1
|
Guo K, Zhang L, Huang S, Fang R, Jin Y, Li B, Wang Y, Xu S. Three-dimensional coated CuNiFe-Prussian blue analogue@MXene heterostructure for capacitive deionization to slow down the damage of MXene by dissolved oxygen. J Colloid Interface Sci 2025; 682:135-147. [PMID: 39615133 DOI: 10.1016/j.jcis.2024.11.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Within the capacitive deionization (CDI) realm, the two-dimensional (2D) layered material T3C2Tx MXene has drawn lots of attention because of its excellent electrical conductivity, reversible ionic intercalation/deintercalation capacity, and extensive active sites. However, the performance of MXene is compromised by the fact that its surface is susceptible to oxidation by dissolved oxygen and has inherent defects of self-stacking. In this paper, CuNiFe-Prussian blue analogue@MXene (CuNiFe-PBA@MXene) with three-dimensional (3D) coated heterostructure is successfully prepared by the in-situ coprecipitation. CuNiFe-PBA is uniformly coated on the MXene surface as a functional layer to avoid the re-stacking of MXene, to enlarge their layer spacing, and to slow down the damage of MXene by dissolved oxygen. Based on a coated structure constructed by a good combination of dual pseudocapacitive materials, the CuNiFe-PBA@MXene electrode has excellent electrochemical performance (250F g-1). The composed MXene//CuNiFe-PBA@MXene hybrid cell in 500 mg/L NaCl has higher desalination capacity (44.94 mg/g), lower energy consumption (0.66 kWh kg-1), and excellent desalination capacity retention (93.46 % after 40 adsorption/desorption cycles). Furthermore, the lower oxidation degree of CuNiFe-PBA@MXene after 40 desalination cycles compared to MXene indicates that the constructed 3D heterogeneous structure can protect MXene and slow down the oxidation of MXene by dissolved oxygen.
Collapse
Affiliation(s)
- Kaiwen Guo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Le Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Shunjiang Huang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Rongli Fang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Ying Jin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Bingying Li
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| | - Yue Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China.
| | - Shichang Xu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| |
Collapse
|
2
|
Bao W, Shen H, Zeng G, Zhang Y, Wang Y, Cui D, Xia J, Jing K, Liu H, Guo C, Yu F, Sun K, Li J. Engineering the next generation of MXenes: challenges and strategies for scalable production and enhanced performance. NANOSCALE 2025; 17:6204-6265. [PMID: 39946163 DOI: 10.1039/d4nr04560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Two-dimensional nanomaterials, such as MXenes, have garnered significant attention due to their excellent properties, including electrical conductivity, mechanical strength, and thermal stability. These properties make them promising candidates for energy storage and catalysis applications. However, several challenges impede their large-scale production and industrial application. Issues such as high production costs, safety concerns related to toxic etching agents, instability in oxidative environments, and the complex synthesis process must be addressed. In this review, we systematically analyze current methodologies for scaling up MXene production, focusing on the synthesis and etching of MAX phases, delamination strategies, and the production of MXene derivatives. We explore strategies for overcoming challenges like aggregation, oxidation, and cost, presenting optimization techniques for enhancing electrochemical performance and stability. The review also discusses the applications of MXenes in batteries and supercapacitors, emphasizing their potential for large-scale use. Finally, we provide an outlook on future research directions for MXene to develop safer and more cost-effective production methods to improve the performance of MXene in order to realize its commercial potential in energy technologies.
Collapse
Affiliation(s)
- Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Hao Shen
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Guozhao Zeng
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yangyang Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yaoyu Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Dingyu Cui
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jingjie Xia
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - King Jing
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
Wang C, Hu C, Ding Y, Li Z, Wang Z, Lin X, Zhou Y, Xu J. h-CoFe 2O 4/Ti 3C 2T x/BNC Hybrid Aerogels with Modulation Impedance Matching for Electromagnetic Wave Absorption and Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2048-2062. [PMID: 39698769 DOI: 10.1021/acsami.4c19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) Ti3C2Tx MXene via selective etching of Al from the Ti3AlC2 MAX phase. By introducing MXene into a composite of hydroxylated CoFe2O4 nanoparticles (h-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs. The optimized electromagnetic parameters and three-dimensional (3D) porous structure achieve enhanced impedance matching of the wave absorber. The h-CFO/BNC/MXene (h-CFO@CM73) hybrid aerogel demonstrates superior electromagnetic wave absorption (EMWA) performance due to the synergistic effects of conductive loss, magnetic loss, interfacial polarization, and dipole polarization, where a minimum reflection loss (RLmin) of -32.66 dB at a thickness of 4.5 mm, an effective absorption bandwidth (EAB) of 10.70 GHz within the test range, and an EMWA efficiency reaching up to 99.92% were realized. Moreover, the hybrid aerogel presents sensitive sensing capabilities, detecting human joint movements, breathing, and vocalizations. Additionally, the developed hybrid aerogels exhibit commendable thermal insulation and infrared camouflage properties. Consequently, the fabricated multifunctional hybrid aerogel has excellent potential for monitoring care of infants, children, and pregnant women.
Collapse
Affiliation(s)
- Chenchen Wang
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chuanshuang Hu
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yao Ding
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zihua Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhuoqun Wang
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiuyi Lin
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yonghui Zhou
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jiangtao Xu
- Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Jiang Y, Li W, Li X, Liao Y, Liu X, Yu J, Xia S, Li W, Zhao B, Zhang J. Iodine-doped carbon nanotubes boosting the adsorption effect and conversion kinetics of lithium-sulfur batteries. J Colloid Interface Sci 2024; 672:287-298. [PMID: 38843681 DOI: 10.1016/j.jcis.2024.05.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024]
Abstract
Compared with lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), based on electrochemical reactions involving multi-step 16-electron transformations provide higher specific capacity (1672 mAh g-1) and specific energy (2600 Wh kg-1), exhibiting great potential in the field of energy storage. However, the inherent insulation of sulfur, slow electrochemical reaction kinetics and detrimental shuttle-effect of lithium polysulfides (LiPSs) restrict the development of LSBs in practical applications. Herein, the iodine-doped carbon nanotubes (I-CNTs) is firstly reported as sulfur host material to the enhance the adsorption-conversion kinetics of LSBs. Iodine doping can significantly improve the polarity of I-CNTs. Iodine atoms with lone pair electrons (Lewis base) in iodine-doped CNTs can interact with lithium cations (Lewis acidic) in LiPSs, thereby anchoring polysulfides and suppressing subsequent shuttling behavior. Moreover, the charge transfer between iodine species (electron acceptor) and CNTs (electron donor) decreases the gap band and subsequently improves the conductivity of I-CNTs. The enhanced adsorption effect and conductivity are beneficial for accelerating reaction kinetics and enhancing electrocatalytic activity. The in-situ Raman spectroscopy, quasi in-situ electrochemical impedance spectroscopy (EIS) and Li2S potentiostatic deposition current-time (i-t) curves were conducted to verify mechanism of complex sulfur reduction reaction (SRR). Owing to above advantages, the I-CNTs@S composite cathode exhibits an ultrahigh initial capacity of 1326 mAh g-1 as well as outstanding cyclicability and rate performance. Our research results provide inspirations for the design of multifunctional host material for sulfur/carbon composite cathodes in LSBs.
