1
|
Ahmed R, Tewes F, Aucamp M, Dube A. Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases. Drug Deliv Transl Res 2025:10.1007/s13346-025-01861-5. [PMID: 40301249 DOI: 10.1007/s13346-025-01861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/01/2025]
Abstract
Pulmonary infections caused by bacteria, viruses and fungi are a significant global health issue. Inhalation therapies are gaining interest as an effective approach to directly target infected lung sites and nanoparticle-based pulmonary delivery systems are increasingly investigated for this purpose. In this review, we provide an overview of common pulmonary infectious diseases and review recent work on the application of inhalable nanoparticle-based formulations for pulmonary infectious diseases, the formulation strategies, and the current research for delivering inhalable nanomedicines. We also evaluate the current clinical development status, market landscape, and discuss challenges that impede clinical translation and propose solutions to overcome these obstacles, highlighting promising opportunities for future advancements in the field. Despite advancements made and products reaching the market, notable gap persists in translational research, with challenges in achieving the target product profile, availability of appropriate in vivo disease models, scale-up, and market related questions, likely hindering research translation to the clinic.
Collapse
Affiliation(s)
- Rami Ahmed
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Frederic Tewes
- INSERM U1070, Pôle Biologie-Santé - B36, 1 Rue Georges Bonnet, 51106, 86073, POITIERS Cedex 9, TSA, France
| | - Marique Aucamp
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, Cape Town, South Africa.
| |
Collapse
|
2
|
Zhou Q, Ma H, Xu H, Bai Y, Tan C, Su Y, Li Y, Ying X, Zheng Y. Effect of Prodrug Activation Rate on In Vivo Drug Release and Antitumor Efficacy of SN38-Prodrug-Entrapped Liposomes. Mol Pharm 2025. [PMID: 40293415 DOI: 10.1021/acs.molpharmaceut.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The aim of this study is to investigate the effects of prodrug activation rates on the in vivo drug release and antitumor activity of prodrug-entrapped liposomes. We performed such an investigation using two liposomes encapsulating hydrophilic SN38-glutathione (GSH) prodrugs (linked at 10- and 20-hydroxy of SN38) with different activation rates. The results showed that SN38-GSH was first released from liposomes and, consequently, activated into SN38. The SN38-GSH release rate from liposomes was similar, but the 10SN38-GSH activated much faster than 20SN38-GSH (t1/2, < 1 min versus ∼60 min) in plasma. Such different activation rates did not influence the prodrug's pharmacokinetics and biodistribution, but the fast prodrug activation rate resulted in 4-6-fold higher SN38 concentration in various organs and led to more potent antitumor efficacy. By contrast, the slowly activated SN38-GSH liposomes failed to exhibit potent antitumor activity, even at the maximum tolerance dose. Our data illustrated how the prodrug activation rate influences in vivo drug release and antitumor activity of prodrug-loaded liposomes, suggesting that sufficient prodrug activation is a prerequisite for potent prodrug-loaded liposomes.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu 610051, China
| | - Hailong Ma
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Hongling Xu
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yuyang Bai
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Chang Tan
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yangxue Su
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yang Li
- Department of Pharmaceutics, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xue Ying
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Yaxin Zheng
- Key Laboratory of Structure-Specific Small Molecule Drugs at Chengdu Medical College of Sichuan Province, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
3
|
Sharma DK. Current advancements in nanoparticles for vaccines and drug delivery for the treatment of tuberculosis. J Microbiol Methods 2025; 232-234:107138. [PMID: 40280241 DOI: 10.1016/j.mimet.2025.107138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/05/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Since the early centuries until the present, tuberculosis has been a global illness with no cure. However, the sickness remains dormant in the afflicted individuals in certain circumstances. Due to the thick lipid mycobacterial wall and the challenging medication delivery into the bacterial cell, treatment is complex at this point. Over the past utics., there has been a growth in the function of nanomaterials in tuberculosis (TB) management, especially in the domains of early diagnosis, vaccine, and therapy. It has been demonstrated that nanomaterials are effective in quickly and accurately identifying tuberculosis germs. Additionally, novel nanocarriers have shown great promise for improved medication delivery and immunization, possibly increasing drug concentrations in target organs while lowering the frequency of treatments. Furthermore, the engineering of antigen carriers is a promising area of tuberculosis research that may lead to the successful creation of a novel class of potent TB vaccines. This article addresses tuberculosis infection diagnosis, pathophysiology, immunology, and advanced nanoparticles to deliver TB vaccines and anti-TB drugs. The challenges and prospects for the future in creating secure and functional nanoparticles for tuberculosis treatment and diagnosis for the good health and well-being of the patient are also discussed.
Collapse
Affiliation(s)
- Dinesh Kumar Sharma
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
5
|
Yun Y, An J, Kim HJ, Choi HK, Cho HY. Recent advances in functional lipid-based nanomedicines as drug carriers for organ-specific delivery. NANOSCALE 2025; 17:7617-7638. [PMID: 40026004 DOI: 10.1039/d4nr04778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Lipid-based nanoparticles have emerged as promising drug delivery systems for a wide range of therapeutic agents, including plasmids, mRNA, and proteins. However, these nanoparticles still encounter various challenges in drug delivery, including drug leakage, poor solubility, and inadequate target specificity. In this comprehensive review, we present an in-depth investigation of four distinct drug delivery methods: liposomes, lipid nanoparticle formulations, solid lipid nanoparticles, and nanoemulsions. Moreover, we explore recent advances in lipid-based nanomedicines (LBNs) for organ-specific delivery, employing ligand-functionalized particles that specifically target receptors in desired organs. Through this strategy, LBNs enable direct and efficient drug delivery to the intended organs, leading to superior DNA or mRNA expression outcomes compared to conventional approaches. Importantly, the development of novel ligands and their judicious combination holds promise for minimizing the side effects associated with nonspecific drug delivery. By leveraging the unique properties of lipid-based nanoparticles and optimizing their design, researchers can overcome the limitations associated with current drug delivery systems. In this review, we aim to provide valuable insights into the advancements, challenges, and future directions of lipid-based nanoparticles in the field of drug delivery, paving the way for enhanced therapeutic strategies with improved efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Jeongmin An
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hyun Joong Kim
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
6
|
Sánchez-Pascual B, Losa-García JE, Sanz-Márquez S, Salvador-Llana I, Vegas-Serrano A, Pérez-Encinas M. Systemic absorption of liposomal inhaled amikacin in the treatment of resistant Mycobacterium avium: beyond expectations. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2025; 38:148-151. [PMID: 40009044 PMCID: PMC11894561 DOI: 10.37201/req/115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Belén Sánchez-Pascual
- Servicio de Farmacia, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España.
| | - Juan Emilio Losa-García
- Servicio de Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Sira Sanz-Márquez
- Servicio de Farmacia, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Irene Salvador-Llana
- Servicio de Farmacia, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Ana Vegas-Serrano
- Servicio de Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | | |
Collapse
|
7
|
Zhang J, Huang Y, Shen W, Zeng Y, Miao Y, Feng N, Ci T. Effects of Surface Charge of Inhaled Liposomes on Drug Efficacy and Biocompatibility. Pharmaceutics 2025; 17:329. [PMID: 40142994 PMCID: PMC11945262 DOI: 10.3390/pharmaceutics17030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: Liposomes are a promising drug carrier for inhaled delivery systems and their physical parameters could influence therapeutic efficacy significantly. This study was designed to answer the specific question of the proper surface charge of liposomes in pulmonary inhalation, as well as to study the synergistic anti-inflammation efficacy between drugs. Methods: In this work, a series of drug-loaded liposomes with different surface charges (from negative to positive) were prepared, and several in vitro and in vivo assays, including cytotoxicity, hemolysis assay, mucus penetration and lipopolysaccharide (LPS)-induced pneumonia model test, were adopted to evaluate the anti-inflammation efficacy and biocompatibility of the above liposomes. Results: Compared with cationic liposomes, anionic liposomes are capable of better mucus penetration and good biocompatibility (low cytotoxicity, better blood compatibility and mild tissue inflammation), but with poor cellular uptake by immune cells. In specific, even when the liposome surface charge was only +2.6 mV, its cytotoxicity and blood hemolysis reached around 20% and 15%, respectively. Furthermore, there was no significant difference in biocompatibility between anionic liposomes (-25.9 vs. -2.5 mV), but a slightly negative-charged liposome exhibited better cellular uptake. Conclusions: Thus, slightly negative-charged liposomes (-1~-3 mV) could be a well inhaled drug carrier considering both efficacy and biocompatibility. In an LPS-induced pneumonia mouse model, the drug-loaded liposomes achieved better anti-inflammatory efficacy compared with free drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Y.H.); (W.S.); (Y.Z.); (Y.M.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Y.H.); (W.S.); (Y.Z.); (Y.M.)
