1
|
Yang X, Dong Q, Tong X, Du X, Chen L. Btbd8 deficiency exacerbates bleomycin-induced pulmonary fibrosis in mice by enhancing myofibroblast accumulation and inflammatory responses. Exp Cell Res 2025; 447:114494. [PMID: 40049313 DOI: 10.1016/j.yexcr.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
BTBD8 contributes to the pathogenesis of inflammatory bowel disease through regulating intestinal barrier integrity and inflammation. However, its role in idiopathic pulmonary fibrosis (IPF) remains unknown. Here we investigated whether BTBD8 plays a role in bleomycin-induced pulmonary fibrosis. Pulmonary fibrosis was induced in wild-type (WT) and Btbd8 knockout (KO) mice by intratracheal instillation of bleomycin. The mice were sacrificed on day 7 or 12. Subsequently, the progression of bleomycin-induced pulmonary fibrosis was assessed. We found that Btbd8 KO mice are more susceptible to bleomycin-induced pulmonary fibrosis, with more severe body weight loss and pulmonary injury, increased collagen deposition and myofibroblast accumulation. We further demonstrated that BTBD8 functions in pulmonary fibroblasts to suppress the conversion of fibroblasts to myofibroblasts. Moreover, Btbd8 deficiency promotes the infiltration of inflammatory cells and the secretion of pro-inflammatory cytokines in IPF mouse model. These results highlight the critical role of BTBD8 in the pathogenesis of bleomycin-induced pulmonary fibrosis in mice, and suggest that BTBD8 may alleviate bleomycin-induced fibrosis by suppressing the differentiation of fibroblasts to myofibroblast, as well as inflammatory responses.
Collapse
Affiliation(s)
- Xiaoqiong Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China; Department of Infectious Diseases, Tianjin First Central Hospital, Tianjin, China
| | - Qiman Dong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Xingyuan Tong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoling Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Suri C, Pande B, Sahithi LS, Sahu T, Verma HK. Interplay between Lung Diseases and Viral Infections: A Comprehensive Review. Microorganisms 2024; 12:2030. [PMID: 39458339 PMCID: PMC11510474 DOI: 10.3390/microorganisms12102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The intricate relationship between chronic lung diseases and viral infections is a significant concern in respiratory medicine. We explore how pre-existing lung conditions, including chronic obstructive pulmonary disease, asthma, and interstitial lung diseases, influence susceptibility, severity, and outcomes of viral infections. We also examine how viral infections exacerbate and accelerate the progression of lung disease by disrupting immune responses and triggering inflammatory pathways. By summarizing current evidence, this review highlights the bidirectional nature of these interactions, where underlying lung diseasesincrease vulnerability to viral infections, while these infections, in turn, worsen the clinical course. This review underscores the importance of preventive measures, such as vaccination, early detection, and targeted therapies, to mitigate adverse outcomes in patients with chronic lung conditions. The insights provided aim to inform clinical strategies that can improve patient management and reduce the burden of chronic lung diseases exacerbated by viral infections.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | | | - Tarun Sahu
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India; (B.P.); (T.S.)
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
3
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
4
|
Enzel D, Kriventsov M, Sataieva T, Malygina V. Cellular and Molecular Genetic Mechanisms of Lung Fibrosis Development and the Role of Vitamin D: A Review. Int J Mol Sci 2024; 25:8946. [PMID: 39201632 PMCID: PMC11355055 DOI: 10.3390/ijms25168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis remains a relevant problem of the healthcare system with an unfavorable prognosis for patients due to progressive fibrous remodeling of the pulmonary parenchyma. Starting with the damage of the epithelial lining of alveoli, pulmonary fibrosis is implemented through a cascade of complex mechanisms, the crucial of which is the TGF-β/SMAD-mediated pathway, involving various cell populations. Considering that a number of the available drugs (pirfenidone and nintedanib) have only limited effectiveness in slowing the progression of fibrosis, the search and justification of new approaches aimed at regulating the immune response, cellular aging processes, programmed cell death, and transdifferentiation of cell populations remains relevant. This literature review presents the key modern concepts concerning molecular genetics and cellular mechanisms of lung fibrosis development, based mainly on in vitro and in vivo studies in experimental models of bleomycin-induced pulmonary fibrosis, as well as the latest data on metabolic features, potential targets, and effects of vitamin D and its metabolites.
Collapse
Affiliation(s)
| | | | - Tatiana Sataieva
- Medical Institute Named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenina Boulevard 5/7, 295051 Simferopol, Russia; (D.E.); (M.K.); (V.M.)
| | | |
Collapse
|
5
|
Roodnat AW, Callaghan B, Doyle C, Vallabh NA, Atkinson SD, Willoughby CE. Genome-wide RNA sequencing of ocular fibroblasts from glaucomatous and normal eyes: Implications for glaucoma management. PLoS One 2024; 19:e0307227. [PMID: 38990974 PMCID: PMC11239048 DOI: 10.1371/journal.pone.0307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Primary open angle glaucoma is a leading cause of visual impairment and blindness which is commonly treated with drugs or laser but may require surgery. Tenon's ocular fibroblasts are involved in wound-healing after glaucoma filtration surgery and may compromise a favourable outcome of glaucoma surgery by contributing to fibrosis. To investigate changes in gene expression and key pathways contributing to the glaucomatous state we performed genome-wide RNA sequencing. Human Tenon's ocular fibroblasts were cultured from normal and glaucomatous human donors undergoing eye surgery (n = 12). mRNA was extracted and RNA-Seq performed on the Illumina platform. Differentially expressed genes were identified using a bioinformatics pipeline consisting of FastQC, STAR, FeatureCounts and edgeR. Changes in biological functions and pathways were determined using Enrichr and clustered using Cytoscape. A total of 5817 genes were differentially expressed between Tenon's ocular fibroblasts from normal versus glaucomatous eyes. Enrichment analysis showed 787 significantly different biological functions and pathways which were clustered into 176 clusters. Tenon's ocular fibroblasts from glaucomatous eyes showed signs of fibrosis with fibroblast to myofibroblast transdifferentiation and associated changes in mitochondrial fission, remodeling of the extracellular matrix, proliferation, unfolded protein response, inflammation and apoptosis which may relate to the pathogenesis of glaucoma or the detrimental effects of topical glaucoma therapies. Altered gene expression in glaucomatous Tenon's ocular fibroblasts may contribute to an unfavourable outcome of glaucoma filtration surgery. This work presents a genome-wide transcriptome of glaucomatous versus normal Tenon's ocular fibroblasts which may identify genes or pathways of therapeutic value to improve surgical outcomes.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Breedge Callaghan
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chelsey Doyle
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Neeru A. Vallabh
- Department of Eye and Vision Science, Insitute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- St. Paul’s Eye Unit, Liverpool University Hospital NHS Foundation Trust, Liverpool, United Kingdom
| | - Sarah D. Atkinson
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Colin E. Willoughby
- Centre for Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
6
|
Jacobs I, Ke BJ, Ceulemans M, Cremer J, D'Hoore A, Bislenghi G, Matteoli G, De Hertogh G, Sabino J, Ferrante M, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Fibrostricturing Crohn's Disease Is Marked by an Increase in Active Eosinophils in the Deeper Layers. Clin Transl Gastroenterol 2024; 15:e00706. [PMID: 38690831 PMCID: PMC11272291 DOI: 10.14309/ctg.0000000000000706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
INTRODUCTION Approximately 50% of patients with Crohn's disease (CD) develop intestinal strictures necessitating surgery. The immune cell distribution in these strictures remains uncharacterized. We aimed to identify the immune cells in intestinal strictures of patients with CD. METHODS During ileocolonic resections, transmural sections of terminal ileum were sampled from 25 patients with CD and 10 non-inflammatory bowel disease controls. Macroscopically unaffected, fibrostenotic, and inflamed ileum was collected and analyzed for immune cell distribution (flow cytometry) and protein expression. Collagen deposition was assessed through a Masson Trichrome staining. Eosinophil and fibroblast colocalization was assessed through immunohistochemistry. RESULTS The Masson Trichrome staining confirmed augmented collagen deposition in both the fibrotic and the inflamed regions, though with a significant increased collagen deposition in the fibrotic compared with inflamed tissue. Distinct Th1, Th2, regulatory T cells, dendritic cells, and monocytes were identified in fibrotic and inflamed CD ileum compared with unaffected ileum of patients with CD as non-inflammatory bowel disease controls. Only minor differences were observed between fibrotic and inflamed tissue, with more active eosinophils in fibrotic deeper layers and increased eosinophil cationic protein expression in inflamed deeper layers. Last, no differences in eosinophil and fibroblast colocalization were observed between the different regions. DISCUSSION This study characterized immune cell distribution and protein expression in fibrotic and inflamed ileal tissue of patients with CD. Immunologic, proteomic, and histological data suggest inflammation and fibrosis are intertwined, with a large overlap between both tissue types. However strikingly, we did identify an increased presence of active eosinophils only in the fibrotic deeper layers, suggesting their potential role in fibrosis development.