Collapse
Affiliation(s)
- Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenzhuo Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xue Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yalan Liao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Liu
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| | - Jiaqi Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenrong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Bing Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Yi L, Wang H, Ren X, Liu G, Nian H, Zheng Z, Wu F. Enhancing Cr(vi) removal performance of Ti 3C 2T x through structural modification by using a spray freezing method. RSC Adv 2024; 14:28320-28331. [PMID: 39239282 PMCID: PMC11375417 DOI: 10.1039/d4ra04640d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
Structural modification is expected to be a facile way to enhance the adsorption performance of MXene. In this work, the structural modification of Ti3C2T x was carried out by a spray freezing method, and two kinds of nano-structure (spherical and flaky) of Ti3C2T x were prepared by adjusting the solution concentration of Ti3C2T x . Then the Cr(vi) adsorption capacity and removal efficiency of the spherical and flaky Ti3C2T x was investigated, respectively. It is found that flaky Ti3C2T x was produced with a Ti3C2T x concentration of 3 mg mL-1, while spherical Ti3C2T x was obtained with a concentration of 6 mg mL-1. The long diameter of flaky Ti3C2T x is about 8-10 μm, and the specific surface area is 17.81 m2 g-1. While spherical Ti3C2T x had a diameter of about 1-4 μm and a specific surface area of 17.07 m2 g-1. The optimized structure of flaky and spherical Ti3C2T x improves the maximum adsorption capacity by 97% and 33%, respectively, compared with the few-layer Ti3C2T x . The maximum adsorption capacity of flaky Ti3C2T x was 928 mg g-1, while that of spherical Ti3C2T x was 626 mg g-1. The adsorption capacity of both Ti3C2T x structures decreased with the increase of pH, and reached the maximum value at pH = 2; meanwhile, the adsorption capacity of both Ti3C2T x structures increased with the increase of Cr(vi) concentration. The adsorption of Cr(vi) on flaky Ti3C2T x was very fast, reaching equilibrium in 3 min, while spherical Ti3C2T x took 5 min. The adsorption of Cr(vi) on both Ti3C2T x structures belonged to the monolayers, heat-absorbing chemical adsorption, and the diffusion process of Cr(vi) was regulated by the external diffusion and internal diffusion of particles. Its adsorption mechanism was the combination of reductive adsorption and electrostatic adsorption.
Collapse
Affiliation(s)
- Linjie Yi
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Hongwei Wang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Xianliang Ren
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - GaoBin Liu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Hongen Nian
- Qinghai Institute of Salt Lakes, Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences Xining Qinghai Province 810008 P. R. China
| | - Zhiqin Zheng
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Biological Engineering and Wuliangye Liquor, Sichuan University of Science and Engineering Yibin Sichuan Province 644000 China
- National Innovation Center for Nuclear Enviromental Safety, Southwest University of Science and Technology Mianyang Sichuan Province 621010 P. R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MianYang Central Hospital) Mianyang Sichuan Province 621010 P. R. China
| | - Fang Wu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
- Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang Liyang Jiangsu Province 213300 P. R. China
| |
Collapse
|
6
|
Wang Z, Liu S, Shi Z, Lu D, Li Z, Zhu Z. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024; 277:126318. [PMID: 38810381 DOI: 10.1016/j.talanta.2024.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shuyuan Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
7
|
Zhang Y, Hu J, Bai G. Reversible Stacking and Delamination-Regulation of MXene via Controlled Freezing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311218. [PMID: 38533979 DOI: 10.1002/smll.202311218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Indexed: 03/28/2024]
Abstract
MXene's configuration, whether it is aggregated or dispersed in a monolayer, determines the specific application areas and even greatly influences the intrinsic properties of MXene. However, how to desirably control MXene's configuration is challenging. Here, a simple, additive-free, chemical reaction-free, and scalable strategy to optionally and reversibly regulate MXene's ordered stacking and delamination of MXene aggregates (AM) is reported. Just by controlled freezing of MXene aqueous dispersions, the aggregation percentage, delamination percentage, and interlayer spacing of AM can be finely tuned. Experimental results reveal that the freezing-induced aggregation and delamination effects can be explained by the squeezing action of growing ice grains on the MXene excluded/concentrated between ice grains and the expanding action caused by the ice formation between AM lamellae, respectively. The dominance between them depends on the freezing parameter-influenced ice nucleation sites, numbers, and ice grain sizes. This work not only contributes to the preparation, storage, and practical applications of MXene, but also opens a new and green avenue for controlling materials' assembly structures.
Collapse
Affiliation(s)
- Yanlin Zhang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinhao Hu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Guoying Bai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
8
|
Liu Y, Liu Y, Zhao X. MXene Composite Electromagnetic Shielding Materials: The Latest Research Status. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39066695 DOI: 10.1021/acsami.4c11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
MXene emerges as a premier candidate for electromagnetic shielding owing to its unique properties as a novel two-dimensional material. Its exceptional electrical conductivity, chemical reactivity, surface tunability, and facile processing render it highly suitable for diverse electromagnetic shielding applications. The research status of MXene and MXene-based electromagnetic shielding materials is systematically discussed in this paper. First, the research status of MXene as a single-component electromagnetic shielding material is briefly introduced. Subsequently, the research status of composite structures constructed by MXene with polymers, carbon derivatives, and ferrites is introduced in detail. Furthermore, the research progress of MXene-based ternary and quaternary composite electromagnetic shielding materials is further focused. Finally, the application of MXene-based composite electromagnetic shielding materials is prospected. A deeper understanding of MXene's electromagnetic shielding properties is facilitated by this paper, providing the direction for the future development of two-dimensional materials in the design and processing of electromagnetic shielding materials.
Collapse
Affiliation(s)
- Yi Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanjun Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| | - Xiaoming Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tiangong University, Tianjin 300387, China
| |
Collapse
|
9
|
Wang T, Zhao W, Ren R, Lan H, Zhou T, Hu J, Jiang Q. Unveiling the bifunctional roles of Cetyltrimethylammonium bromide in construction of Nb 2CT x@MoSe 2 heterojunction for fast potassium storage. J Colloid Interface Sci 2024; 674:19-28. [PMID: 38909591 DOI: 10.1016/j.jcis.2024.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Exploring robust electrode materials which could permit fast and reversible insertion/extraction of large K+ is a crucial challenge for potassium-ion batteries (PIBs). Smart interfacial design could facilitate electron/ion transport as well as assure the integrity of electrode. Herein, Cetyltrimethylammonium bromide (CTAB) was found to play bifunctional roles in construction of Nb2CTx@MoSe2 heterostructure. Firstly, functionalization of CTAB on the surface of Nb2CTx could influence the subsequent growth of MoSe2 by electrostatic effect, stereochemical effect and the synergetic Lewis acid-base interaction, leading to the formation of Nb2CTx@MoSe2 with tiled heterostructure. Secondly, the interlayer spacing of Nb2CTx was expanded from 0.77 to 1.21 nm owing to the pillar effect of CTAB. As excepted, the capacity retention was 80 % from 100 mA g-1 (406 mA h g-1) to 1000 mA g-1 concerning rate capability and the specific capacity maintained at 240 mA h g-1 (at 2000 mA g-1) over 300 cycles. The calculated DK values from Galvanostatic intermittent titration technique (GITT) measurement of the titled C-T-Nb2CTx@MoSe2@C electrode is two orders of magnitude larger than the traditional T-Nb2CTx@MoSe2@C electrode, further confirming intimate interface between MoSe2 and Nb2CTx could provide convenient potassium-ion transport channels and fast diffusion kinetics. Finally, ex-situ characterizations at different charging and discharging voltage stages, including ex-situ XRD/Raman/HRTEM/XPS have been carried out to reveal the potassium storage mechanism. This work provides a facile strategy for the regulation of interface engineering by the assist of CTAB which could extend to other MXenes-TMDs (Transition metal dichalcogenides) hybrid electrodes.
