1
|
Masuda D, Nakanishi I, Ohkubo K, Ito H, Matsumoto KI, Ichikawa H, Chatatikun M, Klangbud WK, Kotepui M, Imai M, Kawakami F, Kubo M, Matsui H, Tangpong J, Ichikawa T, Ozawa T, Yen HC, St Clair DK, Indo HP, Majima HJ. Mitochondria Play Essential Roles in Intracellular Protection against Oxidative Stress-Which Molecules among the ROS Generated in the Mitochondria Can Escape the Mitochondria and Contribute to Signal Activation in Cytosol? Biomolecules 2024; 14:128. [PMID: 38275757 PMCID: PMC10813015 DOI: 10.3390/biom14010128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.
Collapse
Affiliation(s)
- Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Tsukuba 305-0047, Ibaraki, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Kei Ohkubo
- Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan;
| | - Hiromu Ito
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, Institute for Radiological Science (NIRS), Quantum Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan;
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Kyoto, Japan;
| | - Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Wiyada Kwanhian Klangbud
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Manas Kotepui
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
| | - Motoki Imai
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Fumitaka Kawakami
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Makoto Kubo
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Division of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Takafumi Ichikawa
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan; (M.I.); (F.K.); (M.K.); (T.I.)
- Department of Molecular Diagnostics, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara 252-0373, Kanagawa, Japan
| | - Toshihiko Ozawa
- Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Saitama, Japan;
| | - Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Daret K. St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Hiroko P. Indo
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
| | - Hideyuki J. Majima
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Kagoshima, Japan;
- Department of Maxillofacial Radiology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Kagoshima, Japan
- School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand; (M.C.); (W.K.K.); (M.K.); (J.T.)
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
2
|
Song Y, Zheng C, Li S, Chen J, Jiang M. Chitosan-Magnesium Oxide Nanoparticles Improve Salinity Tolerance in Rice ( Oryza sativa L.). ACS APPLIED MATERIALS & INTERFACES 2023; 15:20649-20660. [PMID: 37078774 DOI: 10.1021/acsami.3c00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-salinity (HS) stress is a global element restricting agricultural productivity. Rice is a significant food crop, but soil salinity has a detrimental impact on its yield and product quality. Nanoparticles (NPs) have been found as a mitigation method against different abiotic stresses, even HS stress. In this study, chitosan-magnesium oxide NPs (CMgO NPs) were used as a new method for rice plants to alleviate salt stress (200 mM NaCl). The results showed that 100 mg/L CMgO NPs greatly ameliorated salt stress by enhancing the root length by 37.47%, dry biomass by 32.86%, plant height by 35.20%, and tetrapyrrole biosynthesis in hydroponically cultured rice seedlings. The application of 100 mg/L CMgO NPs greatly alleviated salt-generated oxidative stress with induced activities of antioxidative enzymes, catalase by 67.21%, peroxidase by 88.01%, and superoxide dismutase by 81.19%, and decreased contents of malondialdehyde by 47.36% and H2O2 by 39.07% in rice leaves. The investigation of ion content in rice leaves revealed that rice treated with 100 mg/L CMgO NPs maintained a noticeably higher K+ level by 91.41% and a lower Na+ level by 64.49% and consequently a higher ratio of K+/Na+ than the control under HS stress. Moreover, the CMgO NPs supplement greatly enhanced the contents of free amino acids under salt stress in rice leaves. Therefore, our findings propose that CMgO NPs supplementation could mitigate the salt stress in rice seedlings.
Collapse
Affiliation(s)
- Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shan Li
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jinhong Chen
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| | - Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, P. R. China
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Lee SJ, Maeda S, Gao J, Nichols CG. Oxidation Driven Reversal of PIP 2-dependent Gating in GIRK2 Channels. FUNCTION 2023; 4:zqad016. [PMID: 37168492 PMCID: PMC10165546 DOI: 10.1093/function/zqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Physiological activity of G protein gated inward rectifier K+ (GIRK, Kir3) channel, dynamically regulated by three key ligands, phosphoinositol-4,5-bisphosphate (PIP2), Gβγ, and Na+, underlies cellular electrical response to multiple hormones and neurotransmitters in myocytes and neurons. In a reducing environment, matching that inside cells, purified GIRK2 (Kir3.2) channels demonstrate low basal activity, and expected sensitivity to the above ligands. However, under oxidizing conditions, anomalous behavior emerges, including rapid loss of PIP2 and Na+-dependent activation and a high basal activity in the absence of any agonists, that is now paradoxically inhibited by PIP2. Mutagenesis identifies two cysteine residues (C65 and C190) as being responsible for the loss of PIP2 and Na+-dependent activity and the elevated basal activity, respectively. The results explain anomalous findings from earlier studies and illustrate the potential pathophysiologic consequences of oxidation on GIRK channel function, as well as providing insight to reversed ligand-dependence of Kir and KirBac channels.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shoji Maeda
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian Gao
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Ul Haq T, Ullah R, Khan MN, Nazish M, Almutairi SM, Rasheed RA. Seed Priming with Glutamic-Acid-Functionalized Iron Nanoparticles Modulating Response of Vigna radiata (L.) R. Wilczek (Mung Bean) to Induce Osmotic Stress. MICROMACHINES 2023; 14:736. [PMID: 37420969 DOI: 10.3390/mi14040736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 07/09/2023]
Abstract
Rising soil salinity is a major concern for agricultural production worldwide, particularly in arid and semi-arid regions. To improve salt tolerance and the productivity of economic crop plants in the face of future climatic changes, plant-based solutions are required to feed the continuously increasing world population. In the present study, we aimed to ascertain the impact of Glutamic-acid-functionalized iron nanoparticles (Glu-FeNPs) on two varieties (NM-92 and AZRI-2006) of mung beans with different concentrations (0, 40 mM, 60 mM, and 80 mM) of osmotic stress. The result of the study showed that vegetative growth parameters such as root and shoot length, fresh and dry biomass, moisture contents, leaf area, and the number of pods per plant were significantly decreased with osmotic stress. Similarly, biochemicals such as protein, chlorophylls, and carotenes contents also significantly declined under induced osmotic stress. The application of Glu-FeNPs significantly (p ≤ 0.05) restored both the vegetative growth parameters and biochemical contents of plants under osmotic stress. The pre-sowing treatment of seeds with Glu-FeNPs significantly ameliorated the tolerance level of Vigna radiata to osmotic stress by optimizing the level of antioxidant enzymes and osmolytes such as superoxide dismutase (SOD), peroxidase (POD), and proline contents. Our finding indicates that Glu-FeNPs significantly restore the growth of plants under osmotic stress via enhancing photosynthetic activity and triggering the antioxidation system of both varieties.
Collapse
Affiliation(s)
- Tauheed Ul Haq
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Rehman Ullah
- Department of Botany, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University Public School (UPS), University of Peshawar, Peshawar 25120, Pakistan
| | - Moona Nazish
- Department of Botany and Biodiversity Research, University of Vienna, 1010 Vienna, Austria
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rabab Ahmed Rasheed
- Histology & Cell Biology Department, Faculty of Medicine, King Salman International University, South Sinai 11341, Egypt
| |
Collapse
|
5
|
Yang S, Yin R, Wang C, Yang Y, Wang J. Phytotoxicity of zinc oxide nanoparticles and multi-walled carbon nanotubes, alone or in combination, on Arabidopsis thaliana and their mutual effects on oxidative homeostasis. PLoS One 2023; 18:e0281756. [PMID: 36791126 PMCID: PMC9931106 DOI: 10.1371/journal.pone.0281756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The extensive use of engineered nanoparticles (ENPs) has raised concerns about their potentially harmful effects on the ecosystem. Despite previous reports of a variety of individual ENPs, the mutual effects of ENPs when used in combination were not well understood. In this study, we first investigated the effects of different sizes and concentrations of ZnO nanoparticles (ZnO NPs) or multi-walled carbon nanotubes (MWCNTs) on the growth performance of Arabidopsis thaliana seedlings. Then, two concentrations of ZnO NP (40 and 50 mg/L) with a diameter of 90 nm and MWCNTs (100 and 500 mg/L) with an outer diameter of 40-60 nm were used to evaluate their respective or simultaneous phytotoxicity to Arabidopsis. The results showed that seedlings exposed to either ZnO NPs or MWCNTs exhibited significant phytotoxic symptoms. ZnO NPs caused stronger inhibitory effects than MWCNTs on several plant growth indices, including reduced root length, chlorophyll content, and increased ROS concentration. When applied together, the concurrent effects of ZnO NPs and MWCNTs on Arabidopsis seedlings appeared to be more negative, as evidenced not only by the further deterioration of several growth indices but also by their synergistic or additive regulation of the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR). Moreover, qRT-PCR analysis revealed that in the presence of ZnO NPs and MWCNTs, the expression of genes important for maintaining cellular ROS homeostasis was differentially regulated in shoots and roots of Arabidopsis seedlings. Overall, our data may provide new insights into how plants respond to more than one type of nanomaterial and help us better understand the associated environmental risks.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Rong Yin
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Chen Wang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
- * E-mail:
| |
Collapse
|
6
|
Furutani R, Wada S, Ifuku K, Maekawa S, Miyake C. Higher Reduced State of Fe/S-Signals, with the Suppressed Oxidation of P700, Causes PSI Inactivation in Arabidopsis thaliana. Antioxidants (Basel) 2022; 12:antiox12010021. [PMID: 36670882 PMCID: PMC9854443 DOI: 10.3390/antiox12010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Environmental stress increases the risk of electron accumulation in photosystem I (PSI) of chloroplasts, which can cause oxygen (O2) reduction to superoxide radicals and decreased photosynthetic ability. We used three Arabidopsis thaliana lines: wild-type (WT) and the mutants pgr5hope1 and paa1-7/pox1. These lines have different reduced states of iron/sulfur (Fe/S) signals, including Fx, FA/FB, and ferredoxin, the electron carriers at the acceptor side of PSI. In the dark, short-pulse light was repetitively illuminated to the intact leaves of the plants to provide electrons to the acceptor side of PSI. WT and pgr5hope1 plants showed full reductions of Fe/S during short-pulse light and PSI inactivation. In contrast, paa1-7/pox1 showed less reduction of Fe/S and its PSI was not inactivated. Under continuous actinic-light illumination, pgr5hope1 showed no P700 oxidation with higher Fe/S reduction due to the loss of photosynthesis control and PSI inactivation. These results indicate that the accumulation of electrons at the acceptor side of PSI may trigger the production of superoxide radicals. P700 oxidation, responsible for the robustness of photosynthetic organisms, participates in reactive oxygen species suppression by oxidizing the acceptor side of PSI.