Collapse
Affiliation(s)
- Inge Jacobs
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Bo-Jun Ke
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Matthias Ceulemans
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jonathan Cremer
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - André D'Hoore
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gabriele Bislenghi
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Gianluca Matteoli
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Gert De Hertogh
- Katholieke Universiteit Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - João Sabino
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Marc Ferrante
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Séverine Vermeire
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- Katholieke Universiteit Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
- University Hospitals Leuven, Department of General Internal Medicine, Leuven, Belgium
| | - Tim Vanuytsel
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Bram Verstockt
- Katholieke Universiteit Leuven, Department of Chronic Diseases and Metabolism (ChroMetA), Translational Research Centre for Gastrointestinal Disorders (TARGID), Leuven, Belgium
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| |
Collapse
|
7
|
Hall JK, Bates JHT, Krishnan R, Kim JH, Deng Y, Lutchen KR, Suki B. Elucidating the interaction between stretch and stiffness using an agent-based spring network model of progressive pulmonary fibrosis. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1396383. [PMID: 38840902 PMCID: PMC11150662 DOI: 10.3389/fnetp.2024.1396383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Pulmonary fibrosis is a deadly disease that involves the dysregulation of fibroblasts and myofibroblasts, which are mechanosensitive. Previous computational models have succeeded in modeling stiffness-mediated fibroblasts behaviors; however, these models have neglected to consider stretch-mediated behaviors, especially stretch-sensitive channels and the stretch-mediated release of latent TGF-β. Here, we develop and explore an agent-based model and spring network model hybrid that is capable of recapitulating both stiffness and stretch. Using the model, we evaluate the role of mechanical signaling in homeostasis and disease progression during self-healing and fibrosis, respectively. We develop the model such that there is a fibrotic threshold near which the network tends towards instability and fibrosis or below which the network tends to heal. The healing response is due to the stretch signal, whereas the fibrotic response occurs when the stiffness signal overpowers the stretch signal, creating a positive feedback loop. We also find that by changing the proportional weights of the stretch and stiffness signals, we observe heterogeneity in pathological network structure similar to that seen in human IPF tissue. The system also shows emergent behavior and bifurcations: whether the network will heal or turn fibrotic depends on the initial network organization of the damage, clearly demonstrating structure's pivotal role in healing or fibrosis of the overall network. In summary, these results strongly suggest that the mechanical signaling present in the lungs combined with network effects contribute to both homeostasis and disease progression.
Collapse
Affiliation(s)
- Joseph K. Hall
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jason H. T. Bates
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Jae Hun Kim
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Yuqing Deng
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Kenneth R. Lutchen
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Wang X, Wan W, Lu J, Liu P. Inhalable FN-binding liposomes or liposome-exosome hybrid bionic vesicles encapsulated microparticles for enhanced pulmonary fibrosis therapy. Int J Pharm 2024; 656:124096. [PMID: 38583821 DOI: 10.1016/j.ijpharm.2024.124096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive and irreversible interstitial lung disease that seriously threatens human life and health. Our previous study demonstrated the unique superiority of traditional Chinese medicine cryptotanshinone (CTS) combined with sustained pulmonary drug delivery for treating PF. In this study, we aimed to enhance the selectivity, targeting efficiency and sustained-release capability based on this delivery system. To this end, we developed and evaluated CTS-loaded modified liposomes-chitosan (CS) microspheres SM(CT-lipo) and liposome-exosome hybrid bionic vesicles-CS microspheres SM(LE). The prepared nano-in-micro particles system integrates the advantages of the carriers and complements each other. SM(CT-lipo) and SM(LE) achieved lung myofibroblast-specific targeting through CREKA peptide binding specifically to fibronectin (FN) and the homing effect of exosomes on parent cells, respectively, facilitating efficient delivery of anti-fibrosis drugs to lung lesions. Furthermore, compared with daily administration of conventional microspheres SM(NC) and positive control drug pirfenidone (PFD), inhaled administration of SM(CT-lipo) and SM(LE) every two days still attained similar efficacy, exhibiting excellent sustained drug release ability. In summary, our findings suggest that the developed SM(CT-lipo) and SM(LE) delivery strategies could achieve more accurate, efficient and safe therapy, providing novel insights into the treatment of chronic PF.
Collapse
Affiliation(s)
- Xiuhua Wang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Vang S, Helton ES, Guo Y, Burpee B, Rose E, Easter M, Bollenbecker S, Hirsch MJ, Matthews EL, Jones LI, Howze PH, Rajasekaran V, Denson R, Cochran P, Attah IK, Olson H, Clair G, Melkani G, Krick S, Barnes JW. O-GlcNAc transferase regulates collagen deposition and fibrosis resolution in idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1387197. [PMID: 38665916 PMCID: PMC11043510 DOI: 10.3389/fimmu.2024.1387197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary disease that is characterized by an excessive accumulation of extracellular matrix (ECM) proteins (e.g. collagens) in the parenchyma, which ultimately leads to respiratory failure and death. While current therapies exist to slow the progression, no therapies are available to resolve fibrosis. Methods We characterized the O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT)/O-GlcNAc axis in IPF using single-cell RNA-sequencing (scRNA-seq) data and human lung sections and isolated fibroblasts from IPF and non-IPF donors. The underlying mechanism(s) of IPF were further investigated using multiple experimental models to modulate collagen expression and accumulation by genetically and pharmacologically targeting OGT. Furthermore, we hone in on the transforming growth factor-beta (TGF-β) effector molecule, Smad3, by co-expressing it with OGT to determine if it is modified and its subsequent effect on Smad3 activation. Results We found that OGT and O-GlcNAc levels are upregulated in patients with IPF compared to non-IPF. We report that the OGT regulates collagen deposition and fibrosis resolution, which is an evolutionarily conserved process demonstrated across multiple species. Co-expression of OGT and Smad3 showed that Smad3 is O-GlcNAc modified. Blocking OGT activity resulted in decreased phosphorylation at Ser-423/425 of Smad3 attenuating the effects of TGF-β1 induced collagen expression/deposition. Conclusion OGT inhibition or knockdown successfully blocked and reversed collagen expression and accumulation, respectively. Smad3 is discovered to be a substrate of OGT and its O-GlcNAc modification(s) directly affects its phosphorylation state. These data identify OGT as a potential target in pulmonary fibrosis resolution, as well as other diseases that might have aberrant ECM/collagen accumulation.
Collapse
Affiliation(s)
- Shia Vang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eric Scott Helton
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yiming Guo
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bailey Burpee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elex Rose
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Molly Easter
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Seth Bollenbecker
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meghan June Hirsch
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Emma Lea Matthews
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luke Isaac Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick Henry Howze
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vasanthi Rajasekaran
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rebecca Denson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Phillip Cochran
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isaac Kwame Attah
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Heather Olson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stefanie Krick
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jarrod Wesley Barnes
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
10
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
11
|
Cosgrove BD, Bounds LR, Taylor CK, Su AL, Rizzo AJ, Barrera A, Crawford GE, Hoffman BD, Gersbach CA. Mechanosensitive genomic enhancers potentiate the cellular response to matrix stiffness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574997. [PMID: 38260455 PMCID: PMC10802421 DOI: 10.1101/2024.01.10.574997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular microenvironment, yet how mechanical cues from these microenvironments precisely influence epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR screening to identify a new class of genomic enhancers that responds to the mechanical microenvironment. These 'mechanoenhancers' could be active on either soft or stiff extracellular matrix contexts, and regulated transcription to influence critical cell functions including apoptosis, mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on rigid materials tuned gene expression to levels observed on softer materials, thereby reprogramming the cellular response to the mechanical microenvironment. These editing approaches may enable the precise alteration of mechanically-driven disease states.
