; 10:e2101298. [PMID: 34569179 DOI: 10.1002/adhm.202101298] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Indexed: 12/17/2022]
Abstract
Tissue injury, which often occurs in daily life, remains challenging in clinical medicine. Developing a novel biomaterial with the capability to provide an ideal microenvironment and homeostasis around the wound is highly desirable for effective tissue regenerative medicine. The small intestinal submucosa (SIS) membrane possesses a precise spatial structure with excellent biocompatibility. Extracellular vesicles (EVs) derived from umbilical cord mesenchymal stem cells can achieve rapid cell proliferation and migration with little immune response by creating a satisfactory microenvironment. In this study, fusion peptide-mediated EVs are able to modify the surface of the SIS membrane via specific combination. In vitro studies prove that modified SIS membranes can promote cell migration and spreading. This phenomenon may be because of the activation of TEADs, which regulate cell behavior. By constructing a rat abdominal wall defect model, it is further demonstrated that the modified SIS membrane is more conducive to tissue regeneration. Collectively, these results suggest that SIS membranes modified by fusion peptide-mediated EVs achieve excellent biofunction and provide promising prospects for tissue regeneration.
Collapse
Affiliation(s)
- Lei Zhang
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Shiqing Ma
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Yifan Zhao
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Yuzhu Mu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Jinzhe Wu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd No. 6 Plant West, Valley No. 1 Bio‐medicine Industry Park Beijing 102600 China
| | - Jiayin Deng
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| | - Zihao Liu
- School and Hospital of Stomatology Tianjin Medical University 12 Observatory Road Tianjin 300000 China
| |
Collapse
|
44
|
Recent Therapeutic Approaches to Modulate the Hippo Pathway in Oncology and Regenerative Medicine. Cells 2021; 10:cells10102715. [PMID: 34685695 PMCID: PMC8534579 DOI: 10.3390/cells10102715] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The Hippo pathway is an evolutionary conserved signaling network that regulates essential processes such as organ size, cell proliferation, migration, stemness and apoptosis. Alterations in this pathway are commonly found in solid tumors and can lead to hyperproliferation, resistance to chemotherapy, compensation for mKRAS and tumor immune evasion. As the terminal effectors of the Hippo pathway, the transcriptional coactivators YAP1/TAZ and the transcription factors TEAD1–4 present exciting opportunities to pharmacologically modulate the Hippo biology in cancer settings, inflammation and regenerative medicine. This review will provide an overview of the progress and current strategies to directly and indirectly target the YAP1/TAZ protein–protein interaction (PPI) with TEAD1–4 across multiple modalities, with focus on recent small molecules able to selectively bind to TEAD, block its autopalmitoylation and inhibit YAP1/TAZ–TEAD-dependent transcription in cancer.
Collapse
|
45
|
Wang Y, Zhu Y, Gu Y, Ma M, Wang Y, Qi S, Zeng Y, Zhu R, Wang X, Yu P, Xu J, Shu Y, Yu FX. Stabilization of Motin family proteins in NF2-deficient cells prevents full activation of YAP/TAZ and rapid tumorigenesis. Cell Rep 2021; 36:109596. [PMID: 34433060 DOI: 10.1016/j.celrep.2021.109596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/12/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022] Open
Abstract
Germline alterations of the NF2 gene cause neurofibromatosis type 2, a syndrome manifested with benign tumors, and Nf2 deletion in mice also results in slow tumorigenesis. As a regulator of the Hippo signaling pathway, NF2 induces LATS1/2 kinases and consequently represses YAP/TAZ. YAP/TAZ oncoproteins are also inhibited by motin family proteins (Motins). Here, we show that the Hippo signaling is fine-tuned by Motins in a NF2-dependent manner, in which NF2 recruits E3 ligase RNF146 to facilitate ubiquitination and subsequent degradation of Motins. In the absence of NF2, Motins robustly accumulate to restrict full activation of YAP/TAZ and prevent rapid tumorigenesis. Hence, NF2 deficiency not only activates YAP/TAZ by inhibiting LATS1/2 but also stabilizes Motins to keep YAP/TAZ activity in check. The upregulation of Motins upon NF2 deletion serves as a strategy for avoiding uncontrolled perturbation of the Hippo signaling and may contribute to the benign nature of most NF2-mutated tumors.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyue Ma
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yebin Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueying Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhui Xu
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
46
|
Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J 2021; 35:e21570. [PMID: 33831275 DOI: 10.1096/fj.202002284rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The liver is the only visceral organ in the body with a tremendous capacity to regenerate in response to insults that induce inflammation, cell death, and injury. Liver regeneration is a complicated process involving a well-orchestrated activation of non-parenchymal cells in the injured area and proliferation of undamaged hepatocytes. Furthermore, the liver has a Hepatostat, defined as adjustment of its volume to that required for homeostasis. Understanding the mechanisms that control different steps of liver regeneration is critical to informing therapies for liver repair, to help patients with liver disease. The Hippo signaling pathway is well known for playing an essential role in the control and regulation of liver size, regeneration, stem cell self-renewal, and liver cancer. Thus, the Hippo pathway regulates dynamic cell fates in liver, and in absence of its downstream effectors YAP and TAZ, liver regeneration is severely impaired, and the proliferative expansion of liver cells blocked. We will mainly review upstream mechanisms activating the Hippo signaling pathway following partial hepatectomy in mouse model and patients, its roles during different steps of liver regeneration, metabolism, and cancer. We will also discuss how targeting the Hippo signaling cascade might improve liver regeneration and suppress liver tumorigenesis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Nazia Selzner
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
47
|
Morales M, Xue X. Targeting iron metabolism in cancer therapy. Am J Cancer Res 2021; 11:8412-8429. [PMID: 34373750 PMCID: PMC8344014 DOI: 10.7150/thno.59092] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Iron is a critical component of many cellular functions including DNA replication and repair, and it is essential for cell vitality. As an essential element, iron is critical for maintaining human health. However, excess iron can be highly toxic, resulting in oxidative DNA damage. Many studies have observed significant associations between iron and cancer, and the association appears to be more than just coincidental. The chief characteristic of cancers, hyper-proliferation, makes them even more dependent on iron than normal cells. Cancer therapeutics are becoming as diverse as the disease itself. Targeting iron metabolism in cancer cells is an emerging, formidable field of therapeutics. It is a strategy that is highly diverse with regard to specific targets and the various ways to reach them. This review will discuss the importance of iron metabolism in cancer and highlight the ways in which it is being explored as the medicine of tomorrow.