| |
Collapse
|
8
|
Lee Y, Cho H, Kim KS. Antibiotic-loaded Lactobacillus-derived extracellular vesicles enhance the bactericidal efficacy against Staphylococcus species. J Drug Deliv Sci Technol 2025; 105:106607. [DOI: 10.1016/j.jddst.2025.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
9
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Muir BW, Payne JAE, Martin JH, O' Shea R, Rajesh S, Blackman LD, Shen HH, Heazlewood C, Bansal V, Morgan B. An Australian perspective on clinical, economic and regulatory considerations in emerging nanoparticle therapies for infections. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:9. [PMID: 39966608 PMCID: PMC11836273 DOI: 10.1038/s44259-024-00070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/28/2024] [Indexed: 02/20/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global health threat. Nanomedicine, combined with drug repurposing, may help extend the effective lifespan of current and new antimicrobials. This review, presents an Australian perspective on nanotechnology-based therapies, highlighting scientific and clinical challenges. Early consideration of the potential barriers to market access may help to accelerate research translation, regulatory approval and patient access to nano-antimicrobial (NAM) drugs for resistant pathogens, not only in Australia, but globally.
Collapse
Affiliation(s)
- Benjamin W Muir
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia.
| | - Jennifer A E Payne
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia.
| | - Jennifer H Martin
- University of Newcastle School of Medicine and Public Health, Callaghan New South Wales, Australia
| | - Riley O' Shea
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Sarigama Rajesh
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Lewis D Blackman
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | | | - Chad Heazlewood
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, RMIT University, Melbourne, VIC, Australia
| | - Branwen Morgan
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| |
Collapse
|
11
|
Upadhyay A, Jaiswal N, Kumar A. Biofilm battle: New transformative tactics to tackle the bacterial biofilm infections. Microb Pathog 2025; 199:107277. [PMID: 39756524 DOI: 10.1016/j.micpath.2025.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Bacterial biofilm infections are the root cause of persistent infections and the prevalence of resistance to specific or multiple antibiotics. Biofilms have unique features that provide a protective environment for bacteria under various stress conditions and contribute significantly to the pathogenesis of chronic infections. They cover bacterial cells with a self-produced extracellular polymeric matrix, effectively hiding the bacterial cells and their targets. Conventional therapies cannot effectively treat and control bacterial biofilm infections. Therefore, advanced therapeutic means like microneedles, targeted tissue therapy, phage therapy, nanodrug therapy, combination drug therapy, microbial therapy, and immune cell hijacking therapy are needed to tackle the complex issue. These advanced therapies have shown promising results not only in bacterial biofilm infections but also in diseases such as cancer and genetic disorders. Due to their unique features and mechanisms, they significantly contribute to preventing bacterial infections by disrupting biofilm. This article aims to serve as a comprehensive overview of the ongoing battle against biofilms with transformative therapies. This article compiles advancements in new therapies that have demonstrated effective roles in the disruption of bacterial biofilms. We also discuss the current developments and Food and Drug Administration-approved status of these therapies. Additionally, this article summarizes the limitations and future steps needed for these therapies in the field of bacterial biofilm prevention. Thus, these therapies represent the future of preventing bacterial biofilm infections and could be also effective in the reversal of resistance.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India.
| |
Collapse
|
12
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
13
|
Dallal Bashi YH, Mairs R, Murtadha R, Kett V. Pulmonary Delivery of Antibiotics to the Lungs: Current State and Future Prospects. Pharmaceutics 2025; 17:111. [PMID: 39861758 PMCID: PMC11768398 DOI: 10.3390/pharmaceutics17010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect. Side effects, safety concerns, and disappointing clinical trial results remain barriers to regulatory approval. In this review, we describe some possible approaches to address these issues and highlight prospects in this area.
Collapse
Affiliation(s)
- Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
- College Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rachel Mairs
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rand Murtadha
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
14
|
Burzyńska W, Fol M, Druszczynska M. Growing Challenges of Lung Infections with Non-tuberculous Mycobacteria in Immunocompromised Patients: Epidemiology and Treatment. Arch Immunol Ther Exp (Warsz) 2025; 73:aite-2025-0005. [PMID: 40098483 DOI: 10.2478/aite-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025]
Abstract
Non-tuberculous mycobacteria (NTM) are increasingly recognized as opportunistic pathogens in humans and animals, particularly affecting those with compromised immune systems. These bacteria encompass a diverse group of mycobacterial species that are responsible for a range of infections, with pulmonary and skin-related conditions being the most common. The rise in NTM infections in recent years is a growing concern for healthcare, highlighting the urgent need to improve our understanding of NTM epidemiology and treatment strategies. This article reviews the NTM species associated with lung infections in immunocompromised patients and underscores the critical importance of advancing diagnostic and therapeutic approaches. The review is based on a thorough analysis of scientific literature from databases such as PubMed, Scopus, and ScienceDirect, covering studies up to June 2024. Through this comprehensive analysis, the article aims to provide detailed insights into the complexities of NTM diseases and spur further research and innovation in combating these challenging infections.
Collapse
Affiliation(s)
- Weronika Burzyńska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Zheng H, Li J, Leung SSY. Inhalable polysorbates stabilized nintedanib nanocrystals to facilitate pulmonary nebulization and alveolar macrophage evasion. BIOMATERIALS ADVANCES 2025; 166:214084. [PMID: 39471574 DOI: 10.1016/j.bioadv.2024.214084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Pulmonary delivery of nintedanib has noticeable advantages over the current oral administration in managing idiopathic pulmonary fibrosis (IPF). However, it remains a challenge to construct an efficient lung delivery system for insoluble nintedanib to resist nebulization instabilities and alveolar macrophage clearance. Herein, we attempted to develop nintedanib as inhalable nanocrystals stabilized with polysorbates. Different types of polysorbates (polysorbate 20, 40, 60, 80) and various drug-surfactant molar ratios (DSR = 10, 30, 60) were screened to determine the optimal nintedanib nanocrystal formulation. Most formulations (except those stabilized by polysorbate 40) could tailor nintedanib nanocrystals with sizes around 600 nm, and the nebulization-caused drug loss could be significantly reduced when DSR increased to 60. Meanwhile, all nanocrystals boosted the in vitro drug dissolution rate and improved the aerosol performance of nintedanib. Although nebulization-caused particle aggregation was found in most formulations, the nanocrystal stabilized with polysorbate 80 at DSR 60 presented no apparent size change after nebulization. This formulation exhibited superior alveolar macrophage evasion, enhanced fibroblast cluster infiltration, and improved fibroblast cluster inhibition compared with other formulations, indicating its significant potential for pulmonary nintedanib delivery. Overall, this study explored the potential of polysorbates in stabilizing nintedanib nanocrystals for nebulization and proposed practical solutions to transfer nintedanib from oral to lung delivery.
Collapse
Affiliation(s)
- Huangliang Zheng
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jiaqi Li
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
17
|
Du S, Wen Z, Yu J, Meng Y, Liu Y, Xia X. Breath and Beyond: Advances in Nanomedicine for Oral and Intranasal Aerosol Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1742. [PMID: 39770584 PMCID: PMC11677467 DOI: 10.3390/ph17121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Designing and standardizing drug formulations are crucial for ensuring the safety and efficacy of medications. Nanomedicine utilizes nano drug delivery systems and advanced nanodevices to address numerous critical medical challenges. Currently, oral and intranasal aerosol drug delivery (OIADD) is the primary method for treating respiratory diseases worldwide. With advancements in disease understanding and the development of aerosolized nano drug delivery systems, the application of OIADD has exceeded its traditional boundaries, demonstrating significant potential in the treatment of non-respiratory conditions as well. This study provides a comprehensive overview of the applications of oral and intranasal aerosol formulations in disease treatment. It examines the key challenges limiting the development of nanomedicines in drug delivery systems, formulation processes, and aerosol devices and explores the latest advancements in these areas. This review aims to offer valuable insights to researchers involved in the development of aerosol delivery platforms.
