1
|
Upmanyu N, Dietze R, Bulldan A, Scheiner-Bobis G. Cardiotonic steroid ouabain stimulates steroidogenesis in Leydig cells via the α3 isoform of the sodium pump. J Steroid Biochem Mol Biol 2019; 191:105372. [PMID: 31042565 DOI: 10.1016/j.jsbmb.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Cardiotonic steroids such as ouabain are potent inhibitors of the sodium pump and have been widely used for centuries in the treatment of congestive heart failure. In recent decades, however, they have also been identified as hormone-like molecules that trigger signaling cascades of physiological relevance by using the various sodium pump α subunit isoforms as receptors. The murine Leydig cell line MLTC-1 expresses both the ubiquitous, relatively ouabain-insensitive α1 isoform of the sodium pump and the ouabain-sensitive α3 isoform that is normally found in neuronal cells. The physiological relevance of the simultaneous presence of the two isoforms in Leydig cells has not been previously addressed. MLTC-1 Leydig cells contain lipid droplets (LDs) and are capable of progesterone biosynthesis when stimulated by luteinizing hormone (LH). When exposed to low nanomolar concentrations of ouabain, they respond with stimulation of Erk1/2, CREB, and ATF-1 phosphorylation, LD enlargement, and perilipin2 mobilization to the LDs. As a result, progesterone biosynthesis is augmented. Abrogation of α3 isoform expression by siRNA prevents all of the above responses, indicating that it is the hormone/receptor-like interaction of ouabain exclusively with this isoform that triggers the signaling events that normally occur when LH binds to its receptor. Considering that ouabain is produced endogenously and is found in seminal fluid, one can speculate that effects of this substance on germ and somatic cells of the testis might play a role in male reproductive physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ahmed Bulldan
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Klein RD, Geary TG. Recombinant Microorganisms as Tools for High Throughput Screening for Nonantibiotic Compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719700200108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Microorganisms were among the first tools used for the discovery of biologically active compounds. Their utility reached a zenith during the era of antibiotic development in the 1950s and 1960s, then declined. Subsequently, a substantial role for microorganisms in the pharmaceutical industry developed with the realization that microbial fermentations were intriguing sources of nonantibiotic natural products. From recombinant DNA technology emerged another important role for microorganisms in pharmaceutical research: the expression of heterologous proteins for therapeutic products or for in vitro high throughput screens (HTSs). Recent developments in cloning, genetics, and expression systems have opened up new applications for recombinant microorganisms in screening for nonantibiotic compounds in HTSs. These screens employ microorganisms that depend upon the function of a heterologous protein for survival under defined nutritional conditions. Compounds that specifically target the heterologous protein can be identified by measuring viability of the microorganism under different nutrient selection. Advantages of this approach include a built-in selection for target selectivity, an easily measured end point that can be used for a multitude of different targets, and compatibility with automation required for HTSs. Mechanism-based HTSs using recombinant microorganisms can also address drug targets that are not readily approachable in other HTS formats, including certain enzymes; ion channels and transporters; and protein::protein, protein::DNA, and protein::RNA interactions.
Collapse
Affiliation(s)
- Ronald D. Klein
- Animal Health Discovery Research, Pharmacia & Upjohn Co., Kalamazoo, Michigan 49007
| | - Timothy G. Geary
- Animal Health Discovery Research, Pharmacia & Upjohn Co., Kalamazoo, Michigan 49007
| |
Collapse
|
3
|
Vacek J, Zatloukalova M, Geleticova J, Kubala M, Modriansky M, Fekete L, Masek J, Hubatka F, Turanek J. Electrochemical Platform for the Detection of Transmembrane Proteins Reconstituted into Liposomes. Anal Chem 2016; 88:4548-56. [DOI: 10.1021/acs.analchem.6b00618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jan Vacek
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Martina Zatloukalova
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jaroslava Geleticova
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Martin Kubala
- Department
of Biophysics, Centre of the Region Hana for Biotechnological and
Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Martin Modriansky
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Ladislav Fekete
- Institute
of Physics, Academy of Sciences of the Czech Republic, Na Slovance
2, 18221 Prague, Czech Republic
| | - Josef Masek
- Department
of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i.,
Hudcova 70, 621 00 Brno, Czech Republic
| | - Frantisek Hubatka
- Department
of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i.,
Hudcova 70, 621 00 Brno, Czech Republic
| | - Jaroslav Turanek
- Department
of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i.,
Hudcova 70, 621 00 Brno, Czech Republic
| |
Collapse
|
4
|
Uji T, Hirata R, Mikami K, Mizuta H, Saga N. Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis. Mol Biol Rep 2012; 39:7973-80. [PMID: 22531934 DOI: 10.1007/s11033-012-1643-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
Sodium pumps (EC 3.6.3.9, Na(+)-ATPase), which mediate excretion of Na(+) from the cell, play a crucial role in Na(+) homeostasis in eukaryotic cells. The objective of this study is to understand the Na(+) efflux system in a marine red alga. We identified a novel sodium pump gene, PyKPA2, from the marine red alga Porphyra yezoensis. The amino acid sequence of PyKPA2 shares 65 % identity with PyKPA1, a previously identified P. yezoensis sodium pump. Similar to PyKPA1, PyKPA2 contains conserved sequences for functions such as phosphorylation, ATP binding, and cation binding. Phylogenetic analysis revealed that the two genes cluster with sodium pumps from algae. Reverse-transcription polymerase chain reaction (RT-PCR) analysis showed that PyKPA1 is expressed preferentially in sporophytes, whereas PyKPA2 is expressed specifically in gametophytes. RT-PCR and quantitative real-time PCR analysis revealed that PyKPA1 and PyKPA2 transcripts were upregulated and downregulated, respectively, in gametophytes during exposure to alkali stress. In addition, transcription of both genes in gametophytes was also induced by cold stress. These results suggest that PyKPA1 and PyKPA2 play an important role in alkali and cold stress tolerance.
Collapse
Affiliation(s)
- Toshiki Uji
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | | | | | |
Collapse
|
5
|
Kimura T, Han W, Pagel P, Nairn AC, Caplan MJ. Protein phosphatase 2A interacts with the Na,K-ATPase and modulates its trafficking by inhibition of its association with arrestin. PLoS One 2011; 6:e29269. [PMID: 22242112 PMCID: PMC3248462 DOI: 10.1371/journal.pone.0029269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/23/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The P-type ATPase family constitutes a collection of ion pumps that form phosphorylated intermediates during ion transport. One of the best known members of this family is the Na⁺,K⁺-ATPase. The catalytic subunit of the Na⁺,K⁺-ATPase includes several functional domains that determine its enzymatic and trafficking properties. METHODOLOGY/PRINCIPAL FINDINGS Using the yeast two-hybrid system we found that protein phosphatase 2A (PP2A) catalytic C-subunit is a specific Na⁺,K⁺-ATPase interacting protein. PP-2A C-subunit interacted with the Na⁺,K⁺-ATPase, but not with the homologous sequences of the H⁺,K⁺-ATPase. We confirmed that the Na⁺,K⁺-ATPase interacts with a complex of A- and C-subunits in native rat kidney. Arrestins and G-protein coupled receptor kinases (GRKs) are important regulators of G-protein coupled receptor (GPCR) signaling, and they also regulate Na⁺,K⁺-ATPase trafficking through direct association. PP2A inhibits association between the Na⁺,K⁺-ATPase and arrestin, and diminishes the effect of arrestin on Na⁺,K⁺-ATPase trafficking. GRK phosphorylates the Na⁺,K⁺-ATPase and PP2A can at least partially reverse this phosphorylation. CONCLUSIONS/SIGNIFICANCE Taken together, these data demonstrate that the sodium pump belongs to a growing list of ion transport proteins that are regulated through direct interactions with the catalytic subunit of a protein phosphatase.
