1
|
Murugesan A, Smirnov A, Alonso AV, Buccioni M, Cui C, Dal Ben D, Francucci B, Lambertucci C, Marucci G, Volpini R, Konda Mani S, Devanesan S, AlSalhi MS, Yli-Harja O, Spinaci A, Kandhavelu M. A 2A receptor antagonist 4-(2-((6-Amino-9-ethyl-8-(furan-2-yl)-9H-purin-2-yl)amino)ethyl)phenol, a promising adenosine derivative for glioblastoma treatment. Eur J Pharm Sci 2025; 207:107039. [PMID: 39938810 DOI: 10.1016/j.ejps.2025.107039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Adenosine, a pervasive signaling molecule mediated by its interaction with G-protein-coupled receptor subtypes, especially the A2A adenosine receptor (A2AAR), plays a crucial role in cancer treatment. Recently, A2AAR targeting adenosine analogs have been proposed as a potential therapeutic target for cancer treatment. However, the molecules targeting A2AAR and their mode of action in inhibiting glioblastoma cell progression remain unknown. We synthesized six adenosine derivatives substituted at the 9-, 2- and/or N6- and/or 8- positions, and their anti-proliferative efficacy against the GBM cell lines LN229 and SNB19 was assessed. Molecular dynamic simulation integrated with experimental analyses, including cell cycle arrest, apoptosis assay, ligand binding assay, absorption, distribution, metabolism, excretion and toxicity (ADMET) profiling, PAMPA assay, and 3D spheroid analysis, were performed to identify the interaction efficacy of the potential derivative with A2AAR and its ability to prevent GBM cell progression. The most potent A2AAR derivative (ANR), 4-(2-((6-Amino-9-ethyl-8-(furan-2-yl)-9H-purin-2-yl)amino)ethyl)phenol (ANR 672) inhibits 5'-N-Ethylcarboxamidoadenosine (NECA)-induced cAMP validating the antagonistic property with higher cytotoxicity effect against GBM cells. ANR 672 showed higher affinity toward A2AAR (Ki = 1.02 ± 0.06 nM) and exhibited significant IC50 concentrations of ∼ 60-80 µM, than FDA approved drug istredefylline. The A2AAR-ANR 672 interaction profile showed well-defined hydrogen bonds and hydrophobic contacts, indicating a typical binding mechanism inside the receptor pocket and a higher degree of conformational flexibility than the A2AAR-Istradefylline complex. The antagonist effect of ANR 672 blocked the A2AAR signaling pathway, leading to necrosis-mediated cell death and cell cycle arrest at the S-phase in both the GBM cells. ANR 672 treated 3D tumour spheroids analysis with real-time spheroid volume and cell proliferation analysis revealed the potential ability of ANR 672 against GBM cell growth. Drug-likeness assessments also showed favorable pharmacokinetic profiles for ANR 672. Further validation of blood-brain barrier crossing potential revealed that ANR 672 possesses moderate permeability. Our findings shed light on how ANR 672 exerts its GBM-suppressive effect through the interaction of A2AAR. These preclinical results suggest that A2AAR blockade could be a unique strategy for treating GBM.
Collapse
Affiliation(s)
- Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland; Department of Biotechnology, Lady Doak College, Thallakulam, Madurai, India
| | - Aleksei Smirnov
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Anxo Vila Alonso
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland
| | - Michela Buccioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Chang Cui
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Diego Dal Ben
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Beatrice Francucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Gabriella Marucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | | | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Olli Yli-Harja
- Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Andrea Spinaci
- BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland.
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; BioMeditech and Tays Cancer Center, Tampere University, Hospital, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
2
|
Alhamdi HW, Alfaifi MY, Shati AA, Elbehairi SEI, Er-Rajy M, Elshaarawy RFM, Hassan YA, Zakrya R. New multifunctional hybrids as modulators of apoptosis markers and topoisomerase II in breast cancer therapy: synthesis, characterization, and in vitro and in silico studies. RSC Adv 2024; 14:28555-28568. [PMID: 39247509 PMCID: PMC11378026 DOI: 10.1039/d4ra04219k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, molecular hybrids of two or more active pharmacophores have shown promise for designing and synthesizing anticancer drugs. Herein, a new multifunctional hybrid (PAHMQ), combining azobenzene and quinoline pharmacophores, and its M(ii) complexes (MPAHMQ) have been successfully developed and structurally characterized. The MTT assay revealed CuBHTP as the most efficient and safe breast cancer treatment, with an IC50 of 11.18 ± 0.39 μg mL-1 and a high selectivity index (SI) of 5.63 for cancer MCF-7 cells over healthy MCF10A cells. Moreover, the CuPAHMQ-treated MCF-7 cells experience a dramatic impact with regard to key apoptotic markers, including an increase in P53 and Bax expression, with a decrease in Bcl-2 expression levels compared to the untreated MCF-7 cells. Additionally, CuPAHMQ effectively halted the growth and division of MCF-7 cells by inducing cell cycle arrest in the crucial G1 and S phases, ultimately inhibiting both Topo II activity and cell proliferation. Molecular docking investigations validated the CuPAHMQ complex's groove binding and topoisomerase II binding, establishing it as a potent anticancer drug.
Collapse
Affiliation(s)
- Heba W Alhamdi
- College of Sciences, Biology Department, King Khalid University Abha 61413 Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University Abha 9004 Saudi Arabia
| | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University Abha 9004 Saudi Arabia
| | - Serag Eldin I Elbehairi
- King Khalid University, Faculty of Science, Biology Department Abha 9004 Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University Abha 9004 Saudi Arabia
- Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company) 51 Wezaret El-Zeraa St., Agouza Giza Egypt
| | - Mohammed Er-Rajy
- LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University Fez Morocco
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University 43533 Suez Egypt
| | - Yasser A Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology Gamasa Egypt
| | - Rozan Zakrya
- Chemistry Department, Faculty of Science, Port-Said University Port-Said Egypt
| |
Collapse
|
3
|
Shang HX, Fang Y, Guan B, Guan JH, Peng J, Zhao JY, Lin JM. Babao Dan Inhibits Gastric Cancer Progression in vivo through Multiple Signaling Pathways. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2024. [DOI: 10.4103/2311-8571.393751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2025] Open
Abstract
AbstractObjective:The aim of this study was to explore the effects of Babao dan (BBD), a traditional Chinese medicine, on gastric cancer (GC) progressionin vivo.Materials and Methods:A subcutaneous xenograft mouse model of GC was established using MGC80-3 cells. The terminal deoxynucleotidyl transferase-mediated dUTP: 2’-deoxyuridine 5’-triphosphate -biotin nick-end labeling method was adopted to detect cell apoptosisin vivo. The expression levels of proteins associated with proliferation, apoptosis, and angiogenesis were measured by immunohistochemical staining or western blotting (WB). The activation and protein levels of p-c-Jun N-terminal kinase (JNK), p-p38, p-extracellular-regulated kinase 1/2, p-nuclear factor-κB (NF-κB), and p-STAT3 were examined by Bio-plex and WB.Results:BBD significantly inhibited tumor growth in GC mouse models with no adverse effect on body weight or organ function. It was also found that BBD significantly suppressed the proliferation of GC tumor cells, induced the apoptosis of tumor cells, and inhibited angiogenesis through inactivating with mitogen-activated protein kinase, NF-κB, and STAT3 pathways.Conclusions:BBD exerts suppressive effects on GC tumor growth by regulating multiple pathwaysin vivo, which may provide a novel treatment option for GC therapy.
Collapse
Affiliation(s)
- Hai-Xia Shang
- Institute of Oncology of Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yi Fang
- Institute of Oncology of Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Bin Guan
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen, Fujian, China
| | - Jian-Hua Guan
- Institute of Oncology of Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Institute of Oncology of Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jin-Yan Zhao
- Institute of Oncology of Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jiu-Mao Lin
- Institute of Oncology of Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Integrative Medicine of Fujian Province University, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Amiri Souri E, Chenoweth A, Karagiannis SN, Tsoka S. Drug repurposing and prediction of multiple interaction types via graph embedding. BMC Bioinformatics 2023; 24:202. [PMID: 37193964 DOI: 10.1186/s12859-023-05317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug-target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. RESULTS A computational drug repurposing approach was proposed to predict novel drug-target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug-drug and protein-protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. CONCLUSION DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug-target-disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
Collapse
Affiliation(s)
- E Amiri Souri
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - A Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, SE1 9RT, UK
| | - S Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK.
| |
Collapse
|
5
|
Asgharkhah E, Saghaeian Jazi M, Asadi J, Jafari SM. Gene expression pattern of adenosine receptors in lung tumors. Cancer Rep (Hoboken) 2023; 6:e1747. [PMID: 36285419 PMCID: PMC10026311 DOI: 10.1002/cnr2.1747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Adenosine, a purine nucleoside, plays an important function in the pathogenesis of cancer through interaction with the cell surface G protein-coupled adenosine receptors. It is important to determine the expression pattern of these receptors in different cancers. Previously in our lab, we found up-regulation of A1 adenosine receptor (AR) in lung tumors playing as a putative target for cancer cell inhibition, and here we aimed to investigate the significance of other adenosine receptor isoforms (A2aAR, A2bAR, and A3AR). METHODS In this study, first of all, we evaluated the adenosine receptors gene expression in the bioinformatics database (GENT2). Then the genes expression was measured experimentally in the 20 lung cancer tumor tissues in comparison to the matched tumor-adjacent normal tissue (as control). The mRNA expression of receptors was evaluated by real-time PCR. The tumors were categorized by the tumor size and the gene expression change was evaluated. RESULTS The experimental results indicated a significant increase in A2aAR (p value = .021) and A3AR (p value = .01) expression in lung tumor tissues compared to the adjacent tumor margins which were in accordant to bioinformatics analysis. We found a non-significant increase in A2bAR expression; however, when comparing the patients according to the tumor size, our data showed that the expression of A2bAR adenosine receptor in patients with smaller lung tumor sizes was higher than the other group (p = .011). CONCLUSION The results of this study showed that adenosine receptors A3AR, and A2aAR are highly expressed in lung tumors relative to tumor-adjacent normal tissue. We suggest that overexpression of adenosine receptors in lung cancer is due to their regulatory role in various aspects of lung cancer.