Collapse
Affiliation(s)
- Ting Wang
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Weifang Zhao
- Ganfeng Li Energy Technology Co., Ltd., Xinyu 338000, Jiangxi, China.
| | - Ran Ren
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Huilin Lan
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Juncheng Hu
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China
| | - Qingqing Jiang
- School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
10
|
Guan W, Wang W, Huang Z, Tu J, Lei H, Wang M, Jiao S. The Reverse of Electrostatic Interaction Force for Ultrahigh-Energy Al-Ion batteries. Angew Chem Int Ed Engl 2024; 63:e202317203. [PMID: 38286752 DOI: 10.1002/anie.202317203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 01/31/2024]
Abstract
The two-dimensional (2D) MXenes with sufficient interlayer spacing are promising cathode materials for aluminum-ion batteries (AIBs), yet the electrostatic repulsion effect between the surface negative charges and the active anions (AlCl4 - ) hinders the intercalation of AlCl4 - and is usually ignored. Here, we propose a charge regulation strategy for MXene cathodes to overcome this challenge. By doping N and Co, the zeta potential is gradually transformed from negative (Ti3 C2 Tx ) to near-neutral (Ti3 CNTx ), and finally positive (Ti3 CNTx @Co). Therefore, the electrostatic repulsion force can be greatly weakened between Ti3 CNTx and AlCl4 - , or even formed a strong electrostatic attraction between Ti3 CNTx @Co and AlCl4 - , which can not only accommodate more AlCl4 - ions in the Ti3 CNTx @Co interlayers to increase the capacity, but also solve the stacking and expansion problems. As a result, the optimized Al-MXene battery exhibits an ultrahigh capacity of up to 240 mAh g-1 (2-4 times the capacity of graphite cathode, 60-120 mAh g-1 ) and a potential ultrahigh energy density (432 Wh kg-1 , 2-4 times the value of graphite, 110-220 Wh kg-1 ) based on the mass of cathode materials, comparable to LiFePO4 -based lithium-ion batteries (350-450 Wh kg-1 , based on the mass of LiFePO4 ).
Collapse
Affiliation(s)
- Wei Guan
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
11
|
Jiang J, Zhao W, Zhao L. Ultrarapid Gelation of Porous Ti 3C 2T x MXene Monoliths Induced by Ionic Liquids. NANO LETTERS 2024; 24:3196-3203. [PMID: 38437624 DOI: 10.1021/acs.nanolett.4c00093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Gelation is a promising method to assemble 3D macroscopic structures from MXene sheets for various applications. However, the fine control and scalable manufacturing of 3D MXene monoliths remains a great challenge. Herein, the controllable gelation of Ti3C2Tx MXene initiated by various ionic liquids (ILs) is first proposed, where the IL serve as linkers to bond the nanosheets together through electrostatic and hydrogen bonding interactions, forming 3D monoliths with well-adjustable structure. Furthermore, density functional theory calculations and experiments further reveal the cross-linking effect of different ILs. Typically, 3D porous structure with high specific surface area, suitable pore size, and improved electrolyte affinity is designed through the cross-linking of Ti3C2Tx with 1-vinyl-3-ethylimidazole bromide ([C2VIm]Br-Ti3C2Tx). Due to the strong coupling, the as-synthesized monolith possesses excellent rate performance and high energy density. The methodology is quite flexible, controllable, and universal that provides a new perspective for promoting innovative applications of 2D materials.
Collapse
Affiliation(s)
- Jiali Jiang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenchao Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
12
|
Wu M, Rao L, Ji Z, Li Y, Wang P, Liu L, Ying G. 3D Lightweight Interconnected Melamine Foam Modified with Hollow CoFe 2O 4/MXene toward Efficient Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9169-9181. [PMID: 38328874 DOI: 10.1021/acsami.3c17790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Considering the increasing severity of electromagnetic wave pollution, the development of high-performance low-filler-content microwave absorbers possessing wide frequency bands and strong absorption for practical applications is a demanding research hotspot. In this study, from the perspectives of the electromagnetic component coordination and structural design, a three-dimensional (3D) interconnected CoFe2O4/MXene-melamine foam (MF) was constructed via simple impregnation and a single freeze-drying step. By changing the absorber (CoFe2O4/MXene) concentration, the pore opening and electromagnetic properties of the 3D foams can be effectively adjusted. When the absorber concentration is sufficiently high to clog the internal pores, the microwave absorption is hindered. When the filler (CoFe2O4/MXene-MF) content is just ∼5.8 wt % (at a density of ∼33.3 mg cm-3), a minimum reflection loss (RLmin) of -72.1 dB is achieved at a matching thickness of 3.32 mm, and an effective absorption bandwidth (4.54 GHz) covering the whole X band is achieved at a thickness of 3 mm. CoFe2O4/MXene-MF, which possesses a 3D porous electromagnetic network structure, optimizes impedance matching and enhances multiple polarization relaxations and reflections/scattering, resulting in superior absorption capabilities. In particular, the continuous network structure ensures the uniform distribution of electromagnetic fields in the microstructure, achieving high absorption at low filler contents. This work provides a reference for subsequent 3D absorber concentration studies and a novel engineering strategy for preparing a low-filler-content, lightweight, and efficient electromagnetic wave absorber, which could be applied in the fields of radar security and information communications.
Collapse
Affiliation(s)
- Meng Wu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lei Rao
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Ziying Ji
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuexia Li
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Peng Wang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
13
|
Zhang Z, Han WQ. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. NANO-MICRO LETTERS 2023; 16:24. [PMID: 37985522 PMCID: PMC10661211 DOI: 10.1007/s40820-023-01234-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity-a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
14
|
Niyitanga T, Chaudhary A, Ahmad K, Kim H. Titanium Carbide (Ti 3C 2T x) MXene as Efficient Electron/Hole Transport Material for Perovskite Solar Cells and Electrode Material for Electrochemical Biosensors/Non-Biosensors Applications. MICROMACHINES 2023; 14:1907. [PMID: 37893344 PMCID: PMC10609296 DOI: 10.3390/mi14101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Recently, two-dimensional (2D) MXenes materials have received enormous attention because of their excellent physiochemical properties such as high carrier mobility, metallic electrical conductivity, mechanical properties, transparency, and tunable work function. MXenes play a significant role as additives, charge transfer layers, and conductive electrodes for optoelectronic applications. Particularly, titanium carbide (Ti3C2Tx) MXene demonstrates excellent optoelectronic features, tunable work function, good electron affinity, and high conductivity. The Ti3C2Tx has been widely used as electron transport (ETL) or hole transport layers (HTL) in the development of perovskite solar cells (PSCs). Additionally, Ti3C2Tx has excellent electrochemical properties and has been widely explored as sensing material for the development of electrochemical biosensors. In this review article, we have summarized the recent advances in the development of the PSCs using Ti3C2Tx MXene as ETL and HTL. We have also compiled the recent progress in the fabrication of biosensors using Ti3C2Tx-based electrode materials. We believed that the present mini review article would be useful to provide a deep understanding, and comprehensive insight into the research status.