Collapse
Affiliation(s)
- Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- Departments of Cellular & Molecular Physiology and
| | - WonSun Han
- Departments of Cellular & Molecular Physiology and
| | | | - Angus C. Nairn
- Psychiatry, Yale University School of Medicine New Haven, Connecticut, United States of America
| | | |
Collapse
|
6
|
Kolb AR, Buck TM, Brodsky JL. Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function? Am J Physiol Renal Physiol 2011; 301:F1-11. [PMID: 21490136 PMCID: PMC3129885 DOI: 10.1152/ajprenal.00141.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/11/2011] [Indexed: 01/18/2023] Open
Abstract
Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae, represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na(+)-K(+)-ATPase, the Na(+)-phosphate cotransporter, and the Na(+)-H(+) ATPase; 3) aquaporins 1-4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics.
Collapse
Affiliation(s)
- Alexander R Kolb
- University of Pittsburgh, 4249 Fifth Ave., A320 Langley Hall, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
7
|
Kimura T, Allen PB, Nairn AC, Caplan MJ. Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase. Mol Biol Cell 2007; 18:4508-18. [PMID: 17804821 PMCID: PMC2043564 DOI: 10.1091/mbc.e06-08-0711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 epsilon, and spinophilin directly associate with the Na(+),K(+)-ATPase and that the associations with arrestins, GRKs, or 14-3-3 epsilon are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na(+),K(+)-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of beta-arrestins accelerated internalization of the Na(+),K(+)-ATPase endocytosis. We also find that GRKs phosphorylate the Na(+),K(+)-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 epsilon, and spinophilin may be important modulators of Na(+),K(+)-ATPase trafficking.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | |
Collapse
|
8
|
Blasiole B, Canfield VA, Vollrath MA, Huss D, Mohideen MAPK, Dickman JD, Cheng KC, Fekete DM, Levenson R. Separate Na,K-ATPase genes are required for otolith formation and semicircular canal development in zebrafish. Dev Biol 2006; 294:148-60. [PMID: 16566913 DOI: 10.1016/j.ydbio.2006.02.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 02/17/2006] [Accepted: 02/21/2006] [Indexed: 11/21/2022]
Abstract
We have investigated the role of Na,K-ATPase genes in zebrafish ear development. Six Na,K-ATPase genes are differentially expressed in the developing zebrafish inner ear. Antisense morpholino knockdown of Na,K-ATPase alpha1a.1 expression blocked formation of otoliths. This effect was phenocopied by treatment of embryos with ouabain, an inhibitor of Na,K-ATPase activity. The otolith defect produced by morpholinos was rescued by microinjection of zebrafish alpha1a.1 or rat alpha1 mRNA, while the ouabain-induced defect was rescued by expression of ouabain-resistant zebrafish alpha1a.1 or rat alpha1 mRNA. Knockdown of a second zebrafish alpha subunit, alpha1a.2, disrupted development of the semicircular canals. Knockdown of Na,K-ATPase beta2b expression also caused an otolith defect, suggesting that the beta2b subunit partners with the alpha1a.1 subunit to form a Na,K-ATPase required for otolith formation. These results reveal novel roles for Na,K-ATPase genes in vestibular system development and indicate that different isoforms play distinct functional roles in formation of inner ear structures. Our results highlight zebrafish gene knockdown-mRNA rescue as an approach that can be used to dissect the functional properties of zebrafish and mammalian Na,K-ATPase genes.
Collapse
Affiliation(s)
- Brian Blasiole
- Department of Pharmacology, Penn State University College of Medicine, H078, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cohen E, Goldshleger R, Shainskaya A, Tal DM, Ebel C, le Maire M, Karlish SJD. Purification of Na+,K+-ATPase Expressed in Pichia pastoris Reveals an Essential Role of Phospholipid-Protein Interactions. J Biol Chem 2005; 280:16610-8. [PMID: 15708860 DOI: 10.1074/jbc.m414290200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na+,K+-ATPase (porcine alpha/his10-beta) has been expressed in Pichia Pastoris, solubilized in n-dodecyl-beta-maltoside and purified to 70-80% purity by nickel-nitrilotriacetic acid chromatography combined with size exclusion chromatography. The recombinant protein is inactive if the purification is done without added phospholipids. The neutral phospholipid, dioleoylphosphatidylcholine, preserves Na+,K+-ATPase activity of protein prepared in a Na+-containing medium, but activity is lost in a K+-containing medium. By contrast, the acid phospholipid, dioleoylphosphatidylserine, preserves activity in either Na+- or K+-containing media. In optimal conditions activity is preserved for about 2 weeks at 0 degrees C. Both recombinant Na+,K+-ATPase and native pig kidney Na+,K+-ATPase, dissolved in n-dodecyl-beta-maltoside, appear to be mainly stable monomers (alpha/beta) as judged by size exclusion chromatography and sedimentation velocity. Na+,K+-ATPase activities at 37 degrees C of the size exclusion chromatography-purified recombinant and renal Na+,K+-ATPase are comparable but are lower than that of membrane-bound renal Na+,K+-ATPase. The beta subunit is expressed in Pichia Pastoris as two lightly glycosylated polypeptides and is quantitatively deglycosylated by endoglycosidase-H at 0 degrees C, to a single polypeptide. Deglycosylation inactivates Na+,K+-ATPase prepared with dioleoylphosphatidylcholine, whereas dioleoylphosphatidylserine protects after deglycosylation, and Na+,K+-ATPase activity is preserved. This work demonstrates an essential role of phospholipid interactions with Na+,K+-ATPase, including a direct interaction of dioleoylphosphatidylserine, and possibly another interaction of either the neutral or acid phospholipid. Additional lipid effects are likely. A role for the beta subunit in stabilizing conformations of Na+,K+-ATPase (or H+,K+-ATPase) with occluded K+ ions can also be inferred. Purified recombinant Na+,K+-ATPase could become an important experimental tool for various purposes, including, hopefully, structural work.