Collapse
Affiliation(s)
- Elnaz Asgharkhah
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marie Saghaeian Jazi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
6
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Zhang M, Ming X, Zhang Y. Research on Mechanism of Nanometer Colloidal Particles of Prostate Specific Membrane Aptamer A10 (PSMA-a10)/TGX221 in Restraining the Transplantation Tumor of Rats with Prostate Cancer (PCa). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assesses the effect of nanometer colloidal particles of PSMA-a10/TGX22 1 on the transplantation tumor of rats with prostate cancer (PCa). 26 rats with PCa were divided into PPG group, exposed TGX221 group and nanometer TGX221 group followed by analysis of the growth of transplantation
tumor, cell apoptotic rate by flow cytometry, and the expression of p110β and Bcl-2 by RT-PCR and Western Blot. Nanometer TGX221 group and exposed TGX221 group showed smaller tumor volume than in PPG group on day 13 after intervention with significant difference of tumor volume
between nanometer TGX221 group and exposed TGX221 group on day 7. The inhibiting rate of tumor growth in exposed TGX221 group was less than that in nanometer TGX221 group. However, nanometer TGX221 group presented higher apoptotic rate than other two groups. The level of p110β
and Bcl-2 in nanometer TGX221 group was declined gradually with significant differences compared to other two groups. In conclusion, the nanometer colloidal particles of PSMA-a10/TGX221 have promising tumor-targeted specificity possibly through inhibition of Bcl-2 and the activity of p110β,
leading to restrained PCa growth.
Collapse
Affiliation(s)
- Meiyu Zhang
- Department of Urology Surgery, Changyi People’s Hospital, Changyi Weifang, Shandong, 261300, China
| | - Xiuxi Ming
- Department of Urology Surgery, Changyi People’s Hospital, Changyi Weifang, Shandong, 261300, China
| | - Yanbing Zhang
- Department of Urology Surgery, Changyi People’s Hospital, Changyi Weifang, Shandong, 261300, China
| |
Collapse
|
8
|
Adenosine Receptor A2B Negatively Regulates Cell Migration in Ovarian Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23094585. [PMID: 35562985 PMCID: PMC9100769 DOI: 10.3390/ijms23094585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
The purinergic system is fundamental in the tumor microenvironment, since it regulates tumor cell interactions with the immune system, as well as growth and differentiation in autocrine-paracrine responses. Here, we investigated the role of the adenosine A2B receptor (A2BR) in ovarian carcinoma-derived cells’ (OCDC) properties. From public databases, we documented that high A2BR expression is associated with a better prognostic outcome in ovarian cancer patients. In vitro experiments were performed on SKOV-3 cell line to understand how A2BR regulates the carcinoma cell phenotype associated with cell migration. RT-PCR and Western blotting revealed that the ADORA2B transcript (coding for A2BR) and A2BR were expressed in SKOV-3 cells. Stimulation with BAY-606583, an A2BR agonist, induced ERK1/2 phosphorylation, which was abolished by the antagonist PSB-603. Pharmacological activation of A2BR reduced cell migration and actin stress fibers; in agreement, A2BR knockdown increased migration and enhanced actin stress fiber expression. Furthermore, the expression of E-cadherin, an epithelial marker, increased in BAY-606583-treated cells. Finally, cDNA microarrays revealed the pathways mediating the effects of A2BR activation on SKOV-3 cells. Our results showed that A2BR contributed to maintaining an epithelial-like phenotype in OCDC and highlighted this purinergic receptor as a potential biomarker.
Collapse
|
9
|
Azarshinfam N, Tanomand A, Soltanzadeh H, Rad FA. Evaluation of anticancer effects of propolis extract with or without combination with layered double hydroxide nanoparticles on Bcl-2 and Bax genes expression in HT-29 cell lines. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Gong Y, Huang T, Yu Q, Liu B, Wang J, Wang Z, Huang X. Sorafenib suppresses proliferation rate of fibroblast-like synoviocytes through the arrest of cell cycle in experimental adjuvant arthritis. J Pharm Pharmacol 2021; 73:32-39. [PMID: 33791811 DOI: 10.1093/jpp/rgaa053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Rheumatoid arthritis, a recurrent incendiary autoimmune joint syndrome, features by prominent synovial hyperplasia. Fibroblast-like synoviocytes are the executive components in the pathogenesis of rheumatoid arthritis. It is generally accepted that excessive proliferation and reduced apoptosis of fibroblast-like synoviocytes lead to synovial hyperplasia. Our previously studies found that sorafenib could inhibit adjuvant arthritis in rats and induced adjuvant arthritis fibroblast-like synoviocytes apoptosis. Presently, we aim to investigate the inhibitory effect with mechanisms of action of sorafenib on adjuvant arthritis fibroblast-like synoviocytes proliferation. METHODS Cell counting kit-8 and flow cytometry detection were conducted to monitor FLSs proliferation and cell cycle. Western blotting and qPCR assays were performed to detect P21, P53, CDK4, CyclinD1 and proliferating cell nuclear antigen content levels. KEY FINDINGS Sorafenib significantly inhibited adjuvant arthritis fibroblast-like synoviocytes proliferation with an IC50 value of 4 µmol/L by a concentration-dependent pattern, which accompanies by G1 cell cycle arrest. Also, sorafenib significantly decreased the levels of P21, CyclinD1, CDK4 and proliferating cell nuclear antigen, as well as up-regulated P53 expression in adjuvant arthritis fibroblast-like synoviocytes. CONCLUSIONS Sorafenib could inhibit adjuvant arthritis fibroblast-like synoviocytes proliferation via arresting G1/S cell cycle progression, which was partially through CDK4/CyclinD1-mediated pathway, as well as up-regulating P53 and down-regulating proliferating cell nuclear antigen expressions. These results suggest that sorafenib may provide a new paradigm for rheumatoid arthritis treatment.
Collapse
Affiliation(s)
- YongFang Gong
- Department of Anatomy, Bengbu Medical College, Bengbu, China
- Department of Anatomy, Anhui Medical University, Hefei, China
| | - TianYu Huang
- Grade 2016, Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - QiRui Yu
- Grade 2017, Department of medical imaging, Bengbu Medical College, Bengbu, China
| | - Biao Liu
- Grade 2016, Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Jing Wang
- Grade 2016, Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - ZhenHuan Wang
- Department of Anatomy, Bengbu Medical College, Bengbu, China
| | - XueYing Huang
- Department of Anatomy, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today 2021; 26:1490-1500. [PMID: 33639248 DOI: 10.1016/j.drudis.2021.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Chandran N, Iyer M, Siama Z, Vellingiri B, Narayanasamy A. Purinergic signalling pathway: therapeutic target in ovarian cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The lack of early diagnostic tools and the development of chemoresistance have made ovarian cancer (OC) one of the deadliest gynaecological cancers. The tumour microenvironment is characterised by the extracellular release of high levels of ATP, which is followed by the activation of P1 adenosinergic and P2 purinergic signalling systems. The sequential hydrolysis of ATP by the ectonucleotidases CD39 and CD73 generates adenosine, which creates an immune suppressive microenvironment by inhibiting the T and NK cell responses via the A2A adenosine receptor.
Main body of the abstract
In OC, adenosine-induced pAMPK pathway leads to the inhibition of cell growth and proliferation, which offers new treatment options to prevent or overcome chemoresistance. The activation of P2Y12 and P2Y1 purinergic receptors expressed in the platelets promotes epithelial-mesenchymal transition (EMT). The inhibitors of these receptors will be the effective therapeutic targets in managing OC. Furthermore, research on these signalling systems indicates an expanding field of opportunities to specifically target the purinergic receptors for the treatment of OC.
Short conclusion
In this review, we have described the complex purinergic signalling mechanism involved in the development of OC and discussed the merits of targeting the components involved in the purinergic signalling pathway.
Collapse
|
13
|
Kopetdaghinanes, pro-apoptotic hemiacetialic cyclomyrsinanes from Euphorbia kopetdaghi. Fitoterapia 2020; 146:104636. [DOI: 10.1016/j.fitote.2020.104636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 01/23/2023]
|
14
|
Lu H, Xie X, Wang K, Chen Q, Cai S, Liu D, Luo J, Kong J. Circular RNA hsa_circ_0096157 contributes to cisplatin resistance by proliferation, cell cycle progression, and suppressing apoptosis of non-small-cell lung carcinoma cells. Mol Cell Biochem 2020; 475:63-77. [PMID: 32767026 DOI: 10.1007/s11010-020-03860-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) play a major role in cancer development and chemotherapy resistance. This study aimed to characterize circRNA profiles associated with Cisplatin (diamminedichloroplatinum, DDP) resistance of non-small-cell lung carcinoma (NSCLC) cells. The half-maximal inhibitory concentration (IC50) of A549 and A549/DDP cells was determined using CCK-8 assay. Further, circRNA profiles and differentially expressed genes in A549 and A549/DDP cells were characterized by deep sequencing and cell proliferation was measured using MTS assay. Cell cycle progression was analyzed using flow cytometry. Apoptosis experiment was performed by TUNEL assay and flow cytometry. Cell migration and invasion were assessed using the Transwell system. Finally, signalling protein levels related to cell cycle progression and migration were measured by western blot. CCK-8 assay showed that A549/DDP cells obtained strong DDP resistance. Further deep sequencing results showed that 689 circRNAs and 87 circRNAs were significantly upregulated and downregulated in A549/DDP cells compared to A549 cells, respectively. Moreover, the circRNA hsa_circ_0096157 with the highest expression level in A549/DPP cells was further analyzed for its potential mechanism of DDP resistance in A549/DDP. With or without DDP treatment, hsa_circ_0096157 knockdown inhibited proliferation, migration, invasion and cell cycle progression but promoted apoptosis of A549/DDP cells. In addition, the western blot results also showed that hsa_circ_0096157 knockdown in A549/DDP cells increased P21 and E-cadherin but decreased CDK4, Cyclin D1, Bcl-2, N-cadherin, and Vimentin protein expression levels, indicating that cell cycle progression might be inhibited by increased P21 protein level to inhibit the expression of CDK4-cyclin D1 complex and decreased Bcl-2 protein level; and migration and invasion were suppressed by the increased E-cadherin and decreased N-cadherin and Vimentin expression levels. In contrast, hsa_circ_0096157 overexpression in A549 cells caused the opposite cellular and molecular alterations. DDP resistance in NSCLC cells was associated with significant circRNA profile alterations. Moreover, increased hsa_circ_0096157 expression contributed to DDP resistance in NSCLC cells by promoting cell proliferation, migration, invasion and cell cycle progression and inhibiting apoptosis.