Collapse
Affiliation(s)
- Simeng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinghan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Fernández-García R, Fraguas-Sánchez AI. Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer. Pharmaceutics 2024; 16:1584. [PMID: 39771562 PMCID: PMC11677881 DOI: 10.3390/pharmaceutics16121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator. Nanomedicines represent a primary strategy to overcome the limitations of this route as they can be engineered to prolong pulmonary retention and avoid their clearance while reducing drug systemic distribution and, consequently, systemic adverse effects. This review analyses the use of pulmonary-administered nanomedicines to treat infectious diseases affecting the respiratory system and lung carcinoma, two pathologies that represent major health threats.
Collapse
Affiliation(s)
| | - Ana I. Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
19
|
Cai W, Song Y, Xie Q, Wang S, Yin D, Wang S, Wang S, Zhang R, Lee M, Duan J, Zhang X. Dual osmotic controlled release platform for antibiotics to overcome antimicrobial-resistant infections and promote wound healing. J Control Release 2024; 375:627-642. [PMID: 39284525 DOI: 10.1016/j.jconrel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Methicillin-Resistant Staphylococcus aureus forming into biofilms can trigger chronic inflammation and disrupt skin wound healing processes. Prolonged and excessive use of antibiotics can expedite the development of resistance, primarily because of their limited ability to penetrate microbial membranes and biofilms, especially antibiotics with intracellular drug targets. Herein, we devise a strategy in which virus-inspired nanoparticles control the release of antibiotics through rapid penetration into both bacterial cells and biofilms, thereby combating antimicrobial-resistant infections and promoting skin wound healing. Lipid-based nanoparticles based on stearamine and cholesterol were designed to mimic viral highly ordered nanostructures. To mimic the arginine-rich fragments in viral protein transduction domains, the primary amines on the surface of the lipid-based nanoparticles were exchanged by guanidine segments. Levofloxacin, an antibiotic that inhibits DNA replication, was chosen as the model drug to be incorporated into nanoparticles. Hyaluronic acid was coated on the surface of nanoparticles acting as a capping agent to achieve bacterial-specific degradation and guanidine explosion in the bacterial microenvironment. Our virus-inspired nanoparticles displayed long-acting antibacterial effects and powerful biofilm elimination to overcome antimicrobial-resistant infections and promote skin wound healing. This work demonstrates the ability of virus-inspired nanoparticles to achieve a dual penetration of microbial cell membranes and biofilm structures to address antimicrobial-resistant infections and trigger skin wound healing.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qing Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Song Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jinju Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
20
|
Loukeri AA, Papathanassiou E, Kavvada A, Kampolis CF, Pantazopoulos I, Moschos C, Papavasileiou A. Amikacin Liposomal Inhalation Suspension for Non-Tuberculous Mycobacteria Lung Infection: A Greek Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1620. [PMID: 39459407 PMCID: PMC11509699 DOI: 10.3390/medicina60101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Intravenous amikacin, recommended for severe or recurrent M. avium complex (MAC) infections and as initial treatment for M. abscessus lung disease, is often limited by serious adverse effects such as renal and auditory toxicities. Inhaled Amikacin Liposome Inhalation Suspension (ALIS) enhances pulmonary drug deposition while minimizing systemic adverse effects, and it has recently been introduced as an add-on therapy for refractory MAC infections or when other standard treatments are inadequate. This study aims to retrospectively describe the outcomes of Greek patients with difficult-to-treat non-tuberculous mycobacterial (NTM) lung disease following the addition of ALIS to guideline-based therapy. Materials and Methods: Seventeen consecutive patients (median age: 66 years) treated with ALIS as an add-on therapy to a standard regimen at "Sotiria" General Hospital of Chest Diseases (Athens, Greece) from 2020 to 2023 were enrolled in this study. These patients had recurrent or refractory NTM lung disease and/or limited treatment options due to prior treatment-related adverse effects. Clinical, radiological, and microbiological data on treatment response and overall outcomes after ALIS initiation were recorded for each patient. Results: By the end of 2023, 14 out of 17 patients had either successfully completed or were continuing their ALIS therapy. At 6 months, 85.7% (12/14) showed clinical, microbiological, and radiological improvement. However, 25% (3/12) of treated patients, primarily those with monomicrobial or combined M. abscessus lung disease, experienced disease relapse after therapy completion. The most frequent adverse effects related to ALIS were mild and localized to the respiratory tract, with only one patient discontinuing therapy due to hypersensitivity pneumonitis. Conclusions: Adding ALIS to standard regimens was effective and safe in a small group of Greek patients with refractory or recurrent NTM lung disease, particularly those who had discontinued intravenous aminoglycosides due to significant adverse effects, with notable responses observed in MAC lung disease. Further research is needed to validate these findings in clinical practice and to investigate ALIS's role in NTM lung disease caused by other species.
Collapse
Affiliation(s)
- Angeliki A. Loukeri
- Department of Mycobacterial Diseases, “Sotiria” Hospital, 11527 Athens, Greece; (A.A.L.); (E.P.); (A.K.); (C.M.); (A.P.)
| | - Evgenia Papathanassiou
- Department of Mycobacterial Diseases, “Sotiria” Hospital, 11527 Athens, Greece; (A.A.L.); (E.P.); (A.K.); (C.M.); (A.P.)
| | - Aikaterini Kavvada
- Department of Mycobacterial Diseases, “Sotiria” Hospital, 11527 Athens, Greece; (A.A.L.); (E.P.); (A.K.); (C.M.); (A.P.)
| | - Christos F. Kampolis
- Department of Emergency Medicine, “Hippokration” General Hospital of Athens, 11527 Athens, Greece;
| | - Ioannis Pantazopoulos
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Mezourlo, 41110 Larissa, Greece
| | - Charalambos Moschos
- Department of Mycobacterial Diseases, “Sotiria” Hospital, 11527 Athens, Greece; (A.A.L.); (E.P.); (A.K.); (C.M.); (A.P.)
| | - Apostolos Papavasileiou
- Department of Mycobacterial Diseases, “Sotiria” Hospital, 11527 Athens, Greece; (A.A.L.); (E.P.); (A.K.); (C.M.); (A.P.)
| |
Collapse
|
21
|
Guérin M, Lepeltier E. Nanomedicines via the pulmonary route: a promising strategy to reach the target? Drug Deliv Transl Res 2024; 14:2276-2297. [PMID: 38587757 DOI: 10.1007/s13346-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Over the past decades, research on nanomedicines as innovative tools in combating complex pathologies has increased tenfold, spanning fields from infectiology and ophthalmology to oncology. This process has further accelerated since the introduction of SARS-CoV-2 vaccines. When it comes to human health, nano-objects are designed to protect, transport, and improve the solubility of compounds to allow the delivery of active ingredients on their targets. Nanomedicines can be administered by different routes, such as intravenous, oral, intramuscular, or pulmonary routes. In the latter route, nanomedicines can be aerosolized or nebulized to reach the deep lung. This review summarizes existing nanomedicines proposed for inhalation administration, from their synthesis to their potential clinical use. It also outlines the respiratory organs, their structure, and particularities, with a specific emphasis on how these factors impact the administration of nanomedicines. Furthermore, the review addresses the organs accessible through pulmonary administration, along with various pathologies such as infections, genetic diseases, or cancer that can be addressed through inhaled nanotherapeutics. Finally, it examines the existing devices suitable for the aerosolization of nanomedicines and the range of nanomedicines in clinical development.
Collapse
Affiliation(s)
- Mélina Guérin
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France
| | - Elise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
22
|
Yagi A, Fujiwara M, Sato M, Abe Y, Uchida R. New liposidomycin congeners produced by Streptomyces sp. TMPU-20A065, anti-Mycobacterium avium complex agents with therapeutic efficacy in a silkworm infection model. J Antibiot (Tokyo) 2024; 77:412-421. [PMID: 38720140 PMCID: PMC11208132 DOI: 10.1038/s41429-024-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 06/28/2024]
Abstract
Three new liposidomycin congeners (1, 2, and 4), together with 14 known liposidomycins (3 and 5-17), were isolated from the culture broth of Streptomyces sp. TMPU-20A065 as anti-Mycobacterium avium complex agents. The structures of liposidomycins were elucidated by spectroscopic analyses, including NMR and MS. Compounds 1, 2, and 4 belong to type-I liposidomycin-containing sulfate groups and methylglutaric acid, each with a different acyl side chain in the structure. Compounds 1-17 exhibited in vitro anti-M. avium and M. intracellulare activities with MIC values ranging between 2.0 and 64 μg ml-1. Furthermore, 1-17 exerted potent therapeutic effects in an in vivo-mimic silkworm infection model with ED50 values ranging between 0.12 and 3.7 μg larva-1 g-1.