Collapse
Affiliation(s)
- Eytan Cohen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovoth, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Jones DH, Li TY, Arystarkhova E, Barr KJ, Wetzel RK, Peng J, Markham K, Sweadner KJ, Fong GH, Kidder GM. Na,K-ATPase from mice lacking the gamma subunit (FXYD2) exhibits altered Na+ affinity and decreased thermal stability. J Biol Chem 2005; 280:19003-11. [PMID: 15755730 DOI: 10.1074/jbc.m500697200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma subunit of the Na,K-ATPase, a 7-kDa single-span membrane protein, is a member of the FXYD gene family. Several FXYD proteins have been shown to bind to Na,K-ATPase and modulate its properties, and each FXYD protein appears to alter enzyme kinetics differently. Different results have sometimes been obtained with different experimental systems, however. To test for effects of gamma in a native tissue environment, mice lacking a functional gamma subunit gene (Fxyd2) were generated. These mice were viable and without observable pathology. Prior work in the mouse embryo showed that gamma is expressed at the blastocyst stage. However, there was no delay in blastocele formation, and the expected Mendelian ratios of offspring were obtained even with Fxyd2-/- dams. In adult Fxyd2-/- mouse kidney, splice variants of gamma that have different nephron segment-specific expression patterns were absent. Purified gamma-deficient renal Na,K-ATPase displayed higher apparent affinity for Na+ without significant change in apparent affinity for K+. Affinity for ATP, which was expected to be decreased, was instead slightly increased. The results suggest that regulation of Na+ sensitivity is a major functional role for this protein, whereas regulation of ATP affinity may be context-specific. Most importantly, this implies that gamma and other FXYD proteins have their effects by local and not global conformation change. Na,K-ATPase lacking the gamma subunit had increased thermal lability. Combined with other evidence that gamma participates in an early step of thermal denaturation, this indicates that FXYD proteins may play an important structural role in the enzyme complex.
Collapse
Affiliation(s)
- D Holstead Jones
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Becker S, Schneider H, Scheiner-Bobis G. The highly conserved extracellular peptide, DSYG(893-896), is a critical structure for sodium pump function. ACTA ACUST UNITED AC 2004; 271:3821-31. [PMID: 15373828 DOI: 10.1111/j.1432-1033.2004.04305.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The peptide sequence DSYG(893-896) of the sheep sodium pump alpha 1 subunit is highly conserved among all K(+)-transporting P-type ATPases. To obtain information about its function, single mutations were introduced and the mutants were expressed in yeast and analysed for enzymatic activity, ion recognition, and alpha/beta subunit interactions. Mutants of Ser894 or Tyr895 were all active. Conservative phenylalanine and tryptophan mutants of Tyr895 displayed properties that were similar to the properties of the wild-type enzyme. Replacement of the same amino acid by cysteine, however, produced heat-sensitive enzymes, indicating that the aromatic group contributes to the stability of the enzyme. Mutants of the neighbouring Ser894 recognized K(+) with altered apparent affinities. Thus, the Ser894-->Asp mutant displayed a threefold higher apparent affinity for K(+) (EC(50) = 1.4 +/- 0.06 mm) than the wild-type enzyme (EC(50) = 3.8 +/- 0.33 mm). In contrast, the mutant Ser894-->Ile had an almost sixfold lower apparent affinity for K(+) (EC(50) = 21.95 +/- 1.41 mm). Mutation of Asp893 or Gly896 produced inactive proteins. When an anti-beta 1 subunit immunoglobulin was used to co-immunoprecipitate the alpha 1 subunit, neither the Gly896-->Arg nor the Gly896-->Ile mutant could be visualized by subsequent probing with an anti-alpha 1 subunit immunoglobulin. On the other hand, co-immunoprecipitation was obtained with the inactive Asp893-->Arg and Asp893-->Glu mutants. Thus, it might be that Asp893 is involved in enzyme conformational transitions required for ATP hydrolysis and/or ion translocation. The results obtained here demonstrate the importance of the highly conserved peptide DSYG(893-896) for the function of alpha/beta heterodimeric P-type ATPases.
Collapse
Affiliation(s)
- Susanne Becker
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | | |
Collapse
|
12
|
Apell HJ. Structure-function relationship in P-type ATPases--a biophysical approach. Rev Physiol Biochem Pharmacol 2004; 150:1-35. [PMID: 12811587 DOI: 10.1007/s10254-003-0018-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
P-type ATPases are a large family of membrane proteins that perform active ion transport across biological membranes. In these proteins the energy-providing ATP hydrolysis is coupled to ion-transport that builds up or maintains the electrochemical potential gradients of one or two ion species across the membrane. P-type ATPases are found in virtually all eukaryotic cells and also in bacteria, and they are transporters of a broad variety of ions. So far, a crystal structure with atomic resolution is available only for one species, the SR Ca-ATPase. However, biochemical and biophysical studies provide an abundance of details on the function of this class of ion pumps. The aim of this review is to summarize the results of preferentially biophysical investigations of the three best-studied ion pumps, the Na,K-ATPase, the gastric H,K-ATPase, and the SR Ca-ATPase, and to compare functional properties to recent structural insights with the aim of contributing to the understanding of their structure-function relationship.
Collapse
Affiliation(s)
- H-J Apell
- Department of Biology, University of Konstanz, Fach M635, 78457 Konstanz, Germany.
| |
Collapse
|
13
|
Abstract
The Na,K-ATPase or sodium pump carries out the coupled extrusion and uptake of Na and K ions across the plasma membranes of cells of most higher eukaryotes. It is a member of the P-type ATPase superfamily. This heterodimeric integral membrane protein is composed of a 100-kDa alpha-subunit with ten transmembrane segments and a heavily glycosylated beta subunit of about 55 kDa, which is a type II membrane protein. Current ideas on how the protein achieves active transport are based on a fusion of results of transport physiology, protein chemistry, and heterologous expression of mutant proteins. Recently acquired high resolution structural information provides an important new avenue for a more complete understanding of this protein. In this review, the current status of knowledge of Na,K-ATPase is discussed, and areas where there is still considerable uncertainty are highlighted.
Collapse
Affiliation(s)
- Jack H Kaplan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA.
| |
Collapse
|
14
|
Scheiner-Bobis G. The sodium pump. Its molecular properties and mechanics of ion transport. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2424-33. [PMID: 12027879 DOI: 10.1046/j.1432-1033.2002.02909.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sodium pump (Na(+)/K(+)-ATPase; sodium- and potassium-activated adenosine 5'-triphosphatase; EC 3.6.1.37) has been under investigation for more than four decades. During this time, the knowledge about the structure and properties of the enzyme has increased to such an extent that specialized groups have formed within this field that focus on specific aspects of the active ion transport catalyzed by this enzyme. Taking this into account, this review, while somewhat speculative, is an attempt to summarize the information regarding the enzymology of the sodium pump with the hope of providing to interested readers from outside the field a concentrated overview and to readers from related fields a guide in their search for gathering specific information concerning the structure, function, and enzymology of this enzyme.