Collapse
Affiliation(s)
- Riu Furutani
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| | - Shinya Wada
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
| | - Kentaro Ifuku
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
- Graduate School for Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Maekawa
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Chikahiro Miyake
- Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan
- Correspondence:
| |
Collapse
|
7
|
Lambiri DW, Levin LA. Modeling Reactive Oxygen Species-Induced Axonal Loss in Leber Hereditary Optic Neuropathy. Biomolecules 2022; 12:1411. [PMID: 36291620 PMCID: PMC9599876 DOI: 10.3390/biom12101411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a rare syndrome that results in vision loss. A necessary but not sufficient condition for its onset is the existence of known mitochondrial DNA mutations that affect complex I biomolecular structure. Cybrids with LHON mutations generate higher rates of reactive oxygen species (ROS). This study models how ROS, particularly H2O2, could signal and execute the axonal degeneration process that underlies LHON. We modeled and explored several hypotheses regarding the influence of H2O2 on the dynamics of propagation of axonal degeneration in LHON. Zonal oxidative stress, corresponding to H2O2 gradients, correlated with the morphology of injury exhibited in the LHON pathology. If the axonal membrane is highly permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries could trigger cascading failures of neighboring axons. The cellular interdependence created by H2O2 diffusion, and the gradients created by tissue variations in H2O2 production and scavenging, result in injury patterns and surviving axonal loss distributions similar to LHON tissue samples. Specifically, axonal degeneration starts in the temporal optic nerve, where larger groups of small diameter fibers are located and propagates from that region. These findings correlate well with clinical observations of central loss of visual field, visual acuity, and color vision in LHON, and may serve as an in silico platform for modeling the mechanism of action for new therapeutics.
Collapse
Affiliation(s)
- Darius W. Lambiri
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Leonard A. Levin
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
8
|
Gonçalves JM, Beckmann C, Bebianno MJ. Assessing the effects of the cytostatic drug 5-Fluorouracil alone and in a mixture of emerging contaminants on the mussel Mytilus galloprovincialis. CHEMOSPHERE 2022; 305:135462. [PMID: 35753414 DOI: 10.1016/j.chemosphere.2022.135462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 μg/L), polystyrene nanoparticles (nPS; 50 nm; 10 μg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.
Collapse
Affiliation(s)
- Joanna M Gonçalves
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Clara Beckmann
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - Maria João Bebianno
- Centre for Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
9
|
Choudhury S, Moulick D, Mazumder MK, Pattnaik BK, Ghosh D, Vemireddy LR, Aldhahrani A, Soliman MM, Gaber A, Hossain A. An In Vitro and In Silico Perspective Study of Seed Priming with Zinc on the Phytotoxicity and Accumulation Pattern of Arsenic in Rice Seedlings. Antioxidants (Basel) 2022; 11:antiox11081500. [PMID: 36009219 PMCID: PMC9405154 DOI: 10.3390/antiox11081500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As) contamination of the rice agro-ecosystem is a major concern for rice farmers of South East Asia as it imposes a serious threat to human and animal life; thus, there is an unrelenting need to explore the ways by which arsenic stress mitigation could be achieved. In the present investigation, we explore the effect of zinc (Zn2+) supplementation using the seed priming technique for the mitigation of As-induced stress responses in developing rice seedlings. In addition to the physiological and biochemical attributes, we also studied the interactive effect of Zn2+ in regulating As-induced changes by targeting antioxidant enzymes using a computational approach. Our findings suggest that Zn2+ and As can effectively modulate redox homeostasis by limiting ROS production and thereby confer protection against oxidative stress. The results also show that As had a significant impact on seedling growth, which was restored by Zn2+ and also minimized the As uptake. A remarkable outcome of the present investigation is that the varietal difference was significant in determining the efficacy of the Zn2+ priming. Further, based on the findings of computational studies, we observed differences in the surface overlap of the antioxidant target enzymes of rice, indicating that the Zn2+ might have foiled the interaction of As with the enzymes. This is undoubtedly a fascinating approach that interprets the mode of action of the antioxidative enzymes under the metal/metalloid-tempted stress condition in rice by pointing at designated targets. The results of the current investigation are rationally significant and may be the pioneering beginning of an exciting and useful method of integrating physiological and biochemical analysis together with a computational modelling approach for evaluating the stress modulating effects of Zn2+ seed priming on As-induced responses in developing rice seedlings.
Collapse
Affiliation(s)
- Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (D.M.); (M.K.M.)
- Correspondence: author: (S.C.); (A.H.)
| | - Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (D.M.); (M.K.M.)
| | - Muhammed Khairujjaman Mazumder
- Plant Stress Biology and Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (D.M.); (M.K.M.)
- Department of Zoology, Dhemaji College, Dhemaji 787057, India
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune 411016, India;
| | - Dibakar Ghosh
- Division of Agronomy, ICAR—Indian Institute of Water Management, Chandrashekarpur, Bhubaneshwar 751023, India; or
| | - Lakshminarayana R. Vemireddy
- Department of Molecular Biology and Biotechnology, Sri Venkateswara Agricultural College, Acharya NG Ranga Agricultural University, Tirupati 517502, India;
| | - Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (A.A.); (M.M.S.)
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: author: (S.C.); (A.H.)
| |
Collapse
|
10
|
F. TURRENS JULIO, ALEXANDRE ADOLFO, L. LEHNINGER ALBERT. Ubisemiquinone Is the Electron Donor for Superoxide Formation by Complex III of Heart Mitochondria. Arch Biochem Biophys 2022; 726:109232. [DOI: 10.1016/j.abb.2022.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Sanyal RP, Prashar V, Jawali N, Sunkar R, Misra HS, Saini A. Molecular and Biochemical Analysis of Duplicated Cytosolic CuZn Superoxide Dismutases of Rice and in silico Analysis in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864330. [PMID: 35707617 PMCID: PMC9191229 DOI: 10.3389/fpls.2022.864330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) are ubiquitous antioxidant metalloenzymes important for oxidative stress tolerance and cellular redox environment. Multiple factors have contributed toward the origin and diversity of SOD isoforms among different organisms. In plants, the genome duplication events, responsible for the generation of multiple gene copies/gene families, have also contributed toward the SOD diversity. However, the importance of such molecular events on the characteristics of SODs has not been studied well. This study investigated the effects of divergence on important characteristics of two block-duplicated rice cytosolic CuZn SODs (OsCSD1, OsCSD4), along with in silico assessment of similar events in other plants. The analysis revealed heterogeneity in gene length, regulatory regions, untranslated regions (UTRs), and coding regions of two OsCSDs. An inconsistency in the database-predicted OsCSD1 gene structure was also identified and validated experimentally. Transcript analysis showed differences in the basal levels and stress responsiveness of OsCSD1 and OsCSD4, and indicated the presence of two transcription start sites in the OsCSD1. At the amino acid level, the two OsCSDs showed differences at 18 sites; however, both exist as a homodimer, displaying typical CuZn SOD characteristics, and enhancing the oxidative stress tolerance of Escherichia coli cells. However, OsCSD4 showed higher specific activity as well as stability. The comparison of the two OsCSDs with reported thermostable CSDs from other plants identified regions likely to be associated with stability, while the homology modeling and superposition highlighted structural differences. The two OsCSDs displayed heteromeric interaction capability and forms an enzymatically active heterodimer (OsCSD1:OsCSD4) on co-expression, which may have significance as both are cytosolic. In silico analysis of 74 plant genomes revealed the prevalence of block duplications for multiple CSD copies (mostly cytosolic). The divergence and clustering analysis of CSDs suggested the possibility of an ancestral duplication event in monocots. Conserved SOD features indicating retention of SOD function among CSD duplicates were evident in few monocots and dicots. In most other species, the CSD copies lacked critical features and may not harbor SOD function; however, other feature-associated functions or novel functions might be present. These aspects of divergent CSD copies encoding co-localized CSDs may have implications in plant SOD functions in the cytosol and other organelles.