Collapse
Affiliation(s)
- Brian D. Cosgrove
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Lexi R. Bounds
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Carson Key Taylor
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Alan L. Su
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Anthony J. Rizzo
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
| | - Alejandro Barrera
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC 27708, USA
| | - Gregory E. Crawford
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Pediatrics, Duke University Medical Center; Durham, NC 27708, USA
| | - Brenton D. Hoffman
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Department of Cell Biology, Duke University; Durham, NC 27708, USA
| | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University; Durham, NC 27708, USA
- Center for Advanced Genomic Technologies, Duke University; Durham, NC 27708, USA
- Department of Cell Biology, Duke University; Durham, NC 27708, USA
- Department of Surgery, Duke University Medical Center; Durham, NC 27708, USA
| |
Collapse
|
12
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
13
|
Thiam F, Phogat S, Abokor FA, Osei ET. In vitro co-culture studies and the crucial role of fibroblast-immune cell crosstalk in IPF pathogenesis. Respir Res 2023; 24:298. [PMID: 38012580 PMCID: PMC10680329 DOI: 10.1186/s12931-023-02608-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
IPF is a fatal lung disease characterized by intensive remodeling of lung tissue leading to respiratory failure. The remodeling in IPF lungs is largely characterized by uncontrolled fibrosis. Fibroblasts and their contractile phenotype the myofibroblast are the main cell types responsible for typical wound healing responses, however in IPF, these responses are aberrant and result in the overactivation of fibroblasts which contributes to the inelasticity of the lung leading to a decrease in lung function. The specific mechanisms behind IPF pathogenesis have been elusive, but recently the innate and adaptive immunity have been implicated in the fibrotic processes of the disease. In connection with this, several in vitro co-culture models have been used to investigate the specific interactions occurring between fibroblasts and immune cells and how this contributes to the pathobiology of IPF. In this review, we discuss the in vitro models that have been used to examine the abnormal interactions between fibroblasts and cells of the innate and adaptive immune system, and how these contribute to the fibrotic processes in the lungs of IPF patients.
Collapse
Affiliation(s)
- Fama Thiam
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Sakshi Phogat
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Apte SH, Groves PL, Tan ME, Lutzky VP, de Silva T, Monteith JN, Yerkovich ST, O’Sullivan BJ, Davis RA, Chambers DC. A Methodological Approach to Identify Natural Compounds with Antifibrotic Activity and the Potential to Treat Pulmonary Fibrosis Using Single-Cell Sequencing and Primary Human Lung Macrophages. Int J Mol Sci 2023; 24:15104. [PMID: 37894784 PMCID: PMC10606775 DOI: 10.3390/ijms242015104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and lethal form of the interstitial pneumonias. The cause of the disease is unknown, and new therapies that stop or reverse disease progression are desperately needed. Recent advances in next-generation sequencing have led to an abundance of freely available, clinically relevant, organ-and-disease-specific, single-cell transcriptomic data, including studies from patients with IPF. We mined data from published IPF data sets and identified gene signatures delineating pro-fibrotic or antifibrotic macrophages and then used the Enrichr platform to identify compounds with the potential to drive the macrophages toward the antifibrotic transcriptotype. We then began testing these compounds in a novel in vitro phenotypic drug screening assay utilising human lung macrophages recovered from whole-lung lavage of patients with silicosis. As predicted by the Enrichr tool, glitazones potently modulated macrophage gene expression towards the antifibrotic phenotype. Next, we assayed a subset of the NatureBank pure compound library and identified the cyclobutane lignan, endiandrin A, which was isolated from the roots of the endemic Australian rainforest plant, Endiandra anthropophagorum, with a similar antifibrotic potential to the glitazones. These methods open new avenues of exploration to find treatments for lung fibrosis.
Collapse
Affiliation(s)
- Simon H. Apte
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Penny L. Groves
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
| | - Maxine E. Tan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Viviana P. Lutzky
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Tharushi de Silva
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Joshua N. Monteith
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Stephanie T. Yerkovich
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Brendan J. O’Sullivan
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| | - Rohan A. Davis
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
- NatureBank, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Daniel C. Chambers
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD 4032, Australia; (P.L.G.); (M.E.T.); (V.P.L.); (T.d.S.); (B.J.O.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; (J.N.M.); (S.T.Y.)
| |
Collapse
|
15
|
Liu W, Deng W, Chen M, Dong Z, Zhu B, Yu Z, Tang D, Sauler M, Lin C, Wain LV, Cho MH, Kaminski N, Zhao H. A statistical framework to identify cell types whose genetically regulated proportions are associated with complex diseases. PLoS Genet 2023; 19:e1010825. [PMID: 37523391 PMCID: PMC10414598 DOI: 10.1371/journal.pgen.1010825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/10/2023] [Accepted: 06/12/2023] [Indexed: 08/02/2023] Open
Abstract
Finding disease-relevant tissues and cell types can facilitate the identification and investigation of functional genes and variants. In particular, cell type proportions can serve as potential disease predictive biomarkers. In this manuscript, we introduce a novel statistical framework, cell-type Wide Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell types whose genetically regulated proportions (GRPs) are disease/trait-associated. On simulated and real GWAS data, cWAS showed good statistical power with newly identified significant GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a powerful tool to reveal cell types associated with complex diseases mediated by GRPs.
Collapse
Affiliation(s)
- Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Ming Chen
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Zihan Dong
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Zhaolong Yu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Daiwei Tang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Chen Lin
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Baudo G, Wu S, Massaro M, Liu H, Lee H, Zhang A, Hamilton DJ, Blanco E. Polymer-Functionalized Mitochondrial Transplantation to Fibroblasts Counteracts a Pro-Fibrotic Phenotype. Int J Mol Sci 2023; 24:10913. [PMID: 37446100 PMCID: PMC10342003 DOI: 10.3390/ijms241310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Fibroblast-to-myofibroblast transition (FMT) leads to excessive extracellular matrix (ECM) deposition-a well-known hallmark of fibrotic disease. Transforming growth factor-β (TGF-β) is the primary cytokine driving FMT, and this phenotypic conversion is associated with mitochondrial dysfunction, notably a metabolic reprogramming towards enhanced glycolysis. The objective of this study was to examine whether the establishment of favorable metabolic phenotypes in TGF-β-stimulated fibroblasts could attenuate FMT. The hypothesis was that mitochondrial replenishment of TGF-β-stimulated fibroblasts would counteract a shift towards glycolytic metabolism, consequently offsetting pro-fibrotic processes. Isolated mitochondria, functionalized with a dextran and triphenylphosphonium (TPP) (Dex-TPP) polymer conjugate, were administered to fibroblasts (MRC-5 cells) stimulated with TGF-β, and effects on bioenergetics and fibrotic programming were subsequently examined. Results demonstrate that TGF-β stimulation of fibroblasts led to FMT, which was associated with enhanced glycolysis. Dex-TPP-coated mitochondria (Dex-TPP/Mt) delivery to TGF-β-stimulated fibroblasts abrogated a metabolic shift towards glycolysis and led to a reduction in reactive oxygen species (ROS) generation. Importantly, TGF-β-stimulated fibroblasts treated with Dex-TPP/Mt had lessened expression of FMT markers and ECM proteins, as well as reduced migration and proliferation. Findings highlight the potential of mitochondrial transfer, as well as other strategies involving functional reinforcement of mitochondria, as viable therapeutic modalities in fibrosis.
Collapse
Affiliation(s)
- Gherardo Baudo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Matteo Massaro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hyunho Lee
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
17
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
18
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
19
|
Massaro M, Wu S, Baudo G, Liu H, Collum S, Lee H, Stigliano C, Segura-Ibarra V, Karmouty-Quintana H, Blanco E. Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. Eur J Pharm Sci 2023; 183:106370. [PMID: 36642345 PMCID: PMC10898324 DOI: 10.1016/j.ejps.2023.106370] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had high encapsulation efficiency, protected mRNA from degradation, and exhibited sustained release kinetics. eGFP mRNA LNP transfection in human primary cells proved dose- and time-dependent in vitro. In a bleomycin mouse model of lung fibrosis, luciferase mRNA LNPs administered intratracheally led to site-specific lung accumulation. Importantly, bioluminescence signal was detected in lungs as early as 2 h after delivery, with signal still evident at 48 h. Of note, LNPs were found associated with AEC2 and fibroblasts in vivo. Findings highlight the potential for pulmonary delivery of mRNA in IPF, opening therapeutic avenues aimed at halting and potentially reversing disease progression.