Collapse
Affiliation(s)
- Akiho Yagi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| | - Mayu Fujiwara
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Mayu Sato
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yuzu Abe
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Ryuji Uchida
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
23
|
Woodward IR, Fromen CA. Recent Developments in Aerosol Pulmonary Drug Delivery: New Technologies, New Cargos, and New Targets. Annu Rev Biomed Eng 2024; 26:307-330. [PMID: 38424089 PMCID: PMC11222059 DOI: 10.1146/annurev-bioeng-110122-010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
There is nothing like a global pandemic to motivate the need for improved respiratory treatments and mucosal vaccines. Stimulated by the COVID-19 pandemic, pulmonary aerosol drug delivery has seen a flourish of activity, building on the prior decades of innovation in particle engineering, inhaler device technologies, and clinical understanding. As such, the field has expanded into new directions and is working toward the efficient delivery of increasingly complex cargos to address a wider range of respiratory diseases. This review seeks to highlight recent innovations in approaches to personalize inhalation drug delivery, deliver complex cargos, and diversify the targets treated and prevented through pulmonary drug delivery. We aim to inform readers of the emerging efforts within the field and predict where future breakthroughs are expected to impact the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Ian R Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| |
Collapse
|
24
|
Yu J, Meng Y, Wen Z, Jiang Y, Guo Y, Du S, Liu Y, Xia X. Investigation of Factors Influencing the Effectiveness of Deformable Nanovesicles for Insulin Nebulization Inhalation. Pharmaceutics 2024; 16:879. [PMID: 39065576 PMCID: PMC11280345 DOI: 10.3390/pharmaceutics16070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Nebulized inhalation offers a noninvasive method for delivering drugs to treat both local respiratory and systemic diseases. In this study, insulin was used as a model drug to design a series of deformable nanovesicles (DNVs) with key quality attributes, including particle size, deformability, and drug load capacity. We investigated the effects of these properties on aerosol generation, macrophage phagocytosis, and bloodstream penetration. The results showed that deformability improved nebulization performance and reduced macrophage phagocytosis, benefiting local and systemic delivery. However, the advantage of DNVs for transmembrane penetration was not evident in the alveolar epithelium. Within the size range of 80-490 nm, the smaller the particle size of IPC-DNVs, the easier it is to evade clearance by macrophages and the more effective the in vivo hypoglycemic efficacy will be. In the drug load range of 3-5 mg/mL, a lower drug load resulted in better hypoglycemic efficacy. The area above the blood glucose decline curve with time (AAC) of nebulized DNVs was 2.32 times higher than that of the insulin solution, demonstrating the feasibility and advantages of DNVs in the pulmonary delivery of biomacromolecule drugs. This study provides insights into the construction and formulation optimization of pulmonary delivery carriers.
Collapse
Affiliation(s)
- Jinghan Yu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yingying Meng
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Zhiyang Wen
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yu Jiang
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yiyue Guo
- Beijing Wehand-Bio Pharmaceutical Co., Ltd., Beijing 102600, China;
| | - Simeng Du
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Yuling Liu
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| | - Xuejun Xia
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (J.Y.); (Y.M.); (Z.W.); (Y.J.); (S.D.)
| |
Collapse
|
25
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 PMCID: PMC11807867 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/06/2023] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J. Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E. Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Philip J. Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | | | | |
Collapse
|
26
|
Deiss-Yehiely E, Dzordzorme AE, Loiselle ME, Yonker LM, Hammond PT. Carboxylated Nanoparticle Surfaces Enhance Association with Mucoid Pseudomonas aeruginosa Biofilms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14573-14582. [PMID: 38484043 PMCID: PMC10982939 DOI: 10.1021/acsami.3c18656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 04/04/2024]
Abstract
Pseudomonas aeruginosa biofilms comprise three main polysaccharides: alginate, psl, and pel, which all imbue tolerance against exogenous antimicrobials. Nanoparticles (NPs) are an exciting new strategy to overcome the biofilm matrix for therapeutic delivery applications; however, zero existing FDA approvals for biofilm-specific NP formulations can be attributed to the complex interplay of physiochemical forces at the biofilm-NP interface. Here, we leverage a set of inducible, polysaccharide-specific, expressing isogenic P. aeruginosa mutants coupled with an assembled layer-by-layer NP (LbL NP) panel to characterize biofilm-NP interactions. When investigating these interactions using confocal microscopy, alginate-layered NPs associated more than dextran-sulfate-layered NPs with biofilms that had increased alginate production, including biofilms produced by mucoid P. aeruginosa isolates from people with cystic fibrosis. These differences were further confirmed in LbL NPs layered with polysaccharide- or hydrocarbon-based polymers with pendent carboxylate or sulfate functional groups. These data suggest carboxylated NP surfaces have enhanced interactions specifically with mucoid biofilms as compared to sulfated surfaces and lay the foundation for their inclusion as a design element for increasing biofilm-NP interactions and efficacious drug delivery.
Collapse
Affiliation(s)
- Elad Deiss-Yehiely
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail E. Dzordzorme
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Maggie Elizabeth Loiselle
- Mucosal
Immunology and Biology Research Center, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Pediatrics, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Lael M. Yonker
- Mucosal
Immunology and Biology Research Center, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Pediatrics, Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Paula T. Hammond
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Institute
for Soldier Nanotechnologies, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Wang X, Wang D, Lu H, Wang X, Wang X, Su J, Xia G. Strategies to Promote the Journey of Nanoparticles Against Biofilm-Associated Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305988. [PMID: 38178276 DOI: 10.1002/smll.202305988] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Indexed: 01/06/2024]
Abstract
Biofilm-associated infections are one of the most challenging healthcare threats for humans, accounting for 80% of bacterial infections, leading to persistent and chronic infections. The conventional antibiotics still face their dilemma of poor therapeutic effects due to the high tolerance and resistance led by bacterial biofilm barriers. Nanotechnology-based antimicrobials, nanoparticles (NPs), are paid attention extensively and considered as promising alternative. This review focuses on the whole journey of NPs against biofilm-associated infections, and to clarify it clearly, the journey is divided into four processes in sequence as 1) Targeting biofilms, 2) Penetrating biofilm barrier, 3) Attaching to bacterial cells, and 4) Translocating through bacterial cell envelope. Through outlining the compositions and properties of biofilms and bacteria cells, recent advances and present the strategies of each process are comprehensively discussed to combat biofilm-associated infections, as well as the combined strategies against these infections with drug resistance, aiming to guide the rational design and facilitate wide application of NPs in biofilm-associated infections.
Collapse
Affiliation(s)
- Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
28
|
Morimoto K, Nonaka M, Yamazaki Y, Nakagawa T, Takasaki J, Tsuyuguchi K, Kitada S, Jumadilova Z, Yuen DW, Ciesielska M, Hasegawa N. Amikacin liposome inhalation suspension for Mycobacterium avium complex pulmonary disease: A subgroup analysis of Japanese patients in the randomized, phase 3, CONVERT study. Respir Investig 2024; 62:284-290. [PMID: 38277865 DOI: 10.1016/j.resinv.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND CONVERT, a randomized, active-controlled, global, Phase 3 trial demonstrated that patients with treatment-refractory Mycobacterium avium complex (MAC) pulmonary disease were more likely to achieve culture conversion with amikacin liposome inhalation suspension (ALIS) plus guideline-based therapy (GBT) versus those continuing on GBT alone. This subgroup analysis reports the efficacy and safety of ALIS in Japanese patients enrolled in CONVERT. METHODS Japanese patients aged ≥20 years with treatment-refractory MAC pulmonary disease from Japanese sites were included. Patients were randomized to receive once-daily 590 mg ALIS + GBT or GBT alone; patients converting by Month 6 remained in the study to complete 12-month treatment followed by a 12-month off-treatment period. Nonconverters exited the study at Month 8. The primary endpoint was the proportion of patients achieving culture conversion by Month 6. RESULTS Of the 59 Japanese patients screened, 48 were randomized to receive ALIS + GBT (n = 34) or GBT alone (n = 14), and 41/48 (85.4 %) were women. The mean (standard deviation) age of patients was 64.5 (8.6) years, and 83.3 % of patients had bronchiectasis at baseline. By Month 6, sputum culture conversion was cumulatively achieved in 9/34 (26.5 %) patients receiving ALIS + GBT versus none receiving GBT alone. Treatment-emergent adverse events were reported in 94.1 % and 100.0 % of patients receiving ALIS + GBT and GBT alone, respectively. No deaths were reported. CONCLUSIONS The efficacy observed in the Japanese subpopulation was largely consistent with that in the overall CONVERT study population, with more patients achieving culture conversion with ALIS + GBT versus GBT alone. Safety profiles were similar between the overall population and the Japanese subpopulation. CLINICAL TRIAL REGISTRATION NCT02344004.