Collapse
Affiliation(s)
- Georgios Scheiner-Bobis
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany.
| |
Collapse
|
15
|
Arystarkhova E, Donnet C, Asinovski NK, Sweadner KJ. Differential regulation of renal Na,K-ATPase by splice variants of the gamma subunit. J Biol Chem 2002; 277:10162-72. [PMID: 11756431 DOI: 10.1074/jbc.m111552200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sodium and potassium-exchanging adenosine triphosphatase (Na,K-ATPase) in the kidney is associated with the gamma subunit (gamma, FXYD2), a single-span membrane protein that modulates ATPase properties. Rat and human gamma occur in two splice variants, gamma(a) and gamma(b), with different N termini. Here we investigated their structural heterogeneity and functional effects on Na,K-ATPase properties. Both forms were post-translationally modified during in vitro translation with microsomes, indicating that there are four possible forms of gamma. Site-directed mutagenesis revealed Thr(2) and Ser(5) as potential sites for post-translational modification. Similar modification can occur in cells, with consequences for Na,K-ATPase properties. We showed previously that stable transfection of gamma(a) into NRK-52E cells resulted in reduction of apparent affinities for Na(+) and K(+). Individual clones differed in gamma post-translational modification, however, and the effect on Na(+) affinity was absent in clones with full modification. Here, transfection of gamma(b) also resulted in clones with or without post-translational modification. Both groups showed a reduction in Na(+) affinity, but modification was required for the effect on K(+) affinity. There were minor increases in ATP affinity. The physiological importance of the reduction in Na(+) affinity was shown by the slower growth of gamma(a), gamma(b), and gamma(b') transfectants in culture. The differential influence of the four structural variants of gamma on affinities of the Na,K-ATPase for Na(+) and K(+), together with our previous finding of different distributions of gamma(a) and gamma(b) along the rat nephron, suggests a highly specific mode of regulation of sodium pump properties in kidney.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
16
|
Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol 2002; 282:F393-407. [PMID: 11832419 DOI: 10.1152/ajprenal.00146.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal Na(+)-K(+)-ATPase is associated with the gamma-subunit (FXYD2), a single-span membrane protein that modifies ATPase properties. There are two splice variants with different amino termini, gamma(a) and gamma(b). Both were found in the inner stripe of the outer medulla in the thick ascending limb. Coimmunoprecipitation with each other and the alpha-subunit indicated that they were associated in macromolecular complexes. Association was controlled by ligands that affect Na(+)-K(+)-ATPase conformation. In the cortex, the proportion of the gamma(b)-subunit was markedly lower, and the gamma(a)-subunit predominated in isolated proximal tubule cells. By immunofluorescence, the gamma(b)-subunit was detected in the superficial cortex only in the distal convoluted tubule and connecting tubule, which are rich in Na(+)-K(+)-ATPase but comprise a minor fraction of cortex mass. In the outer stripe of the outer medulla and for a short distance in the deep cortex, the thick ascending limb predominantly expressed the gamma(b)-subunit. Because different mechanisms maintain and regulate Na(+) homeostasis in different nephron segments, the splice forms of the gamma-subunit may have evolved to control the renal Na(+) pump through pump properties, gene expression, or both.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
17
|
Kidder GM. Trophectoderm development and function: the roles of Na+/K(+)-ATPase subunit isoforms. Can J Physiol Pharmacol 2002; 80:110-5. [PMID: 11934253 DOI: 10.1139/y02-017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Preimplantation development is a period of cell division, cell shape change, and cell differentiation leading to the formation of an epithelium, the trophectoderm. The trophectoderm is the part of the conceptus that initiates uterine contact and, after transformation to become the trophoblast, uterine invasion. Thus, trophectoderm development during preimplantation stages is a necessary antecedent to the events of implantation. The preimplantation trophectoderm is a transporting epithelium with distinct apical and basolateral membrane domains that facilitate transepithelial Na+ and fluid transport for blastocoel formation. That transport is driven by Na+/K(+)-ATPase localized in basolateral membranes of the trophectoderm. Preimplantation embryos express multiple alpha and beta subunit isoforms of Na+/K(+)-ATPase, potentially constituting multiple isozymes, but the basolaterally located alpha1beta1, isozyme uniquely functions to drive fluid transport. They also express the gamma subunit, which is a modulator of Na+/K(+)-ATPase activity. In the mouse, two splice variants of the gamma subunit, gammaa and gammab, are expressed in the trophectoderm. Antisense knockdown of gamma subunit accumulation caused a delay of cavitation, implying an important role in trophectoderm function. The preimplantation trophectoderm offers a unique model for understanding the roles of Na+/K(+)-ATPase subunit isoforms in transepithelial transport.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology, The University of Western Ontario, London, Canada.
| |
Collapse
|
18
|
Pu HX, Cluzeaud F, Goldshleger R, Karlish SJ, Farman N, Blostein R. Functional role and immunocytochemical localization of the gamma a and gamma b forms of the Na,K-ATPase gamma subunit. J Biol Chem 2001; 276:20370-8. [PMID: 11278761 DOI: 10.1074/jbc.m010836200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma subunit of the Na,K-ATPase is a member of the FXYD family of type 2 transmembrane proteins that probably function as regulators of ion transport. Rat gamma is present primarily in the kidney as two main splice variants, gamma(a) and gamma(b), which differ only at their extracellular N termini (TELSANH and MDRWYL, respectively; Kuster, B., Shainskaya, A., Pu, H. X., Goldshleger, R., Blostein, R., Mann, M., and Karlish, S. J. D. (2000) J. Biol. Chem. 275, 18441-18446). Expression in cultured cells indicates that both variants affect catalytic properties, without a detectable difference between gamma(a) and gamma(b). At least two singular effects are seen, irrespective of whether the variants are expressed in HeLa or rat alpha1-transfected HeLa cells, i.e. (i) an increase in apparent affinity for ATP, probably secondary to a left shift in E(1) <--> E(2) conformational equilibrium and (ii) an increase in K(+) antagonism of cytoplasmic Na(+) activation. Antibodies against the C terminus common to both variants (anti-gamma) abrogate the first effect but not the second. In contrast, gamma(a) and gamma(b) show differences in their localization along the kidney tubule. Using anti-gamma (C-terminal) and antibodies to the rat alpha subunit as well as antibodies to identify cell types, double immunofluorescence showed gamma in the basolateral membrane of several tubular segments. Highest expression is in the medullary portion of the thick ascending limb (TAL), which contains both gamma(a) and gamma(b). In fact, TAL is the only positive tubular segment in the medulla. In the cortex, most tubules express gamma but at lower levels. Antibodies specific for gamma(a) and gamma(b) showed differences in their cortical location; gamma(a) is specific for cells in the macula densa and principal cells of the cortical collecting duct but not cortical TAL. In contrast, gamma(b) but not gamma(a) is present in the cortical TAL only. Thus, the importance of gamma(a) and gamma(b) may be related to their partially overlapping but distinct expression patterns and tissue-specific functions of the pump that these serve.