Collapse
Affiliation(s)
- Ravi Prakash Sanyal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Vishal Prashar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narendra Jawali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Centre for Natural Biological Resources and Community Development, Bengaluru, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Ajay Saini
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Swain BB, Mohapatra PK, Naik SK, Mukherjee AK. Biopriming for induction of disease resistance against pathogens in rice. PLANTA 2022; 255:113. [PMID: 35503188 DOI: 10.1007/s00425-022-03900-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Rice is attacked by an armada of pathogens. Present review provides a critical evaluation of the potential of different biotic agents used to protect rice yield drop from pathogenicity and an account of unexplored areas, which might be taken into consideration to manage rice diseases. Rice (Oryza sativa L.), is the most important staple food of Asian countries. Rice production is significantly limited by a diversity of pathogens, leading to yield loss and deficit in current rice supply. Application of agrochemicals of diverse types has been considered as the only option to control pathogens and enhance rice production, thereby causing environmental concerns and making the pathogens resistant to the active ingredients. Increase in population and resistance of pathogen towards agrochemicals put pressure on the agronomists to search for safe, novel, eco-friendly alternative ways to manage rice pathogens. Inducing resistance in rice by using different biotic/abiotic agents provides an environmental friendly alternative way to effectively manage bacterial, fungal, and viral rice pathogens. In recent years, a number of protocols have been developed for inducing pathogen resistance by bio-priming of rice. However, a comprehensive evaluation of the potential of different biotic agents to protect rice crop loss from pathogens is hitherto lacking due to which the research on induction of defense against pathogens in rice is discontinuous. This review deals with the detailed analysis of the bacterial and fungal agents used to induce defense against rice pathogens, their mode of application, mechanism (physiological, biochemical, and molecular) of defense induction, and effect of defense induction on the yield of rice. It also provides an account of gaps in the research and the unexplored areas, which might be taken into consideration to effectively manage rice pathogens.
Collapse
Affiliation(s)
| | | | | | - Arup Kumar Mukherjee
- Molecular Plant Pathology Laboratory, Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
| |
Collapse
|
13
|
Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochem Soc Trans 2022; 50:1025-1034. [PMID: 35437580 DOI: 10.1042/bst20211246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Light capture by chlorophylls and photosynthetic electron transport bury the risk of the generation of reactive oxygen species (ROS) including singlet oxygen, superoxide anion radicals and hydrogen peroxide. Rapid changes in light intensity, electron fluxes and accumulation of strong oxidants and reductants increase ROS production. Superoxide is mainly generated at the level of photosystem I while photosystem II is the main source of singlet oxygen. ROS can induce oxidative damage of the photosynthetic apparatus, however, ROS are also important to tune processes inside the chloroplast and participate in retrograde signalling regulating the expression of genes involved in acclimation responses. Under most physiological conditions light harvesting and photosynthetic electron transport are regulated to keep the level of ROS at a non-destructive level. Photosystem II is most prone to photoinhibition but can be quickly repaired while photosystem I is protected in most cases. The size of the transmembrane proton gradient is central for the onset of mechanisms that protect against photoinhibition. The proton gradient allows dissipation of excess energy as heat in the antenna systems and it regulates electron transport. pH-dependent slowing down of electron donation to photosystem I protects it against ROS generation and damage. Cyclic electron transfer and photoreduction of oxygen contribute to the size of the proton gradient. The yield of singlet oxygen production in photosystem II is regulated by changes in the midpoint potential of its primary quinone acceptor. In addition, numerous antioxidants inside the photosystems, the antenna and the thylakoid membrane quench or scavenge ROS.
Collapse
|
14
|
Hughes NM, George CO, Gumpman CB, Neufeld HS. Coevolution and photoprotection as complementary hypotheses for autumn leaf reddening: a nutrient-centered perspective. THE NEW PHYTOLOGIST 2022; 233:22-29. [PMID: 34738236 DOI: 10.1111/nph.17735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Nicole M Hughes
- Department of Biology, High Point University, 1 N University Pkwy, High Point, NC, 27268, USA
| | - Christian O George
- Department of Biology, High Point University, 1 N University Pkwy, High Point, NC, 27268, USA
| | - Corinne B Gumpman
- Department of Biology, High Point University, 1 N University Pkwy, High Point, NC, 27268, USA
| | - Howard S Neufeld
- Department of Biology, Appalachian State University, 287 Rivers St.,, Boone, NC, 28608, USA
| |
Collapse
|
15
|
Graiff A, Karsten U. Antioxidative Properties of Baltic Sea Keystone Macroalgae (Fucus vesiculosus, Phaeophyceae) under Ocean Warming and Acidification in a Seasonally Varying Environment. BIOLOGY 2021; 10:biology10121330. [PMID: 34943245 PMCID: PMC8698884 DOI: 10.3390/biology10121330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The brown seaweed Fucus vesiculosus is the dominant and the most ecologically crucial primary producer and habitat founder in the Baltic Sea. In the shallow coastal zone, F. vesiculosus is particularly exposed to strongly and rapidly changing environmental conditions due to global change. This study examines how single and joint effects of elevated seawater temperature and pCO2 levels influence F. vesiculosus in all four seasons, using benthic mesocosms. The antioxidative properties and the sensitivity of F. vesiculosus photosynthetic performance to oxidative stress under different global change scenarios were assessed. F. vesiculosus tolerated strong hydrogen peroxide stress in all seasons, as reflected in high antioxidative enzyme activities and a low degree of membrane lipid peroxidation. Forecasted warming affected the antioxidative properties of F. vesiculosus stronger than acidification, causing significantly increased lipid peroxidation under elevated temperatures in all seasons. However, pCO2 levels modulated the oxidative stress of F. vesiculosus under warming. Overall, summer heatwaves reaching lethal temperatures in shallow waters will most likely determine the persistence of Baltic F. vesiculosus. Abstract The keystone macroalga Fucus vesiculosus (Phaeophyceae), dominating shallow hard bottom zones, encounters a strongly and rapidly changing environment due to anthropogenic change over the last decades in the Baltic Sea. Thus, in four successive benthic mesocosm experiments, the single and joint effects of increased temperature (Δ + 5 °C) and pCO2 (1100 ppm) under ambient irradiances were experimentally tested on the antioxidative properties of western Baltic F. vesiculosus in all seasons. The antioxidative properties (superoxide dismutase activity and lipid peroxidation) as well as the sensitivity of F. vesiculosus photosynthetic performance (i.e., effective quantum yield) to oxidative stress under these global change scenarios were seasonally examined. F. vesiculosus exhibited high and relatively constant photosynthetic performance under artificial hydrogen peroxide (H2O2) stress in all seasons. High activities of superoxide dismutase and a relatively low degree of the biomarker for lipid peroxidation (malondialdehyde concentration) were found in F. vesiculosus. Thus, Baltic F. vesiculosus is equipped with a high antioxidative potential to tolerate strong oxidative stress for at least short periods. Antioxidative properties of F. vesiculosus were more strongly affected by warming than by acidification, resulting in significantly increased malondialdehyde concentrations under elevated temperature levels in all seasons. Oxidative stress was enhanced in F. vesiculosus under warming but seem to be modulated by seasonally varying environmental conditions (e.g., high and low irradiances) and pCO2 levels. However, more frequent summer heatwaves reaching and surpassing lethal temperatures in shallow coastal waters may determine the F. vesiculosus population’s overall persistence in the Baltic Sea.
Collapse
Affiliation(s)
- Angelika Graiff
- Correspondence: ; Tel.: +49-381-4986101; Fax: +49-381-4986072
| | | |
Collapse
|
16
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Herb M, Gluschko A, Schramm M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front Cell Dev Biol 2021; 9:716406. [PMID: 34557488 PMCID: PMC8452931 DOI: 10.3389/fcell.2021.716406] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as the superoxide anion or hydrogen peroxide, have been established over decades of research as, on the one hand, important and versatile molecules involved in a plethora of homeostatic processes and, on the other hand, as inducers of damage, pathologies and diseases. Which effects ROS induce, strongly depends on the cell type and the source, amount, duration and location of ROS production. Similar to cellular pH and calcium levels, which are both strictly regulated and only altered by the cell when necessary, the redox balance of the cell is also tightly regulated, not only on the level of the whole cell but in every cellular compartment. However, a still widespread view present in the scientific community is that the location of ROS production is of no major importance and that ROS randomly diffuse from their cellular source of production throughout the whole cell and hit their redox-sensitive targets when passing by. Yet, evidence is growing that cells regulate ROS production and therefore their redox balance by strictly controlling ROS source activation as well as localization, amount and duration of ROS production. Hopefully, future studies in the field of redox biology will consider these factors and analyze cellular ROS more specifically in order to revise the view of ROS as freely flowing through the cell.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| |
Collapse
|
18
|
Iwasaki M, Yoshimoto M. Confinement of Metalloenzymes in PEGylated Liposomes to Formulate Colloidal Catalysts for Antioxidant Cascade. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10624-10635. [PMID: 34431680 DOI: 10.1021/acs.langmuir.1c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antioxidant cascade reactions detoxifying reactive oxygen species are of significance to control oxidative stresses-triggered diseases. In the present work, the antioxidant catalysts were prepared through the confinement of dual metalloenzymes in liposomes. The amino groups of superoxide dismutase (SOD) were conjugated to the carboxyl groups-bearing liposomes encapsulated with the catalase (CAT) to formulate a spatially organized antioxidant reaction network. The activity of SOD and CAT in the liposomal system was evaluated in detail on the basis of the prolonged xanthine oxidase/xanthine reaction producing superoxide anion radicals (O2̇-) and hydrogen peroxide (H2O2) coupled with redox reactions of cytochrome c. The liposome-confined SOD and CAT molecules were clearly demonstrated to catalyze the sequential disproportionation of O2̇- and H2O2 at 25 °C in a potassium phosphate buffer solution (pH = 7.8) under moderate transfer resistance with respect to the intermediate product (H2O2) within the liposomes. Furthermore, the liposomal catalysts were modified with the poly(ethylene glycol) (PEG)-conjugated lipids with the molecular mass of the PEG moiety of about 5000 through the post-PEGylation approach. The mean hydrodynamic diameter of the PEGylated liposomal catalysts was 140-150 nm. The dual enzyme activity in liposomes and the thermal stability of the encapsulated CAT were practically unaffected by the PEGylation. The above liposome-based antioxidant catalysts are highly biocompatible, PEG-modifiable, and reactive, thereby making the catalysts potentially applicable to therapeutic materials exhibiting functionality similar to cellular peroxisomes.