Collapse
Affiliation(s)
- Kozo Morimoto
- Respiratory Disease Center, Fukujuji Hospital, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8522, Japan.
| | - Mizu Nonaka
- Department of Respiratory Medicine, NHO Ibarakihigashi National Hospital, 825 Terunuma, Tokai-mura, Naka-gun, Ibaraki, 319-1113, Japan
| | - Yoshitaka Yamazaki
- Division of Infectious Diseases, Shinshu Medical Center, 1332 Suzaka, Nagano, 382-8577, Japan
| | - Taku Nakagawa
- Department of Respiratory Medicine, NHO Higashinagoya National Hospital, 5-101 Umemorizaka, Meito-ku, Nagoya-shi, Aichi, 465-8620, Japan
| | - Jin Takasaki
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazunari Tsuyuguchi
- Department of Infectious Diseases, Clinical Research Center, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai, Osaka, 591-8555, Japan
| | - Seigo Kitada
- Kitada Respiratory Clinic, 1-57-1 Kyokoji, Yao-shi, Osaka, 581-0874, Japan
| | - Zhanna Jumadilova
- Clinical Development, Insmed Incorporated, 700 US Highway 202/206 Bridgewater, NJ, 08807, USA
| | - Dayton W Yuen
- Clinical Development, Insmed Incorporated, 700 US Highway 202/206 Bridgewater, NJ, 08807, USA
| | - Monika Ciesielska
- Biometrics, Insmed Incorporated, 700 US Highway 202/206 Bridgewater, NJ, 08807, USA
| | - Naoki Hasegawa
- Center for Clinical Infectious Diseases, Keio University Hospital, 35 Shinanomanchi, Shinju-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
29
|
A R, Han Z, Wang T, Zhu M, Zhou M, Sun X. Pulmonary delivery of nano-particles for lung cancer diagnosis and therapy: Recent advances and future prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1933. [PMID: 37857568 DOI: 10.1002/wnan.1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Although our understanding of lung cancer has significantly improved in the past decade, it is still a disease with a high incidence and mortality rate. The key reason is that the efficacy of the therapeutic drugs is limited, mainly due to insufficient doses of drugs delivered to the lungs. To achieve precise lung cancer diagnosis and treatment, nano-particles (NPs) pulmonary delivery techniques have attracted much attention and facilitate the exploration of the potential of those in inhalable NPs targeting tumor lesions. Since the therapeutic research focusing on pulmonary delivery NPs has rapidly developed and evolved substantially, this review will mainly discuss the current developments of pulmonary delivery NPs for precision lung cancer diagnosis and therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
31
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Luo Z, Ji L, Liu H, Sun Y, Zhao C, Xu X, Gu X, Ai X, Yang C. Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement. AAPS PharmSciTech 2023; 24:235. [PMID: 37973629 DOI: 10.1208/s12249-023-02690-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhilin Luo
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liyuan Ji
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
| | - Hongting Liu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yao Sun
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Conglu Zhao
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiang Xu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoting Gu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Xiaoyu Ai
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Cheng Yang
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
33
|
Wu Q, Liao J, Yang H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300672. [PMID: 37344357 PMCID: PMC10477907 DOI: 10.1002/advs.202300672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Advanced functional two-dimensional (2D) nanomaterials offer unique advantages in drug delivery systems for disease treatment. Kaolinite (Kaol), a nanoclay mineral, is a natural 2D nanomaterial because of its layered silicate structure with nanoscale layer spacing. Recently, Kaol nanoclay is used as a carrier for controlled drug release and improved drug dissolution owing to its advantageous properties such as surface charge, strong biocompatibility, and naturally layered structure, making it an essential development direction for nanoclay-based drug carriers. This review outlines the main physicochemical characteristics of Kaol and the modification methods used for its application in biomedicine. The safety and biocompatibility of Kaol are addressed, and details of the application of Kaol as a drug delivery nanomaterial in antibacterial, anti-inflammatory, and anticancer treatment are discussed. Furthermore, the challenges and prospects of Kaol-based drug delivery nanomaterials in biomedicine are discussed. This review recommends directions for the further development of Kaol nanocarriers by improving their physicochemical properties and expanding the bioapplication range of Kaol.
Collapse
Affiliation(s)
- Qianwen Wu
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
34
|
Deiss-Yehiely E, Cárcamo-Oyarce G, Berger AG, Ribbeck K, Hammond PT. pH-Responsive, Charge-Reversing Layer-by-Layer Nanoparticle Surfaces Enhance Biofilm Penetration and Eradication. ACS Biomater Sci Eng 2023; 9:4794-4804. [PMID: 37390118 PMCID: PMC11117027 DOI: 10.1021/acsbiomaterials.3c00481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Microbes entrenched within biofilms can withstand 1000-fold higher concentrations of antibiotics, in part due to the viscous extracellular matrix that sequesters and attenuates antimicrobial activity. Nanoparticle (NP)-based therapeutics can aid in delivering higher local concentrations throughout biofilms as compared to free drugs alone, thereby enhancing the efficacy. Canonical design criteria dictate that positively charged nanoparticles can multivalently bind to anionic biofilm components and increase biofilm penetration. However, cationic particles are toxic and are rapidly cleared from circulation in vivo, limiting their use. Therefore, we sought to design pH-responsive NPs that change their surface charge from negative to positive in response to the reduced biofilm pH microenvironment. We synthesized a family of pH-dependent, hydrolyzable polymers and employed the layer-by-layer (LbL) electrostatic assembly method to fabricate biocompatible NPs with these polymers as the outermost surface. The NP charge conversion rate, dictated by polymer hydrophilicity and the side-chain structure, ranged from hours to undetectable within the experimental timeframe. LbL NPs with an increasingly fast charge conversion rate more effectively penetrated through, and accumulated throughout, wildtype (PAO1) and mutant overexpressing biomass (ΔwspF) Pseudomonas aeruginosa biofilms. Finally, tobramycin, an antibiotic known to be trapped by anionic biofilm components, was loaded into the final layer of the LbL NP. There was a 3.2-fold reduction in ΔwspF colony forming units for the fastest charge-converting NP as compared to both the slowest charge converter and free tobramycin. These studies provide a framework for the design of biofilm-penetrating NPs that respond to matrix interactions, ultimately increasing the efficacious delivery of antimicrobials.
Collapse
Affiliation(s)
- Elad Deiss-Yehiely
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 182 Memorial Drive, Cambridge, MA, 02142, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street Bld. 76, Cambridge, MA, 02139, United States
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St. #56-651, Cambridge, MA, 02139, United States
| | - Adam G. Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street Bld. 76, Cambridge, MA, 02139, United States
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47-4F, Cambridge, MA, 02139, United States
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, United States
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St. #56-651, Cambridge, MA, 02139, United States
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street Bld. 76, Cambridge, MA, 02139, United States
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, NE47-4F, Cambridge, MA, 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, 02139, United States
| |
Collapse
|
35
|
Sudduth ER, Trautmann-Rodriguez M, Gill N, Bomb K, Fromen CA. Aerosol pulmonary immune engineering. Adv Drug Deliv Rev 2023; 199:114831. [PMID: 37100206 PMCID: PMC10527166 DOI: 10.1016/j.addr.2023.114831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Aerosolization of immunotherapies poses incredible potential for manipulating the local mucosal-specific microenvironment, engaging specialized pulmonary cellular defenders, and accessing mucosal associated lymphoid tissue to redirect systemic adaptive and memory responses. In this review, we breakdown key inhalable immunoengineering strategies for chronic, genetic, and infection-based inflammatory pulmonary disorders, encompassing the historic use of immunomodulatory agents, the transition to biological inspired or derived treatments, and novel approaches of complexing these materials into drug delivery vehicles for enhanced release outcomes. Alongside a brief description of key immune targets, fundamentals of aerosol drug delivery, and preclinical pulmonary models for immune response, we survey recent advances of inhaled immunotherapy platforms, ranging from small molecules and biologics to particulates and cell therapies, as well as prophylactic vaccines. In each section, we address the formulation design constraints for aerosol delivery as well as advantages for each platform in driving desirable immune modifications. Finally, prospects of clinical translation and outlook for inhaled immune engineering are discussed.