Collapse
Affiliation(s)
- H X Pu
- Department of Medicine, McGill University, Montreal, Quebec H3G1A4, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The Na(+)-K(+)-ATPase, or sodium pump, is the membrane-bound enzyme that maintains the Na(+) and K(+) gradients across the plasma membrane of animal cells. Because of its importance in many basic and specialized cellular functions, this enzyme must be able to adapt to changing cellular and physiological stimuli. This review presents an overview of the many mechanisms in place to regulate sodium pump activity in a tissue-specific manner. These mechanisms include regulation by substrates, membrane-associated components such as cytoskeletal elements and the gamma-subunit, and circulating endogenous inhibitors as well as a variety of hormones, including corticosteroids, peptide hormones, and catecholamines. In addition, the review considers the effects of a range of specific intracellular signaling pathways involved in the regulation of pump activity and subcellular distribution, with particular consideration given to the effects of protein kinases and phosphatases.
Collapse
Affiliation(s)
- A G Therien
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1A4
| | | |
Collapse
|
20
|
Arystarkhova E, Wetzel RK, Asinovski NK, Sweadner KJ. The gamma subunit modulates Na(+) and K(+) affinity of the renal Na,K-ATPase. J Biol Chem 1999; 274:33183-5. [PMID: 10559186 DOI: 10.1074/jbc.274.47.33183] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.
Collapse
Affiliation(s)
- E Arystarkhova
- Laboratory of Membrane Biology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
21
|
Fontes CF, Lopes FE, Scofano HM, Barrabin H, Norby JG. Stimulation of ouabain binding to Na,K-ATPase in 40% dimethyl sulfoxide by a factor from Na,K-ATPase preparations. Arch Biochem Biophys 1999; 366:215-23. [PMID: 10356286 DOI: 10.1006/abbi.1999.1198] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 40% dimethyl sulfoxide (Me2SO) high-affinity ouabain (O) binding to Na,K-ATPase (E) is promoted by Mg2+ in the absence of inorganic phosphate (Pi) (Fontes et al., Biochim. Biophys. Acta 1104, 215-225, 1995). Furthermore, in Me2SO the EO complex reacts very slowly with Pi and this ouabain binding can therefore be measured by the degree of inhibition of rapid phosphoenzyme formation. Here we found that, unexpectedly, the ouabain binding decreased with the enzyme concentration in the Me2SO assay medium. We extracted the enzyme preparation with Me2SO or chloroform/methanol and demonstrated that the extracted (depleted) enzyme bound ouabain poorly. Addition of such extracts to assays with low enzyme concentration or depleted enzyme fully restored the high-affinity ouabain binding. Dialysis experiments indicated that the active principle had a molecular mass between 3.5 and 12 kDa. It was highly resistant to proteolysis. It was suggested that the active principle could either be a low-molecular-weight, proteolysis-resistant-peptide (e.g., a proteolipid) or a factor with a nonproteinaceous nature. A polyclonal antibody raised against the C-terminal 10 amino acids of the rat kidney gamma-subunit was able to recognize this low-molecular-weight peptide present in the extracts. The previously depleted enzyme displayed lower amounts of the gamma-proteolipid in comparison to the native untreated enzyme, as demonstrated by immunoreaction with the antibody.
Collapse
Affiliation(s)
- C F Fontes
- Departamento de Bioquímica, ICB, CCS, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | |
Collapse
|
22
|
Therien AG, Karlish SJ, Blostein R. Expression and functional role of the gamma subunit of the Na, K-ATPase in mammalian cells. J Biol Chem 1999; 274:12252-6. [PMID: 10212192 DOI: 10.1074/jbc.274.18.12252] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional role of the gamma subunit of the Na,K-ATPase was studied using rat gamma cDNA-transfected HEK-293 cells and an antiserum (gammaC33) specific for gamma. Although the sequence for gamma was verified and shown to be larger (7237 Da) than first reported, it still comprises a single initiator methionine despite the expression of a gammaC33-reactive doublet on immunoblots. Kinetic analysis of the enzyme of transfected compared with control cells and of gammaC33-treated kidney pumps shows that gamma regulates the apparent affinity for ATP. Thus, gamma-transfected cells have a decreased K'ATP as shown in measurements of (i) K'ATP of Na,K-ATPase activity and (ii) K+ inhibition of Na-ATPase at 1 microM ATP. Consistent with the behavior of gamma-transfected cells, gammaC33 pretreatment increases K'ATP of the kidney enzyme and K+ inhibition (1 microM ATP) of both kidney and gamma-transfected cells. These results are consistent with previous findings that an antiserum raised against the pig gamma subunit stabilizes the E2(K) form of the enzyme (Therien, A. G., Goldshleger, R., Karlish, S. J., and Blostein, R. (1997) J. Biol. Chem. 272, 32628-32634). Overall, our data demonstrate that gamma is a tissue (kidney)-specific regulator of the Na,K-ATPase that can increase the apparent affinity of the enzyme for ATP in a manner that is reversible by anti-gamma antiserum.
Collapse
Affiliation(s)
- A G Therien
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | |
Collapse
|
23
|
Hardwicke PM, Ryan C, Kalabokis VN. A novel small protein associated with a conjugated trienoic chromophore from membranes of scallop adductor muscle: phosphorylation by protein kinase A. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1417:1-8. [PMID: 10076029 DOI: 10.1016/s0005-2736(98)00241-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membranes enriched in sarcolemma from the cross-striated adductor muscle of the deep sea scallop have been found to contain a previously undescribed small protein of 6-8 kDa that can be released by treatment with organic solvent mixtures. This proteolipid co-purified with a non-amino acid chromophore containing a conjugated trienoic moiety. Although common in plants and algae, such a stable conjugated trienoic group is unusual for an animal cell. The N-terminal amino acid sequence of the protein was XEFQHGLFGXF/ADNIGLQ, which most strongly resembles sequences in the triacyl glycerol lipase precursor and the product of the human breast cancer susceptibility gene BRCA 1, but does not show similarity to previously described proteolipids. The protein was found to be one of the major substrates in its parent membrane for the catalytic subunit of protein kinase A, which may imply a regulatory function for this molecule.