Collapse
Affiliation(s)
- Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Archana Chaudhary
- Department of Chemistry, Medi-Caps University, Indore 453331, Madhya Pradesh, India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
15
|
Jiang J, Wen D, Zhao W, Zhao L. Radiation-Induced Surface Modification of MXene with Ionic Liquid to Improve Electrochemical Properties and Chemical Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13890-13896. [PMID: 37733971 DOI: 10.1021/acs.langmuir.3c01417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
For the first time, an ionic liquid was grafted onto Ti3C2Tx MXene interlayers (MXene-g-IL) using a radiation technique. The IL was tightly immobilized on the surface of MXene nanosheets via chemical linkage, which exhibited excellent specific capacitance (160 F g-1 at 5 mV s-1) and improved structural stability (maintaining the sheet-like structure for 180 days). The facile, efficient, and scalable synthetic strategy derived from the radiation technique can open a new avenue for covalent functionalization of MXene-based materials and promote their further application.
Collapse
Affiliation(s)
- Jiali Jiang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Wen
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenchao Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
16
|
Zhang Q, Wang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Structural design and preparation of Ti 3C 2T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding. NANOSCALE ADVANCES 2023; 5:3549-3574. [PMID: 37441247 PMCID: PMC10334419 DOI: 10.1039/d3na00130j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Electromagnetic interference (EMI) is a pervasive and harmful phenomenon in modern society that affects the functionality and reliability of electronic devices and poses a threat to human health. To address this issue, EMI-shielding materials with high absorption performance have attracted considerable attention. Among various candidates, two-dimensional MXenes are promising materials for EMI shielding due to their high conductivity and tunable surface chemistry. Moreover, by incorporating magnetic and conductive fillers into MXene/polymer composites, the EMI shielding performance can be further improved through structural design and impedance matching. Herein, we provide a comprehensive review of the recent progress in MXene/polymer composites for absorption-dominated EMI shielding applications. We summarize the fabrication methods and EMI shielding mechanisms of different composite structures, such as homogeneous, multilayer, segregated, porous, and hybrid structures. We also analyze the advantages and disadvantages of these structures in terms of EMI shielding effectiveness and the absorption ratio. Furthermore, we discuss the roles of magnetic and conductive fillers in modulating the electrical properties and EMI shielding performance of the composites. We also introduce the methods for evaluating the EMI shielding performance of the materials and emphasize the electromagnetic parameters and challenges. Finally, we provide insights and suggestions for the future development of MXene/polymer composites for EMI shielding applications.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- School of Materials and Environmental Engineering, Chizhou University Chizhou 247000 China
| | - Qi Wang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jian Cui
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuai Zhao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Guangfa Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Ailin Gao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yehai Yan
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
17
|
Wang Y, Li J, Song P, Yang J, Gu Z, Wang T, Wang C. In-situ decoration of tin sulfide on Niobium carbide MXene with robust electronic coupling for improved sodium storage performance. J Colloid Interface Sci 2023; 636:255-266. [PMID: 36634395 DOI: 10.1016/j.jcis.2023.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Tin sulfide (SnS) has been considered as one of the most promising sodium storage materials because of its excellent electrochemical activity, low cost, and low-dimensional structure. However, owing to the serious volume change upon discharging/charging and poor electronic conductivity, the SnS-based electrodes often suffer from electrode pulverization and sluggish reaction kinetics, thus resulting in serious capacity fading and degraded rate capability. In this work, SnS nanoparticles uniformly distributed on the surface of the layered Niobium carbide MXene (SnS/Nb2CTx) were fabricated through a facile solvothermal approach followed by calcination, endowing the SnS/Nb2CTx with a three-dimensional interconnected framework as well as fast charge transfer. Benefitting from the excellent electronic/ionic conductivity, efficient buffering matrix, abundant active sites, and high sodium storage activity inherited from the structure design, the robust electronic coupling between SnS nanoparticle and Nb2CTx MXene results in excellent electrochemical output, which demonstrates superior reversible capacities of 479.6 (0.1 A/g up to 100 cycles) and 278.9 mAh/g (0.5 A/g up to 500 cycles) upon sodium storage, respectively. The excellent electrochemical performance manifests the promise of the combination of metal sulfides with Nb2CTx MXene to fabricate high-performance electrodes for sodium storage.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Penghao Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Zhihao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
18
|
Huang P, Han WQ. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. NANO-MICRO LETTERS 2023; 15:68. [PMID: 36918453 PMCID: PMC10014646 DOI: 10.1007/s40820-023-01039-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/31/2023]
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
19
|
Zhang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Development of Electromagnetic-Wave-Shielding Polyvinylidene Fluoride-Ti 3C 2T x MXene-Carbon Nanotube Composites by Improving Impedance Matching and Conductivity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:417. [PMID: 36770378 PMCID: PMC9921545 DOI: 10.3390/nano13030417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Absorption-dominated electromagnetic interference (EMI) shielding is attained by improving impedance matching and conductivity through structural design. Polyvinylidene fluoride (PVDF)-Ti3C2Tx MXene-single-walled carbon nanotubes (SWCNTs) composites with layered heterogeneous conductive fillers and segregated structures were prepared through electrostatic flocculation and hot pressing of the PVDF composite microsphere-coated MXene and SWCNTs in a layer-by-layer fashion. Results suggest that the heterogeneous fillers improve impedance matching and layered coating, and hot compression allows the MXene and SWCNTs to form a continuous conducting network at the PVDF interface, thereby conferring excellent conductivity to the composite. The PVDF-MXene-SWCNTs composite showed a conductivity of 2.75 S cm-1 at 2.5% MXene and 1% SWCNTs. The EMI shielding efficiency (SE) and contribution from absorption loss to the total EMI SE of PVDF-MXene-SWCNTs were 46.1 dB and 85.7%, respectively. Furthermore, the PVDF-MXene-SWCNTs composite exhibited excellent dielectric losses and impedance matching. Therefore, the layered heteroconductive fillers in a segregated structure optimize impedance matching, provide excellent conductivity, and improve absorption-dominated electromagnetic shielding.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guangfa Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ailin Gao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
20
|
Liu N, Yu L, Liu B, Yu F, Li L, Xiao Y, Yang J, Ma J. Ti 3 C 2 -MXene Partially Derived Hierarchical 1D/2D TiO 2 /Ti 3 C 2 Heterostructure Electrode for High-Performance Capacitive Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204041. [PMID: 36442852 PMCID: PMC9839853 DOI: 10.1002/advs.202204041] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Constructing faradaic electrode with superior desalination performance is important for expanding the applications of capacitive deionization (CDI). Herein, a simple one-step alkalized treatment for in situ synthesis of 1D TiO2 nanowires on the surface of 2D Ti3 C2 nanosheets, forming a Ti3 C2 -MXene partially derived hierarchical 1D/2D TiO2 /Ti3 C2 heterostructure as the cathode electrode is reported. Cross-linked TiO2 nanowires on the surface help avoid layer stacking while acting as the protective layer against contact of internal Ti3 C2 with dissolved oxygen in water. The inner Ti3 C2 MXene nanosheets cross over the TiO2 nanowires can provide abundant active adsorption sites and short ion/electron diffusion pathways. . Density functional theory calculations demonstrated that Ti3 C2 can consecutively inject electrons into TiO2 , indicating the high electrochemical activity of the TiO2 /Ti3 C2 . Benefiting from the 1D/2D hierarchical structure and synergistic effect of TiO2 and Ti3 C2 , TiO2 /Ti3 C2 heterostructure presents a favorable hybrid CDI performance, with a superior desalination capacity (75.62 mg g-1 ), fast salt adsorption rate (1.3 mg g-1 min-1 ), and satisfactory cycling stability, which is better than that of most published MXene-based electrodes. This study provides a feasible partial derivative strategy for construction of a hierarchical 1D/2D heterostructure to overcome the restrictions of 2D MXene nanosheets in CDI.