Collapse
Affiliation(s)
- Huasong Lu
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Xun Xie
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Ke Wang
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Quanfang Chen
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Shuangqi Cai
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Dongmei Liu
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China
| | - Jin Luo
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| | - Jinliang Kong
- Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
15
|
Mir-193b Regulates the Differentiation, Proliferation, and Apoptosis of Bovine Adipose Cells by Targeting the ACSS2/AKT Axis. Animals (Basel) 2020; 10:ani10081265. [PMID: 32722316 PMCID: PMC7459776 DOI: 10.3390/ani10081265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The precise functions and molecular mechanisms of microRNAs (miRNAs) in adipocytes are primarily unknown. Studies have demonstrated that miR-193b plays a pivotal role in the differentiation of preadipocytes. Herein, we evaluated the effects of bta-miR-193b on the growth and development of adipocytes, using the EdU cell proliferation method, flow cytometry analysis, CCK-8 assay, RT-qPCR, Western blotting, and oil red O staining. We observed that the overexpression of bta-miR-193b significantly affected the differentiation, proliferation, and apoptosis of adipocytes. The results of the dual-fluorescent reporter vector experiments demonstrated that bta-miR-193b directly targeted Acyl-CoA synthetase short-chain family member 2 (ACSS2). Additionally, the effects of ACSS2 overexpression on the proliferation and apoptosis in adipose cells were the opposite of those induced by bta-miR-193b. We also demonstrated that ACSS2 can significantly promote the expression of AKT and pAKT proteins. Therefore, this study presents a novel mechanism by which bta-miR-193b regulates adipocyte development by targeting ACSS2.
Collapse
|
16
|
Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-Carbinol Derivative DIM Mitigates Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Inflammatory Response, Apoptosis and Regulating Oxidative Stress. Int J Mol Sci 2020; 21:E2048. [PMID: 32192079 PMCID: PMC7139345 DOI: 10.3390/ijms21062048] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a metabolic product of indole-3-carbinol extracted from cruciferous vegetables exhibits anti-inflammatory and anti-cancer properties. Earlier, the product has been demonstrated to possess anti-fibrotic properties; however, its protective effects on liver injury have not been clearly elucidated. In this study, we postulated the effects and molecular mechanisms of action of DIM on carbon tetrachloride (CCl4)-induced liver injury in mice. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 ml/kg) into mice. DIM was injected via subcutaneous route for three days at various doses (2.5, 5 and 10 mg/kg) before CCl4 injection. Mice were sacrificed and serum was collected for quantification of serum transaminases. The liver was collected and weighed. Treatment with DIM significantly reduced serum transaminases levels (AST and ALT), tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by DIM treatment by the reduction in the levels of cleaved caspase-3 and Bcl2 associated X protein (Bax). DIM treated mice significantly restored Cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in CCl4 treated mice. In addition, DIM downregulated overexpression of hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4 mediated apoptosis. Our results suggest that the protective effects of DIM against CCl4- induced liver injury are due to the inhibition of ROS, reduction of pro-inflammatory mediators and apoptosis.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Lokendra Chand
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Hyun Beak Shin
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Yeon Jun Jeong
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| |
Collapse
|
17
|
He S, Chen M, Lin X, Lv Z, Liang R, Huang L. Triptolide inhibits PDGF-induced proliferation of ASMCs through G0/G1 cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1 signaling pathway. Eur J Pharmacol 2019; 867:172811. [PMID: 31756335 DOI: 10.1016/j.ejphar.2019.172811] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/29/2023]
Abstract
Abnormal proliferation of airway smooth muscle cells (ASMCs) is a hallmark of airway remodeling. Platelet-derived growth factor (PDGF) is known to be a major stimulus inducing the proliferation of ASMCs. It has been reported that triptolide demonstrates protective effects against airway remodeling. In this study, we investigated the antiproliferative effects of triptolide on PDGF-induced ASMCs and its underlying mechanisms. Cell proliferation was determined using the Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Quantitative real-time PCR and Western blot analysis were employed to detect the expression of proliferating cell nuclear antigen (PCNA), cyclinD1 and cyclin dependent kinase 4 (CDK4). Proteins involved in the protein kinase B (AKT) and nuclear factor kappa B (NF-κB) signaling pathways were evaluated using Western blot analysis. Triptolide could significantly inhibit cell proliferation, induce cell cycle arrest in the G0/G1 phase, and reduce the expression of PCNA, cyclinD1, and CDK4 in PDGF-treated ASMCs. Levels of phosphorylated AKT, p65 and NF-κB inhibitor α (IκBα) stimulated by the presence of PDGF were markedly suppressed after triptolide treatment. Moreover, triptolide cotreatment with the phosphatidylinositol 3 kinase (PI3k) inhibitor, 2-(4-morpholinyl)-8-phenylchromone (LY294002), could further suppress the proliferation, NF-κB activation and cyclinD1 expression. Similar results were observed after triptolide cotreatment with the NF-κB inhibitor, ammonium pyrrolidinedithiocarbamate (PDTC). Our results suggest that triptolide could inhibit the PDGF-induced proliferation of ASMCs through G0/G1 cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1 signaling pathway.
Collapse
Affiliation(s)
- Siyun He
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ming Chen
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoling Lin
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhiqiang Lv
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruiyun Liang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Linjie Huang
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
18
|
Chen Q, He Q, Zhuang L, Wang K, Yin C, He L. IP10-CDR3 Reduces The Viability And Induces The Apoptosis Of Ovarian Cancer Cells By Down-Regulating The Expression Of Bcl-2 And Caspase 3. Onco Targets Ther 2019; 12:9697-9706. [PMID: 32009802 PMCID: PMC6859960 DOI: 10.2147/ott.s209757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE This study aimed to explore the effects of interferon-γ inducible protein 10 (IP10) and complementarity-determining region 3 (CDR3) of T cells receptor on ovarian cancer cells and the involved mechanisms. METHODS IP10 and CDR3 were linked with single-chain antibody (scfv) and exotoxin gene muton of Pseudomonas aeruginosa (PE40) to construct IP10-CDR3scfv and IP10-CDR3-PE40scfv. Then, we constructed pcDNA3.1-IP10-CDR3scfv and pcDNA3.1-IP10-CDR3-PE40scfv plasmids which were proved by HindIII/EcoRI digestion. SKOV3 cells and HOSEpiC cells were incubated with fluorescein isothiocyanate (FITC) labeled IP10-CDR3scfv and IP10-CDR3-PE40scfv proteins and protein levels were examined by flow cytometry. After gene transfection, SKOV3 cells were divided into four groups: Control, pcDNA3.1(+) negative control (NC) (pcDNA3.1(+) NC transfection), IP10-CDR3scfv (IP10-CDR3scfv transfection) and IP10-CDR3-PE40scfv (IP10-CDR3-PE40scfv transfection). Levels of IP10, CDR3, Caspase-3, cleaved Caspase-3 and Bcl-2 were determined by RT-PCR and Western blot. Cell viability and apoptosis were investigated by CCK-8 assay and Annexin V-FITC/PI assay, respectively. RESULTS The levels of FITC-labeled IP10-CDR3scfv and IP10-CDR3-PE40scfv proteins in the SKOV3+IP10-CDR3scfv group and the SKOV3+IP10-CDR3-PE40scfv group were remarkably higher than that in the SKOV3 group (P<0.05). So was the HOSEpiC related groups. There was no obvious difference in the levels of IP10, CDR3, Caspase-3, cleaved Caspase-3 and Bcl-2 between the control group and the pcDNA3.1(+) NC group. However, compared with the control group, the levels of Caspase-3 and Bcl-2 were reduced notably and the levels of IP10, CDR3 and cleaved Caspase-3 were elevated sharply in the IP10-CDR3scfv and IP10-CDR3-PE40scfv groups (P<0.05). The control group and the pcDNA3.1(+) NC group demonstrated similar cell viability and apoptosis. However, compared with the control group, cell viability in the IP10-CDR3scfv and IP10-CDR3-PE40scfv groups decreased significantly and cell apoptosis increased (P<0.05). CONCLUSION IP10-CDR3 could reduce the viability and induce the apoptosis of ovarian cancer cells by down-regulating the expression of Bcl-2 and Caspase-3.
Collapse
Affiliation(s)
- Qi Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Quan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| | - Kunya Wang
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi330006, People’s Republic of China
| | - Chunhua Yin
- Department of Obstetrics and Gynecology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi330006, People’s Republic of China
| | - Linsheng He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi330006, People’s Republic of China
| |
Collapse
|
19
|
Xia B, Wang J. Effects Of Adenosine On Apoptosis Of Ovarian Cancer A2780 Cells Via ROS And Caspase Pathways. Onco Targets Ther 2019; 12:9473-9480. [PMID: 31807024 PMCID: PMC6850704 DOI: 10.2147/ott.s216620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/11/2019] [Indexed: 11/23/2022] Open
Abstract
Background Ovarian cancer is the second most common malignant tumor of the female genital tract and the main cause of death of gynecological malignant tumors. Exogenous adenosine has been shown to induce apoptosis in tumor cells. Materials and methods The current study aimed to investigate the inhibitory effect and underlying mechanism of adenosine on the proliferation of ovarian cancer cells. The inhibitory effects of adenosine on ovarian cancer cells were assessed through MTT assay. The adenosine-induced apoptosis was determined by Hoechst 33342 staining and flow cytometry. The effect of adenosine on the intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) was assessed according to the DCFH-DA and JC-1 methods, respectively. Expression of apoptosis-related proteins and mitochondrial proteins was measured using Western blotting. Results MTT suggested that adenosine inhibited A2780 and SKOV3 cells viability in a dose- and time-dependent manner (P<0.05). Hoechst 33342 staining had demonstrated pronounced changes in cell morphology; to be specific, cells treated with 0 mmol/L adenosine showed a light blue color, while those in treatment groups had nuclear pyknosis and apoptotic body formation. Besides, the apoptosis rate was positively correlated with adenosine concentration (P<0.05). Flow cytometry results revealed that adenosine increased the intracellular ROS level and decreased MMP. Western blotting indicated that, the expression of Bax, cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase was up-regulated with the increase in adenosine concentration, while that of Bcl-2 protein and apoptosis-related protein caspase-3 was down-regulated. Conclusion With the increase in drug concentration, the CytoC expression in mitochondria was gradually reduced, while that in the cytoplasm was gradually increased. In conclusion, Ado may inhibit the proliferation and induce the apoptosis of ovarian cancer cells by increasing ROS, up-regulating the pro-apoptotic protein Bax and activating the caspase-3 expression in vitro.