Collapse
Affiliation(s)
- Masataka Iwasaki
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
19
|
Faizan M, Rajput VD, Al-Khuraif AA, Arshad M, Minkina T, Sushkova S, Yu F. Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum lycopersicum. BIOLOGY 2021; 10:biology10070666. [PMID: 34356521 PMCID: PMC8301443 DOI: 10.3390/biology10070666] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary The experiment conducted on Solanum lycopersicum provided an insight about Cd uptake, and the way a Solanum lycopersicum changes its physiological, biochemical and morphological responses when CTS-NPs are administered against Cd. As an effective important polymer, CTS-NPs enhanced the plant biomass, SPAD index, photosynthetic rate, and protein content in the Solanum lycopersicum plants grown in Cd stress, as a study herein. Addition of CTS-NPs reduced Cd accumulation by increasing the nutrient uptake. Furthermore, CTS-NPs treatment enhances tolerance to Cd stress through hampering ROS production accompanied by H2O2 activity, through reducing the peroxidation of lipids by minimizing MDA content, and through improving enzymatic (CAT, POX, SOD), non-enzymatic (GSH and AsA), and osmoprotectants (proline) antioxidant contents that are considered as a first line of defense to protect plants from stress. Abstract Cadmium (Cd) stress is increasing at a high pace and is polluting the agricultural land. As a result, it affects animals and the human population via entering into the food chain. The aim of this work is to evaluate the possibility of amelioration of Cd stress through chitosan nanoparticles (CTS-NPs). After 15 days of sowing (DAS), Solanum lycopersicum seedlings were transplanted into maintained pots (20 in number). Cadmium (0.8 mM) was providing in the soil as CdCl2·2.5H2O at the time of transplanting; however, CTS-NPs (100 µg/mL) were given through foliar spray at 25 DAS. Data procured from the present experiment suggests that Cd toxicity considerably reduces the plant morphology, chlorophyll fluorescence, in addition to photosynthetic efficiency, antioxidant enzyme activity and protein content. However, foliar application of CTS-NPs was effective in increasing the shoot dry weight (38%), net photosynthetic rate (45%) and SPAD index (40%), while a decrease in malondialdehyde (24%) and hydrogen peroxide (20%) was observed at the 30 DAS stage as compared to control plants. On behalf of the current results, it is demonstrated that foliar treatment of CTS-NPs might be an efficient approach to ameliorate the toxic effects of Cd.
Collapse
Affiliation(s)
- Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| | - Abdulaziz Abdullah Al-Khuraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (M.A.)
| | - Mohammed Arshad
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia; (A.A.A.-K.); (M.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (T.M.); (S.S.)
| | - Fangyuan Yu
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (M.F.); (V.D.R.); (F.Y.)
| |
Collapse
|
20
|
Liu J, Gai L, Zong H. Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:115-121. [PMID: 33984623 DOI: 10.1016/j.plaphy.2021.04.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Excessive cadmium (Cd) causes toxic effects on crops. The effects of chitosan (CTS) with different molecular weight (MW) (5 kDa, 3 kDa, and 1 kDa) on the growth and biochemical parameters, as well as Cd concentrations in Cd-treated wheat plants were examined in a pot experiment. The results demonstrated that foliar spraying with CTS significantly improve the wheat growth, reduce malondialdehyde content and reactive oxygen species accumulation in leaves and decrease Cd concentrations in roots and shoots of wheat seedling under Cd stress. The alleviation of Cd toxicity by CTS is probably related with the activity of antioxidant enzymes, osmotic adjustment matter and root morphology. The application of CTS enhanced the activities of superoxide dismutase, peroxidase, and catalase in Cd-stressed wheat seedling leaves by 6.6%-13.1%, 17.2%-33.0%, and 19.6%-25.5%, respectively. Besides, exogenously applied CTS also increased the soluble protein and soluble sugar contents by 17.6%-33.8% and 30.1%-36.1% in the leaves of wheat under Cd stress. Furthermore, CTS with a molecular weight of 1 kDa was the most effective in mitigating Cd toxicity in wheat seedlings, which indicates that the activity of CTS is dependent on its molecular weight. It can be concluded that the use of foliar spraying, especially with 1 kDa CTS, could have potential in reducing the damage of Cd stress.
Collapse
Affiliation(s)
- Jun Liu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lingyun Gai
- Big Data and Network Management Center, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Haiying Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Ohnishi M, Furutani R, Sohtome T, Suzuki T, Wada S, Tanaka S, Ifuku K, Ueno D, Miyake C. Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies. Antioxidants (Basel) 2021; 10:996. [PMID: 34201487 PMCID: PMC8300717 DOI: 10.3390/antiox10070996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
In response to decreases in the assimilation efficiency of CO2, plants oxidize the reaction center chlorophyll (P700) of photosystem I (PSI) to suppress reactive oxygen species (ROS) production. In hydro-cultured sunflower leaves experiencing essential mineral deficiencies, we analyzed the following parameters that characterize PSI and PSII: (1) the reduction-oxidation states of P700 [Y(I), Y(NA), and Y(ND)]; (2) the relative electron flux in PSII [Y(II)]; (3) the reduction state of the primary electron acceptor in PSII, QA (1 - qL); and (4) the non-photochemical quenching of chlorophyll fluorescence (NPQ). Deficiency treatments for the minerals N, P, Mn, Mg, S, and Zn decreased Y(II) with an increase in the oxidized P700 [Y(ND)], while deficiencies for the minerals K, Fe, Ca, B, and Mo decreased Y(II) without an increase in Y(ND). During the induction of photosynthesis, the above parameters showed specific responses to each mineral. That is, we could diagnose the mineral deficiency and identify which mineral affected the photosynthesis parameters.
Collapse
Affiliation(s)
- Miho Ohnishi
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Riu Furutani
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Takayuki Sohtome
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
- Department of System Development, Bunkoukeiki Co. Ltd., 4-8 Takakura-machi, Hachioji-shi, Tokyo 192-0033, Japan
| | - Takeshi Suzuki
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Shinya Wada
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| | - Soma Tanaka
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
| | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan;
| | - Daisei Ueno
- Graduate School of Integrated Arts and Science, Kochi University, 200 Otsu, Monobe, Nankoku 783-8502, Japan;
| | - Chikahiro Miyake
- Department of Applied Biological Science, Graduate School for Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; (M.O.); (R.F.); (T.S.); (S.W.); (S.T.)
- Core Research for Environmental Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Tokyo 102-0076, Japan;
| |
Collapse
|
22
|
Light-Mediated Regulation of Leaf Senescence. Int J Mol Sci 2021; 22:ijms22073291. [PMID: 33804852 PMCID: PMC8037705 DOI: 10.3390/ijms22073291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 01/21/2023] Open
Abstract
Light is the primary regulator of various biological processes during the plant life cycle. Although plants utilize photosynthetically active radiation to generate chemical energy, they possess several photoreceptors that perceive light of specific wavelengths and then induce wavelength-specific responses. Light is also one of the key determinants of the initiation of leaf senescence, the last stage of leaf development. As the leaf photosynthetic activity decreases during the senescence phase, chloroplasts generate a variety of light-mediated retrograde signals to alter the expression of nuclear genes. On the other hand, phytochrome B (phyB)-mediated red-light signaling inhibits the initiation of leaf senescence by repressing the phytochrome interacting factor (PIF)-mediated transcriptional regulatory network involved in leaf senescence. In recent years, significant progress has been made in the field of leaf senescence to elucidate the role of light in the regulation of nuclear gene expression at the molecular level during the senescence phase. This review presents a summary of the current knowledge of the molecular mechanisms underlying light-mediated regulation of leaf senescence.
Collapse
|
23
|
Yan S, Wu F, Zhou S, Yang J, Tang X, Ye W. Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2021; 21:150. [PMID: 33761895 PMCID: PMC7988923 DOI: 10.1186/s12870-021-02929-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rice is particularly effective, compared to other cereals, at accumulating arsenic (As), a nonthreshold, class 1 human carcinogen in shoot and grain. Nano-zinc oxide is gradually used in agricultural production due to its adsorption capacity and as a nutrient element. An experiment was performed to explore the effects of zinc oxide nanoparticles (nZnO) on arsenic (As) toxicity and bioaccumulation in rice. Rice seedlings were treated with different levels of nZnO (0, 10, 20, 50, 100 mg/L) and As (0, and 2 mg/L) for 7 days. RESULTS The research showed that 2 mg/L of As treatment represented a stress condition, which was evidenced by phenotypic images, seedling dry weight, chlorophyll, and antioxidant enzyme activity of rice shoot. The addition of nZnO (10-100 mg/L) enhanced the growth and photosynthesis of rice seedlings. As concentrations in the shoots and roots were decreased by a maximum of 40.7 and 31.6% compared to the control, respectively. Arsenite [As (III)] was the main species in both roots (98.5-99.5%) and shoots (95.0-99.6%) when exposed to different treatments. Phytochelatins (PCs) content up-regulated in the roots induced more As (III)-PC to be complexed and reduced As (III) mobility for transport to shoots by nZnO addition. CONCLUSION The results confirmed that nZnO could improve rice growth and decrease As accumulation in shoots, and it performs best at a concentration of 100 mg/L.