Collapse
Affiliation(s)
- Emma R Sudduth
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Nicole Gill
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kartik Bomb
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
36
|
Julia Altube M, Perez N, Lilia Romero E, José Morilla M, Higa L, Paula Perez A. Inhaled lipid nanocarriers for pulmonary delivery of glucocorticoids: previous strategies, recent advances and key factors description. Int J Pharm 2023:123146. [PMID: 37330156 DOI: 10.1016/j.ijpharm.2023.123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In view of the strong anti-inflammatory activity of glucocorticoids (GC) they are used in the treatment of almost all inflammatory lung diseases. In particular, inhaled GC (IGC) allow high drug concentrations to be deposited in the lung and may reduce the incidence of adverse effects associated with systemic administration. However, rapid absorption through the highly absorbent surface of the lung epithelium may limit the success of localized therapy. Therefore, inhalation of GC incorporated into nanocarriers is a possible approach to overcome this drawback. In particular, lipid nanocarriers, which showed high pulmonary biocompatibility and are well known in the pharmaceutical industry, have the best prospects for pulmonary delivery of GC by inhalation. This review provides an overview of the pre-clinical applications of inhaled GC-lipid nanocarriers based on several key factors that will determine the efficiency of local pulmonary GC delivery: 1) stability to nebulization, 2) deposition profile in the lungs, 3) mucociliary clearance, 4) selective accumulation in target cells, 5) residence time in the lung and systemic absorption and 6) biocompatibility. Finally, novel preclinical pulmonary models for inflammatory lung diseases are also discussed.
Collapse
Affiliation(s)
- María Julia Altube
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - María José Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Leticia Higa
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Ana Paula Perez
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
37
|
Młynek M, Trzciński JW, Ciach T. Recent Advances in the Polish Research on Polysaccharide-Based Nanoparticles in the Context of Various Administration Routes. Biomedicines 2023; 11:biomedicines11051307. [PMID: 37238978 DOI: 10.3390/biomedicines11051307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are the most abundant polymers in nature. They exhibit robust biocompatibility, reliable non-toxicity, and biodegradable character; thus, they are employed in multiple biomedical applications. The presence of chemically accessible functional groups on the backbone of biopolymers (amine, carboxyl, hydroxyl, etc.) makes them suitable materials for chemical modification or drug immobilisation. Among different drug delivery systems (DDSs), nanoparticles have been of great interest in scientific research in the last decades. In the following review, we want to address the issue of rational design of nanoparticle (NP)-based drug delivery systems in reference to the specificity of the medication administration route and resulting requirements. In the following sections, readers can find a comprehensive analysis of the articles published by authors with Polish affiliations in the last few years (2016-2023). The article emphasises NP administration routes and synthetic approaches, followed by in vitro and in vivo attempts toward pharmacokinetic (PK) studies. The 'Future Prospects' section was constructed to address the critical observations and gaps found in the screened studies, as well as to indicate good practices for polysaccharide-based nanoparticle preclinical evaluation.
Collapse
Affiliation(s)
- Mateusz Młynek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Waldemar Trzciński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
38
|
Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023; 79:102196. [PMID: 36682407 PMCID: PMC9851918 DOI: 10.1016/j.pupt.2023.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes respiratory failure. Despite numerous clinical trials, there are no molecularly targeted pharmacologic therapies to prevent or treat ARDS. Drug delivery during ARDS is challenging due to the heterogenous nature of lung injury and occlusion of lung units by edema fluid and inflammation. Pulmonary drug delivery during ARDS offers several potential advantages including limiting the off-target and off-organ effects and directly targeting the damaged and inflamed lung regions. In this review we summarize recent ARDS clinical trials using both systemic and pulmonary drug delivery. We then discuss the advantages of pulmonary drug delivery and potential challenges to its implementation. Finally, we discuss the use of nanoparticle drug delivery and surfactant-based drug carriers as potential strategies for delivering therapeutics to the injured lung in ARDS.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ian Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
39
|
Zhang Y, Wong CYJ, Gholizadeh H, Aluigi A, Tiboni M, Casettari L, Young P, Traini D, Li M, Cheng S, Ong HX. Microfluidics assembly of inhalable liposomal ciprofloxacin characterised by an innovative in vitro pulmonary model. Int J Pharm 2023; 635:122667. [PMID: 36738806 DOI: 10.1016/j.ijpharm.2023.122667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Respiratory tract infections (RTIs) are reported to be the leading cause of death worldwide. Delivery of liposomal antibiotic nano-systems via the inhalation route has drawn significant interest in RTIs treatment as it can directly target the site of infection and reduces the risk of systemic exposure and side effects. Moreover, this formulation system can improve pharmacokinetics and biodistribution and enhance the activity against intracellular pathogens. Microfluidics is an innovative manufacturing technology that can produce nanomedicines in a homogenous and scalable way. The objective of this study was to evaluate the antibiofilm efficacy of two liposomal ciprofloxacin formulations with different vesicle sizes manufactured by using a 3D-printed microfluidic chip. Each formulation was characterised in terms of size, polydispersity index, charge and encapsulation. Moreover, the aerosolisation characteristics of the liposomal formulations were investigated and compared with free ciprofloxacin solution using laser diffraction and cascade impaction methods. The in vitro drug release was tested using the dialysis bag method. Furthermore, the drug transport and drug release studies were conducted using the alveolar epithelial H441 cell line integrated next-generation impactor in vitro model. Finally, the biofilm eradication efficacy was evaluated using a dual-chamber microfluidic in vitro model. Results showed that both liposomal-loaded ciprofloxacin formulations and free ciprofloxacin solution had comparable aerosolisation characteristics and biofilm-killing efficacy. The liposomal ciprofloxacin formulation of smaller vesicle size showed significantly slower drug release in the dialysis bag technique compared to the free ciprofloxacin solution. Interestingly, liposomal ciprofloxacin formulations successfully controlled the release of the drug in the epithelial cell model and showed different drug transport profiles on H441 cell lines compared to the free ciprofloxacin solution, supporting the potential for inhaled liposomal ciprofloxacin to provide a promising treatment for respiratory infections.
Collapse
Affiliation(s)
- Ye Zhang
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia; Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hanieh Gholizadeh
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Paul Young
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Daniela Traini
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ming Li
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia.
| | - Hui Xin Ong
- Woolcock Institute of Medical Research, Sydney, NSW, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Hye T, Moinuddin SM, Sarkar T, Nguyen T, Saha D, Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin Drug Deliv 2023; 20:335-348. [PMID: 36720629 PMCID: PMC10699164 DOI: 10.1080/17425247.2023.2175814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Drugs delivered via the lungs are predominantly used to treat various respiratory disorders, including asthma, chronic obstructive pulmonary diseases, respiratory tract infections and lung cancers, and pulmonary vascular diseases such as pulmonary hypertension. To treat respiratory diseases, targeted, modified or controlled release inhalation formulations are desirable for improved patient compliance and superior therapeutic outcome. AREAS COVERED This review summarizes the important factors that have an impact on the inhalable modified release formulation approaches with a focus toward various formulation strategies, including dissolution rate-controlled systems, drug complexes, site-specific delivery, drug-polymer conjugates, and drug-polymer matrix systems, lipid matrix particles, nanosystems, and formulations that can bypass clearance via mucociliary system and alveolar macrophages. EXPERT OPINION Inhaled modified release formulations can potentially reduce dosing frequency by extending drug's residence time in the lungs. However, inhalable modified or controlled release drug delivery systems remain unexplored and underdeveloped from the commercialization perspective. This review paper addresses the current state-of-the-art of inhaled controlled release formulations, elaborates on the avenues for developing newer technologies for formulating various drugs with tailored release profiles after inhalational delivery and explains the challenges associated with translational feasibility of modified release inhalable formulations.