Collapse
Affiliation(s)
- Bing Xia
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Central South University, Changsha 410078, People's Republic of China
| | - Jing Wang
- Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiang-Ya School of Medicine, Central South University, Changsha 410078, People's Republic of China
| |
Collapse
|
20
|
Kong D, Chen J, Sun X, Lin Y, Du Y, Huang D, Cheng H, He P, Yang L, Wu S, Zhao L, Meng X. GRIM-19 over-expression represses the proliferation and invasion of orthotopically implanted hepatocarcinoma tumors associated with downregulation of Stat3 signaling. Biosci Trends 2019; 13:342-350. [DOI: 10.5582/bst.2019.01185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dexia Kong
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, Second Hospital of Jilin University
| | - Xun Sun
- Department of Gastroenterology, First Hospital of Jilin University
| | - Yan Lin
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Yanwei Du
- Department of Pathophysiology, Basic Medicine School of Jilin University
| | - Di Huang
- Department of Pathophysiology, Basic Medicine School of Jilin University
| | - Hongjing Cheng
- Department of Gastroenterology, First Hospital of Jilin University
| | - Ping He
- Department of Gastroenterology, First Hospital of Jilin University
| | - Luoluo Yang
- Department of Gastroenterology, First Hospital of Jilin University
| | - Shan Wu
- Department of Gynaecology and Obstetrics, Second Hospital of Jilin University
| | - Lijing Zhao
- Department of Recovery, Nursing School of Jilin University
| | - Xiangwei Meng
- Department of Gastroenterology, First Hospital of Jilin University
| |
Collapse
|
21
|
Chen S, Wainwright DA, Wu JD, Wan Y, Matei DE, Zhang Y, Zhang B. CD73: an emerging checkpoint for cancer immunotherapy. Immunotherapy 2019; 11:983-997. [PMID: 31223045 PMCID: PMC6609898 DOI: 10.2217/imt-2018-0200] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
CD73 is a novel immune checkpoint associated with adenosine metabolism that promotes tumor progression by suppressing antitumor immune response and promoting angiogenesis. The inhibition of CD73, in combination with immune checkpoint blockade, targeted therapy or conventional therapy, improves antitumor effects in numerous preclinical mouse models of cancer. Emerging evidence suggests that the combination of anti-CD73 and immune checkpoint blockade has promising clinical activity in patients with advanced solid tumors. In this review, we will discuss the specific role of CD73 on both tumor cells and nontumor cells in regulating tumor immunity and tumorigenesis and provide an update on the current view of the antitumor activity of targeting CD73 by mAb or small molecule selective inhibitors in preclinical and clinical settings.
Collapse
Affiliation(s)
- Siqi Chen
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yong Wan
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniela E Matei
- Department of Obstetrics & Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bin Zhang
- Robert H Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Ma X, Deng J, Cui X, Chen Q, Wang W. Berberine exhibits antioxidative effects and reduces apoptosis of the vaginal epithelium in bacterial vaginosis. Exp Ther Med 2019; 18:2122-2130. [PMID: 31410167 PMCID: PMC6676195 DOI: 10.3892/etm.2019.7772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Bacterial vaginosis (BV) is a common type of vaginitis. Berberine is a natural alkaline product that reduces oxidative stress and apoptosis in cells. The aim of the present study was to investigate the effects of berberine on oxidative stress and apoptotic rates of BV. Vaginal epithelial and discharge samples were obtained from 60 healthy individuals and 180 patients with BV before and after one month of berberine treatment. Clinical observation was documented for all patients before and after treatment for comparison. Additionally, an in vitro study was performed; the samples were divided into groups the following groups: Control, model (H2O2-treated), LT (low-dose berberine), MT (medium-dose berberine) and HT (high-dose berberine). Expression levels of the oxidative stress related proteins were detected by western blotting. Clinical symptoms of patients with BV significantly improved following berberine treatment. Oxidative stress in vaginal discharge was significantly lower following treatment, indicated by the increased activity of superoxide dismutase (SOD) and catalase, as well as the reduced levels of malondialdehyde and H2O2. Apoptosis of the vaginal epithelial cells was also reduced, which was indicated by the reduced expression of apoptosis proteins caspase-3, cytochrome C, capase-12 and Bax, and increased expression of Bcl-2. The results of the in vitro experiments demonstrated a dose-dependent decrease in apoptosis with berberine treatment compared with levels before treatment. Oxidative stress relief was demonstrated by the reduced reactive oxygen species level and increased SOD and endothelial nitric oxide synthase levels, whereas suppression of apoptosis was further supported by the reduction in apoptotic proteins, as well as a decreased Bax/Bcl-2 ratio. Berberine exhibited effects on lowering oxidative stress in vaginal discharge and reducing oxidative damage, as well as apoptosis of the vaginal epithelium, which are beneficial to patients with bacterial vaginosis.
Collapse
Affiliation(s)
- Xiuzhen Ma
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Junfeng Deng
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Xinmu Cui
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Weihua Wang
- Department of Obstetrics and Gynecology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
23
|
Mirza-Aghazadeh-Attari M, Ostadian C, Saei AA, Mihanfar A, Darband SG, Sadighparvar S, Kaviani M, Samadi Kafil H, Yousefi B, Majidinia M. DNA damage response and repair in ovarian cancer: Potential targets for therapeutic strategies. DNA Repair (Amst) 2019; 80:59-84. [PMID: 31279973 DOI: 10.1016/j.dnarep.2019.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/01/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is among the most lethal gynecologic malignancies with a poor survival prognosis. The current therapeutic strategies involve surgery and chemotherapy. Research is now focused on novel agents especially those targeting DNA damage response (DDR) pathways. Understanding the DDR process in ovarian cancer necessitates having a detailed knowledge on a series of signaling mediators at the cellular and molecular levels. The complexity of the DDR process in ovarian cancer and how this process works in metastatic conditions is comprehensively reviewed. For evaluating the efficacy of therapeutic agents targeting DNA damage in ovarian cancer, we will discuss the components of this system including DDR sensors, DDR transducers, DDR mediators, and DDR effectors. The constituent pathways include DNA repair machinery, cell cycle checkpoints, and apoptotic pathways. We also will assess the potential of active mediators involved in the DDR process such as therapeutic and prognostic candidates that may facilitate future studies.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Caspian Ostadian
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shirin Sadighparvar
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Bahman Yousefi
- Molecular MedicineResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
24
|
Zhang Y, Yang D, Yang B, Li B, Guo J, Xiao C. PM2.5 induces cell cycle arrest through regulating mTOR/P70S6K1 signaling pathway. Exp Ther Med 2019; 17:4371-4378. [PMID: 31086573 PMCID: PMC6489014 DOI: 10.3892/etm.2019.7466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Fine particulate matter (PM2.5) pollution has become a serious problem in China. This study aims to elucidate the toxicity mechanism of PM2.5. Protein levels were detected by western blotting and RT-qPCR, and cell cycle was detected by flow cytometry. The results showed that exposure to PM2.5 induces cell cycle arrest and downregulation of the expression of cyclin D1 protein. Moreover, the protein expression of thymidylate synthase (TS) enzyme was found to be downregulated and the mRNA expression of TS was upregulated after PM2.5 exposure. Knockout of TS gene promoted cell cycle arrest and downregulation of the expression of cyclin D1 protein after PM2.5 exposure. Our data further revealed that PM2.5 exposure downregulates the expression of TS and cyclin D1 partially through the downregulation of the mammalian target of rapamycin (mTOR)/P70S6K1 signaling pathway. Thus, these findings indicate that PM2.5-induced cell cycle arrest might be due to the downregulation of mTOR/P70S6K1 signaling pathway, and thus inhibits the expression of TS protein.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Dan Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China.,Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Biao Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Bingyu Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Jie Guo
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| |
Collapse
|
25
|
The distinct role of CD73 in the progression of pancreatic cancer. J Mol Med (Berl) 2019; 97:803-815. [PMID: 30927045 PMCID: PMC6525710 DOI: 10.1007/s00109-018-01742-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/09/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Abstract Recent studies have shown that the non-enzymatic function of CD73 plays a key role in tumor progression, but this function of CD73 in pancreatic cancer cells has not been studied. Furthermore, little is known about the mechanism involved in CD73 regulation in tumors. Here, we found that CD73 expression was upregulated in pancreatic ductal adenocarcinoma (PDAC) and that its expression correlated with poor prognosis. CD73 knockdown inhibited cell growth and induced G1 phase arrest via the AKT/ERK/cyclin D signaling pathway. We also found that tumor necrosis factor receptor (TNFR) 2 was involved in CD73-induced AKT and ERK signaling pathway activation in PDAC. Further, miR-30a-5p overexpression significantly increased the cytotoxic effect of gemcitabine in pancreatic cancer by directly targeting CD73 messenger RNA (mRNA), suggesting that regulation of the miR-30a-5p/CD73 axis may play an important role in the development of gemcitabine resistance in pancreatic cancer. In summary, this regulatory network of CD73 appears to represent a new molecular mechanism underlying PDAC progression, and the mechanistic interaction between miR-30a-5p, CD73, and TNFR2 may provide new insights into therapeutic strategies for pancreatic cancer. Key messages CD73 was upregulated in PDAC and correlated with poor prognosis. CD73 knockdown inhibited cell growth and induced G1 phase arrest. TNFR2 was involved in CD73-induced AKT and ERK signaling pathway. miR-30a-5p targeted CD73 and increased the sensitivity to gemcitabine.
Electronic supplementary material The online version of this article (10.1007/s00109-018-01742-0) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Xie X, Zhang X, Chen J, Tang X, Wang M, Zhang L, Guo Z, Shen W. Fe3O4-solamargine induces apoptosis and inhibits metastasis of pancreatic cancer cells. Int J Oncol 2019; 54:905-915. [PMID: 30483763 PMCID: PMC6365027 DOI: 10.3892/ijo.2018.4637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 11/06/2022] Open
Abstract
Fe3O4-magnetic liposome (MLP) can deliver drugs to target tissues and can increase drug efficacy. The present study aimed to investigate the effects of solamargine (SM) and Fe3O4-SM in pancreatic cancer (PC). Cell viability was detected using a Cell Counting kit‑8 assay. Apoptosis and cell cycle progression was tested using a flow cytometry assay. A scratch assay was used to examine cell metastasis. Quantitative polymerase chain reaction, western blot analysis or immunohistochemical analysis were performed to determine the expression of target factors. Magnetic resonance imagining (MRI) and terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling were conducted to detect tumor growth and apoptosis in vivo, respectively. It was demonstrated that Fe3O4-SM inhibited cancer cell growth via a slow release of SM over an extended period of time. SM was revealed to induce apoptosis and cell cycle arrest. Furthermore, SM decreased the expression of X-linked inhibitor of apoptosis, Survivin, Ki‑67, proliferating cell nuclear antigen and cyclin D1, but increased the activity of caspase-3. It was also observed that SM inhibited tumor cell metastasis by modulating the expression of matrix metalloproteinase (MMP)-2 and TIMP metallopeptidase inhibitor-2. Furthermore, the phosphorylation of protein kinase B and mechanistic target of rapamycin was suppressed by SM. Notably, the effect of SM was enhanced by Fe3O4-SM. The malignant growth of PC was decreased by SM in vivo. Furthermore, the expression of Ki‑67 was decreased by SM and Fe3O4-SM. Additionally, cell apoptosis was increased in the Fe3O4-SM group, compared with the SM group. The present study illustrated the antitumor effect and action mec-hanism produced by SM. Additionally, it was demonstrated that Fe3O4-SM was more effective than SM in protecting against PC.