Collapse
Affiliation(s)
- Matteo Massaro
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Gherardo Baudo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States; College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 China
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Scott Collum
- Department of Biochemistry and Molecular Biology, Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Hyunho Lee
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Cinzia Stigliano
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Victor Segura-Ibarra
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 United States; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030 United States; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
20
|
Dsouza KG, Surolia R, Kulkarni T, Li FJ, Singh P, Zeng H, Stephens C, Kumar A, Wang Z, Antony VB. Use of a pulmosphere model to evaluate drug antifibrotic responses in interstitial lung diseases. Respir Res 2023; 24:96. [PMID: 36978076 PMCID: PMC10045174 DOI: 10.1186/s12931-023-02404-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Interstitial lung diseases (ILD) encompass a heterogenous group of diffuse parenchymal lung disorders characterized by variable degrees of inflammation and fibrosis. Pretherapeutic clinical testing models for such diseases can serve as a platform to test and develop effective therapeutic strategies. In this study, we developed patient derived 3D organoid model to recapitulate the disease process of ILDs. We characterized the inherent property of invasiveness in this model and tested for antifibrotic responses with an aim to develop a potential platform for personalized medicine in ILDs. METHODS In this prospective study, 23 patients with ILD were recruited and underwent lung biopsy. 3D organoid-based models (pulmospheres) were developed from the lung biopsy tissues. Pulmonary functioning testing and other relevant clinical parameters were collected at the time of enrollment and follow up visits. The patient derived pulmospheres were compared to normal control pulmospheres obtained from 9 explant lung donor samples. These pulmospheres were characterized by their invasive capabilities and responsiveness to the antifibrotic drugs, pirfenidone and nintedanib. RESULTS Invasiveness of the pulmospheres was measured by the zone of invasiveness percentage (ZOI%). The ILD pulmospheres (n = 23) had a higher ZOI% as compared to control pulmospheres (n = 9) (516.2 ± 115.6 versus 54.63 ± 19.6 respectively. ILD pulmospheres were responsive to pirfenidone in 12 of the 23 patients (52%) and responsive to nintedanib in all 23 patients (100%). Pirfenidone was noted to be selectively responsive in patients with connective tissue disease related ILD (CTD-ILD) at low doses. There was no correlation between the basal pulmosphere invasiveness, response to antifibrotics, and FVC change (Δ FVC). CONCLUSIONS The 3D pulmosphere model demonstrates invasiveness which is unique to each individual subject and is greater in ILD pulmospheres as compared to controls. This property can be utilized to test responses to drugs such as antifibrotics. The 3D pulmosphere model could serve as a platform for the development of personalized approaches to therapeutics and drug development in ILDs and potentially other chronic lung diseases.
Collapse
Affiliation(s)
- Kevin G Dsouza
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | - Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | - Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | - Pooja Singh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | - Huaxiu Zeng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | - Crystal Stephens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA
| | | | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Superfund Research Center at The University of Alabama at Birmingham, 901 19Th St S, BMR2, Rm 404, Birmingham, AL, 35294, USA.
| |
Collapse
|
21
|
Huang Y, Guzy R, Ma SF, Bonham CA, Jou J, Schulte JJ, Kim JS, Barros AJ, Espindola MS, Husain AN, Hogaboam CM, Sperling AI, Noth I. Central lung gene expression associates with myofibroblast features in idiopathic pulmonary fibrosis. BMJ Open Respir Res 2023; 10:10/1/e001391. [PMID: 36725082 PMCID: PMC9896241 DOI: 10.1136/bmjresp-2022-001391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Contribution of central lung tissues to pathogenesis of idiopathic pulmonary fibrosis (IPF) remains unknown. OBJECTIVE To ascertain the relationship between cell types of IPF-central and IPF-peripheral lung explants using RNA sequencing (RNA-seq) transcriptome. METHODS Biopsies of paired IPF-central and IPF-peripheral along with non-IPF lungs were selected by reviewing H&E data. Criteria for differentially expressed genes (DEG) were set at false discovery rate <5% and fold change >2. Computational cell composition deconvolution was performed. Signature scores were computed for each cell type. FINDINGS Comparison of central IPF versus non-IPF identified 1723 DEG (1522 upregulated and 201 downregulated). Sixty-two per cent (938/1522) of the mutually upregulated genes in central IPF genes were also upregulated in peripheral IPF versus non-IPF. Moreover, 85 IPF central-associated genes (CAG) were upregulated in central IPF versus both peripheral IPF and central non-IPF. IPF single-cell RNA-seq analysis revealed the highest CAG signature score in myofibroblasts and significantly correlated with a previously published activated fibroblasts signature (r=0.88, p=1.6×10-4). CAG signature scores were significantly higher in IPF than in non-IPF myofibroblasts (p=0.013). Network analysis of central-IPF genes identified a module significantly correlated with the deconvoluted proportion of myofibroblasts in central IPF and anti-correlated with inflammation foci trait in peripheral IPF. The module genes were over-represented in idiopathic pulmonary fibrosis signalling pathways. INTERPRETATION Gene expression in central IPF lung regions demonstrates active myofibroblast features that contributes to disease progression. Further elucidation of pathological transcriptomic state of cells in the central regions of the IPF lung that are relatively spared from morphological rearrangements may provide insights into molecular changes in the IPF progression.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rob Guzy
- Section of Pulmonary & Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Shwu-Fan Ma
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A Bonham
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Jou
- Department of Surgery, University of Illinois, Peoria, Illinois, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John S Kim
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew J Barros
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Milena S Espindola
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Cory M Hogaboam
- Division of Pulmonary & Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anne I Sperling
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Imre Noth
- Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
22
|
Hult EM, Gurczynski SJ, O’Dwyer DN, Zemans RL, Rasky A, Wang Y, Murray S, Crawford HC, Moore BB. Myeloid- and Epithelial-derived Heparin-Binding Epidermal Growth Factor-like Growth Factor Promotes Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2022; 67:641-653. [PMID: 36036796 PMCID: PMC9743186 DOI: 10.1165/rcmb.2022-0174oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important epidermal growth factor receptor ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that patients with IPF and mice with pulmonary fibrosis have increased expression of HB-EGF and that lung macrophages and transitional AECs of mice with pulmonary fibrosis and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Yizhuo Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Susan Murray
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan; and
| | - Howard C. Crawford
- Henry Ford Pancreatic Center, Department of Surgery, Henry Ford Health System, Detroit, Michigan
| | - Bethany B. Moore
- Department of Microbiology and Immunology
- Department of Internal Medicine
| |
Collapse
|
23
|
Physiological Effects of Ferroptosis on Organ Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5295434. [PMID: 36238649 PMCID: PMC9553398 DOI: 10.1155/2022/5295434] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a new type of programmed cell death with unique morphological, biochemical, and genetic features. From the initial study of histomorphology to the exploration of subcellular organelles and even molecular mechanisms, a net connecting ferroptosis and fibrosis is being woven and formed. Inflammation may be the bridge between both processes. In this review, we will discuss the ferroptosis theory and process and the physiological functions of ferroptosis, followed by a description of the pathological effects and the underlying mechanisms of ferroptosis in the pathogenesis of tumorigenesis, ischemic damage, degenerative lesions, autoimmune diseases, and necroinflammation. We then focus on the role of ferroptosis in the fibrosis process in the liver, lung, kidney, heart, and other organs. Although the molecular mechanism of ferroptosis has been explored extensively in the past few years, many challenges remain to be resolved to translate this information into antifibrotic practice, which is becoming a promising new direction in the field of fibrotic disease prevention and treatment.
Collapse
|
24
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
25
|
Wang Y, Zhao H. Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders. PLoS Comput Biol 2022; 18:e1010025. [PMID: 35363784 PMCID: PMC9007392 DOI: 10.1371/journal.pcbi.1010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/13/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene expression programs (GEPs) shared across cell types. We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to identify GEPs and infer the relative activity of each GEP across cells. We use a count distribution-based loss term to account for the sparsity and overdispersion of the raw count data and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet outperforms existing methods for archetypal analysis across different metrics through simulations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idiopathic pulmonary fibrosis dataset and a prefrontal cortex dataset.