Collapse
Affiliation(s)
- P M Hardwicke
- Medical Biochemistry, Mail Code 4413, Southern Illinois University, Carbondale, IL 62901-4413, USA.
| | | | | |
Collapse
|
24
|
Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F633-50. [PMID: 9815123 DOI: 10.1152/ajprenal.1998.275.5.f633] [Citation(s) in RCA: 580] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na-K-ATPase is characterized by a complex molecular heterogeneity that results from the expression and differential association of multiple isoforms of both its alpha- and beta-subunits. At present, as many as four different alpha-polypeptides (alpha1, alpha2, alpha3, and alpha4) and three distinct beta-isoforms (beta1, beta2, and beta3) have been identified in mammalian cells. The stringent constraints on the structure of the Na pump isozymes during evolution and their tissue-specific and developmental pattern of expression suggests that the different Na-K-ATPases have evolved distinct properties to respond to cellular requirements. This review focuses on the functional properties, regulation, and possible physiological relevance of the Na pump isozymes. The coexistence of multiple alpha- and beta-isoforms in most cells has hindered the understanding of the roles of the individual polypeptides. The use of heterologous expression systems has helped circumvent this problem. The kinetic characteristics of different Na-K-ATPase isozymes to the activating cations (Na+ and K+), the substrate ATP, and the inhibitors Ca2+ and ouabain demonstrate that each isoform has distinct properties. In addition, intracellular messengers differentially regulate the activity of the individual Na-K-ATPase isozymes. Thus the regulation of specific Na pump isozymes gives cells the ability to precisely coordinate Na-K-ATPase activity to their physiological requirements.
Collapse
Affiliation(s)
- G Blanco
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
25
|
Minor NT, Sha Q, Nichols CG, Mercer RW. The gamma subunit of the Na,K-ATPase induces cation channel activity. Proc Natl Acad Sci U S A 1998; 95:6521-5. [PMID: 9600999 PMCID: PMC27846 DOI: 10.1073/pnas.95.11.6521] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Indexed: 02/07/2023] Open
Abstract
The gamma subunit of the Na,K-ATPase is a hydrophobic protein of approximately 10 kDa. The gamma subunit was expressed in Sf-9 insect cells and Xenopus oocytes to ascertain its role in Na,K-ATPase function. Immunoblotting has shown that the gamma subunit is expressed in Sf-9 cells infected with recombinant baculovirus containing the cDNA for the human gamma subunit. Confocal microscopy demonstrates that the gamma subunit can be delivered to the plasma membrane of Sf-9 cells independently of the other Na,K-ATPase subunits and that gamma colocalizes with alpha1 when these proteins are coexpressed. When Sf-9 cells were coinfected with alpha1 and gamma, antibodies to the gamma subunit were able to coimmunoprecipitate the alpha1 subunit, suggesting that gamma is able to associate with alpha1. The gamma subunit is a member of a family of single-pass transmembrane proteins that induces ion fluxes in Xenopus oocytes. Evidence that the gamma subunit is a functional component was supported by experiments showing gamma-induced cation channel activity when expressed in oocytes and increases in Na+ and K+ uptake when expressed in Sf-9 cells.
Collapse
Affiliation(s)
- N T Minor
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
26
|
Djamgoz MB, Ready PD, Billingsley PF, Emery AM. Insect Na(+)/K(+)-ATPase. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:197-210. [PMID: 12769954 DOI: 10.1016/s0022-1910(97)00168-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Na(+)/K(+)-ATPase (sodium/potassium pump) is a P-type ion-motive ATPase found in the plasma membranes of animal cels. In vertebrates, the functions of this enzyme in nerves, heart and kidney are well characterized and characteristics a defined by different isoforms. In contrast, despite different tissue distributions, insects possess a single isoform of the alpha-subunit. A comparison of insect and vertebrate Na(+)/K(+)-ATPases reveals that although the mode of action and structure are very highly conserved, the specific roles of the enzyme in most tissues varies. However, the enzyme is essential for the function of nerve cells, and in this respect Na(+)/K(+)-ATPase appears to be fundamental in metazoan evolution.
Collapse
Affiliation(s)
- M B.A. Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, Prince Consort Road, London, UK
| | | | | | | |
Collapse
|
27
|
Therien AG, Goldshleger R, Karlish SJ, Blostein R. Tissue-specific distribution and modulatory role of the gamma subunit of the Na,K-ATPase. J Biol Chem 1997; 272:32628-34. [PMID: 9405479 DOI: 10.1074/jbc.272.51.32628] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Na,K-ATPase comprises a catalytic alpha subunit and a glycosylated beta subunit. Another membrane polypeptide, gamma, first described by Forbush et al. (Forbush, B., III, Kaplan, J. H., and Hoffman, J. F. (1978) Biochemistry 17, 3667-3676) associates with alpha and beta in purified kidney enzyme preparations. In this study, we have used a polyclonal anti-gamma antiserum to define the tissue specificity and topology of gamma and to address the question of whether gamma has a functional role. The trypsin sensitivity of the amino terminus of the gamma subunit in intact right-side-out pig kidney microsomes has confirmed that it is a type I membrane protein with an extracellular amino terminus. Western blot analysis shows that gamma subunit protein is present only in membranes from kidney tubules (rat, dog, pig) and not those from axolemma, heart, red blood cells, kidney glomeruli, cultured glomerular cells, alpha1-transfected HeLa cells, all derived from the same (rat) species, nor from three cultured cell lines derived from tubules of the kidney, namely NRK-52E (rat), LLC-PK (pig), or MDCK (dog). To gain insight into gamma function, the effects of the anti-gamma serum on the kinetic behavior of rat kidney sodium pumps was examined. The following evidence suggests that gamma stabilizes E1 conformation(s) of the enzyme and that anti-gamma counteracts this effect: (i) anti-gamma inhibits Na,K-ATPase, and the inhibition increases at acidic pH under which condition the E2(K) --> E1 phase of the reaction sequence becomes more rate-limiting, (ii) the oligomycin-stimulated increase in the level of phosphoenzyme was greater in the presence of anti-gamma indicating that the antibody shifts the E1 left and right arrow left and right arrow E2P equilibria toward E2P, and (iii) when the Na+-ATPase reaction is assayed with the Na+ concentration reduced to levels (</=2 mM) which limit the rate of the E1 --> --> E2P transition, anti-gamma is stimulatory. These observations taken together with evidence that the pig gamma subunit, which migrates as a doublet on polyacrylamide gels, is sensitive to digestion by trypsin, and that Rb+ ions partially protect it against this effect, indicate that the gamma subunit is a tissue-specific regulator which shifts the steady-state equilibria toward E1. Accordingly, binding of anti-gamma disrupts alphabeta-gamma interactions and counteracts these modulatory effects of the gamma subunit.