Collapse
Affiliation(s)
| | | | | | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | | | | | | | | |
Collapse
|
27
|
Wang Y, Wang H, Na W, Qin F, Zhang Z, Dong J, Li H, Zhang H. The retinoblastoma 1 gene ( RB1) modulates the proliferation of chicken preadipocytes. Br Poult Sci 2019; 60:323-329. [PMID: 30784300 DOI: 10.1080/00071668.2019.1584792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The objective of this study was to reveal the role of chicken RB1 (Gallus gallus RB1, gRB1) in the proliferation of preadipocytes. 2. To measure gene expression of gRB1 in the proliferation of chicken preadipocyte, quantitative real-time PCR was used. The expression levels of gRB1 transiently increased during this process. 3. To detect the effect of gRB1 on the proliferation of chicken preadipocyte, MTT assay and cell-cycle analysis were performed. MTT assay showed that overexpression of gRB1 significantly suppressed (P < 0.05) the proliferation of chicken preadipocytes, and knockdown of gRB1 promoted the proliferation of chicken preadipocytes. Cell-cycle analysis showed that the proportion of preadipocytes in the G1 and G2 phases significantly increased (P < 0.05), and the proportion of preadipocytes in the S phase significantly decreased (P < .05) after up-regulation of the expression of gRB1. The proportion of preadipocytes in the S phase significantly increased (P < 0.05) after down-regulation of gRB1. 4. Quantitative real-time PCR was used to detect the effect of gRB1 on the expression of genes related to proliferation of chicken preadipocytes. Gene expression analysis showed that gRB1 knockdown promoted markers indicating proliferation of Ki-67 (MKi67) expression at 96 h (P < 0.05), and overexpression of gRB1 reduced MKi67 expression at 72 h (P < 0.05). 5. This study demonstrated that gRB1 inhibited preadipocyte proliferation at least in part by inhibiting the G1 to S phase transition.
Collapse
Affiliation(s)
- Y Wang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - H Wang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - W Na
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - F Qin
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - Z Zhang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - J Dong
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - H Li
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| | - H Zhang
- a Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology , Northeast Agricultural University , Harbin , P. R. China
| |
Collapse
|
28
|
Li Q, Wei G, Tao T. Leukocyte immunoglobulin-like receptor B4 (LILRB4) negatively mediates the pathological cardiac hypertrophy by suppressing fibrosis, inflammation and apoptosis via the activation of NF-κB signaling. Biochem Biophys Res Commun 2019; 509:16-23. [DOI: 10.1016/j.bbrc.2018.11.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022]
|
29
|
Shi X, Qiu S, Zhuang W, Wang C, Zhang S, Yuan N, Yuan F, Qiao Y. Follicle-stimulating hormone inhibits cervical cancer via NF-κB pathway. Onco Targets Ther 2018; 11:8107-8115. [PMID: 30532552 PMCID: PMC6241696 DOI: 10.2147/ott.s173339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Follicle-stimulating hormone (FSH) has multiple biological functions. It is currently considered that FSH can inhibit cervical cancer, and our aim was to explore the underlying molecular mechanisms. Materials and methods An in vivo experiment using nude mice injected with HeLa cells was performed. Flow cytometry, western blotting, and real-time quantitative PCR analyses were done. Results Twenty one days after injection of HeLa cells, the subcutaneous tumor mass was significantly lower (P<0.01) in mice treated with 20 mIU/mL FSH, but did not disappear. In vitro observations indicated that FSH might inhibit cell proliferation and activate cell apoptosis to induce the reduction of HeLa cells. The mRNA and protein levels of Cyclin D1, Cyclin E1, and Caspase 3 changed accordingly as expected in vivo and in vitro. Moreover, FSH inactivated the nuclear factor-kappa B (NF-κB) pathway in subcutaneous tumors; the NF-κB(p65) activity in HeLa cells was significantly decreased using 20 mIU/mL FSH and was increased when FSH was administered along with lipopolysaccharide, accompanied by the same change of cell number. Further, FSH accelerated protein kinase A (PKA) activity, but inactivated glycogen synthase kinase 3 beta (GSK-3β) activity. Specific inhibition of PKA and/or GSK-3β provided in vitro evidence that directly supported the FSH-mediated inhibition of GSK-3β to inactivate NF-κB via the promotion of PKA activity. Conclusion Our data are the first description of the molecular regulatory mechanisms of FSH-mediated inhibition of the development of cervical cancer by decreasing the cell cycle and activating cell apoptosis via the PKA/GSK-3β/NF-κB pathway.
Collapse
Affiliation(s)
- Xi Shi
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| | - Shiwei Qiu
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| | - Wei Zhuang
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| | - Caiji Wang
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| | - Shili Zhang
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| | - Na Yuan
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| | - Fukang Yuan
- Department of Vascular Surgery of Xuzhou Central Hospital, Xuzhou Institute of Cardiovascular Disease, Xuzhou 221009, People's Republic of China,
| | - Yuehua Qiao
- The Institute of Audiology and Speech Science of Xuzhou Medical College, Xuzhou 221002, People's Republic of China,
| |
Collapse
|
30
|
Lee K, Kim S, Lee H. Orostachys japonicus induce p53-dependent cell cycle arrest through the MAPK signaling pathway in OVCAR-3 human ovarian cancer cells. Food Sci Nutr 2018; 6:2395-2401. [PMID: 30510740 PMCID: PMC6261214 DOI: 10.1002/fsn3.836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Orostachys japonicus (O. japonicus) is utilized as a traditional medicine for patients with various diseases. This study investigated the effect of the ethyl acetate fraction from O. japonicus extract (OJE) on the growth inhibition of OVCAR-3 human ovarian cancer cells demonstrated to inhibit cell growth and arrest the cell cycle in OVCAR-3 cells by blocking the sub-G1 phase and decreasing cyclin E1/CDK2 expression. Cell cycle arrest was connected to the increased expression of the cell cycle regulating factors p53 and p21. Apoptosis was initiated through the intrinsic pathway by up-regulating the expression of the Bcl-2/Bax ratio and down-regulating the expression of pro-caspase-3. Furthermore, OJE treatment elicited p-p38 activation and p-ERK1/2 inhibition. In conclusion, our results demonstrated that OJE reduced the growth of OVCAR-3 human ovarian cancer cells mediated by arrest of the cell cycle and regulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Kyung‐Sun Lee
- Department of Integrated Biomedical and Life SciencesGraduate SchoolKorea UniversitySeoulKorea
| | - Suhng‐Wook Kim
- Department of Integrated Biomedical and Life SciencesGraduate SchoolKorea UniversitySeoulKorea
| | - Hyeong‐Seon Lee
- Department of Biomedical Laboratory ScienceJungwon UniversityGoesanChungbukKorea
| |
Collapse
|
31
|
Zhao W, Hu JX, Hao RM, Zhang Q, Guo JQ, Li YJ, Xie N, Liu LY, Wang PY, Zhang C, Xie SY. Induction of microRNA‑let‑7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol Rep 2018; 40:1843-1854. [PMID: 30066899 PMCID: PMC6111629 DOI: 10.3892/or.2018.6593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most common cause of cancer‑associated mortality. MicroRNAs (miRNAs), as oncogenes or tumor suppressor genes, serve crucial roles not only in tumorigenesis, but also in tumor invasion and metastasis. Although miRNA‑let‑7a (let‑7a) has been reported to suppress cell growth in multiple cancer types, the biological mechanisms of let‑7a in lung adenocarcinoma are yet to be fully elucidated. In the present study, the molecular roles of let‑7a in lung adenocarcinoma were investigated by detecting its expression in lung adenocarcinoma tissues and exploring its roles in the regulation of lung cancer cell proliferation. Let‑7a expression was identified to be downregulated in lung adenocarcinoma tissues compared with normal tissues. Overexpression of let‑7a effectively suppressed cancer cell proliferation, migration and invasion in H1299 and A549 cells. Let‑7a also induced cell apoptosis and cell cycle arrest. Furthermore, let‑7a significantly inhibited cell growth by directly regulating cyclin D1 signals. This novel regulatory mechanism of let‑7a in lung adenocarcinoma provides possible avenues for future targeted therapies of lung cancer.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jin-Xia Hu
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Rui-Min Hao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Qian Zhang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Jun-Qi Guo
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, Shandong 264000, P.R. China
| | - Lu-Ying Liu
- Department of Pathology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| | - Can Zhang
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060, USA
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, Shandong 264003, P.R. China
| |
Collapse
|
32
|
Ethyl acetate fraction in ethanol extract from root of “Dai-Bai-Jie” (Marsdenia tenacissima): anti-tumor activity in A549 cancer cells. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30905-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Sureechatchaiyan P, Hamacher A, Brockmann N, Stork B, Kassack MU. Adenosine enhances cisplatin sensitivity in human ovarian cancer cells. Purinergic Signal 2018; 14:395-408. [PMID: 30078088 DOI: 10.1007/s11302-018-9622-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the deadliest gynecologic cancer due to lack of early effective diagnosis and development of resistance to platinum-based chemotherapy. Several studies reported that adenosine concentrations are higher in tumor microenvironment than in non-tumor tissue. This finding inspired us to study the role of adenosine in ovarian cancer cells and to investigate if adenosine pathways offer new treatment options urgently needed to prevent or overcome chemoresistance. The ovarian cancer cell lines HEY, A2780, and its cisplatin-resistant subline A2780CisR were used in this study. Expression and functional activity of adenosine receptors were investigated by RT-PCR, Western blotting, and cAMP assay. A1 and A2B adenosine receptors were expressed and functionally active in all three cell lines. Adenosine showed moderate cytotoxicity (MTT-IC50 values were between 700 and 900 μM) and induced apoptosis in a concentration-dependent manner by increasing levels of sub-G1 and cleaved PARP. Apoptosis was diminished by QVD-OPh, confirming caspase-dependent induction of apoptosis. Forty-eight hours pre-incubation of adenosine prior to cisplatin significantly enhanced cisplatin-induced cytotoxicity in a synergistic manner and increased apoptosis. SLV320 or PSB603, selective A1 and A2B antagonists, was not able to inhibit adenosine-induced increase in cisplatin cytotoxicity or apoptosis whereas dipyridamole, a nucleoside transporter inhibitor, completely abrogated both effects. Mechanistically, adenosine increased pAMPK and reduced pS6K which was prevented by dipyridamole. In conclusion, application of adenosine prior to cisplatin could be a new therapeutic option to increase the potency of cisplatin in a synergistic manner and thus overcome platinum resistance in ovarian cancer.