Collapse
Affiliation(s)
- Ningning Liu
- Research Center for Environmental Functional MaterialsState Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
| | - Lanlan Yu
- College of Resource and Environmental EngineeringGuizhou UniversityGuiyang550025China
| | - Baojun Liu
- College of Resource and Environmental EngineeringGuizhou UniversityGuiyang550025China
| | - Fei Yu
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghai201306P. R. China
| | - Liqing Li
- Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000P. R. China
| | - Yi Xiao
- Institute of Materials ScienceTU Darmstadt64287DarmstadtGermany
| | - Jinhu Yang
- School of Chemical Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
| | - Jie Ma
- Research Center for Environmental Functional MaterialsState Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
- Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000P. R. China
| |
Collapse
|
21
|
Guan W, Huang Z, Wang W, Song WL, Tu J, Luo Y, Lei H, Wang M, Jiao S. The Negative-Charge-Triggered "Dead Zone" between Electrode and Current Collector Realizes Ultralong Cycle Life of Aluminum-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2205489. [PMID: 36342304 DOI: 10.1002/adma.202205489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Typically, volume expansion of the electrodes after intercalation of active ions is highly undesirable yet inetvitable, and it can significantly reduce the adhesion force between the electrodes and current collectors. Especially in aluminum-ion batteries (AIBs), the intercalation of large-sized AlCl4 - can greatly weaken this adhesion force and result in the detachment of the electrodes from the current collectors, which seems an inherent and irreconcilable problem. Here, an interesting concept, the "dead zone", is presented to overcome the above challenge. By incorporating a large number of OH- and COOH- groups onto the surface of MXene film, a rich negative-charge region is formed on its surface. When used as the current collector for AIBs, it shields a tiny area of the positive electrode (adjacent to the current collector side) from AlCl4 - intercalation due to the repulsion force, and a tiny inert layer (dead zone) at the interface of the positive electrode is formed, preventing the electrode from falling off the current collector. This helps to effectively increase the battery's cycle life to as high as 50 000 times. It is believed that the proposed concept can be an important reference for future development of current collectors in rocking chair batteries.
Collapse
Affiliation(s)
- Wei Guan
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei-Li Song
- Institute of Advanced Structural Technology, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Yiwa Luo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Institute of Advanced Structural Technology, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
22
|
Yang LX, Mu YB, Liu RJ, Liu HJ, Zeng L, Li HY, Lin GQ, Zeng CL, Fu C. A facile preparation of submicro-sized Ti2AlC precursor toward Ti2CT MXene for lithium storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Qamar S, Fatima K, Ullah N, Akhter Z, Waseem A, Sultan M. Recent progress in use of MXene in perovskite solar cells: for interfacial modification, work-function tuning and additive engineering. NANOSCALE 2022; 14:13018-13039. [PMID: 36065967 DOI: 10.1039/d2nr02799b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of perovskites in photovoltaic and related industries has achieved tremendous success over the last decade. However, there are still obstacles to overcome in terms of boosting their performance and resolving stability issues for future commercialization. The introduction of a new 2D material of halide perovskites is now the key advancement in boosting the solar energy conversion efficiency. The implication of a new 2D material (MXene) in perovskite solar cells has been initiated since its first report in 2018, showing excellent transparency, electrical conductivity, carrier mobility, superior mechanical strength, and tunable work function. Based on distinctive features at the hetero-interface, halide perovskite and MXene heterostructures (HPs/Mx) have recently exhibited exceptional improvements in both the performance and stability of perovskite solar cells. Furthermore, the wide families of HPs and MXene materials allow playing with the composition and functionalities of HP/Mx interfaces by applying rational designing and alterations. In this review a comprehensive study of implementing MXenes in perovskite solar cells is presented. First, the implementation of MXenes in perovskites as an additive, and then in charge extraction layers (HTL/ETL), is described in detail. It is worth noting that still only Ti3C2Tx, Nb2CTx,V2CTx MXene is being incorporated into perovskite photovoltaics. Finally, the present obstacles in the use of MXenes in PSCS are discussed, along with the future research potential. This review is expected to provide a complete and in-depth description of the current state of research and to open up new opportunities for the study of other MXenes in PSCs.
Collapse
Affiliation(s)
- Samina Qamar
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Kalsoom Fatima
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Naimat Ullah
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Zareen Akhter
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Amir Waseem
- Department of Chemistry, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Muhammad Sultan
- National Center for physics Islamabad, 45320, Pakistan
- Department of Physics, Kohsar University Murree, 47150, Pakistan
| |
Collapse
|
24
|
Ying H, Yang T, Huang P, Zhang Z, Zhang S, Zhang Z, Han WQ. Facile Synthesis of Hybrid Anodes with Enhanced Lithium-Storage Performance Realized by a "Synergistic Effect". ACS APPLIED MATERIALS & INTERFACES 2022; 14:35769-35779. [PMID: 35905442 DOI: 10.1021/acsami.2c09179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alloying-type anodes including Si- and Sn-based materials are considered the most exploitable anodes for high-performance lithium-ion batteries. However, problems of poor kinetics properties and structural failures such as grain pulverization and coarsening hinder their large-scale application. Herein, SnO2/Si@graphite hybrid anodes, with nano-SnO2 and nano-Si thoroughly mixed with each other and loaded onto graphite flakes, have been prepared by a facile ball milling method. Attributed to the "synergistic effect" between SnO2 and Si, the mechanical stability and kinetics properties can be remarkably enhanced. Furthermore, graphite substrate supplies a fast electrically conductive path and buffers the volume expansion of active particles. Accordingly, SnO2/Si@graphite delivers 798.9 mAh g-1 at 200 mA g-1 and maintains 550.8 mAh g-1 after 1000 cycles at 1 A g-1 in half cells. Impressively, a high energy density of 431.4 Wh kg-1 (based on the mass of anode and cathode) can be obtained in full cells when paired with the NCM622 cathode. This work presents an effective strategy to exploit high-performance alloying-type anodes for LIBs by designing hybrid materials with multiple active components.