Collapse
Affiliation(s)
- Shiwei Yan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P.R. China
| | - Fan Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P.R. China
| | - Song Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P.R. China
| | - Jianhao Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P.R. China
| | - Xianjin Tang
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, P.R. China.
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Ur Rahman S, Xuebin Q, Zhao Z, Du Z, Imtiaz M, Mehmood F, Hongfei L, Hussain B, Ashraf MN. Alleviatory effects of Silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions. Sci Rep 2021; 11:1958. [PMID: 33479268 PMCID: PMC7820580 DOI: 10.1038/s41598-020-80808-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Silicon (Si), as a quasi-essential element, has a vital role in alleviating the damaging effects of various environmental stresses on plants. Cadmium (Cd) stress is severe abiotic stress, especially in acidic ecological conditions, and Si can demolish the toxicity induced by Cd as well as acidic pH on plants. Based on these hypotheses, we demonstrated 2-repeated experiments to unfold the effects of Si as silica gel on the root morphology and physiology of wheat seedling under Cd as well as acidic stresses. For this purpose, we used nine treatments with three levels of Si nanoparticles (0, 1, and 3 mmol L−1) derived from sodium silicate (Na2SiO3) against three concentrations of Cd (0, 50, and 200 µmol L−1) in the form of cadmium chloride (CdCl2) with three replications were arranged in a complete randomized design. The pH of the nutrient solution was adjusted at 5. The averages of three random replications showed that the mutual impacts of Si and Cd in acidic pH on wheat roots depend on the concentrations of Si and Cd. The collective or particular influence of low or high levels of Si (1 or 3 mM) and acidic pH (5) improved the development of wheat roots, and the collective influence was more significant than that of a single parallel treatment. The combined effects of low or high concentrations of Cd (50 or 200 µM) and acidic pH significantly reduced root growth and biomass while increased antioxidants, and reactive oxygen species (ROS) contents. The incorporation of Si (1 or 3 mmol L−1) in Cd-contaminated acidic nutrient solution promoted the wheat root growth, decreased ROS contents, and further increased the antioxidants in the wheat roots compared with Cd single treatments in acidic pH. The demolishing effects were better with a high level of Si (3 mM) than the low level of Si (1 Mm). In conclusion, we could suggest Si as an effective beneficial nutrient that could participate actively in several morphological and physiological activities of roots in wheat plants grown under Cd and acidic pH stresses.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China. .,Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, 453003, China.
| | - Qi Xuebin
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China. .,Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, 453003, China.
| | - Zhijuan Zhao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China.,Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, 453003, China
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China.,Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, 453003, China
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Faisal Mehmood
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China.,Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, 453003, China
| | - Lu Hongfei
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453003, China.,Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources of CAAS, Xinxiang, 453003, China
| | - Babar Hussain
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Nadeem Ashraf
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Transmembrane redox regulation of genome replication functions in positive-strand RNA viruses. Curr Opin Virol 2020; 47:25-31. [PMID: 33383355 DOI: 10.1016/j.coviro.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Positive-strand RNA virus genome replication takes place on intracellular membranes that separate the reduced cytosol from the oxidized extracellular/luminal milieu. Ongoing studies of these membrane-bounded genome replication complexes have revealed underlying common principles in their structure, assembly and functionalization, including transmembrane features and redox dependencies. Among these, members of the alphavirus, flavivirus, and picornavirus supergroups all encode membrane-permeabilizing viroporins required for efficient RNA replication. For flaviviruses and particularly alphavirus supergroup members, these viroporins are linked to activating viral RNA capping and potentially other later-stage RNA replication functions, and to local transmembrane release of oxidizing potential to trigger these changes in cytoplasmic RNA replication complexes. Further exploration of these emerging shared principles could spur development of broad-spectrum antivirals.
Collapse
|
26
|
RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2638130. [PMID: 33312335 PMCID: PMC7721489 DOI: 10.1155/2020/2638130] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Oxidative stress (OS) is one of the major pathomechanisms of Alzheimer's disease (AD), which is closely associated with other key events in neurodegeneration such as mitochondrial dysfunction, inflammation, metal dysregulation, and protein misfolding. Oxidized RNAs are identified in brains of AD patients at the prodromal stage. Indeed, oxidized mRNA, rRNA, and tRNA lead to retarded or aberrant protein synthesis. OS interferes with not only these translational machineries but also regulatory mechanisms of noncoding RNAs, especially microRNAs (miRNAs). MiRNAs can be oxidized, which causes misrecognizing target mRNAs. Moreover, OS affects the expression of multiple miRNAs, and conversely, miRNAs regulate many genes involved in the OS response. Intriguingly, several miRNAs embedded in upstream regulators or downstream targets of OS are involved also in neurodegenerative pathways in AD. Specifically, seven upregulated miRNAs (miR-125b, miR-146a, miR-200c, miR-26b, miR-30e, miR-34a, miR-34c) and three downregulated miRNAs (miR-107, miR-210, miR-485), all of which are associated with OS, are found in vulnerable brain regions of AD at the prodromal stage. Growing evidence suggests that altered miRNAs may serve as targets for developing diagnostic or therapeutic tools for early-stage AD. Focusing on a neuroprotective transcriptional repressor, REST, and the concept of hormesis that are relevant to the OS response may provide clues to help us understand the role of the miRNA system in cellular and organismal adaptive mechanisms to OS.
Collapse
|
27
|
Role of RNA Oxidation in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21145022. [PMID: 32708667 PMCID: PMC7403986 DOI: 10.3390/ijms21145022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the history of nucleic acid research, DNA has always been the main research focus. After the sketch of the human genome was completed in 2000, RNA has been started to gain more attention due to its abundancies in the cell and its essential role in cellular physiology and pathologies. Recent studies have shown that RNAs are susceptible to oxidative damage and oxidized RNA is able to break the RNA strand, and affect the protein synthesis, which can lead to cell degradation and cell death. Studies have shown that RNA oxidation is one of the early events in the formation and development of neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, its molecular mechanism, as well as its impact on these diseases, are still unclear. In this article, we review the different types of RNA oxidative damage and the neurodegenerative diseases that are reported to be associated with RNA oxidative damage. In addition, we discuss recent findings on the association between RNA oxidative damage and the development of neurodegenerative diseases, which will have great significance for the development of novel strategies for the prevention and treatment of these diseases.
Collapse
|
28
|
Gonçalves JM, Rocha T, Mestre NC, Fonseca TG, Bebianno MJ. Assessing cadmium-based quantum dots effect on the gonads of the marine mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104904. [PMID: 32174334 DOI: 10.1016/j.marenvres.2020.104904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
This study assesses the sex-specific effects induced by CdTe QDs, on the marine mussel Mytilus galloprovincialis in comparison to its dissolved counterpart. A 14 days exposure to CdTe QDs and dissolved Cd was conducted (10 μg Cd L-1), analysing Cd accumulation, oxidative stress, biotransformation, metallothionein and oxidative damage in the gonads. Both Cd forms caused significant antioxidant alterations, whereby QDs were more pro-oxidant, leading to oxidative damage, being females more affected. Overall, biochemical impairments on gonads of M. galloprovincialis demonstrate that the reproductive toxicity induced by CdTe QDs in mussels are sex-dependent and mediated by oxidative stress and lipid peroxidation. It is crucial to acknowledge how gametes are affected by metal-based nanoparticles, such as Cd-based QDs. As well as understanding the potential changes they may undergo at the cellular level during gametogenesis, embryogenesis and larval development potentially leading to serious impacts on population sustainability and ecosystem health.
Collapse
Affiliation(s)
- J M Gonçalves
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T Rocha
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - N C Mestre
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - T G Fonseca
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal
| | - M J Bebianno
- CIMA, Centre of Marine and Environmental Research, University of Algarve, Campus de Gambelas, 8000-139, Faro, Portugal.
| |
Collapse
|
29
|
Ran J, Zheng W, Wang H, Wang H, Li Q. Indole-3-acetic acid promotes cadmium (Cd) accumulation in a Cd hyperaccumulator and a non-hyperaccumulator by different physiological responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110213. [PMID: 31978764 DOI: 10.1016/j.ecoenv.2020.110213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/20/2019] [Accepted: 01/12/2020] [Indexed: 05/13/2023]
Abstract
To study the effects of indole-3-acetic acid (IAA) on cadmium (Cd) accumulation and the physiological responses of the Cd hyperaccumulator Solanum nigrum and non-hyperaccumulator Solanum melongena, a pot experiment was conducted in soil containing 2 mg kg-1 Cd in which different concentrations of IAA (0, 10, 20, or 40 mg L-1) were sprayed on plant leaves. The results showed that Cd accumulation in shoots of S. nigrum was significantly increased by 30% after the addition of 10 mg L-1 IAA under 2 mg kg-1 Cd stress compared to that in the control, but shoot Cd accumulation showed no significant change in S. melongena after this IAA treatment. Additionally, the growth and the proline content in the two species were significantly increased by 20 mg L-1 IAA. The activities of peroxidase and catalase in leaves of S. nigrum and the activity of superoxide dismutase (SOD) in S. melongena were significantly increased and their malondialdehyde content was significantly decreased compared to those in the control. The root activity of S. nigrum was significantly improved after 10 and 20 mg L-1 IAA treatments, but no significant difference was observed in S. melongena. The correlation analysis results showed that the Cd concentration in leaves of S. nigrum was significantly and positively correlated with the carotenoid and proline contents, and there was also a significant positive correlation between the Cd concentration and SOD activity in leaves of S. melongena. Therefore, S. nigrum is an ideal plant for the phytoextraction of Cd-contaminated soil assisted by IAA. IAA promotes Cd accumulation in plant shoots by enhancing the accumulation of carotenoids and proline in S. nigrum and maintaining a high leaf SOD activity in S. melongena.