Collapse
Affiliation(s)
- Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Nicole Brockmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Bjoern Stork
- Institute of Molecular Medicine, Heinrich-Heine University, Universitaetsstrasse 1, 40225, Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University, Building 26.23.02, Universitaetsstrasse 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
34
|
Liu Y, Wen PH, Zhang XX, Dai Y, He Q. Breviscapine ameliorates CCl4‑induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med 2018; 42:755-768. [PMID: 29717768 PMCID: PMC6034936 DOI: 10.3892/ijmm.2018.3651] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 04/05/2018] [Indexed: 01/06/2023] Open
Abstract
Acute liver injury is characterized by fibrosis, inflammation and apoptosis, leading to liver failure, cirrhosis or cancer and affecting the clinical outcome in the long term. However, no effective therapeutic strategy is currently available. Breviscapine, a mixture of flavonoid glycosides, has been reported to have multiple biological functions. The present study aimed to investigate the effects of breviscapine on acute liver injury induced by CCl4 in mice. C57BL/6 mice were subjected to intraperitoneal injection with CCl4 for 8 weeks with or without breviscapine (15 or 30 mg/kg). Mice treated with CCl4 developed acute liver injury, as evidenced by histological analysis, Masson trichrome and Sirius Red staining, accompanied with elevated levels of alanine aminotransferase and aspartate aminotransferase. Furthermore, increases in pro‑inflammatory cytokines, chemokines and apoptotic factors, including caspase‑3 and poly(ADP ribose) polymerase‑2 (PARP‑2), were observed. Breviscapine treatment significantly and dose‑dependently reduced collagen deposition and the fibrotic area. Inflammatory cytokines were downregulated by breviscapine through inactivating Toll‑like receptor 4/nuclear factor-κB signaling pathways. In addition, co‑administration of breviscapine with CCl4 decreased the apoptotic response by enhancing B‑cell lymphoma-2 (Bcl‑2) levels, while reducing Bcl‑2‑associated X protein, apoptotic protease activating factor 1, caspase‑3 and PARP activity. Furthermore, CCl4‑induced oxidative stress was blocked by breviscapine through improving anti‑oxidants and impeding mitogen‑activated protein kinase pathways. The present study highlighted that breviscapine exhibited liver‑protective effects against acute hepatic injury induced by CCl4 via suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Pei-Hao Wen
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Xin-Xue Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Yang Dai
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital University of Medical Science, Beijing 100000, P.R. China
| |
Collapse
|
35
|
Liu Y, Wang LL, Chen S, Zong ZH, Guan X, Zhao Y. LncRNA ABHD11-AS1 promotes the development of endometrial carcinoma by targeting cyclin D1. J Cell Mol Med 2018; 22:3955-3964. [PMID: 29799152 PMCID: PMC6050509 DOI: 10.1111/jcmm.13675] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
To investigate the expression, role and mechanism of action of long non-coding RNA (lncRNA) ABHD11-AS1 in endometrial carcinoma. The expression of lncRNA ABHD11-AS1 was quantified by qRT-PCR in human endometrial carcinoma (n = 89) and normal endometrial tissues (n = 27). LncRNA ABHD11-AS1 was stably overexpressed or knocked-down in endometrial carcinoma cell lines to examine the cellular phenotype and expression of related molecules. Compared to normal endometrial tissue, lncRNA ABHD11-AS1 was significantly overexpressed in endometrial carcinoma. Overexpression of lncRNA ABHD11-AS1 promoted the proliferation, G1-S progression, invasion and migration of endometrial cancer cells; inhibited apoptosis; up-regulated cyclin D1, CDK1, CDK2, CDK4, Bcl-xl and VEGFA; and down-regulated p16, while ABHD11-AS1 down-regulation has the opposite effect. RNA pull down demonstrated that lncRNA ABHD11-AS1 binds directly to cyclin D1. Knockdown of cyclin D1 can reverse the effect of ABHD11-AS1. Overexpression of lncRNA ABHD11-AS1 increased the tumorigenicity and up-regulated cyclin D1 in an in vivo model of endometrial cancer in nude mice. LncRNA ABHD11-AS1 functions as an oncogene to promote cell proliferation and invasion in endometrial carcinoma by positively targeting cyclin D1.
Collapse
Affiliation(s)
- Yao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key laboratory for Major Obstetric Diseases of Guangdong Province, and Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, 510150, China
| | - Li-Li Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, 100013, China
| | - Xue Guan
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yang Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key laboratory for Major Obstetric Diseases of Guangdong Province, and Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institute in Guangdong Province, Guangzhou, 510150, China
| |
Collapse
|
36
|
Dietrich F, Figueiró F, Filippi-Chiela EC, Cappellari AR, Rockenbach L, Tremblay A, de Paula PB, Roesler R, Filho AB, Sévigny J, Morrone FB, Battastini AMO. Ecto-5'-nucleotidase/CD73 contributes to the radiosensitivity of T24 human bladder cancer cell line. J Cancer Res Clin Oncol 2018; 144:469-482. [PMID: 29305710 DOI: 10.1007/s00432-017-2567-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/27/2017] [Indexed: 02/03/2023]
Abstract
PURPOSE Trimodal therapy is a reasonable bladder-preserving option to radical cystectomy. However, many tumors are radioresistive. In this sense, the identification of new prognostic and predictive biomarkers that allow the selection of patients with better responses to radiation therapy would improve outcomes. With the aim of using ecto-5'-nucleotidase/CD73 as a predictive biomarker, the role of this enzyme in the context of radiotherapy in T24 human bladder cancer cell line was investigated. METHODS T24 cell line was exposure to a single dose of radiation (4 Gray) and trypan blue assay (pharmacological assays of viability/cumulative population doubling), flow cytometry (cell cycle/cell death/active caspase-3/ecto-5'-nucleotidase/CD73 protein staining), DAPI staining (nuclear morphometric assay), RT-PCR and real-time PCR, malachite green method (ectonucleotidase enzymatic assay), and HPLC (analysis of AMP metabolism) were carried out. T24 cell line in which ecto-5'-nucleotidase/CD73 has been completely silenced (5'KO) was also used. RESULTS The exposure of T24 cell line to a single dose (4 Gray) of radiation-induced cell death and triggered a transitory increase in ecto-5'-nucleotidase/CD73 expression, increased ectonucleotidase activity, and led to adenosine and inosine accumulation in the extracellular medium. Pharmacological inhibition or knocking out ecto-5'-nucleotidase/CD73 rescued cells' proliferative capacity, reducing their sensitivity to radiation. CONCLUSION Our findings show that the induction of ecto-5'-nucleotidase/CD73 by radiation contributes to the radiosensitivity of T24 cell line.
Collapse
Affiliation(s)
- Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Eduardo Cremonese Filippi-Chiela
- Programa de Pós-Graduação Ciências em Gastroenterologia e Hepatologia, Faculdade de Medicina, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Angélica Regina Cappellari
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, CEP 90619-900, Brazil
| | - Liliana Rockenbach
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, G1V 4G2, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, G1V 4G2, Canada
| | - Patrícia Boni de Paula
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Rafael Roesler
- Laboratório de Câncer e Neurobiologia, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, CEP 90035-003, Brazil
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90050-170, Brazil
| | - Aroldo Braga Filho
- Serviço de Radioterapia, Hospital São Lucas da PUCRS, Porto Alegre, RS, CEP 90619-900, Brazil
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC, G1V 4G2, Canada
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Fernanda Bueno Morrone
- Laboratório de Farmacologia Aplicada, Escola de Ciências da Saúde, PUCRS, Porto Alegre, RS, CEP 90619-900, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
37
|
Choi MS, Moon SM, Lee SA, Park BR, Kim JS, Kim DK, Kim YH, Kim CS. Adenosine induces intrinsic apoptosis via the PI3K/Akt/mTOR signaling pathway in human pharyngeal squamous carcinoma FaDu cells. Oncol Lett 2018; 15:6489-6496. [PMID: 29616118 DOI: 10.3892/ol.2018.8089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Adenosine has been identified to occur abundantly intra-and extracellularly, and to exert diverse biological functions, including the suppression of cell proliferation and the induction of apoptosis. Adenosine has been reported to induce apoptosis in several cancer cell lines; however, to the best of our knowledge, the effect of adenosine on head and neck cancer cells has not been investigated. Therefore, the purpose of the present study was to evaluate whether adenosine exerts any anticancer effect via induction of apoptosis in human pharyngeal squamous carcinoma FaDu cells. An MTT assay demonstrated that adenosine-treated FaDu cells inhibited a dose-dependent rate of cell growth, whereas human oral keratinocytes cells were unaffected by adenosine treatment. In addition, A1 and A2a adenosine receptor mRNA was detected in FaDu cells by reverse transcription-polymerase chain reaction, and adenosine-induced FaDu cell death was significantly suppressed by treatment with ATL-444, an antagonist of these receptors. Furthermore, adenosine-induced cell growth inhibition was exerted via apoptosis, as confirmed by the analysis of DNA fragmentation, Hoechst nuclear staining and flow cytometry with Annexin V-fluorescein isothiocyanate and propidium iodide staining. Adenosine was also demonstrated to induce an increase in Bcl-associated X expression, a decrease in B-cell lymphoma 2 expression, the release of cytochrome c from mitochondria, and the activation of caspase-3, -9 and poly(ADP-ribose) polymerase in FaDu cells. Finally, phosphoinositide 3-kinase (PI3K), RAC serine/threonine-protein kinase (Akt) and mechanistic target of rapamycin (mTOR) phosphorylation was found to be significantly inhibited in adenosine-treated FaDu cells, as was phosphorylation of the mTOR downregulators, S6 kinase β1, eukaryotic translation initiation factor 4E-binding protein 1, and eukaryotic translation initiation factor 4 γ1. Taken together, these results indicate that adenosine induces apoptosis via the mitochondrial intrinsic pathway, and activates caspase-3 and -9 activity via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mi Suk Choi