Collapse
Affiliation(s)
- Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Chen Z, Li B, Liu J, Li H, Li C, Xuan X, Li M. A label-free electrochemical immunosensor based on a gold-vertical graphene/TiO 2 nanotube electrode for CA125 detection in oxidation/reduction dual channels. Mikrochim Acta 2022; 189:257. [PMID: 35701556 DOI: 10.1007/s00604-022-05332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
A label-free immunosensor was constructed in oxidation and reduction dual channel mode for the trace detection of cancer antigen 125 (CA125) in serum. The gold-vertical graphene/titanium dioxide (Au-VG/TiO2) electrode was used as the signal-amplification platform, and cytosine and dopamine were used as probes in the oxidation and reduction channels, respectively. VG nanosheets were synthesized on a TiO2 nanotube array via chemical vapor deposition (CVD), and Au nanoparticles were deeply embedded on the surface and in the root of the VG nanosheets via electrodeposition. The CA125 antibody was then directly immobilized onto the electrode surface, benefitting from its natural affinity for Au nanoparticles. In the oxidation and reduction channels the CA125 antibody-Au-VG/TiO2 immune electrode had the same response concentration range (0.01-1000 mU∙mL-1) for the determination of the CA125 antigen. However, the oxidation channel had a higher sensitivity (14.82 μA•(log(mU•mL-1))-1 at a working potential of ~ 1.25 V vs. SCE), lower detection limit (0.0001 mU∙mL-1), higher stability, and lower performance deviation than the reduction channel. This immunosensor was successfully used for CA125 detection in human serum. The recoveries of spiked serum samples ranged from 99.8 ± 0.5 to 100 ± 0.4%. The study on the difference in the sensing performance between oxidation and reduction channels provides a preliminary experimental reference for exploring dual-channel synchronous detection immunosensors and verifying the accuracy of the assay based on dual-channel data, which will promote the development of reliable electrochemical immunosensor technology.
Collapse
Affiliation(s)
- Zehua Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Bingbing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Jinbiao Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
26
|
Zhu S, Wang C, Shou H, Zhang P, Wan P, Guo X, Yu Z, Wang W, Chen S, Chu W, Song L. In Situ Architecting Endogenous Heterojunction of MoS 2 Coupling with Mo 2 CT x MXenes for Optimized Li + Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108809. [PMID: 34784438 DOI: 10.1002/adma.202108809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Endogenous heterojunction of 2D MXenes with unique structure shows inspiring potential in energy applications, which is impeded by complex synthesis method and finite MAX materials. Herein, an in situ hydrothermal strategy is implemented to successfully synthesize unique endogenous hetero-MXenes of amorphous MoS2 coupling with fluoride-free Mo2 CTx (hetero-Mo2 C) directly from Mo2 Ga2 C MAX. The distinctive morphology and heterojunction structure caused by the introduction of MoS2 endow the hetero-MXenes with extraordinary structural stability and optimized Li+ storage mechanism with improved charge transport and lithium ion adsorption capabilities. As a result, hetero-Mo2 C exhibits excellent electrochemical performance with a high discharge specific capacity of 1242 mAh g-1 at 0.1 A g-1 and long cycle stability of 683.9 mAh g-1 after 1200 cycling. This work provides new insights into rational design of novel MXenes heterojunctions, practically important for the development of MXenes and their applications in high-performance energy storage systems.
Collapse
Affiliation(s)
- Shuang Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Pengjun Zhang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Ping Wan
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zhen Yu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Wenjie Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Wangsheng Chu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
27
|
Dai L, Zhao J, Li Q, Chen M, Li H, Qu K, Li R. Understanding the tunable sodium storage performance in pillared MXenes: a first-principles study. Phys Chem Chem Phys 2022; 24:27184-27194. [DOI: 10.1039/d2cp02961h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
On the basis of first-principles calculations, we studied the influence of the interlayer spacing and stacking modes of pillared MXenes on the sodium storage performance, and predicted the optimum structure for sodium storage.
Collapse
Affiliation(s)
- Li Dai
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jiahao Zhao
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Qin Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Maohui Chen
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Haibo Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Konggang Qu
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Rui Li
- Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
28
|
Zhang P, Wang C, Wei S, Shou H, Zhu K, Cao Y, Xu W, Guo X, Wu X, Chen S, Song L. 3D V 2CT x-rGO Architectures with Optimized Ion Transport Channels toward Fast Lithium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61258-61266. [PMID: 34913669 DOI: 10.1021/acsami.1c19596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) MXene materials show great potential in energy storage devices. However, the self-restacking of MXene nanosheets and the sluggish lithium-ion (Li+) kinetics greatly hinder their rate capability and cycling stability. Herein, we interlink 2D V2CTx MXene nanosheets with rGO to construct a 3D porous V2CTx-rGO composite. X-ray spectroscopy study reveals the close interfacial contact between V2CTx and rGO via electron transfer from V to C atoms. Benefiting from the close combination and optimized ion transport channel, V2CTx-rGO offers a high-rate Li+ storage performance and excellent cycling stability over 2000 cycles with negligible capacity attenuation. Moreover, it exhibits a dominant mechanism of intercalation pseudocapacitance and efficient Li+ transport proved by density functional theory calculation. This rationally designed 3D V2CTx-rGO has implications for the study of the MXene composite's structure and energy storage devices with high rate and stability.
Collapse
Affiliation(s)
- Pengjun Zhang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yuyang Cao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xin Guo
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaojun Wu
- School of Chemistry and Material Sciences, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
29
|
Gao P, Shi H, Ma T, Liang S, Xia Y, Xu Z, Wang S, Min C, Liu L. MXene/TiO 2 Heterostructure-Decorated Hard Carbon with Stable Ti-O-C Bonding for Enhanced Sodium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51028-51038. [PMID: 34672200 DOI: 10.1021/acsami.1c15539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hard carbon (HC) has attracted considerable attention in the application of sodium-ion battery (SIB) anodes, but the poor realistic capacity and low rate performance severely hinder their practical application. Herein we report a solvent mechanochemical protocol for the in situ fabrication of the HC-MXene/TiO2 electrode by functionalizing MXene to improve the electrochemical performance of the batteries. MXene (Ti3C2Tx) with abundant oxygen-containing functional groups reacts with HC particles in the ball milling process to form a Ti-O-C covalent cross-linked HC-MXene composite, in which the edge of the MXene nanosheets is in situ oxidized by air to form TiO2 nanorods, forming a regular 1D/2D MXene/TiO2 heterojunction structure. Ti-O-C covalent bonding can protect the heterojunction structures from pulverization and detachment from the current collector during charge/discharge cycles due to sodium-ion intercalation/detachment, thus improving the stability of the electrode structure. Meanwhile, the MXene/TiO2 heterojunction can form a 3D conductive network and provide more active sites. The resulting HC-MXene/TiO2 electrode exhibits superior electrode capacity (660 mAh g-1), making it a promising anode material for SIBs. This simple and efficient method for preparing MXene/TiO2 heterojunction-decorated HC provides a new perspective on the structural design of MXene and carbon material composites for SIBs.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Haiting Shi
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Tianshuai Ma
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuaitong Liang
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yuanhua Xia
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
| | - Zhiwei Xu
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Shuo Wang
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Chunying Min
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liyan Liu
- Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
30
|
Alhamada TF, Azmah Hanim MA, Jung DW, Nuraini AA, Hasan WZW. A Brief Review of the Role of 2D Mxene Nanosheets toward Solar Cells Efficiency Improvement. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2732. [PMID: 34685175 PMCID: PMC8541472 DOI: 10.3390/nano11102732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022]
Abstract
This article discusses the application of two-dimensional metal MXenes in solar cells (SCs), which has attracted a lot of interest due to their outstanding transparency, metallic electrical conductivity, and mechanical characteristics. In addition, some application examples of MXenes as an electrode, additive, and electron/hole transport layer in perovskite solar cells are described individually, with essential research issues highlighted. Firstly, it is imperative to comprehend the conversion efficiency of solar cells and the difficulties of effectively incorporating metal MXenes into the building blocks of solar cells to improve stability and operational performance. Based on the analysis of new articles, several ideas have been generated to advance the exploration of the potential of MXene in SCs. In addition, research into other relevant MXene suitable in perovskite solar cells (PSCs) is required to enhance the relevant work. Therefore, we identify new perspectives to achieve solar cell power conversion efficiency with an excellent quality-cost ratio.