Collapse
Affiliation(s)
- Tanvirul Hye
- Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 48309, Rochester, MI, USA
| | - Sakib M. Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Tanoy Sarkar
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Trieu Nguyen
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Dipongkor Saha
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
- MedLuidics, 95757, Elk Grove, CA, USA
| |
Collapse
|
41
|
Li D, Schneider-Futschik EK. Current and Emerging Inhaled Antibiotics for Chronic Pulmonary Pseudomonas aeruginosa and Staphylococcus aureus Infections in Cystic Fibrosis. Antibiotics (Basel) 2023; 12:antibiotics12030484. [PMID: 36978351 PMCID: PMC10044129 DOI: 10.3390/antibiotics12030484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Characterized by impaired mucus transport and subsequent enhanced colonization of bacteria, pulmonary infection causes major morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are the two most common types of bacteria detected in CF lungs, which undergo multiple adaptational mechanisms such as biofilm formation resulting in chronic pulmonary infections. With the advantages of greater airway concentration and minimized systemic toxicity, inhaled antibiotics are introduced to treat chronic pulmonary infection in CF. Inhaled tobramycin, aztreonam, levofloxacin, and colistin are the four most common discussed inhaled antibiotics targeting P. aeruginosa. Additionally, inhaled liposomal amikacin and murepavadin are also in development. This review will discuss the virulence factors and adaptational mechanisms of P. aeruginosa and S. aureus in CF. The mechanism of action, efficacy and safety, current status, and indications of corresponding inhaled antibiotics will be summarized. Combination therapy and the strategies to select an optimal inhaled antibiotic protocol will also be discussed.
Collapse
|
42
|
Ali DA, Domínguez Mercado L, Findlay BL, Badia A, DeWolf C. Opposites Attract: Electrostatically Driven Loading of Antimicrobial Peptides into Phytoglycogen Nanocarriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:53-63. [PMID: 36525622 DOI: 10.1021/acs.langmuir.2c01794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides, such as GL13K, have a high binding selectivity toward bacterial membranes, while not affecting healthy mammalian cells at therapeutic concentrations. However, delivery of these peptides is challenging since they are susceptible to proteolytic hydrolysis and exhibit poor cellular uptake. A protective nanocarrier is thus proposed to overcome these obstacles. We investigate the potential to employ biodegradable phytoglycogen nanoparticles as carriers for GL13K using a simple loading protocol based on electrostatic association rather than chemical conjugation, eliminating the need for control of chemical cleavage for release of the peptide in situ. Both the native (quasi-neutral) and carboxymethylated (anionic) phytoglycogen were evaluated for their colloidal stability, loading capacity, and release characteristics. We show that the anionic nanophytoglycogen carries a greater cationic GL13K load and exhibits slower release kinetics than native nanophytoglycogen. Isotope exchange measurements demonstrate that the antimicrobial peptide is entrapped in the pores of the dendritic-like macromolecule, which should provide the necessary protection for delivery. Importantly, the nanoformulations are active against a Pseudomonas aeruginosa clinical isolate at concentrations comparable to those of the free peptide and representative, small molecule antibiotics. The colloidal nanocarrier preserves peptide stability and antimicrobial activity, even after long periods of storage (at least 8 months).
Collapse
Affiliation(s)
- Dalia A Ali
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
- Centre for NanoScience Research, Concordia University, Montreal, QuebecH4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria5424041, Egypt
| | - Laura Domínguez Mercado
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
| | - Antonella Badia
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
- Département de Chimie, Université de Montréal, Complexe des sciences, C.P. 6128, succursale Centre-ville, Montréal, QuebecH3C 3J7, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
- Centre for NanoScience Research, Concordia University, Montreal, QuebecH4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
| |
Collapse
|
43
|
Khan I, Al-Hasani A, Khan MH, Khan AN, -Alam FE, Sadozai SK, Elhissi A, Khan J, Yousaf S. Impact of dispersion media and carrier type on spray-dried proliposome powder formulations loaded with beclomethasone dipropionate for their pulmonary drug delivery via a next generation impactor. PLoS One 2023; 18:e0281860. [PMID: 36913325 PMCID: PMC10010524 DOI: 10.1371/journal.pone.0281860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Drug delivery via aerosolization for localized and systemic effect is a non-invasive approach to achieving pulmonary targeting. The aim of this study was to prepare spray-dried proliposome (SDP) powder formulations to produce carrier particles for superior aerosolization performance, assessed via a next generation impactor (NGI) in combination with a dry powder inhaler. SDP powder formulations (F1-F10) were prepared using a spray dryer, employing five different types of lactose carriers (Lactose monohydrate (LMH), lactose microfine (LMF), lactose 003, lactose 220 and lactose 300) and two different dispersion media. The first dispersion medium was comprised of water and ethanol (50:50% v/v ratio), and the second dispersion medium comprised wholly of ethanol (100%). In the first dispersion medium, the lipid phase (consisting of Soya phosphatidylcholine (SPC as phospholipid) and Beclomethasone dipropionate (BDP; model drug) were dissolved in ethanol and the lactose carrier in water, followed by spray drying. Whereas in second dispersion medium, the lipid phase and lactose carrier were dispersed in ethanol only, post spray drying. SDP powder formulations (F1-F5) possessed significantly smaller particles (2.89 ± 1.24-4.48 ± 1.20 μm), when compared to SDP F6-F10 formulations (10.63 ± 3.71-19.27 ± 4.98 μm), irrespective of lactose carrier type via SEM (scanning electron microscopy). Crystallinity of the F6-F10 and amorphicity of F1-F15 formulations were confirmed by XRD (X-ray diffraction). Differences in size and crystallinity were further reflected in production yield, where significantly higher production yield was obtained for F1-F5 (74.87 ± 4.28-87.32 ± 2.42%) then F6-F10 formulations (40.08 ± 5.714-54.98 ± 5.82%), irrespective of carrier type. Negligible differences were noted in terms of entrapment efficiency, when comparing F1-F5 SDP formulations (94.67 ± 8.41-96.35 ± 7.93) to F6-F10 formulations (78.16 ± 9.35-82.95 ± 9.62). Moreover, formulations F1-F5 demonstrated significantly higher fine particle fraction (FPF), fine particle dose (FPD) and respirable fraction (RF) (on average of 30.35%, 890.12 μg and 85.90%) when compared to counterpart SDP powder formulations (F6-F10). This study has demonstrated that when a combination of water and ethanol was employed as dispersion medium (formulations F1-F5), superior formulation properties for pulmonary drug delivery were observed, irrespective of carrier type employed.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: ,
| | - Ali Al-Hasani
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsin H. Khan
- Surgical A Ward, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Aamir N. Khan
- Cardiology Department, Lady Reading Hospital, Peshawar, Pakistan
| | - Fakhr-e -Alam
- Department of Hepatology, King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Sajid K. Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | | | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
44
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
45
|
Soni M, Handa M, Singh KK, Shukla R. Recent nanoengineered diagnostic and therapeutic advancements in management of Sepsis. J Control Release 2022; 352:931-945. [PMID: 36273527 PMCID: PMC9665001 DOI: 10.1016/j.jconrel.2022.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
COVID-19 acquired symptoms have affected the worldwide population and increased the load of Intensive care unit (ICU) patient admissions. A large number of patients admitted to ICU end with a deadly fate of mortality. A high mortality rate of patients was reported with hospital-acquired septic shock that leads to multiple organ failures and ultimately ends with death. The patients who overcome this septic shock suffer from morbidity that also affects their caretakers. To overcome these situations, scientists are exploring progressive theragnostic techniques with advanced techniques based on biosensors, biomarkers, biozymes, vesicles, and others. These advanced techniques pave the novel way for early detection of sepsis-associated symptoms and timely treatment with appropriate antibiotics and immunomodulators and prevent the undue effect on other parts of the body. There are other techniques like externally modulated electric-based devices working on the principle of piezoelectric mechanism that not only sense the endotoxin levels but also target them with a loaded antibiotic to neutralize the onset of inflammatory response. Recently researchers have developed a lipopolysaccharide (LPS) neutralizing cartridge that not only senses the LPS but also appropriately neutralizes with dual mechanistic insights of antibiotic and anti-inflammatory effects. This review will highlight recent developments in the new nanotechnology-based approaches for the diagnosis and therapeutics of sepsis that is responsible for the high number of deaths of patients suffering from this critical disease.