Collapse
Affiliation(s)
- Yuge Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
26
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
28
|
Kim JW, Jeong MH, Kim GE, Han YB, Park YJ, Chung KH, Kim HR. Comparison of 3D airway models for the assessment of fibrogenic chemicals. Toxicol Lett 2021; 356:100-109. [PMID: 34902520 DOI: 10.1016/j.toxlet.2021.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Lung epithelial cells and fibroblasts play key roles in pulmonary fibrosis and are involved in fibrotic signaling and production of the extracellular matrix (ECM), respectively. Recently, 3D airway models consisting of both cell types have been developed to evaluate the fibrotic responses while facilitating cell-cell crosstalk. This study aimed to evaluate the fibrotic responses in these models using different fibrogenic agents, which are known as key events in adverse outcome pathways of pulmonary fibrosis. We quantified cell injury and several sequential steps in fibrogenesis, including inflammation, the epithelial-mesenchymal transition (EMT), fibroblast activation, and ECM accumulation, using two different 3D airway models, the EpiAirway™-full thickness (Epi/FT) and MucilAir™-human fibroblast (Mucil/HF) models. In the Epi/FT model, fibrogenic agents induced the expression of inflammation and EMT-associated markers, while in the Mucil/HF model, they induced fibroblast activation and ECM accumulation. Using this information, we conducted gene ontology term network analysis. In the Epi/FT model, the terms associated with cell migration and response to stimulus made up a large part of the network. In the Mucil/HF model, the terms associated with ECM organization and cell differentiation and proliferation constituted a great part of the network. Collectively, our data suggest that polyhexamethyleneguanidine phosphate and bleomycin induce different responses in the two 3D airway models. While Epi/FT was associated with inflammatory/EMT-associated responses, Mucil/HF was associated with fibroblast-associated responses. This study will provide an important basis for selecting proper 3D airway models and fibrogenic agents to further research or screen chemicals causing inhalation toxicity.
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Mi Ho Jeong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Ga Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea
| | - Yu Bin Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yong Joo Park
- College of Pharmacy, Kyungsung University, Busan, 48434, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan, Gyeongsangbuk-do, 38430, Republic of Korea.
| |
Collapse
|
29
|
Chandran RR, Xie Y, Gallardo-Vara E, Adams T, Garcia-Milian R, Kabir I, Sheikh AQ, Kaminski N, Martin KA, Herzog EL, Greif DM. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nat Commun 2021; 12:7179. [PMID: 34893592 PMCID: PMC8664937 DOI: 10.1038/s41467-021-27499-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
During lung fibrosis, the epithelium induces signaling to underlying mesenchyme to generate excess myofibroblasts and extracellular matrix; herein, we focus on signaling in the mesenchyme. Our studies indicate that platelet-derived growth factor receptor (PDGFR)-β+ cells are the predominant source of myofibroblasts and Kruppel-like factor (KLF) 4 is upregulated in PDGFR-β+ cells, inducing TGFβ pathway signaling and fibrosis. In fibrotic lung patches, KLF4 is down-regulated, suggesting KLF4 levels decrease as PDGFR-β+ cells transition into myofibroblasts. In contrast to PDGFR-β+ cells, KLF4 reduction in α-smooth muscle actin (SMA)+ cells non-cell autonomously exacerbates lung fibrosis by inducing macrophage accumulation and pro-fibrotic effects of PDGFR-β+ cells via a Forkhead box M1 to C-C chemokine ligand 2-receptor 2 pathway. Taken together, in the context of lung fibrosis, our results indicate that KLF4 plays opposing roles in PDGFR-β+ cells and SMA+ cells and highlight the importance of further studies of interactions between distinct mesenchymal cell types.
Collapse
Affiliation(s)
- Rachana R Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Xie
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Taylor Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Pfizer, 610 Main Street, Cambridge, MA, 02139, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
Gupta D, Kumar A, Mandloi A, Shenoy V. Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacol Res 2021; 174:105924. [PMID: 34607005 DOI: 10.1016/j.phrs.2021.105924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Pulmonary fibrosis is a devastating lung disease with multifactorial etiology characterized by alveolar injury, fibroblast proliferation and excessive deposition of extracellular matrix proteins, which progressively results in respiratory failure and death. Accumulating evidence from experimental and clinical studies supports a central role of the renin angiotensin aldosterone system (RAAS) in the pathogenesis and progression of idiopathic pulmonary fibrosis. Angiotensin II (Ang II), a key vasoactive peptide of the RAAS mediates pro-inflammatory and pro-fibrotic effects on the lungs, adversely affecting organ function. Recent years have witnessed seminal discoveries in the field of RAAS. Identification of new enzymes, peptides and receptors has led to the development of several novel concepts. Of particular interest is the establishment of a protective axis of the RAAS comprising of Angiotensin converting enzyme 2 (ACE2), Angiotensin-(1-7) [Ang-(1-7)], and the Mas receptor (the ACE2/Ang-(1-7)/Mas axis), and the discovery of a functional role for the Angiotensin type 2 (AT2) receptor. Herein, we will review our current understanding of the role of RAAS in lung fibrogenesis, provide evidence on the anti-fibrotic actions of the newly recognized RAAS components (the ACE2/Ang-(1-7)/Mas axis and AT2 receptor), discuss potential strategies and translational efforts to convert this new knowledge into effective therapeutics for PF.
Collapse
Affiliation(s)
- Dipankar Gupta
- Congenital Heart Center, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS, USA
| | - Avinash Mandloi
- College of Pharmacy, VNS Group of Institutions, Bhopal, India
| | - Vinayak Shenoy
- College of Pharmacy, California Health Sciences University, Clovis, CA, USA.
| |
Collapse
|
31
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
32
|
Hult EM, Gurczynski SJ, Moore BB. M2 macrophages have unique transcriptomes but conditioned media does not promote profibrotic responses in lung fibroblasts or alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2021; 321:L518-L532. [PMID: 34231378 DOI: 10.1152/ajplung.00107.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophages are critical regulators of pulmonary fibrosis. Their plasticity, proximity, and ability to cross talk with structural cells of the lung make them a key cell type of interest in the regulation of lung fibrosis. Macrophages can express a variety of phenotypes, which have been historically represented through an "M1-like" to "M2-like" delineation. In this classification, M1-like macrophages are proinflammatory and have increased phagocytic capacity compared with alternatively activated M2-like macrophages that are profibrotic and are associated with wound healing. Extensive evidence in the field in both patients and animal models aligns pulmonary fibrosis with M2 macrophages. In this study, we performed RNA sequencing (RNAseq) to fully characterize M1- vs. M2-skewed bone marrow-derived macrophages (BMDMs) and investigated the profibrotic abilities of M2 BMDM conditioned media (CM) to promote fibroblast migration and proliferation, alveolar epithelial cell (AEC) apoptosis, and mRNA expression of key fibrotic genes in both fibroblasts and AECs. Although M2 CM-treated fibroblasts had increased migration and M2 CM-treated fibroblasts and AECs had increased expression of profibrotic proteins over M1 CM-treated cells, all differences can be attributed to M2 polarization reagents IL-4 and IL-13 also present in the CM. Collectively, these data suggest that the profibrotic effects associated with M2 macrophage CM in vitro are attributable to effects of polarization cytokines rather than additional factors secreted in response to those polarizing cytokines.
Collapse
Affiliation(s)
- Elissa M Hult
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
33
|
Yuan K, Agarwal S, Chakraborty A, Condon DF, Patel H, Zhang S, Huang F, Mello SA, Kirk OI, Vasquez R, de Jesus Perez VA. Lung Pericytes in Pulmonary Vascular Physiology and Pathophysiology. Compr Physiol 2021; 11:2227-2247. [PMID: 34190345 PMCID: PMC10507675 DOI: 10.1002/cphy.c200027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pericytes are mesenchymal-derived mural cells localized within the basement membrane of pulmonary and systemic capillaries. Besides structural support, pericytes control vascular tone, produce extracellular matrix components, and cytokines responsible for promoting vascular homeostasis and angiogenesis. However, pericytes can also contribute to vascular pathology through the production of pro-inflammatory and pro-fibrotic cytokines, differentiation into myofibroblast-like cells, destruction of the extracellular matrix, and dissociation from the vessel wall. In the lung, pericytes are responsible for maintaining the integrity of the alveolar-capillary membrane and coordinating vascular repair in response to injury. Loss of pericyte communication with alveolar capillaries and a switch to a pro-inflammatory/pro-fibrotic phenotype are common features of lung disorders associated with vascular remodeling, inflammation, and fibrosis. In this article, we will address how to differentiate pericytes from other cells, discuss the molecular mechanisms that regulate the interactions of pericytes and endothelial cells in the pulmonary circulation, and the experimental tools currently used to study pericyte biology both in vivo and in vitro. We will also discuss evidence that links pericytes to the pathogenesis of clinically relevant lung disorders such as pulmonary hypertension, idiopathic lung fibrosis, sepsis, and SARS-COVID. Future studies dissecting the complex interactions of pericytes with other pulmonary cell populations will likely reveal critical insights into the origin of pulmonary diseases and offer opportunities to develop novel therapeutics to treat patients afflicted with these devastating disorders. © 2021 American Physiological Society. Compr Physiol 11:2227-2247, 2021.