Collapse
Affiliation(s)
- T. F. Alhamada
- Northern Technical University, Mosul 41001, Iraq;
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - M. A. Azmah Hanim
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Advanced Engineering Materials and Composites Research Center (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - D. W. Jung
- Department of Mechanical Engineering, Jeju National University, 1 Ara 1-dong, Jeju 690-756, Korea
| | - A. A. Nuraini
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - W. Z. Wan Hasan
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
31
|
Xu YJ, Liu HY, Chen HL. Direct observation of electron-vibration coupling at MXene-solvent interface. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yan-jun Xu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He-yuan Liu
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-long Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
32
|
Cao C, Liang F, Zhang W, Liu H, Liu H, Zhang H, Mao J, Zhang Y, Feng Y, Yao X, Ge M, Tang Y. Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102233. [PMID: 34350695 DOI: 10.1002/smll.202102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Indexed: 05/07/2023]
Abstract
Current lithium-ion battery technology is approaching the theoretical energy density limitation, which is challenged by the increasing requirements of ever-growing energy storage market of electric vehicles, hybrid electric vehicles, and portable electronic devices. Although great progresses are made on tailoring the electrode materials from methodology to mechanism to meet the practical demands, sluggish mass transport, and charge transfer dynamics are the main bottlenecks when increasing the areal/volumetric loading multiple times to commercial level. Thus, this review presents the state-of-the-art developments on rational design of the commercialization-driven electrodes for lithium batteries. First, the basic guidance and challenges (such as electrode mechanical instability, sluggish charge diffusion, deteriorated performance, and safety concerns) on constructing the industry-required high mass loading electrodes toward commercialization are discussed. Second, the corresponding design strategies on cathode/anode electrode materials with high mass loading are proposed to overcome these challenges without compromising energy density and cycling durability, including electrode architecture, integrated configuration, interface engineering, mechanical compression, and Li metal protection. Finally, the future trends and perspectives on commercialization-driven electrodes are offered. These design principles and potential strategies are also promising to be applied in other energy storage and conversion systems, such as supercapacitors, and other metal-ion batteries.
Collapse
Affiliation(s)
- Chunyan Cao
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Fanghua Liang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Hongchao Liu
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Hui Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Haifeng Zhang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Jiajun Mao
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yu Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
33
|
Li Y, Ma G, Shao H, Xiao P, Lu J, Xu J, Hou J, Chen K, Zhang X, Li M, Persson POÅ, Hultman L, Eklund P, Du S, Chai Z, Huang Z, Jin N, Ma J, Liu Y, Lin Z, Huang Q. Electrochemical Lithium Storage Performance of Molten Salt Derived V 2SnC MAX Phase. NANO-MICRO LETTERS 2021; 13:158. [PMID: 34292406 PMCID: PMC8298715 DOI: 10.1007/s40820-021-00684-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 05/13/2023]
Abstract
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g-1 and volumetric capacity of 570 mAh cm-3 as well as superior rate performance of 95 mAh g-1 (110 mAh cm-3) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
Collapse
Affiliation(s)
- Youbing Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Guoliang Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hui Shao
- CIRIMAT UMR CNRS 5085, Université Toulouse III- Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Peng Xiao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jun Lu
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Jin Xu
- School of Machine Engineering, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Jinrong Hou
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Ke Chen
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Xiao Zhang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Mian Li
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Per O Å Persson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Lars Hultman
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Per Eklund
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183, Linköping, Sweden
| | - Shiyu Du
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Zhifang Chai
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Zhengren Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China
| | - Na Jin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jiwei Ma
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Ying Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zifeng Lin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, People's Republic of China.
- Qianwan Institute of CNiTECH, Ningbo, 315336, People's Republic of China.
| |
Collapse
|
34
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|
35
|
Zhang Q, Lai H, Fan R, Ji P, Fu X, Li H. High Concentration of Ti 3C 2T x MXene in Organic Solvent. ACS NANO 2021; 15:5249-5262. [PMID: 33617227 DOI: 10.1021/acsnano.0c10671] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MXenes are currently one of the most widely studied two-dimensional materials due to their properties. However, obtaining highly dispersed MXene materials in organic solvent remains a significant challenge for current research. Here, we have developed a method called the tuned microenvironment method (TMM) to prepare a highly concentrated Ti3C2Tx organic solvent dispersion by tuning the microenvironment of Ti3C2Tx. The as-proposed TMM is a simple and efficient approach, as Ti3C2Tx can be dispersed in N,N-dimethylformamide and other solvents by stirring and shaking for a short time, without the need for a sonication step. The delaminated single-layer MXene yield can reach 90% or greater, and a large-scale synthesis has also been demonstrated with TMM by delaminating 30 g of multilayer Ti3C2Tx raw powder in a one-pot synthesis. The synthesized Ti3C2Tx nanosheets dispersed in an organic solvent possess a clean surface, uniform thickness, and large size. The Ti3C2Tx dispersed in an organic solvent exhibits excellent oxidation resistance even under aerobic conditions at room temperature. Through the experimental investigation, the successful preparation of a highly concentrated Ti3C2Tx organic solvent dispersion via TMM can be attributed to the following factors: (1) the intercalation of the cation can lead to the change in the hydrophobicity and surface functionalization of the material; (2) proper solvent properties are required in order to disperse MXene nanosheets well. To demonstrate the applicability of the highly concentrated Ti3C2Tx organic solvent dispersion, a composite fiber with excellent electrical conductivity is prepared via the wet-spinning of a Ti3C2Tx (dispersed in DMF) and polyacrylonitrile mixture. Finally, various types of MXenes, such as Nb2CTx, Nb4C3Tx, and Mo2Ti2C3Tx, can also be prepared as highly concentrated MXene organic solvent dispersions via TMM, which proves the universality of this method. Thus, it is expected that this work demonstrates promising potential in the research of the MXene material family.
Collapse
Affiliation(s)
- Qingxiao Zhang
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Huirong Lai
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Runze Fan
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Peiyi Ji
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Xueli Fu
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| | - Hui Li
- Shanghai Key Laboratory of Rare Earth Functional Materials and Education Ministry Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
36
|
Yin L, Li Y, Yao X, Wang Y, Jia L, Liu Q, Li J, Li Y, He D. MXenes for Solar Cells. NANO-MICRO LETTERS 2021; 13:78. [PMID: 34138341 PMCID: PMC8187536 DOI: 10.1007/s40820-021-00604-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 05/10/2023]
Abstract
Application of two-dimensional MXene materials in photovoltaics has attracted increasing attention since the first report in 2018 due to their metallic electrical conductivity, high carrier mobility, excellent transparency, tunable work function and superior mechanical property. In this review, all developments and applications of the Ti3C2Tx MXene (here, it is noteworthy that there are still no reports on other MXenes' application in photovoltaics by far) as additive, electrode and hole/electron transport layer in solar cells are detailedly summarized, and meanwhile, the problems existing in the related studies are also discussed. In view of these problems, some suggestions are given for pushing exploration of the MXenes' application in solar cells. It is believed that this review can provide a comprehensive and deep understanding into the research status and, moreover, helps widen a new situation for the study of MXenes in photovoltaics.