Collapse
Affiliation(s)
- Jiakang Ran
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Wen Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| | - Qinchun Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| |
Collapse
|
30
|
Molecular Mechanism of Oxidation of P700 and Suppression of ROS Production in Photosystem I in Response to Electron-Sink Limitations in C3 Plants. Antioxidants (Basel) 2020; 9:antiox9030230. [PMID: 32168828 PMCID: PMC7139980 DOI: 10.3390/antiox9030230] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Photosynthesis fixes CO2 and converts it to sugar, using chemical-energy compounds of both NADPH and ATP, which are produced in the photosynthetic electron transport system. The photosynthetic electron transport system absorbs photon energy to drive electron flow from Photosystem II (PSII) to Photosystem I (PSI). That is, both PSII and PSI are full of electrons. O2 is easily reduced to a superoxide radical (O2-) at the reducing side, i.e., the acceptor side, of PSI, which is the main production site of reactive oxygen species (ROS) in photosynthetic organisms. ROS-dependent inactivation of PSI in vivo has been reported, where the electrons are accumulated at the acceptor side of PSI by artificial treatments: exposure to low temperature and repetitive short-pulse (rSP) illumination treatment, and the accumulated electrons flow to O2, producing ROS. Recently, my group found that the redox state of the reaction center of chlorophyll P700 in PSI regulates the production of ROS: P700 oxidation suppresses the production of O2- and prevents PSI inactivation. This is why P700 in PSI is oxidized upon the exposure of photosynthesis organisms to higher light intensity and/or low CO2 conditions, where photosynthesis efficiency decreases. In this study, I introduce a new molecular mechanism for the oxidation of P700 in PSI and suppression of ROS production from the robust relationship between the light and dark reactions of photosynthesis. The accumulated protons in the lumenal space of the thylakoid membrane and the accumulated electrons in the plastoquinone (PQ) pool drive the rate-determining step of the P700 photo-oxidation reduction cycle in PSI from the photo-excited P700 oxidation to the reduction of the oxidized P700, thereby enhancing P700 oxidation.
Collapse
|
31
|
Yang Z, Xiao Y, Jiao T, Zhang Y, Chen J, Gao Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Oryza Sativa L.) Seedlings and the Relevant Physiological Responses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041260. [PMID: 32075321 PMCID: PMC7068423 DOI: 10.3390/ijerph17041260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 11/24/2022]
Abstract
Rice (Oryza sativa L.), a major staple food for billions of people, was assessed for its phytotoxicity of copper oxide nanoparticle (CuO NPs, size < 50 nm). Under hydroponic condition, seven days of exposure to 62.5, 125, and 250 mg/L CuO NPs significantly suppressed the growth rate of rice seedlings compared to both the control and the treatment of supernatant from 250 mg/L CuO NP suspensions. In addition, physiological indexes associated with antioxidants, including membrane damage and antioxidant enzyme activity, were also detected. Treatment with 250 mg/L CuO NPs significantly increased malondialdehyde (MDA) content and electrical conductivity of rice shoots by 83.4% and 67.0%, respectively. The activity of both catalase and superoxide dismutase decreased in rice leaves treated with CuO NPs at the concentration of 250 mg/L, while the activity of the superoxide dismutase significantly increased by 1.66 times in rice roots exposed to 125 mg/L CuO NPs. The chlorophyll, including chlorophyll a and chlorophyll b, and carotenoid content in rice leaves decreased with CuO NP exposure. Finally, to explain potential molecular mechanisms of chlorophyll variations, the expression of four related genes, namely, Magnesium chelatase D subunit, Chlorophyll synthase, Magnesium-protoporphyrin IX methyltransferase, and Chlorophyllide a oxygenase, were quantified by qRT-PCR. Overall, CuO NPs, especially at 250 mg/L concentration, could affect the growth and development of rice seedlings, probably through oxidative damage and disturbance of chlorophyll and carotenoid synthesis.
Collapse
Affiliation(s)
- Zhongzhou Yang
- College of Life Science, Northeast Normal University, Changchun 130024, China;
| | - Yifan Xiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Tongtong Jiao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Yang Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
| | - Jing Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (Y.X.); (T.J.); (Y.Z.)
- Correspondence: (J.C.); (Y.G.); Tel.: +86-0431-8509-9056 (J.C.); +86-0431-8509-9992 (Y.G.); Fax: +86-0431-8509-9056 (J.C.); +86-0431-8569-5065 (Y.G.)
| | - Ying Gao
- College of Life Science, Northeast Normal University, Changchun 130024, China;
- Correspondence: (J.C.); (Y.G.); Tel.: +86-0431-8509-9056 (J.C.); +86-0431-8509-9992 (Y.G.); Fax: +86-0431-8509-9056 (J.C.); +86-0431-8569-5065 (Y.G.)
| |
Collapse
|
32
|
Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proc Natl Acad Sci U S A 2020; 117:3433-3439. [PMID: 32015131 PMCID: PMC7035516 DOI: 10.1073/pnas.1912313117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Extracellular production of the reactive oxygen species (ROS) superoxide results from the one-electron reduction of O2. Nearly all major groups of marine microbes produce extracellular superoxide. In this global estimate of marine microbial superoxide production we determine that dark extracellular superoxide production is ultimately a net sink of dissolved oxygen comparable in magnitude to other major terms in the marine oxygen cycle. This abundant source of superoxide to the marine water column provides evidence that extracellular ROS play a significant role in carbon oxidation and the redox cycling of metals in marine environments. Consideration of this significant reductive flux of dissolved oxygen is essential for field, laboratory, and modeling techniques for determining productivity and oxygen utilization in marine systems. The balance between sources and sinks of molecular oxygen in the oceans has greatly impacted the composition of Earth’s atmosphere since the evolution of oxygenic photosynthesis, thereby exerting key influence on Earth’s climate and the redox state of (sub)surface Earth. The canonical source and sink terms of the marine oxygen budget include photosynthesis, respiration, photorespiration, the Mehler reaction, and other smaller terms. However, recent advances in understanding cryptic oxygen cycling, namely the ubiquitous one-electron reduction of O2 to superoxide by microorganisms outside the cell, remains unexplored as a potential player in global oxygen dynamics. Here we show that dark extracellular superoxide production by marine microbes represents a previously unconsidered global oxygen flux and sink comparable in magnitude to other key terms. We estimate that extracellular superoxide production represents a gross oxygen sink comprising about a third of marine gross oxygen production, and a net oxygen sink amounting to 15 to 50% of that. We further demonstrate that this total marine dark extracellular superoxide flux is consistent with concentrations of superoxide in marine environments. These findings underscore prolific marine sources of reactive oxygen species and a complex and dynamic oxygen cycle in which oxygen consumption and corresponding carbon oxidation are not necessarily confined to cell membranes or exclusively related to respiration. This revised model of the marine oxygen cycle will ultimately allow for greater reconciliation among estimates of primary production and respiration and a greater mechanistic understanding of redox cycling in the ocean.
Collapse
|
33
|
Gupta DK, Vuković A, Semenishchev VS, Inouhe M, Walther C. Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3513-3522. [PMID: 31836983 DOI: 10.1007/s11356-019-07068-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
Environmental contamination by uranium (U) and other radionuclides is a serious problem worldwide, especially due to, e.g. mining activities. Ultimate accumulation of released U in aquatic systems and soils represent an escalating problem for all living organisms. In order to investigate U uptake and its toxic effects on Pisum sativum L., pea plantlets were hydroponically grown and treated with different concentrations of U. Five days after exposure to 25 and 50 μM U, P. sativum roots accumulated 2327.5 and 5559.16 mg kg-1 of U, respectively, while in shoots concentrations were 11.16 and 12.16 mg kg-1, respectively. Plants exposed to both U concentrations showed reduced biomass of shoots and reduced content of photosynthetic pigments (total chlorophyll and carotenoids) relative to control. As a biomarker of oxidative stress, lipid peroxidation (LPO) levels were determined, while antioxidative response was determined by catalase (CAT) and glutathione reductase (GR) activities as well as cysteine (Cys) and non-protein thiol (NP-SH) concentrations, both in roots and shoots. Both U treatments significantly increased LPO levels in roots and shoots, with the highest level recorded at 50 μM U, 50.38% in shoots and 59.9% in roots relative to control. U treatment reduced GR activity in shoots, while CAT activity was increased only in roots upon treatment with 25 μM U. In pea roots, cysteine content was significantly increased upon treatment with both U concentrations, for 19.8 and 25.5%, respectively, compared to control plants, while NP-SH content was not affected by the applied U. This study showed significant impact of U on biomass production and biochemical markers of phytotoxicity in P. sativum, indicating presence of oxidative stress and cellular redox imbalance in roots and shoots. Obtained tissue-specific response to U treatment showed higher sensitivity of shoots compared to roots. Much higher accumulation of U in pea roots compared to shoots implies potential role of this species in phytoremediation process.