Collapse
Affiliation(s)
- Ke Yuan
- Division of Respiratory Diseases Research, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Serena Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Flora Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Salvador A. Mello
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Rocio Vasquez
- University of Central Florida, Orlando, Florida, USA
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
34
|
Hettiarachchi SU, Li YH, Roy J, Zhang F, Puchulu-Campanella E, Lindeman SD, Srinivasarao M, Tsoyi K, Liang X, Ayaub EA, Nickerson-Nutter C, Rosas IO, Low PS. Targeted inhibition of PI3 kinase/mTOR specifically in fibrotic lung fibroblasts suppresses pulmonary fibrosis in experimental models. Sci Transl Med 2021; 12:12/567/eaay3724. [PMID: 33115948 DOI: 10.1126/scitranslmed.aay3724] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/24/2019] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with an average life expectancy of 3 to 5 years. IPF is characterized by progressive stiffening of the lung parenchyma due to excessive deposition of collagen, leading to gradual failure of gas exchange. Although two therapeutic agents have been approved from the FDA for IPF, they only slow disease progression with little impact on outcome. To develop a more effective therapy, we have exploited the fact that collagen-producing myofibroblasts express a membrane-spanning protein, fibroblast activation protein (FAP), that exhibits limited if any expression on other cell types. Because collagen-producing myofibroblasts are only found in fibrotic tissues, solid tumors, and healing wounds, FAP constitutes an excellent marker for targeted delivery of drugs to tissues undergoing pathologic fibrosis. We demonstrate here that a low-molecular weight FAP ligand can be used to deliver imaging and therapeutic agents selectively to FAP-expressing cells. Because induction of collagen synthesis is associated with phosphatidylinositol 3-kinase (PI3K) activation, we designed a FAP-targeted PI3K inhibitor that selectively targets FAP-expressing human IPF lung fibroblasts and potently inhibited collagen synthesis. Moreover, we showed that administration of the inhibitor in a mouse model of IPF inhibited PI3K activation in fibrotic lungs, suppressed production of hydroxyproline (major building block of collagen), reduced collagen deposition, and increased mouse survival. Collectively, these studies suggest that a FAP-targeted PI3K inhibitor might be promising for treating IPF.
Collapse
Affiliation(s)
- Suraj U Hettiarachchi
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Yen-Hsing Li
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Jyoti Roy
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Fenghua Zhang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Estela Puchulu-Campanella
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
| | - Konstantin Tsoyi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoliang Liang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
35
|
Vierhout M, Ayoub A, Naiel S, Yazdanshenas P, Revill SD, Reihani A, Dvorkin-Gheva A, Shi W, Ask K. Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence. Wound Repair Regen 2021; 29:548-562. [PMID: 34107123 DOI: 10.1111/wrr.12946] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Since the discovery of the myofibroblast over 50 years ago, much has been learned about its role in wound healing and fibrosis. Its origin, however, remains controversial, with a number of progenitor cells being proposed. Macrophage-myofibroblast transition (MMT) is a recent term coined in 2014 that describes the mechanism through which macrophages, derived from circulating monocytes originating in the bone marrow, transformed into myofibroblasts and contributed to kidney fibrosis. Over the past years, several studies have confirmed the existence of MMT in various systems, suggesting that MMT could potentially occur in all fibrotic conditions and constitute a reasonable therapeutic target to prevent progressive fibrotic disease. In this perspective, we examined recent evidence supporting the notion of MMT in both human disease and experimental models across organ systems. Mechanistic insight from these studies and information from in vitro studies is provided. The findings substantiating plausible MMT showcased the co-expression of macrophage and myofibroblast markers, including CD68 or F4/80 (macrophage) and α-SMA (myofibroblast), in fibroblast-like cells. Furthermore, fate-mapping experiments in murine models exhibiting myeloid-derived myofibroblasts in the tissue further provide direct evidence for MMT. Additionally, we provide some evidence from single cell RNA sequencing experiments confirmed by fluorescent in situ hybridisation studies, showing monocyte/macrophage and myofibroblast markers co-expressed in lung tissue from patients with fibrotic lung disease. In conclusion, MMT is likely a significant contributor to myofibroblast formation in wound healing and fibrotic disease across organ systems. Circulating precursors including monocytes and the molecular mechanisms governing MMT could constitute valid targets and provide insight for the development of novel antifibrotic therapies; however, further understanding of these processes is warranted.
Collapse
Affiliation(s)
- Megan Vierhout
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Anmar Ayoub
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Safaa Naiel
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Parichehr Yazdanshenas
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Spencer D Revill
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Amir Reihani
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kjetil Ask
- Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Cymbopogon winterianus Essential Oil Attenuates Bleomycin-Induced Pulmonary Fibrosis in a Murine Model. Pharmaceutics 2021; 13:pharmaceutics13050679. [PMID: 34065064 PMCID: PMC8150729 DOI: 10.3390/pharmaceutics13050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
The essential oil of Cymbopogon winterianus (EOCW) is a natural product with antioxidant, anti-inflammatory, and antifibrotic properties. We studied the effect of EOCW in the progression of histological changes of pulmonary fibrosis (PF) in a rodent model. The oil was obtained by hydrodistillation and characterized using gas chromatography–mass spectrometry. Intratracheal instillation of bleomycin was performed in 30 rats to induce PF, while Sham animals were subjected to instillation of saline solution. The treatment was performed using daily oral administration of distilled water, EOCW at 50, 100, and 200 mg/kg, and deflazacort (DFC). After 28 days, hemogram and bronchoalveolar lavage fluid (BALF), tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were assayed. Histological grading of PF, immunohistochemical expression of α-smooth muscle actin (α-SMA), and transforming growth factor-β (TGF-β) were also analyzed. The EOCW major compounds were found to be citronellal, geraniol, and citronellol. EOCW significantly reduced inflammation in BALF, reduced MDA levels, and increased SOD activity. EOCW attenuated histological grading of PF and reduced immunohistochemical expression of α-SMA and TGF-β in a dose-dependent way, likely due to the reduction of oxidative stress, inflammation, and TGF-β-induced myofibroblast differentiation.
Collapse
|
37
|
Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2021; 134:261-274. [PMID: 33522725 PMCID: PMC7846426 DOI: 10.1097/cm9.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There have been recent extensive studies and rapid advancement on the pathogenesis underlying idiopathic pulmonary fibrosis (IPF), and intricate pathogenesis of IPF has been suggested. The purpose of this study was to clarify the logical relationship between these mechanisms. An extensive search was undertaken of the PubMed using the following keywords: “etiology,” “pathogenesis,” “alveolar epithelial cell (AEC),” “fibroblast,” “lymphocyte,” “macrophage,” “epigenomics,” “histone,” acetylation,” “methylation,” “endoplasmic reticulum stress,” “mitochondrial dysfunction,” “telomerase,” “proteases,” “plasminogen,” “epithelial-mesenchymal transition,” “oxidative stress,” “inflammation,” “apoptosis,” and “idiopathic pulmonary fibrosis.” This search covered relevant research articles published up to April 30, 2020. Original articles, reviews, and other articles were searched and reviewed for content; 240 highly relevant studies were obtained after screening. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors: environmental exposures affect epigenetic marks; epigenetic processes translate environmental exposures into the regulation of chromatin; epigenetic processes shape gene expression profiles; in turn, an individual's genetic background determines epigenetic marks; finally, these genetic and epigenetic factors act in concert to dysregulate gene expression in IPF lung tissue. The pathogenesis of IPF involves various imbalances including endoplasmic reticulum, telomere length homeostasis, mitochondrial dysfunction, oxidant/antioxidant imbalance, Th1/Th2 imbalance, M1–M2 polarization of macrophages, protease/antiprotease imbalance, and plasminogen activation/inhibition imbalance. These affect each other, promote each other, and ultimately promote AEC/fibroblast apoptosis imbalance directly or indirectly. Excessive AEC apoptosis and impaired apoptosis of fibroblasts contribute to fibrosis. IPF is likely the result of complex interactions between environmental, genetic, and epigenetic factors. The pathogenesis of IPF involves various imbalances centered on AEC/fibroblast apoptosis imbalance.