Collapse
Affiliation(s)
- Mukesh Soni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India
| | - Kamalinder K. Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK,Correspondence to: Prof. Kamalinder K. Singh, School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, U.P., India,School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK,Correspondence to: Dr. Rahul Shukla (M. Pharm. PhD), National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow 226002, UP, India
| |
Collapse
|
46
|
Liu Y, Ma X, Chen J, Wang H, Yu Z. Nontuberculous mycobacteria by metagenomic next-generation sequencing: Three cases reports and literature review. Front Public Health 2022; 10:972280. [PMID: 36452947 PMCID: PMC9702513 DOI: 10.3389/fpubh.2022.972280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background The increasing worldwide incidence of nontuberculous mycobacterial lung disease (NTM-LD) and the similarity of its manifestations to those of tuberculosis (TB) pose huge challenges in the diagnosis and treatment of NTM-LD, which is commonly misdiagnosed and mistreated as TB. Proper diagnosis and treatment at an early stage can greatly improve patient outcomes. Case presentation Mycobacterium avium was identified by mNGS in lung tissue of case 1 and bronchioalveolar fluid from case 2 that was not identified using conventional microbiological methods. Multiple NTM species were detected in the blood mNGS samples from case 3 who had disseminated NTM infection. Although NTM was isolated from blood culture, conventional methods failed to identify the organisms to the level of species. All three patients were suffering from and being treated for myelodysplastic syndrome, rheumatoid arthritis, systemic lupus erythematosus, or acute lymphoblastic leukemia, making them immunosuppressed and susceptible to NTM infections. Case 1 and Case 2 significantly improved after anti-NTM treatment, but case 3 succumbed to the infection due to her underlying medical illness despite aggressive treatment. Conclusions The cases in this study demonstrate the effectiveness of mNGS in facilitating and improving the clinical diagnosis of NTM infections. We propose combining mNGS with traditional diagnostic methods to identify pathogens at the early stages of the disease so that targeted treatment can be implemented.
Collapse
Affiliation(s)
- Ying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxu Ma
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiajun Chen
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Zujiang Yu
| |
Collapse
|
47
|
Butnarasu C, Petrini P, Bracotti F, Visai L, Guagliano G, Fiorio Pla A, Sansone E, Petrillo S, Visentin S. Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multi-Drug Delivery Platform. Adv Healthc Mater 2022; 11:e2200340. [PMID: 35608152 PMCID: PMC11468529 DOI: 10.1002/adhm.202200340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Mucus is a complex barrier for pharmacological treatments and overcoming it is one of the major challenges faced during transmucosal drug delivery. To tackle this issue, a novel class of glycosylated nanoparticles, named "mucosomes," which are based on the most important protein constituting mucus, the mucin, is introduced. Mucosomes are designed to improve drug absorption and residence time on the mucosal tissues. Mucosomes are produced (150-300 nm), functionalized with glycans, and loaded with the desired drug in a single one-pot synthetic process and, with this method, a wide range of small and macro molecules can be loaded with different physicochemical properties. Various in vitro models are used to test the mucoadhesive properties of mucosomes. The presence of functional glycans is indicated by the interaction with lectins. Mucosomes are proven to be storable at 4 °C after lyophilization, and administration through a nasal spray does not modify the morphology of the mucosomes. In vitro and in vivo tests indicate mucosomes do not induce adverse effects under the investigated conditions. This study proposes mucosomes as a ground-breaking nanosystem that can be applied in several pathological contexts, especially in mucus-related disorders.
Collapse
Affiliation(s)
- Cosmin Butnarasu
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Paola Petrini
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milano20133Italy
| | - Francesco Bracotti
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Livia Visai
- Molecular Medicine Department (DMM)Centre for Health Technologies (CHT)UdR INSTMUniversity of PaviaPavia27100Italy
- Medicina Clinica‐SpecialisticaUOR5 Laboratorio di NanotecnologieICS MaugeriIRCCSPavia27100Italy
| | - Giuseppe Guagliano
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di Milano20133Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems BiologyUniversity of Torinovia Accademia Albertina 13Torino10123Italy
| | - Ettore Sansone
- Department of Life Sciences and Systems BiologyUniversity of Torinovia Accademia Albertina 13Torino10123Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health ScienceUniversity of Turinvia Quarello 15Torino10135Italy
| |
Collapse
|
48
|
Safety and Outcomes of Amikacin Liposome Inhalation Suspension for Mycobacterium abscessus Pulmonary Disease: A NTM-NET study. Chest 2022; 162:76-81. [PMID: 35063454 PMCID: PMC9279646 DOI: 10.1016/j.chest.2022.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
|
49
|
Møller R, Nielsen BU, Faurholt-Jepsen D, Katzenstein TL, Skov M, Philipsen LKD, Pressler T, Johansen HK, Qvist T. Use of inhaled antibiotics among Danish patients with cystic fibrosis. Pediatr Pulmonol 2022; 57:1726-1734. [PMID: 35478387 PMCID: PMC9324817 DOI: 10.1002/ppul.25942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Inhaled antibiotics are an important part of cystic fibrosis (CF) airway disease management and should be individualized to fit the microorganism and match patient needs. To investigate the implementation of personalized treatment, this study mapped the use of different types of inhaled antibiotics and adherence patterns. METHODS We performed individual structured interviews in a cross-sectional study at the CF Centre in Copenhagen, Denmark. Patients with CF older than 15 years attending clinical consultations were included. Clinical data were obtained from centralized databases. RESULTS Among 149 participants, 107 (72%) had indication for treatment with inhaled antibiotics. In this group, 97 (91%) reported the use of inhaled antibiotics within the last 12 months. Change from one inhaled antibiotic to another during that period was reported by 31 (29%), and 17 (25%) with Pseudomonas aeruginosa had used off-label antibiotics. Adherence to a minimum of one daily dose of antibiotic was reported by 78%, while adherence to all daily doses was 28 percentage points lower. Skipping inhalations was due to side effects and doubt about the effect in less than 5% of cases. CONCLUSION Change of inhaled antibiotics and use of off-label antibiotics for inhalation were common and side effects were a rare cause of nonadherence. This suggests satisfactory implementation of the principle of tailored antibiotic inhalation prescription in the Copenhagen CF population. Adherence to at least one daily inhalation dose was markedly higher than adherence to multiple daily inhalations.
Collapse
Affiliation(s)
- Rikke Møller
- Department of Infectious Diseases, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| | - Bibi Uhre Nielsen
- Department of Infectious Diseases, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| | - Terese Lea Katzenstein
- Department of Infectious Diseases, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| | - Marianne Skov
- Department of Pediatrics, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| | | | - Tacjana Pressler
- Department of Infectious Diseases, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark.,Department of Pediatrics, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Tavs Qvist
- Department of Infectious Diseases, University Hospital of Copenhagen, Cystic Fibrosis Centre, Copenhagen, Denmark
| |
Collapse
|
50
|
Thorn CR, Kopecki Z, Wignall A, Kral A, Prestidge CA, Thomas N. Liquid crystal nanoparticle platform for increased efficacy of cationic antimicrobials against biofilm infections. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102536. [PMID: 35202839 DOI: 10.1016/j.nano.2022.102536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/18/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Bacterial biofilm infections tolerate high concentrations of antibiotics and are insidiously challenging to treat. Liquid crystal nanoparticles (LCNPs) advance the efficacy of tobramycin in biofilm-related infections by increasing the penetration of antibiotics across the biofilm matrix. Herewith, we develop the LCNPs as a platform technology, demonstrating that the LCNPs can increase the efficacy of two antibiotic classes (i.e. aminoglycosides and colistin) in P. aeruginosa biofilm infections. In C. elegans, the LCNPs potentiated the antimicrobial effect and significantly improved the survival of the nematodes. In mice with a full-thickness excisional wound, LCNPs were non-toxic and did not impair wound repair. Compared to the unformulated antibiotic treatment, tobramycin-LCNPs reduced the chronic bacterial load by 100-fold in the wound. This was also emulated in an ex vivo P. aeruginosa porcine wound infection model. The LCNPs represent a versatile platform technology that improves the efficacy of cationic antibiotics against biofilm infections utilizing multiple administration routes.
Collapse
Affiliation(s)
- Chelsea R Thorn
- University of South Australia, Clinical and Health Science, Adelaide, SA, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA, Australia; Biofilm Test Facility, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Zlatko Kopecki
- University of South Australia, Clinical and Health Science, Adelaide, SA, Australia; Future Industries Institute, UniSA, Mawson Lakes, SA, Australia
| | - Anthony Wignall
- University of South Australia, Clinical and Health Science, Adelaide, SA, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA, Australia
| | - Anita Kral
- University of South Australia, Clinical and Health Science, Adelaide, SA, Australia; Centre for Cancer Biology, S.A. Pathology and University of South Australia
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Science, Adelaide, SA, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA, Australia
| | - Nicky Thomas
- University of South Australia, Clinical and Health Science, Adelaide, SA, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, SA, Australia; Biofilm Test Facility, Cancer Research Institute, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|