Collapse
Affiliation(s)
- Lujie Yin
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Yingtao Li
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Xincheng Yao
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Yanzhou Wang
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Lin Jia
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Qiming Liu
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| | - Junshuai Li
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China.
| | - Yali Li
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China.
| | - Deyan He
- Key Laboratory of Special Function Materials and Structure Design of the Ministry of Education, and School of Physical Science and Technology, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
37
|
Yang T, Ying H, Zhang S, Wang J, Zhang Z, Han WQ. Electrochemical Performance Enhancement of Micro-Sized Porous Si by Integrating with Nano-Sn and Carbonaceous Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:920. [PMID: 33672033 PMCID: PMC7919461 DOI: 10.3390/ma14040920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
Silicon is investigated as one of the most prospective anode materials for next generation lithium ion batteries due to its superior theoretical capacity (3580 mAh g-1), but its commercial application is hindered by its inferior dynamic property and poor cyclic performance. Herein, we presented a facile method for preparing silicon/tin@graphite-amorphous carbon (Si/Sn@G-C) composite through hydrolyzing of SnCl2 on etched Fe-Si alloys, followed by ball milling mixture and carbon pyrolysis reduction processes. Structural characterization indicates that the nano-Sn decorated porous Si particles are coated by graphite and amorphous carbon. The addition of nano-Sn and carbonaceous materials can effectively improve the dynamic performance and the structure stability of the composite. As a result, it exhibits an initial columbic efficiency of 79% and a stable specific capacity of 825.5 mAh g-1 after 300 cycles at a current density of 1 A g-1. Besides, the Si/Sn@G-C composite exerts enhanced rate performance with 445 mAh g-1 retention at 5 A g-1. This work provides an approach to improve the electrochemical performance of Si anode materials through reasonable compositing with elements from the same family.
Collapse
Affiliation(s)
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (T.Y.); (S.Z.); (J.W.); (Z.Z.)
| | | | | | | | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China; (T.Y.); (S.Z.); (J.W.); (Z.Z.)
| |
Collapse
|
38
|
Wang P, Yan Y, Cheng C, Zhang W, Zhou D, Li L, Yang X, Liao XZ, Ma ZF, He YS. Structural and chemical interplay between nano-active and encapsulation materials in a core–shell SnO 2@MXene lithium ion anode system. CrystEngComm 2021. [DOI: 10.1039/d0ce01468k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Structural and chemical interplay between nano-active and encapsulation materials in a core–shell SnO2@MXene lithium ion anode system was investigated in detail.
Collapse
|
39
|
Zhang S, Ying H, Huang P, Wang J, Zhang Z, Yang T, Han WQ. Rational Design of Pillared SnS/Ti 3C 2T x MXene for Superior Lithium-Ion Storage. ACS NANO 2020; 14:17665-17674. [PMID: 33301296 DOI: 10.1021/acsnano.0c08770] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MXenes have been widely explored in energy storage because of their extraordinary properties; however, the majority of research on their application was staged at multilayered MXenes or assisted by carbon materials. Scientifically speaking, the two most distinctive properties of MXenes are usually neglected, composed of large interlayer spacing and abundant surface chemistry, which distinguish MXenes from other two-dimensional materials. Herein, few-layered MXene (f-MXene) nanosheet powders can be easily prepared according to the modified solution-phase flocculation method, completely avoiding the restacking phenomenon of f-MXene nanosheets in preparation and oxidation issues during the storage process. Via further employing the solvothermal reaction and annealing treatment, we successfully constructed pillared SnS/Ti3C2Tx composites decorated with in situ formed TiO2 nanoparticles. In the composites, MXenes can play the role of a conductive network, a buffer matrix for volume expansion of SnS, while the active SnS nanoplates can fully deliver the advantage of high capacity and further induce interlayer engineering of Ti3C2Tx during cycling. As a result, the pillared SnS/Ti3C2Tx MXene composites exhibit obvious improvement in electrochemical performance. Interestingly, there is an apparent enhancement of capacity at succedent cycling, which can be ascribed to the "pillar effect" of Ti3C2Tx MXenes. The efforts and attempts made in this work can further broaden the development of pillared MXene composites.
Collapse
Affiliation(s)
- Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianli Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
40
|
Ying H, Yang T, Zhang S, Guo R, Wang J, Han WQ. Dual Immobilization of SnO x Nanoparticles by N-Doped Carbon and TiO 2 for High-Performance Lithium-Ion Battery Anodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55820-55829. [PMID: 33284592 DOI: 10.1021/acsami.0c15670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The grain aggregation engendered kinetics failure is regarded as the main reason for the electrochemical decay of nanosized anode materials. Herein, we proposed a dual immobilization strategy to suppress the migration and aggregation of SnOx nanoparticles and corresponding lithiation products through constructing SnOx/TiO2@PC composites. The N-doped carbon could anchor the tin oxide particles and inhibit their aggregation during the preparation process, leading to a uniform distribution of ultrafine SnOx nanoparticles in the matrix. Meanwhile, the incorporated TiO2 component works as parclose to suppress the migration and coarsening of SnOx and corresponding lithiation products. In addition, the N-doped carbon and TiO2/LixTiO2 can significantly improve the electrical and ionic conductivities of the composites, enabling a good diffusion and charge-transfer dynamics. Owing to the dual immobilization from the "synergistic effect" of N-doped carbon and the "parclose effect" of TiO2, the conversion reaction of SnOx remains fully reversible throughout the cycling. Thereby, the composites exhibit excellent cycling performance in half cells and can be fully utilized in full cells. This work may provide an inspiration for the rational design of tin-based anodes for high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tiantian Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Rongnan Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianli Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
41
|
Zhang S, Han WQ. Recent advances in MXenes and their composites in lithium/sodium batteries from the viewpoints of components and interlayer engineering. Phys Chem Chem Phys 2020; 22:16482-16526. [DOI: 10.1039/d0cp02275f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An up-to-date review about MXenes based on their distinguishing properties, namely, large interlayer spacing and rich surface chemistry.
Collapse
Affiliation(s)
- Shunlong Zhang
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wei-Qiang Han
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
42
|
Zong H, Hu L, Wang Z, Yu K, Gong S, Zhu Z. Interfacial superassembly of MoSe 2@Ti 2N MXene hybrids enabling promising lithium-ion storage. CrystEngComm 2020. [DOI: 10.1039/d0ce01013h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our work presents an interfacial superassembly by engineering MoSe2 nanoflowers coupled with ribbon-like Ti2N MXene frameworks. It can provide a novel synthesis strategy to improve the performance of LIBs.
Collapse
Affiliation(s)
- Hui Zong
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Le Hu
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Zhenguo Wang
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Shijing Gong
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| | - Ziqiang Zhu
- Key Laboratory of Polar Materials and Devices (MOE)
- Department of Electronics
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|