Collapse
|
38
|
Wang YC, Xie H, Zhang YC, Meng QH, Xiong MM, Jia MW, Peng F, Tang DL. Exosomal miR-107 antagonizes profibrotic phenotypes of pericytes by targeting a pathway involving HIF-1 α/Notch1/PDGFR β/YAP1/Twist1 axis in vitro. Am J Physiol Heart Circ Physiol 2020; 320:H520-H534. [PMID: 33216617 DOI: 10.1152/ajpheart.00373.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microvascular pericytes have been demonstrated as an origin for myofibroblasts that produce excessive extracellular matrix (ECM) proteins such as α-smooth muscle actin (α-SMA) and type I collagen (ColIA1) and contribute to pulmonary fibrosis (PF). However, the signaling mechanism responsible for ECM production within pericytes is poorly understood. In this study, we examined exosomal miR-107 in the fibrotic phenotypes of pericytes and the pathogenesis of PF. Using RT-qPCR, MiR-107 level was compared between clinical or bleomycin-induced PF and normal pulmonary tissues. Exosomes were isolated from cultured microvascular endothelial cells (ECs) derived from either normal or PF tissues, characterized using dynamic light scattering, transmission electron microscopy, flow cytometry, Western blot, and immunofluorescence, and then applied to pericytes. The effects of exosomes or different fibrosis-related signaling molecules were examined by Western blot, and the potential regulations between the signaling molecules were identified using bioinformatic analysis and assessed by electrophoretic mobility shift assay, chromatin immunoprecipitation, luciferase assay, and RNA binding protein immunoprecipitation. MiR-107 was downregulated in clinical or experimental PF tissues and also in exosomes from PF-derived ECs. EC-derived exosomal miR-107 essentially controlled the miR-107 level and inhibited α-SMA and ColIA1 expression in pericytes. The antifibrosis effect of miR-107 was mediated through the suppression of a pathway involving HIF-1α/Notch1/PDGFRβ/YAP1/Twist1, where miR-107 directly targeted HIF-1α mRNA, whereas the latter directly activated the transcriptions of both Notch1 and PDGFRβ. Functionally, targeting miR-107 promoted and targeting HIF-1α abolished the fibrotic phenotypes of pericytes. Exosomal miR-107 produced by pulmonary vascular ECs may alleviate pericyte-induced fibrosis by inhibiting a signaling pathway involving HIF-1α/Notch1/PDGFRβ/YAP1/Twist1.NEW & NOTEWORTHY This work reveals a novel mechanism by which pulmonary vascular endothelial cells, via regulating the transdifferentiation of microvascular pericytes into myofibroblasts, contribute to the pathogenesis of pulmonary fibrosis. Since targeting the formation of myofibroblasts may prevent the development and benefit the treatment of pulmonary fibrosis, this study provides not only mechanistic understanding but also promising therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Han Xie
- University of Central South China/Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Yong-Chang Zhang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Changsha, People's Republic of China
| | - Qing-He Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Ming-Mei Xiong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ming-Wang Jia
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dao-Lin Tang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
39
|
Kim HS, Yoo HJ, Lee KM, Song HE, Kim SJ, Lee JO, Hwang JJ, Song JW. Stearic acid attenuates profibrotic signalling in idiopathic pulmonary fibrosis. Respirology 2020; 26:255-263. [PMID: 33025706 DOI: 10.1111/resp.13949] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/22/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Lipid metabolism dysregulation has been implicated in the pathogenesis of IPF; however, the roles of most lipid metabolites in lung fibrosis remain unexplored. Therefore, we aimed to identify changes in lipid metabolites in the lung tissues of IPF patients and determine their roles in pulmonary fibrosis. METHODS Free fatty acids in the lung tissues of IPF patients and controls were quantified using a metabolomic approach. The roles of free fatty acids in fibroblasts or epithelial cells treated with TGF-β1 were evaluated using fibrotic markers. The antifibrotic role of stearic acid was also assessed in a bleomycin-induced lung fibrosis mouse model. Protein levels in cell lysates or tissues were measured by western blotting. RESULTS The levels of stearic acid were lower in IPF lung tissues than in control lung tissues. Stearic acid significantly reduced TGF-β1-induced α-SMA and collagen type 1 expression in MRC-5 cells. Furthermore, stearic acid decreased the levels of p-Smad2/3 and ROS in MRC-5 cells treated with TGF-β1 and disrupted TGF-β1-induced EMT in Beas-2B cells. Stearic acid reduced the levels of bleomycin-induced hydroxyproline in a mouse model. CONCLUSION Changes in the free fatty acid profile, including low levels of stearic acid, were observed in IPF patients. Stearic acid may exert antifibrotic activity by regulating profibrotic signalling.
Collapse
Affiliation(s)
- Hak-Su Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwang Min Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ha Eun Song
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae Ok Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Liao X, Li Y, Liu J, Zhang Y, Tan J, Kass DJ, Rojas M, Mallampalli RK, Zhao J, Zhao Y. Deubiquitinase USP13 promotes extracellular matrix expression by stabilizing Smad4 in lung fibroblast cells. Transl Res 2020; 223:15-24. [PMID: 32434004 DOI: 10.1016/j.trsl.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Smad4 plays a central role in the regulation of extracellular matrix (ECM) protein expression and cell differentiation; however, the molecular regulation of Smad4 protein stability by a deubiquitinase has not been reported. In the current study, we reveal that a deubiquitinase USP13 stabilizes Smad4, ultimately modulating ECM protein expression in lung fibroblast cells. USP13 was increased in primary adult lung fibroblasts isolated from bleomycin-challenged mice and transforming growth factor (TGF)-β1-treated primary mouse lung fibroblasts. In a bleomycin-induced murine model of lung fibrosis, USP13-deficient mice showed reduced ECM levels such as fibronectin (FN) and collagen compared with wild-type mice. The reductions in both protein levels and mRNA expression of ECM were observed in the isolated lung fibroblasts from USP13-deficient mice, suggesting that downregulation of USP13 reduces ECM levels through inhibiting its transcription. To investigate the molecular mechanisms by which USP13 modulates ECM expression, we focused on the role of USP13 on Smad4 expression. Overexpression of USP13 increased FN and Smad4 protein levels in lung fibroblasts, while downregulation of USP13 reduced Smad4 protein levels, without altering Smad4 mRNA expression, suggesting that USP13 regulates Smad4 protein stability. Knockdown of USP13 decreased Smad4 half-life and promoted Smad4 ubiquitination. Both Smad4 and USP13 were co-localized in the cytoplasm in treated cell, and co-translocated into the nucleus in response to TGF-β1. The results indicate that USP13 promotes ECM expression by stabilizing Smad4 in lung fibroblasts and plays a role in the maintenance of the extracellular matrix in lungs.
Collapse
Affiliation(s)
- Xinxin Liao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Yanhui Li
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Jia Liu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Yingze Zhang
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jiangning Tan
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel J Kass
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mauricio Rojas
- Department of Medicine, The University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rama K Mallampalli
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Jing Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Yutong Zhao
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
41
|
Caporarello N, Meridew JA, Aravamudhan A, Jones DL, Austin SA, Pham TX, Haak AJ, Moo Choi K, Tan Q, Haresi A, Huang SK, Katusic ZS, Tschumperlin DJ, Ligresti G. Vascular dysfunction in aged mice contributes to persistent lung fibrosis. Aging Cell 2020; 19:e13196. [PMID: 32691484 PMCID: PMC7431829 DOI: 10.1111/acel.13196] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/28/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non-resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro-fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non-resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ-induced pro-fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ-induced lung fibroblast activation in 2D and 3D co-cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey A Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Aja Aravamudhan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Dakota L Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Susan A Austin
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyoung Moo Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Adil Haresi
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
42
|
Overed-Sayer C, Miranda E, Dunmore R, Liarte Marin E, Beloki L, Rassl D, Parfrey H, Carruthers A, Chahboub A, Koch S, Güler-Gane G, Kuziora M, Lewis A, Murray L, May R, Clarke D. Inhibition of mast cells: a novel mechanism by which nintedanib may elicit anti-fibrotic effects. Thorax 2020; 75:754-763. [PMID: 32709610 PMCID: PMC7476277 DOI: 10.1136/thoraxjnl-2019-214000] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease which presents a grave prognosis for diagnosed patients. Nintedanib (a triple tyrosine kinase inhibitor) and pirfenidone (unclear mechanism of action) are the only approved therapies for IPF, but have limited efficacy. The pathogenic mechanisms of this disease are not fully elucidated; however, a role for mast cells (MCs) has been postulated. Objectives The aim of this work was to investigate a role for MCs in IPF and to understand whether nintedanib or pirfenidone could impact MC function. Methods and results MCs were significantly elevated in human IPF lung and negatively correlated with baseline lung function (FVC). Importantly, MCs were positively associated with the number of fibroblast foci, which has been linked to increased mortality. Furthermore, MCs were increased in the region immediately surrounding the fibroblast foci, and co-culture studies confirmed a role for MC–fibroblast crosstalk in fibrosis. Nintedanib but not pirfenidone inhibited recombinant stem cell factor (SCF)–induced MC survival. Further evaluation of nintedanib determined that it also inhibited human fibroblast-mediated MC survival. This was likely via a direct effect on ckit (SCF receptor) since nintedanib blocked SCF-stimulated ckit phosphorylation, as well as downstream effects on MC proliferation and cytokine release. In addition, nintedanib ablated the increase in lung MCs and impacted high tissue density frequency (HDFm) in a rat bleomycin model of lung fibrosis. Conclusion Nintedanib inhibits MC survival and activation and thus provides a novel additional mechanism by which this drug may exert anti-fibrotic effects in patients with IPF.