Collapse
Affiliation(s)
- A G Therien
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1A4
| | | | | | | |
Collapse
|
28
|
Jones DH, Davies TC, Kidder GM. Embryonic expression of the putative gamma subunit of the sodium pump is required for acquisition of fluid transport capacity during mouse blastocyst development. J Cell Biol 1997; 139:1545-52. [PMID: 9396759 PMCID: PMC2132623 DOI: 10.1083/jcb.139.6.1545] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The sodium/potassium pump, Na+,K+-ATPase, is generally understood to function as a heterodimer of two subunits, a catalytic alpha subunit and a noncatalytic, glycosylated beta subunit. Recently, a putative third subunit, the gamma subunit, was cloned. This small protein (6.5 kD) coimmunoprecipitates with the alpha and beta subunits and is closely associated with the ouabain binding site on the holoenzyme, but its function is unknown. We have investigated the expression of the gamma subunit in preimplantation mouse development, where Na+, K+-ATPase plays a critical role as the driving force for blastocoel formation (cavitation). Using reverse transcriptase-polymerase chain reaction, we demonstrated that the gamma subunit mRNA accumulates continuously from the eight-cell stage onward and that it cosediments with polyribosomes from its time of first appearance. Confocal immunofluorescence microscopy revealed that the gamma subunit itself accumulates and is localized at the blastomere surfaces up to the blastocyst stage. In contrast with the alpha and beta subunits, the gamma subunit is not concentrated in the basolateral surface of the polarized trophectoderm layer, but is strongly expressed at the apical surface as well. When embryos were treated with antisense oligodeoxynucleotide complementary to the gamma subunit mRNA, ouabain-sensitive K+ transport (as indicated by 86Rb+ uptake) was reduced and cavitation delayed. However, Na+, K+-ATPase enzymatic activity was unaffected as determined by a direct phosphorylation assay ("back door" phosphorylation) applied to plasma membrane preparations. These results indicate that the gamma subunit, although not an integral component of Na+,K+-ATPase, is an important determinant of active cation transport and that, as such, its embryonic expression is essential for blastocoel formation in the mouse.
Collapse
Affiliation(s)
- D H Jones
- Department of Physiology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
29
|
Scheiner-Bobis G, Schneider H. Palytoxin-induced channel formation within the Na+/K+-ATPase does not require a catalytically active enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:717-23. [PMID: 9342222 DOI: 10.1111/j.1432-1033.1997.00717.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been demonstrated that palytoxin binds to and forms a channel within the Na+/K+-ATPase. To investigate whether palytoxin-induced channel formation within the sodium pump can occur independently of ATP hydrolysis and phosphorylation of the enzyme, an Asp369-->Ala mutant of the alpha1 subunit of the sheep sodium pump was produced and coexpressed with beta subunits in the yeast Saccharomyces cerevisiae. This aspartic acid residue, which during ion transport becomes phosphorylated from ATP, is essential for the function of the sodium pump. Therefore, as expected, microsomes isolated from yeast expressing the mutant sodium pump do not exhibit any ouabain sensitive ATPase activity, whereas in microsomes from yeast expressing the wild-type sodium pump, 60% of the total ATPase activity is ouabain-sensitive. Ouabain binds to yeast membranes containing either wild-type or mutant sodium pumps with similar Bmax (1.45+/-0.05 versus 1.37+/-0.02 pmol/mg) and Kd values (27.7+/-0.91 versus 29.57+/-0.93 nM), thus indicating that the mutant sodium pumps are expressed in the yeast and that the mutation does not considerably affect the conformation of the enzyme. In the presence of phosphate ouabain binds to microsomes containing the wild-type sodium pump with a Kd of 3.62+/-0.34 nM, showing that, although not necessary, phosphoenzyme formation enhances binding of the steroid. Phosphate or ATP, however, inhibit binding of ouabain to microsomes containing the mutant sodium pump with IC50 values of 78+/-3 microM and 3.0+/-0.4 microM, respectively. Despite these radical changes in the interactions of the mutant enzyme with ouabain, the interactions with palytoxin are not affected by the mutation. Palytoxin causes K+ efflux from yeast cells expressing the wild-type or mutant sodium pumps with EC50 values of 3.5+/-0.4 nM and 6.2+/-0.9 nM, respectively. Palytoxin-induced efflux from cells expressing wild-type or mutant sodium pumps occurs with similar t1/2 values of 20.3+/-2.1 min and 22.2+/-3.1 min, respectively. Ouabain inhibits K+ efflux from both cell types with IC50 values of 28+/-2 microM and 210+/-15 microM, respectively. Cells expressing the Asp369-->Ala mutants have an IC50 7.5-fold higher than that obtained with cells expressing the wild-type sodium pumps, possibly because ATP or phosphate present in the cytosol of the yeast cells influence and decrease ouabain binding to the mutant sodium pump. Thus, while ouabain binding and the associated inhibition of ion fluxes is promoted by phosphorylation of the wild-type enzyme by phosphate or ATP, palytoxin-induced channel formation is independent of phosphorylation and can be separated from the ATPase function of the sodium pump. Since ion fluxes through the sodium pump protein do not depend on ATP hydrolysis, the results suggest that the ionophores of pumps and ion channels might share common structural features.
Collapse
Affiliation(s)
- G Scheiner-Bobis
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
30
|
Béguin P, Wang X, Firsov D, Puoti A, Claeys D, Horisberger JD, Geering K. The gamma subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J 1997; 16:4250-60. [PMID: 9250668 PMCID: PMC1170050 DOI: 10.1093/emboj/16.14.4250] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of small, hydrophobic peptides that are associated with ion pumps or channels is still poorly understood. By using the Xenopus oocyte as an expression system, we have characterized the structural and functional properties of the gamma peptide which co-purifies with Na,K-ATPase. Immuno-radiolabeling of epitope-tagged gamma subunits in intact oocytes and protease protection assays show that the gamma peptide is a type I membrane protein lacking a signal sequence and exposing the N-terminus to the extracytoplasmic side. Co-expression of the rat or Xenopus gamma subunit with various proteins in the oocyte reveals that it specifically associates only with isozymes of Na,K-ATPase. The gamma peptide does not influence the formation and cell surface expression of functional Na,K-ATPase alpha-beta complexes. On the other hand, the gamma peptide itself needs association with Na,K-ATPase in order to be stably expressed in the oocyte and to be transported efficiently to the plasma membrane. Gamma subunits do not associate with individual alpha or beta subunits but only interact with assembled, transport-competent alpha-beta complexes. Finally, electrophysiological measurements indicate that the gamma peptide modulates the K+ activation of Na,K pumps. These data document for the first time the membrane topology, the specificity of association and a potential functional role for the gamma subunit of Na,K-ATPase.