- Department of Dental Hygiene, Chodang University, Muan-ro, Muan-eup, Muan 534-701, Republic of Korea
| | - Sung-Min Moon
- CStech Research Institute, Gwangju, South Jeolla 61007, Republic of Korea
| | - Seul Ah Lee
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, South Jeolla 501-759, Republic of Korea
| | - Bo-Ram Park
- Department of Dental Hygiene, Chodang University, Muan-ro, Muan-eup, Muan 534-701, Republic of Korea
| | - Jae-Sung Kim
- Pre-Dentistry, College of Dentistry, Chosun University, Gwangju, South Jeolla 501-759, Republic of Korea
| | - Do Kyung Kim
- Department of Oral Physiology, College of Dentistry, Chosun University, Gwangju, South Jeolla 501-759, Republic of Korea
| | - Yong Hwan Kim
- Department of Crop Science and Biotechnology, College of Life and Resource Science, Cheonan, Chungnam 31116, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju, South Jeolla 501-759, Republic of Korea
| |
Collapse
|
38
|
Liu Z, Sun F, McGovern DP. Sparse generalized linear model with L0 approximation for feature selection and prediction with big omics data. BioData Min 2017; 10:39. [PMID: 29270229 PMCID: PMC5735537 DOI: 10.1186/s13040-017-0159-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L1, SCAD and MC+. However, none of the existing algorithms optimizes L0, which penalizes the number of nonzero features directly. Results In this paper, we develop a novel sparse generalized linear model (GLM) with L0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L0 optimization directly. Even though the original L0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms (L0ADRIDGE) for L0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. Conclusions The developed Software L0ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge. Electronic supplementary material The online version of this article (doi:10.1186/s13040-017-0159-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, 90048 CA USA
| | - Fengzhu Sun
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, 90089 CA USA
| | - Dermot P McGovern
- Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, 90048 CA USA
| |
Collapse
|
39
|
Wang MS, Chen L, Xiong YQ, Xu J, Wang JP, Meng ZL. Iron oxide magnetic nanoparticles combined with actein suppress non-small-cell lung cancer growth in a p53-dependent manner. Int J Nanomedicine 2017; 12:7627-7651. [PMID: 29089760 PMCID: PMC5655152 DOI: 10.2147/ijn.s127549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Actein (AT) is a triterpene glycoside isolated from the rhizomes of Cimicifuga foetida that has been investigated for its antitumor effects. AT treatment leads to apoptosis in various cell types, including breast cancer cells, by regulating different signaling pathways. Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are nanomaterials with biocompatible activity and low toxicity. In the present study, the possible benefits of AT in combination with MNPs on non-small-cell lung cancer (NSCLC) were explored in in vitro and in vivo studies. AT-MNP treatment contributed to apoptosis in NSCLC cells, as evidenced by activation of the caspase 3-signaling pathway, which was accompanied by downregulation of the antiapoptotic proteins Bcl2 and BclXL, and upregulation of the proapoptotic signals Bax and Bad. The death receptors of TRAIL were also elevated following AT-MNP treatment in a p53-dependent manner. Furthermore, a mouse xenograft model in vivo revealed that AT-MNP treatment exhibited no toxicity and suppressed NSCLC growth compared to either AT or MNP monotherapies. In conclusion, this study suggests a novel therapy to induce apoptosis in suppressing NSCLC growth in a p53-dependent manner by combining AT with Fe3O4 MNPs.
Collapse
Affiliation(s)
- Ming-Shan Wang
- Department of Oncology, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Liang Chen
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ya-Qiong Xiong
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jing Xu
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ji-Peng Wang
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Zi-Li Meng
- Department of Respiration, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| |
Collapse
|
40
|
Bahreyni A, Samani SS, Ghorbani E, Rahmani F, Khayami R, Toroghian Y, Behnam-Rassouli R, Khazaei M, Ryzhikov M, Parizadeh MR, Hasanzadeh M, Avan A, Hassanian SM. Adenosine: An endogenous mediator in the pathogenesis of gynecological cancer. J Cell Physiol 2017; 233:2715-2722. [PMID: 28617999 DOI: 10.1002/jcp.26056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022]
Abstract
Extracellular concentration of adenosine increases in the hypoxic tumor microenvironment. Adenosine signaling regulates apoptosis, angiogenesis, metastasis, and immune suppression in cancer cells. Adenosine-induced cell responses depend upon different subtypes of adenosine receptors activation and type of cancer. Suppression of adenosine signaling via inhibition of adenosine receptors or adenosine generating enzymes including CD39 and CD73 on ovarian or cervical cancer cells is a potentially novel therapeutic approach for gynecological cancer patients. This review summarizes the role of adenosine in the pathogenesis of gynecological cancer for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Seyed S Samani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Farzad Rahmani
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khayami
- Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Toroghian
- Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Mohammad R Parizadeh
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Faculty of Medicine, Department of Gynecology Oncology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Anti-colon cancer effect of caffeic acid p-nitro-phenethyl ester in vitro and in vivo and detection of its metabolites. Sci Rep 2017; 7:7599. [PMID: 28790461 PMCID: PMC5548715 DOI: 10.1038/s41598-017-07953-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/05/2017] [Indexed: 01/01/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE), extracted from propolis, was proven to inhibit colon cancer. Caffeic acid p-nitro-phenethyl ester (CAPE-pNO2), a derivative of CAPE, was determined to be an anti-platelet agent and a protector of myocardial ischaemia with more potent effects. In the present study, CAPE-pNO2 showed stronger cytotoxic activity than CAPE. We revealed interactions between CAPE-pNO2 and experimental cells. CAPE-pNO2 induced apoptosis in HT-29 cells by up-regulating P53, cleaved-caspase-3, Bax, P38 and CytoC; CAPE-pNO2 also up-regulated P21Cip1 and P27Kip1 and down-regulated CDK2 and c-Myc to promote cell cycle arrest in G0/G1. In xenograft studies, CAPE-pNO2 remarkably suppressed tumour growth dose dependently and decreased the expression of VEGF (vascular endothelial growth factor) in tumour tissue. Moreover, HE staining showed that no observable toxicity was found in the heart, liver, kidney and spleen. In addition, metabolites of CAPE-pNO2 in HT-29 cells and organs were detected. In conclusion, para-nitro may enhance the anticancer effect of CAPE by inhibiting colon cancer cell viability, inducing apoptosis and cell cycle arrest via the P53 pathway and inhibiting tumour growth and reducing tumour invasion by decreasing the expression of VEGF; additionally, metabolites of CAPE-pNO2 showed differences in cells and organs.
Collapse
|
42
|
Lv Y, Li H, Li F, Liu P, Zhao X. Long Noncoding RNA MNX1-AS1 Knockdown Inhibits Cell Proliferation and Migration in Ovarian Cancer. Cancer Biother Radiopharm 2017; 32:91-99. [PMID: 28414551 DOI: 10.1089/cbr.2017.2178] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Yan Lv
- Department of Obstetrics and Gynaecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynaecology, Zhongxin Hospital of Huizhou, Huizhou, China
| | - Huan Li
- Department of Obstetrics and Gynaecology, Beijing University Shenzhen Hospital, Shenzhen, China
| | - Fengling Li
- Department of Obstetrics and Gynaecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Peishu Liu
- Department of Obstetrics and Gynaecology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinrui Zhao
- Department of Obstetrics and Gynaecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
43
|
Jafari SM, Joshaghani HR, Panjehpour M, Aghaei M, Zargar Balajam N. Apoptosis and cell cycle regulatory effects of adenosine by modulation of GLI-1 and ERK1/2 pathways in CD44 + and CD24 - breast cancer stem cells. Cell Prolif 2017; 50. [PMID: 28370734 DOI: 10.1111/cpr.12345] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Breast cancer stem cells (CSCs) are a small population of tumour cells with the ability of self-renewal and resistance to chemotherapy. Targeting CSCs is a promising strategy for treatment of cancer. A recent study demonstrated that adenosine receptor agonists inhibit glioblastoma CSCs proliferation. At present, the effect of adenosine on breast CSCs has not been reported. Therefore, this study was designed to evaluate the effect of adenosine and its signalling pathways in breast CSCs. MATERIALS AND METHODS Anti-proliferative effect of adenosine on breast CSCs was evaluated by mammosphere formation and MTS assay. The effect of adenosine on cell cycle progression was examined using flow cytometry. Detection of apoptosis was conducted by Annexin V-FITC. The expression levels of cell cycle and apoptosis regulatory proteins as well as ERK1/2, and GLI-1 were measured by Western blot. RESULTS Adenosine reduced CSCs population and mammosphere formation in breast CSCs. Adenosine induced G1 cell cycle arrest in breast CSCs in conjunction with a marked down-regulation of cyclin D1 and CDK4. Adenosine also induced apoptosis by regulation of Bax/Bcl-2 ratio, mitochondrial membrane potential depletion and activation of caspase-6. Moreover, adenosine inhibited ERK1/2 phosphorylation and GLI-1 protein expression. CONCLUSIONS These findings indicated that adenosine induces cell cycle arrest and apoptosis through inhibition of GLI-1 and ERK1/2 pathways in breast CSCs.