Collapse
Affiliation(s)
- Catherine Overed-Sayer
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Miranda
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Dunmore
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Liarte Marin
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lorea Beloki
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Doris Rassl
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Helen Parfrey
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Alan Carruthers
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amina Chahboub
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Koch
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gülin Güler-Gane
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Kuziora
- Translational Science, Early Oncology, Oncology Bioinformatics, AstraZeneca, Gaithersburg, Maryland, USA
| | - Arthur Lewis
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lynne Murray
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard May
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Deborah Clarke
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
43
|
Leonard-Duke J, Evans S, Hannan RT, Barker TH, Bates JHT, Bonham CA, Moore BB, Kirschner DE, Peirce SM. Multi-scale models of lung fibrosis. Matrix Biol 2020; 91-92:35-50. [PMID: 32438056 DOI: 10.1016/j.matbio.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
The architectural complexity of the lung is crucial to its ability to function as an organ of gas exchange; the branching tree structure of the airways transforms the tracheal cross-section of only a few square centimeters to a blood-gas barrier with a surface area of tens of square meters and a thickness on the order of a micron or less. Connective tissue comprised largely of collagen and elastic fibers provides structural integrity for this intricate and delicate system. Homeostatic maintenance of this connective tissue, via a balance between catabolic and anabolic enzyme-driven processes, is crucial to life. Accordingly, when homeostasis is disrupted by the excessive production of connective tissue, lung function deteriorates rapidly with grave consequences leading to chronic lung conditions such as pulmonary fibrosis. Understanding how pulmonary fibrosis develops and alters the link between lung structure and function is crucial for diagnosis, prognosis, and therapy. Further information gained could help elaborate how the healing process breaks down leading to chronic disease. Our understanding of fibrotic disease is greatly aided by the intersection of wet lab studies and mathematical and computational modeling. In the present review we will discuss how multi-scale modeling has facilitated our understanding of pulmonary fibrotic disease as well as identified opportunities that remain open and have produced techniques that can be incorporated into this field by borrowing approaches from multi-scale models of fibrosis beyond the lung.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Riley T Hannan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Jason H T Bates
- Department of Medicine, Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Catherine A Bonham
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville VA 22908, USA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
44
|
Huang Q, Chen Y, Shen S, Wang Y, Liu L, Wu S, Xu W, Zhao W, Lin M, Wu J. Klotho antagonizes pulmonary fibrosis through suppressing pulmonary fibroblasts activation, migration, and extracellular matrix production: a therapeutic implication for idiopathic pulmonary fibrosis. Aging (Albany NY) 2020; 12:5812-5831. [PMID: 32244228 PMCID: PMC7185122 DOI: 10.18632/aging.102978] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) has been widely accepted as an aging-related fatal lung disease with a therapeutic impasse, largely a consequence of the complex and polygenic gene architecture underlying the molecular pathology of IPF. Here, by conducting an integrative network analysis on the largest IPF case-control RNA-seq dataset to date, we attributed the systems-level alteration in IPF to disruptions in a handful of biological processes including cell migration, transforming growth factor-β (TGF-β) signaling and extracellular matrix (ECM), and identified klotho (KL), a typical anti-aging molecule, as a potential master regulator of those disease-relevant processes. Following experiments showed reduced Kl in isolated pulmonary fibroblasts from bleomycin-exposed mice, and demonstrated that recombinant KL effectively mitigated pulmonary fibrosis in an ex vivo model and alleviated TGF-β-induced pulmonary fibroblasts activation, migration, and ECM production in vitro, which was partially ascribed to FOXF1 and CAV1, two highly co-expressed genes of KL in the IPF. Overall, KL appears to be a vital regulator during pulmonary fibrosis. Given that administration of exogenous KL is a feasible treatment strategy, our work highlighted a promising target gene that could be easily manipulated, leaving the field well placed to further explore the therapeutic potential of KL for IPF.
Collapse
Affiliation(s)
- Qiqing Huang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yan Chen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuanyuan Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuangshuang Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Wei Xu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weihong Zhao
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| |
Collapse
|
45
|
Wang XA, Griffiths K, Foley M. Emerging Role of CXCR4 in Fibrosis. ANTI-FIBROTIC DRUG DISCOVERY 2020:211-234. [DOI: 10.1039/9781788015783-00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent evidence has shown that the chemokine receptor CXCR4 and its natural chemokine ligand CXCL12 promote pro-inflammatory responses in a variety of situations and this axis has emerged as a central player in tissue fibrosis. Although its role as a co-receptor for human immunodeficiency virus (HIV) and a key player in various cancers has been well established, the role of CXCR4 in various types of fibrosis has emerged only recently. This review will explore the involvement of CXCR4 in the development of fibrosis, focusing mainly on lung, kidney and eye fibrosis.
Collapse
Affiliation(s)
- Xilun Anthony Wang
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
| | - Katherine Griffiths
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
| | - Michael Foley
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Bundoora Melbourne 3086 Australia
- AdAlta Limited 15/2 Park Drive Bundoora 3083 Australia
| |
Collapse
|
46
|
Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules. Future Med Chem 2019; 11:2595-2620. [PMID: 31633402 DOI: 10.4155/fmc-2019-0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of chronic, progressive lung disease with unknown cause, which is characterized by increasing dyspnea and destruction of lung function with a high mortality rate. Evolving evidence demonstrated that the pathogenesis of IPF involved multiple signaling pathways such as inflammation, oxidative stress and fibrosis. However, drug discovery to prevent or revert IPF has been insufficient to cope with the development. Drug discovery targeting multiple links should be considered. In this review, we will brief the pathogenesis of IPF and discuss several small chemical entities toward the pathogenesis for IPF studied in animal models and clinical trials. The field of novel anti-IPF agents and the future directions for the prevention and treatment of IPF are detailed thoroughly discussed.
Collapse
|
47
|
P120-catenin regulates pulmonary fibrosis and TGF-β induced lung fibroblast differentiation. Life Sci 2019; 230:35-44. [DOI: 10.1016/j.lfs.2019.05.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
|
48
|
Future Directions for IPF Research. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is an extremely aggressive lung disease that develops almost exclusively in older individuals, carries a very poor prognosis, and lacks any truly effective therapies. The current conceptual model is that IPF develops because of an age-related decline in the ability of the lung epithelium to regenerate after injury, largely due to death or senescence of epithelial progenitor cells in the distal airways. This loss of regenerative capacity is thought to initiate a chronic and ineffective wound-healing response, characterized by persistent, low-grade lung inflammation and sustained production of collagen and other extracellular matrix materials. Despite recent advances in our understanding of IPF pathobiology, there remains a pressing need to further delineate underlying mechanisms to develop more effective therapies for this disease. In this review, we build the case that many of the manifestations of IPF result from a failure of cells to effectively manage their proteome. We propose that epithelial progenitor cells, as well as immune cells and fibroblasts, become functionally impaired, at least in part, because of an accumulation or a loss in the expression of various crucial proteins. Further, we propose that central to this defect is the dysregulation of the ubiquitin-proteasome system (UPS), which is the major protein-degradation system in eukaryotic cells. Lastly, borrowing concepts from other fields, we discuss how targeting the UPS system could be employed as a novel treatment for IPF and perhaps for other fibrotic lung diseases as well.
Collapse
Affiliation(s)
- Willy Roque
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Freddy Romero
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
50
|
Smith LR, Cho S, Discher DE. Stem Cell Differentiation is Regulated by Extracellular Matrix Mechanics. Physiology (Bethesda) 2018; 33:16-25. [PMID: 29212889 DOI: 10.1152/physiol.00026.2017] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Stem cells mechanosense the stiffness of their microenvironment, which impacts differentiation. Although tissue hydration anti-correlates with stiffness, extracellular matrix (ECM) stiffness is clearly transduced into gene expression via adhesion and cytoskeleton proteins that tune fates. Cytoskeletal reorganization of ECM can create heterogeneity and influence fates, with fibrosis being one extreme.
Collapse
Affiliation(s)
- Lucas R Smith
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sangkyun Cho
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, Physical Sciences Oncology Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|