Collapse
Affiliation(s)
- Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhavan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| | - Ana Vuković
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000, Osijek, Croatia
| | - Vladimir S Semenishchev
- Radiochemistry and Applied Ecology Department, Ural Federal University, Physical Technology Institute, Mira Str, 19, Ekaterinburg, Russia
| | - Masahiro Inouhe
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan
| | - Clemens Walther
- Institut für Radioökologie und Strahlenschutz (IRS), Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| |
Collapse
|
34
|
Ji WO, Lee MH, Kim GH, Kim EH. Quantitation of the ROS production in plasma and radiation treatments of biotargets. Sci Rep 2019; 9:19837. [PMID: 31882663 PMCID: PMC6934759 DOI: 10.1038/s41598-019-56160-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022] Open
Abstract
Medical treatment utilizing non-thermal plasma is based on the production of reactive oxygen species (ROS) and their interactions with biomatters. On the basis of empirical data from practices, plasma treatment has been planned with regard to the setup of a plasma generator's parameters, including gas combination, gas-flow rate, and applied voltage. In this study, we quantitated plasma treatment in terms of the plasma dose on the target matter, which can be contrasted with the radiation dose to targets under radiation exposure. We measured the OH radical production in cell culture medium and intracellular ROS production from plasma treatment in comparison with those from X-ray exposure. The clonogenic cell deaths from plasma and X-ray exposures were also compared. In plasma treatment, the clonogenic cell death was better predicted by intracellular ROS production rather than by medium OH production.
Collapse
Affiliation(s)
- Wan-Ook Ji
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Ho Lee
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Gon-Ho Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Hee Kim
- Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Wolff CM, Steuer A, Stoffels I, von Woedtke T, Weltmann KD, Bekeschus S, Kolb JF. Combination of cold plasma and pulsed electric fields – A rationale for cancer patients in palliative care. CLINICAL PLASMA MEDICINE 2019. [DOI: 10.1016/j.cpme.2020.100096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Wang Z, Sun R, Wang G, Chen Z, Li Y, Zhao Y, Liu D, Zhao H, Zhang F, Yao J, Tian X. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol 2019; 28:101343. [PMID: 31655428 PMCID: PMC6820261 DOI: 10.1016/j.redox.2019.101343] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/06/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hydrogen peroxide (H2O2)-induced mitochondrial oxidative damage is critical to intestinal ischemia/reperfusion (I/R) injury, and PRDX3 is an efficient H2O2 scavenger that protects cells from mitochondrial oxidative damage and apoptosis. However, the function of PRDX3 in intestinal I/R injury is unclear. The aim of this study was to investigate the precise mechanism underlying the involvement of PRDX3 in intestinal I/R injury. Methods An intestinal I/R model was established in mice with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for the in vivo simulation of I/R. Results PRDX3 expression was decreased during intestinal I/R injury, and PRDX3 overexpression significantly attenuated H/R-induced mitochondrial oxidative damage and apoptosis in Caco-2 cells. The level of acetylated PRDX3 was clearly increased both in vivo and in vitro. The inhibition of SIRTs by nicotinamide (NAM) increased the level of acetylated PRDX3 and impaired the antioxidative activity of PRDX3. Furthermore, NAM did not increase the acetylation of PRDX3 in sirtuin-3 (SIRT3)-knockdown Caco-2 cells. Importantly, PRDX3 acetylation was increased in mice lacking SIRT3, and this effect was accompanied by serious mitochondrial oxidative damage, apoptosis and remote organ damage after intestinal I/R injury. We screened potential sites of PRDX3 acetylation in the previously reported acetylproteome through immunoprecipitation (IP) experiments and found that SIRT3 deacetylates K253 on PRDX3 in Caco-2 cells. Furthermore, PRDX3 with the lysine residue K253 mutated to arginine (K253R) increased its dimerization in Caco-2 cells after subjected to 12 h hypoxia and followed 4 h reoxygenation. Caco-2 cells transfected with the K253R plasmid exhibited notably less mitochondrial damage and apoptosis, and transfection of the K253Q plasmid abolished the protective effect of PRDX3 overexpression. Analysis of ischemic intestines from clinical patients further verified the correlation between SIRT3 and PRDX3. Conclusions PRDX3 is a key protective factor for intestinal I/R injury, and SIRT3-mediated PRDX3 deacetylation can alleviate intestinal I/R-induced mitochondrial oxidative damage and apoptosis.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ruimin Sun
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Guangzhi Wang
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Zhao Chen
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yang Li
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Deshun Liu
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Huanyu Zhao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China
| | - Feng Zhang
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, China.
| | - Xiaofeng Tian
- Department of Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
37
|
Abstract
SummaryThe optimum oxygen tension for culturing mammalian embryos has been widely debated by the scientific community. While several laboratories have moved to using 5% as the value for oxygen tension, the majority of modern in vitro fertilization (IVF) laboratory programmes still use 20%. Several in vivo studies have shown the oxygen tension measured in the oviduct of mammals fluctuates between 2% and 8% and in cows and primates this values drops to <2% in the uterine milieu. In human IVF, a non-physiological level of 20% oxygen has been used in the past. However, several studies have shown that atmospheric oxygen introduces adverse effects to embryo development, not limited to numerous molecular and cellular physiology events. In addition, low oxygen tension plays a critical role in reducing the high level of detrimental reactive oxygen species within cells, influences embryonic gene expression, helps with embryo metabolism of glucose, and enhances embryo development to the blastocyst stage. Collectively, this improves embryo implantation potential. However, clinical studies have yielded contradictory results. In almost all reports, some level of improvement has been identified in embryo development or implantation, without any observed drawbacks. This review article will examine the recent literature and discusses ongoing efforts to understand the benefits that low oxygen tension can bring to mammal embryo development in vitro.
Collapse
|
38
|
Zeida A, Trujillo M, Ferrer-Sueta G, Denicola A, Estrin DA, Radi R. Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols. Chem Rev 2019; 119:10829-10855. [PMID: 31498605 DOI: 10.1021/acs.chemrev.9b00371] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.
Collapse
Affiliation(s)
| | | | | | | | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET , Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , 2160 Buenos Aires , Argentina
| | | |
Collapse
|
39
|
Diffusion and Transport of Reactive Species Across Cell Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:3-19. [PMID: 31140168 DOI: 10.1007/978-3-030-11488-6_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.
Collapse
|
40
|
Gallie DR, Chen Z. Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 2019; 14:e0220078. [PMID: 31329637 PMCID: PMC6645559 DOI: 10.1371/journal.pone.0220078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/07/2019] [Indexed: 12/30/2022] Open
Abstract
Superoxide dismutases (SODs) protect against reactive oxygen species (ROS) by detoxifying superoxide. Three types of SOD are present in plants: FeSOD, CuSOD, and MnSOD. The Arabidopsis thaliana genome contains three FeSOD genes, in which two (FSD2, and FSD3) are targeted to chloroplast thylakoids. Loss of FSD2 or FSD3 expression impairs growth and causes leaf bleaching. FSD2 and FSD3 form heterocomplexes present in chloroplast nucleoids, raising the question of whether FSD2 and FSD3 are functionally interchangeable. In this study, we examined how loss of FSD2 or FSD3 expression affects photosynthetic processes and whether overexpression of one compensates for loss of the other. Whereas loss of the cytosolic FSD1 had little effect, an fsd2 mutant exhibited increased superoxide production, reduced chlorophyll levels, lower PSII efficiency, a lower rate of CO2 assimilation, but elevated non-photochemical quenching (NPQ). In contrast, fsd3 mutants failed to survive beyond the seedling stage and overexpression of FSD2 could not rescue the seedlings. Overexpression of FSD3 in an fsd2 mutant, however, partially reversed the fsd2 mutant phenotype resulting in improved growth characteristics. Overexpression of FSD2 or FSD3, either individually or together, had little effect. These results indicate that, despite functioning as FeSODs, FSD2 and FSD3 are functionally distinct.
Collapse
Affiliation(s)
- Daniel R. Gallie
- Department of Biochemistry, University of California, Riverside, CA, United States of America
- * E-mail:
| | - Zhong Chen
- Department of Biochemistry, University of California, Riverside, CA, United States of America
| |
Collapse
|
41
|
Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci U S A 2019; 116:8879-8888. [PMID: 30979807 DOI: 10.1073/pnas.1821487116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). During T. cruzi invasion to macrophages, superoxide radical (O2 •-) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work, T. cruzi cytosolic Fe-SODB overexpressers (pRIBOTEX-Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox -/- macrophages, underscoring the role of O2 •- in parasite killing. Herein, we studied the entrance of O2 •- and its protonated form, perhydroxyl radical [(HO2 •); pKa = 4.8], to T. cruzi at the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2 •- and HO2 • were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2 •- permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2 •- detection in the internalized parasite. Importantly, O2 •- detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2 •- or during macrophage infections. Other mechanisms of O2 •- entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2 •- detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB-overexpressing parasites, supporting the role of the cytosolic O2 •--catabolizing enzyme as a virulence factor for CD.
Collapse
|
42
|
Rajpoot R, Rani A, Srivastava RK, Pandey P, Dubey RS. Protective Role of Mentha arvensis Aqueous Extract against Manganese Induced Toxicity by Reducing Mn Translocation and Promoting Antioxidative Defense in growing Indica Rice Seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s12892-018-0124-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Ilkan Z, Akar FG. The Mitochondrial Translocator Protein and the Emerging Link Between Oxidative Stress and Arrhythmias in the Diabetic Heart. Front Physiol 2018; 9:1518. [PMID: 30416455 PMCID: PMC6212558 DOI: 10.3389/fphys.2018.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) is a key outer mitochondrial membrane protein that regulates the activity of energy-dissipating mitochondrial channels in response to oxidative stress. In this article, we provide an overview of the role of TSPO in the systematic amplification of reactive oxygen species (ROS) through an autocatalytic process known as ROS-induced ROS-release (RIRR). We describe how this TSPO-driven process destabilizes the mitochondrial membrane potential leading to electrical instability at the cellular and whole heart levels. Finally, we provide our perspective on the role of TSPO in the pathophysiology of diabetes, in general and diabetes-related arrhythmias, in particular.