Collapse
Affiliation(s)
- S M Jafari
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H R Joshaghani
- Medical Laboratory Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Bioinformatics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - N Zargar Balajam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
44
|
CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity. BMC Cancer 2017; 17:135. [PMID: 28202050 PMCID: PMC5311855 DOI: 10.1186/s12885-017-3128-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background CD73 has both enzymatic and non-enzymatic functions in cells. As a nucleotidase, CD73 plays its enzymatic function by catalyzing the hydrolysis of AMP into adenosine and phosphate. In addition to this, accumulating data have shown that CD73 is a key regulatory molecule involved in cancer growth and metastasis, but this non-enzymatic function of CD73 in cervical cancer cells has not been well studied. Methods CD73 was overexpressed by pcDNA-NT5E expression vector transfection in Hela and SiHa cells. Cell’s proliferation and migration were evaluated by MTT and scratch healing assay. The CD73 specific antagonist -APCP was used to inhibit CD73 enzymatic activity. And the effect of APCP on CD73 activity was determined by high performance liquid chromatography (HPLC). Expression level was assessed by qRT-PCR and western blotting. Results In the present study, we used Hela and SiHa cell lines to evaluate the effects of CD73 on cervical cancer cells proliferation and migration, and further explore the potential regulating mechanisms. Our data showed that CD73 overexpression significantly promoted cervical cancer cells proliferation and migration, and this promotive effect was not reverted by blocking CD73 enzymatic activity, both in Hela and SiHa cells. On the other hand, our data also showed that high concentration of adenosine inhibited Hela and SiHa cells proliferation and migration. These results demonstrated that the promotive effect of CD73 on cervical cancer cells proliferation and migration in vitro was independent from its enzymatic activity (i.e. production of adenosine). Furthermore, the expressions of EGFR, VEGF and Akt were significantly increased in CD73 overexpression Hela and SiHa cells. Conclusions Our data suggested that CD73 might promote proliferation and migration via potentiating EGFR/Akt and VEGF/Akt pathway, which was independent of CD73 enzyme activity. These data provide a novel insight into the regulating function of CD73 in cancer cells and suggest that CD73 may be promising therapeutic target in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3128-5) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med 2017; 13:1203-1208. [PMID: 28413458 PMCID: PMC5377313 DOI: 10.3892/etm.2017.4118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Abstract
The current study aimed to investigate the potential role of miR-9 in the inhibition of ovarian cancer progression through the stromal cell-derived factor-1 (SDF-1)/ C-X-C chemokine receptor type 4 (CXCR4) pathway and to provide a theoretical basis for the diagnosis and treatment of ovarian cancer. Human ovarian cancer OVCAR-3 cells were transfected with miR-9 short hairpin RNA (shRNA). The effect of miR-9 on the mRNA expression levels of CXCR4 were analyzed using reverse transcription-quantitative polymerase chain reaction. The effects of miR-9 on OVCAR-3 cell proliferation, invasion and apoptotic ability were detected using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay, Matrigel method, and Annexin V-fluorescein isothiocyanate flow cytometry, respectively. In addition, expression levels of SDF-1/CXCR4 pathway associated proteins were determined by western blot analysis. mRNA expression levels of CXCR4 in OVCAR-3 cells transfected with miR-9 shRNA was significantly downregulated compared with the blank and control groups (P<0.05). Furthermore, compared with the two control groups, the current results revealed that miR-9 inhibited cell proliferation, suppressed invasive ability and induced cell apoptosis in OVCAR-3 cells (P<0.05). Finally, it was observed that miR-9 functioned as a tumor inhibitor through the SDF-1/CXCR4 pathway by suppressing the expression levels of extracellular signal-regulated kinase 1 (ERK1), ERK2 and matrix metalloproteinase-9 proteins. The present study suggested that miR-9 may function as a promising tumor inhibitor for ovarian cancer through targeting the SDF-1/CXCR4 pathway.
Collapse
Affiliation(s)
- Lin He
- Department of Gynecology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Li Zhang
- Department of Gynecology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Mengfei Wang
- Department of Gynecology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Wenrong Wang
- Department of Gynecology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
46
|
Shirali S, Barari A, Hosseini SA, Khodadi E. Effects of Six Weeks Endurance Training and Aloe Vera Supplementation on COX-2 and VEGF Levels in Mice with Breast Cancer. Asian Pac J Cancer Prev 2017; 18:31-36. [PMID: 28240006 PMCID: PMC5563116 DOI: 10.22034/apjcp.2017.18.1.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to determine effects of six weeks endurance training and Aloe Vera supplementation on
COX-2 and VEGF levels in mice with breast cancer. For this purpose, 35 rats were randomly divided into 5 groups:
control (healthy) and 4 cancer groups: control (cancer only), training, Aloe Vera and Aloe Vera + training. Breast
cancer tumors were generated in mice by implantind. The training program comprised six weeks of swimming training
accomplished in three sessions per week. Training time started with 10 minutes on the first day and increased to 60
minutes in the second week and the water flow rate was increased from 7 to 15 liters per minute at a constant rate. Aloe
Vera extract at a dose of 300 mg/kg BW was administrated to rats by intraperitoneal injection. At the end of the study
period, rats were anesthetized and blood samples were taken. Significant differences were concluded at p<0.05 with
Kolmogorov-Smirnov and Tukey tests to analyze the data. The results showed significant increase in levels of serum.
COX-2 and VEGF levels in the cancer group compared with the healthy group. Administration of Aloe Vera extract
caused significant decrease in the COX-2 level in the cancer group. Also, in the training (swimming exercise) and
Aloe Vera + training cancer groups, we observed significant decrease in the VEGF level as compared to controls. Our
results suggest that Aloe Vera and training inhibit the COX pathway and cause decrease production of prostaglandin
E2. Hence administration of Aloe Vera in combination with endurance training might synergistically improve the host
milieu in mice bearing breast cancers.
Collapse
Affiliation(s)
- Saeed Shirali
- Research Center of Thalassemia and Hemoglobinopathy, Department of Laboratory Sciences, School of Paramedical Sciences, Ayatollah Amoli Branch, Islamic Azad University, Amol,Student Research Committee, Ayatollah Amoli Branch, Islamic Azad University, Amol.
| | | | | | | |
Collapse
|
47
|
Ding F, Wang M, Du Y, Du S, Zhu Z, Yan Z. BHX Inhibits the Wnt Signaling Pathway by Suppressing β-catenin Transcription in the Nucleus. Sci Rep 2016; 6:38331. [PMID: 27910912 PMCID: PMC5133598 DOI: 10.1038/srep38331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
BHX (N-(4-hydroxybenzyl)-1,3,4-triphenyl-4,5-dihydro-1H-pyrazole-5-carboxamide), a Wnt signaling pathway inhibitor, effectively inhibits tumor cell growth, but the underlying mechanism is unclear. Thus, we aim to investigate the effects and associated mechanism of BHX action on A549 and MCF-7 cell lines. In our study, MTT(3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide) and xenograft model assay indicated that cell growth was inhibited by BHX at a range of concentrations in vitro and in vivo. The expression of β-catenin and Wnt signaling pathway downstream target genes were decreased evidently under BHX treatment. Flow cytometry also revealed that BHX treatment significantly induced G1 arrest. Further analysis showed that BHX lowered the transcriptional level of β-catenin. In conclusion, BHX inhibited the nuclear synthesis of β-catenin, thereby suppressing the Wnt signaling pathway and further inhibiting tumor growth and proliferation.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Meisa Wang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Yibo Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Shuangshuang Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| |
Collapse
|
48
|
Yu D, Yang X, Lu X, Shi L, Feng B. Ethyl acetate extract of Peperomia tetraphylla induces cytotoxicity, cell cycle arrest, and apoptosis in lymphoma U937 cells. Biomed Pharmacother 2016; 84:1802-1809. [PMID: 27847202 DOI: 10.1016/j.biopha.2016.10.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 01/10/2023] Open
Abstract
The current study evaluated the cytotoxicity and the mechanism of apoptotic induction by Peperomia tetraphylla in U937 lymphoma cells. The results showed that P. tetraphylla ethyl acetate extract (EAEPT) inhibited the cell growth in U937 cells by MTT assay. After the U937 cells were treated with EAEPT, the cells exhibited marked morphological features of apoptosis (Hoechst 33342 staining) and the number of apoptotic cell (Annexin V-FITC/PI staining) increased. The treatment of EAEPT could induce loss of mitochondrial membrane potential (MMP) and increase the ROS level. Moreover, EAEPT treatment resulted in the accumulation of cells at S phase. We found that EAEPT could induce the cleavage of the caspase 3, caspase 8, caspase 9 and Bid. And the treatment of EAEPT could increase expression of Bax and down-regulate the expression of CCNB1, CCND1 and CDK1. The sub-fraction of EAEPT, namely EASub1 demonstrated the highest cytotoxicity activity on U937 cells. It was confirmed that EAEPT could inhibit the growth of U937 cells by blocking the cell cycle and prompted apoptosis via the ROS-medicated mitochondria pathway in vitro.
Collapse
Affiliation(s)
- Dayong Yu
- The School of Life Science and Biotechnology, Dalian University, Dalian 116622, PR China.
| | - Xiuxiu Yang
- The School of Life Science and Biotechnology, Dalian University, Dalian 116622, PR China
| | - Xuan Lu
- The School of Life Science and Biotechnology, Dalian University, Dalian 116622, PR China
| | - Liying Shi
- The School of Life Science and Biotechnology, Dalian University, Dalian 116622, PR China
| | - Baomin Feng
- The School of Life Science and Biotechnology, Dalian University, Dalian 116622, PR China.
| |
Collapse
|
49
|
Wen F, Zhao X, Zhao Y, Lu Z, Guo Q. The anticancer effects of Resina Draconis extract on cholangiocarcinoma. Tumour Biol 2016; 37:15203-15210. [DOI: doi10.1007/s13277-016-5393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
50
|
Lin JJ, Hsu SC, Lu KW, Ma YS, Wu CC, Lu HF, Chen JC, Lin JG, Wu PP, Chung JG. Alpha-phellandrene-induced apoptosis in mice leukemia WEHI-3 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2016; 31:1640-1651. [PMID: 26174008 DOI: 10.1002/tox.22168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/18/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Although reports have shown that α-phellandrene (α-PA) is one of the monoterpenes and is often used in the food and perfume industry, our previous studies have indicated that α-PA promoted immune responses in normal mice in vivo. However, there is no available information to show that α-PA induced cell apoptosis in cancer cells, thus, we investigated the effects of α-PA on the cell morphology, viability, cell cycle distribution, and apoptosis in mice leukemia WEHI-3 cells in vitro. Results indicated that α-PA induced cell morphological changes and decreased viability, induced G0/G1 arrest and sub-G1 phase (apoptosis) in WEHI-3 cells. α-PA increased the productions of reactive oxygen species (ROS) and Ca2+ and decreased the levels of mitochondrial membrane potential (ΔΨm ) in dose- and time-dependent manners in WEHI-3 cells that were analyzed by flow cytometer. Results from confocal laser microscopic system examinations show that α-PA promoted the release of cytochrome c, AIF, and Endo G from mitochondria in WEHI-3 cells. These results are the first findings to provide new information for understanding the mechanisms by which α-PA induces cell cycle arrest and apoptosis in WEHI-3 cells in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1640-1651, 2016.
Collapse
Affiliation(s)
- Jen-Jyh Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Division of Cardiology, China Medical University Hospital, Taichung, 404, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, 84001, Taiwan
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung, 82445, Taiwan
| | - Chih-Chung Wu
- Department of Nutrition and Health Science, Chang Jung Christian University, Tainan, 711, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei, 112, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botany and Health Applications, Da-Yeh University, Changhua, 51591, Taiwan
| | - Jaung-Geng Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Ping-Ping Wu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan, Republic of China.
| |
Collapse
|