Collapse
Affiliation(s)
- P Béguin
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Schneider H, Scheiner-Bobis G. Involvement of the M7/M8 extracellular loop of the sodium pump alpha subunit in ion transport. Structural and functional homology to P-loops of ion channels. J Biol Chem 1997; 272:16158-65. [PMID: 9195913 DOI: 10.1074/jbc.272.26.16158] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutations were introduced in the motif 884DDRW887 from an extracellular peptide of the sodium pump alpha subunit localized between M7 and M8 membrane spans to investigate a possible role of this structure in ion recognition. A homologous sequence 399QDCW402 that occurs in the P-loops of Na+ channels was shown earlier to be important for ion gating. Mutant sodium pumps were expressed in yeast and subsequently investigated for their behavior toward ouabain, Na+, K+, and ATP. Native enzyme and D884A, D884R, D885A, D885E, or D885R mutants all bind ouabain in the presence of phosphate and Mg2+. The KD values determined from Scatchard analysis are in the range 5-8 nM for the native enzyme and the D884A, D885E, or D885A mutants, and 15.7 +/- 2.04 and 30.1 +/- 4.32 nM for mutants D884R and D885R, respectively. This ouabain binding is reduced in the presence of K+ in a similar way for both native or mutant sodium pumps with relative affinities (K0.5) for K+ ranging from 1.4 to 3.7 mM. Ouabain binding in the presence of 100 microM ATP is promoted by Na+ with K0.5 = 1.64 +/- 0.01 mM for the native enzyme and K0.5 = 8. 6 +/- 1.35 mM for the D884R mutant. The K0.5 values of the two enzymes for ATP are 0.66 +/- 0.16 microM and 1.1 +/- 0.12 microM, respectively. Ouabain binding as a function of Na+ concentration, on the other hand, is very low for the D885R mutant, even at an ATP concentration of 2 mM. Phosphate or eosin, however, are recognized by this mutant enzyme, so that a major conformational change within the ATP-binding site appears unlikely. The inability of the D885R mutant to bind ouabain in the presence of Na+ and ATP could be explained by assuming that the M7/M8 connecting extracellular loop, which also contains the mutated amino acids, is invaginated within the plane of the plasma membrane and possibly involved in acceptance and/or release of Na+ ions coming from cytosolic areas of the protein. In this case, the placement of an additional positive charge might repel Na+ ions and interrupt their flow, thus not allowing the enzyme to assume the proper conformational state for ouabain binding. Such invaginated hydrophilic protein structures, such as the P-loops of Na+ and K+ channels, are already known and have been shown to participate in ion conduction.
Collapse
Affiliation(s)
- H Schneider
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | |
Collapse
|
32
|
Kim JW, Lee Y, Lee IA, Kang HB, Choe YK, Choe IS. Cloning and expression of human cDNA encoding Na+, K(+)-ATPase gamma-subunit. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:133-5. [PMID: 9048881 DOI: 10.1016/s0167-4781(96)00219-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA clone encoding the Na+, K(+)-Atpase gamma-subunit polypeptide was cloned from a human fetal liver cDNA library. The deduced amino acid sequence of the protein comprised 58 amino acids with a calculated molecular weight of 6400 Da, and showed about 86% homology when compared with those of the bovine, rat and mouse Na+, K(+)-ATPase gamma-subunits published elsewhere. Northern blot analysis showed that the cDNA hybridized to a 0.7 kb mRNA which was expressed in human kidney, pancreas and fetal liver.
Collapse
Affiliation(s)
- J W Kim
- Korean Research Institute of Bioscience and Biotechnology, KIST, Taejon, South Korea
| | | | | | | | | | | |
Collapse
|
33
|
Fiedler B, Scheiner-Bobis G. Transmembrane topology of alpha- and beta-subunits of Na+,K+-ATPase derived from beta-galactosidase fusion proteins expressed in yeast. J Biol Chem 1996; 271:29312-20. [PMID: 8910592 DOI: 10.1074/jbc.271.46.29312] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Various models of the transmembrane topology of the Na+,K+-ATPase predict either 8 or 10 membrane spans for the alpha-subunit and one to three membrane spans for the beta-subunit. Structure/function analysis, however, requires precise knowledge about the folding of enzymes. Therefore, the intention of this work was to establish a transmembrane topology model for the subunits of Na+,K+-ATPase. The bacterial enzyme beta-galactosidase was fused to the C termini of truncated alpha- and beta-subunits of Na+,K+-ATPase. Fusions were generated at Arg60 (LTTAR60), Glu116 (AATEE116), Ala247 (VEGTA247), Leu311 (YTWEL311), Ala444 (VAGDA444), Ala789 (IFIIA789), Met809 (LGTDM809), Asp884 (RVTWD884), Ile946 (MKNKI946), and Arg972 (GVALR972) of the sheep alpha1-subunit and at Pro236 (LGGYP236) of the dog beta-subunit. The fusion constructs were expressed in yeast cells for studies on the localization of the fused reporter enzyme. Activity measurements of the reporter enzyme revealed that only intracellular fusion sites lead to active beta-galactosidase. Indirect immunofluorescence microscopy with cells expressing alpha1/beta-galactosidase and beta/beta-galactosidase hybrid proteins demonstrated that inactive beta-galactosidase is associated with the yeast plasma membrane and can be detected from the extracellular side. The data obtained suggest that Pro236 of the beta-subunit is located on the extracellular surface, corresponding to a model with one transmembrane segment, and that the alpha-subunit of the Na+,K+-ATPase consists of 10 membrane-associated spans. They also suggest that a stretch of the alpha1-subunit between membrane spans M7 and M8 might be hidden within the membrane, surrounded by the other hydrophobic spans, in analogy to the P-loop of Na+ or K+ channels and to the "hourglass" structure of water channels.
Collapse
Affiliation(s)
- B Fiedler
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Federal Republic of Germany
| | | |
Collapse
|
34
|
Pedersen PA, Rasmussen JH, Jøorgensen PL. Expression in high yield of pig alpha 1 beta 1 Na,K-ATPase and inactive mutants D369N and D807N in Saccharomyces cerevisiae. J Biol Chem 1996; 271:2514-22. [PMID: 8576215 DOI: 10.1074/jbc.271.5.2514] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Studies of structure-function relationships in Na,K-ATPase require high yield expression of inactive mutations in cells without endogenous Na,K-ATPase activity. In this work we developed a host/vector system for expression of fully active pig Na,K-ATPase as well as the inactive mutations D369N and D807N at high levels in Saccharomyces cerevisiae. The alpha 1- and beta 1-subunit cDNAs were inserted into a single 2-microns-based plasmid with a high and regulatable copy number and strong galactose-inducible promoters allowing for stoichiometric alterations of gene dosage. The protease-deficient host strain was engineered to express high levels of GAL4 transactivating protein, thereby causing a 10-fold increase in expression to 32,500 +/- 3,000 [3H]ouabain sites/cell. In one bioreactor run 150-200 g of yeast were produced with 54 +/- 5 micrograms of Na,K-pump protein/g of cells. Through purification in membrane bound form the activity of the recombinant Na,K-ATPase was increased to 42-50 pmol/mg of protein. The Na,K dependence of ATP hydrolysis and the molar activity (4,500-7,000 min-1) were close to those of native pig kidney Na,K-ATPase. Mutations to the phosphorylation site (D369N) or presumptive cation sites (D807N), both devoid of Na,K-ATPase activity, were expressed in the yeast membrane at the same alpha-subunit concentration and [3H]ouabain binding capacity as the wild type Na,K-ATPase. The high yield and absence of endogenous activity allowed assay of [3H]ATP binding at equilibrium, demonstrating a remarkable 18-fold increase in affinity for ATP in consequence of reducing the negative charge at the phosphorylation site (D369N).
Collapse
Affiliation(s)
- P A Pedersen
- Biomembrane Research Center, August Krogh Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
35
|
Tiemeyer M, Brandley B, Ishihara M, Swiedler S, Greene J, Hoyle G, Hill R. The binding specificity of normal and variant rat Kupffer cell (lectin) receptors expressed in COS cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49832-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|