Collapse
|
48
|
Kim G, Bhattarai PY, Lim SC, Kim JY, Choi HS. PIN1 facilitates ubiquitin-mediated degradation of serine/threonine kinase 3 and promotes melanoma development via TAZ activation. Cancer Lett 2021; 499:164-174. [PMID: 33253791 DOI: 10.1016/j.canlet.2020.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The Hippo signaling pathway controls cellular processes including growth, homeostasis, and apoptosis. The kinase STK3 acts upstream in this pathway to activate LATS1/2 kinase, which phosphorylates and inactivates the transcriptional coactivators YAP/TAZ. The dysregulation of Hippo signaling leads to human diseases including cancer; however, the molecular mechanisms underlying its dysregulation in melanoma are unknown. We aimed to determine the role of the PIN1 in Hippo signaling dysregulation and melanoma tumorigenesis. We report that PIN1 interacts with STK3 and induces ubiquitination-dependent proteasomal degradation of STK3. Furthermore, PIN1 plays a critical role in the nuclear translocation of TAZ, which forms a complex with TEAD to increase CTGF expression. PIN1 ablation blocks TAZ/TEAD complex formation and decreases CTGF expression. PIN1-mediated STK3 degradation is associated with enhanced cell growth, induction of cell transformation, and increased tumorigenicity. In clinical context, PIN1 and STK3 levels are inversely correlated in patient melanoma tissues. These findings indicate that PIN1-mediated STK3 destabilization contributes to the dysregulation of Hippo signaling, leading to oncogenic signaling and melanoma tumorigenesis. Our data suggest that inhibition of the PIN1-STK3 axis could be a novel treatment strategy for malignant melanoma.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | | | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jin-Young Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
49
|
Liu Q, Pan S, Liu S, Zhang S, Willerson JT, Martin JF, Dixon RAF. Suppressing Hippo signaling in the stem cell niche promotes skeletal muscle regeneration. STEM CELLS (DAYTON, OHIO) 2021; 39:737-749. [PMID: 33529408 DOI: 10.1002/stem.3343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Lack of blood flow to the lower extremities in peripheral arterial disease causes oxygen and nutrient deprivation in ischemic skeletal muscles, leading to functional impairment. Treatment options for muscle regeneration in this scenario are lacking. Here, we selectively targeted the Hippo pathway in myofibers, which provide architectural support for muscle stem cell niches, to facilitate functional muscle recovery in ischemic extremities by promoting angiogenesis, neovascularization, and myogenesis. We knocked down the core Hippo pathway component, Salvador (SAV1), by using an adeno-associated virus 9 (AAV9) vector expressing a miR30-based triple short-hairpin RNA (shRNA), controlled by a muscle-specific promoter. In a mouse hindlimb-ischemia model, AAV9 SAV1 shRNA administration in ischemic muscles induced nuclear localization of the Hippo effector YAP, accelerated perfusion restoration, and increased exercise endurance. Intravascular lectin labeling of the vasculature revealed enhanced angiogenesis. Using 5-ethynyl-2'-deoxyuridine to label replicating cellular DNA in vivo, we found SAV1 knockdown concurrently increased paired box transcription factor Pax7+ muscle satellite cell and CD31+ endothelial cell proliferation in ischemic muscles. To further study Hippo suppression in skeletal muscle regeneration, we used a cardiotoxin-induced muscle damage model in adult (12-15 weeks old) and aged mice (26-month old). Two weeks after delivery of AAV9 SAV1 shRNA into injured muscles, the distribution of regenerative myofibers shifted toward a larger cross-sectional area and increased capillary density compared with mice receiving AAV9 control. Together, these findings suggest our approach may have clinical promise in regenerative therapy for leg ischemia and muscle injury.
Collapse
Affiliation(s)
- Qi Liu
- Wafic Said Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, Texas, USA
| | - Su Pan
- Wafic Said Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, Texas, USA
| | - Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - Sui Zhang
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
| | | | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A F Dixon
- Wafic Said Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, Texas, USA
| |
Collapse
|
50
|
The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. J Cancer Res Clin Oncol 2021; 147:1287-1297. [PMID: 33580421 DOI: 10.1007/s00432-021-03552-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.
Collapse
|