Collapse
Affiliation(s)
- Zeki Ilkan
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Biochemical and functional characterization of OsCSD3, a novel CuZn superoxide dismutase from rice. Biochem J 2018; 475:3105-3121. [DOI: 10.1042/bcj20180516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Superoxide dismutases (SODs, EC 1.15.1.1) belong to an important group of antioxidant metalloenzymes. Multiple SODs exist for scavenging of reactive oxygen species (ROS) in different cellular compartments to maintain an intricate ROS balance. The present study deals with molecular and biochemical characterization of CuZn SOD encoded by LOC_Os03g11960 (referred to as OsCSD3), which is the least studied among the four rice isozymes. The OsCSD3 showed higher similarity to peroxisomal SODs in plants. The OsCSD3 transcript was up-regulated in response to salinity, drought, and oxidative stress. Full-length cDNA encoding OsCSD3 was cloned and expressed in Escherichia coli and analyzed for spectral characteristics. UV (ultraviolet)–visible spectroscopic analysis showed evidences of d–d transitions, while circular dichroism analysis indicated high β-sheet content in the protein. The OsCSD3 existed as homodimer (∼36 kDa) with both Cu2+ and Zn2+ metal cofactors and was substantially active over a wide pH range (7.0–10.8), with optimum pH of 9.0. The enzyme was sensitive to diethyldithiocarbamate but insensitive to sodium azide, which are the characteristics features of CuZn SODs. The enzyme also exhibited bicarbonate-dependent peroxidase activity. Unlike several other known CuZn SODs, OsCSD3 showed higher tolerance to hydrogen peroxide and thermal inactivation. Heterologous overexpression of OsCSD3 enhanced tolerance of E. coli sod double-knockout (ΔsodA ΔsodB) mutant and wild-type strain against methyl viologen-induced oxidative stress, indicating the in vivo function of this enzyme. The results show that the locus LOC_Os03g11960 of rice encodes a functional CuZn SOD with biochemical characteristics similar to the peroxisomal isozymes.
Collapse
|
45
|
Chen J, Dou R, Yang Z, You T, Gao X, Wang L. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:604-612. [PMID: 30121512 DOI: 10.1016/j.plaphy.2018.08.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 05/21/2023]
Abstract
This work focused on the toxicity evaluation of ZnO NPs and their uptake and transportation in a significant crop plant, Rice (Oryza sativa L.). Under hydroponic condition, 25, 50 and 100 mg/L ZnO NPs could inhibit the growth of rice seedlings by reducing their biomass comparing with Zn2+ (13.82 mg/L) treatment and the control. In addition, physiological index was determined, involving the decrease of the chlorophyll content, which was further confirmed by the down-regulation of photosynthetic pigment related genes. Based on the expression levels of the genes encoding three antioxidant enzyme, e.g. Catalase (EC 1.11.1.6), Ascorbate peroxidase (EC 1.11.1.11) and Superoxide dismutase (EC 1.15.1.1), the oxidative damage was found in ZnO NPs exposed rice. On the other hand, by ultra-thin slicing and transmission electron microscopy, ZnO NPs were observed in the intercellular space and cytoplasm of rice root cells, and their transport to aerial tissue from roots were further confirmed by inductively coupled plasma atomic emission spectrometer. Overall, ZnO NPs could be uptaken by rice in the form of ions or particles, which further affected plant growth and development at phenotypic, physiological and molecular levels.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Runzhi Dou
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Tingting You
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; National Demonstration Center for Experimental Biology Education, Northeast Normal University, China.
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
46
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
47
|
Erard M, Dupré-Crochet S, Nüße O. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Regul Integr Comp Physiol 2018; 314:R667-R683. [PMID: 29341828 DOI: 10.1152/ajpregu.00140.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Redox biology has become a major issue in numerous areas of physiology. Reactive oxygen species (ROS) have a broad range of roles from signal transduction to growth control and cell death. To understand the nature of these roles, accurate measurement of the reactive compounds is required. An increasing number of tools for ROS detection is available; however, the specificity and sensitivity of these tools are often insufficient. Furthermore, their specificity has been rarely evaluated in complex physiological conditions. Many ROS probes are sensitive to environmental conditions in particular pH, which may interfere with ROS detection and cause misleading results. Accurate detection of ROS in physiology and pathophysiology faces additional challenges concerning the precise localization of the ROS and the timing of their production and disappearance. Certain ROS are membrane permeable, and certain ROS probes move across cells and organelles. Targetable ROS probes such as fluorescent protein-based biosensors are required for accurate localization. Here we analyze these challenges in more detail, provide indications on the strength and weakness of current tools for ROS detection, and point out developments that will provide improved ROS detection methods in the future. There is no universal method that fits all situations in physiology and cell biology. A detailed knowledge of the ROS probes is required to choose the appropriate method for a given biological problem. The knowledge of the shortcomings of these probes should also guide the development of new sensors.
Collapse
Affiliation(s)
- Marie Erard
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Sophie Dupré-Crochet
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Oliver Nüße
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| |
Collapse
|
48
|
Ivanov BN, Borisova-Mubarakshina MM, Kozuleva MA. Formation mechanisms of superoxide radical and hydrogen peroxide in chloroplasts, and factors determining the signalling by hydrogen peroxide. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:102-110. [PMID: 32291025 DOI: 10.1071/fp16322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/13/2016] [Indexed: 06/11/2023]
Abstract
Reduction of O2 molecule to superoxide radical, O2•-, in the photosynthetic electron transport chain is the first step of hydrogen peroxide, H2O2, production in chloroplasts in the light. The mechanisms of O2 reduction by ferredoxin, by the components of the plastoquinone pool, and by the electron transfer cofactors in PSI are analysed. The data indicating that O2•- and H2O2 can be produced both outside and within thylakoid membrane are presented. The H2O2 production in the chloroplast stroma is described as a result of either dismutation of O2•- or its reduction by stromal reductants. Formation of H2O2 within thylakoid membrane in the reaction of O2•- with plastohydroquinone is examined. The significance of both ways of H2O2 formation for specificity of the signal being sent by photosynthetic electron transport chain to cell adaptation systems is discussed.
Collapse
Affiliation(s)
- Boris N Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290, Russia
| | | | - Marina A Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290, Russia
| |
Collapse
|
49
|
Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN. Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS One 2017; 12:e0187412. [PMID: 29161274 PMCID: PMC5697883 DOI: 10.1371/journal.pone.0187412] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Plant growth promoting rhizobacteria (PGPR) are found to control the plant diseases by adopting various mechanisms. Induced systemic resistance (ISR) is an important defensive strategy manifested by plants against numerous pathogens especially infecting at aerial parts. Rhizobacteria elicit ISR by inducing different pathways in plants through production of various metabolites. In the present study, potential of Bacillus spp. KFP-5, KFP-7, KFP-17 was assessed to induce antioxidant enzymes against Pyricularia oryzae infection in rice. The antagonistic Bacillus spp. significantly induced antioxidant defense enzymes i-e superoxide dismutase (1.7–1.9-fold), peroxidase (3.5–4.1-fold), polyphenol oxidase (3.0–3.8-fold), phenylalanine ammonia-lyase (3.9–4.4-fold), in rice leaves and roots under hydroponic and soil conditions respectively. Furthermore, the antagonistic Bacillus spp significantly colonized the rice plants (2.0E+00–9.1E+08) and secreted multiple biocontrol determinants like protease (1.1–5.5 U/mg of soil or U/mL of hydroponic solution), glucanase, (1.0–1.3 U/mg of soil or U/mL of hydroponic solution), siderophores (6.5–42.8 μg/mL or mg) in the rhizosphere of different rice varieties. The results showed that treatment with Bacillus spp. enhanced the antioxidant defense activities in infected rice, thus alleviating P. oryzae induced oxidative damage and suppressing blast disease incidence.
Collapse
Affiliation(s)
- Afroz Rais
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Faluk Shair
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Fauzia Yusuf Hafeez
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
50
|
Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochem Soc Trans 2017; 45:1053-1066. [DOI: 10.1042/bst20160433] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Unlike DNA, oxidative damage to RNA has received little attention presumably due to the assumed transient nature of RNA. However, RNAs including mRNA can persist for several hours to days in certain tissues and are demonstrated to sustain greater oxidative damage than DNA. Because neuronal cells in the brain are continuously exposed to reactive oxygen species due to a high oxygen consumption rate, it is not surprising that neuronal RNA oxidation is observed as a common feature at an early stage in a series of neurodegenerative disorders. A recent study on a well-defined bacterial translation system has revealed that mRNA containing 8-oxo-guanosine (8-oxoGuo) has little effect on fidelity despite the anticipated miscoding. Indeed, 8-oxoGuo-containing mRNA leads to ribosomal stalling with a reduced rate of peptide-bond formation by 3–4 orders of magnitude and is subject to no-go decay, a ribosome-based mRNA surveillance mechanism. Another study demonstrates that transfer RNA oxidation catalyzed by cytochrome c (cyt c) leads to its depurination and cross-linking, which may facilitate cyt c release from mitochondria and subsequently induce apoptosis. Even more importantly, a discovery of oxidized microRNA has been recently reported. The oxidized microRNA causes misrecognizing the target mRNAs and subsequent down-regulation in the protein synthesis. It is noteworthy that oxidative modification to RNA not only interferes with the translational machinery but also with regulatory mechanisms of noncoding RNAs that contribute toward the biological complexity of the mammalian brain. Oxidative RNA damage might be a promising therapeutic target potentially useful for an early intervention of diverse neuropsychiatric disorders.
Collapse
|