1
|
Tabolacci C, Caruso A, Micai M, Galati G, Lintas C, Pisanu ME, Scattoni ML. Biogenic Amine Metabolism and Its Genetic Variations in Autism Spectrum Disorder: A Comprehensive Overview. Biomolecules 2025; 15:539. [PMID: 40305279 PMCID: PMC12025284 DOI: 10.3390/biom15040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Autism spectrum disorder (ASD) is a genetically heterogeneous syndrome characterized by repetitive, restricted, and stereotyped behaviors, along with persistent difficulties with social interaction and communication. Despite its increasing prevalence globally, the underlying pathogenic mechanisms of this complex neurodevelopmental disorder remain poorly understood. Therefore, the identification of reliable biomarkers could play a crucial role in enabling early screening and more precise classification of ASD subtypes, offering valuable insights into its physiopathology and aiding the customization of treatment or early interventions. Biogenic amines, including serotonin, histamine, dopamine, epinephrine, norepinephrine, and polyamines, are a class of organic compounds mainly produced by the decarboxylation of amino acids. A substantial portion of the genetic variation observed in ASD has been linked to genes that are either directly or indirectly involved in the metabolism of biogenic amines. Their potential involvement in ASD has become an area of growing interest due to their pleiotropic activities in the central nervous system, where they act as both neurotransmitters and neuromodulators or hormones. This review examines the role of biogenic amines in ASD, with a particular focus on genetic alterations in the enzymes responsible for their synthesis and degradation.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Angela Caruso
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Martina Micai
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Giulia Galati
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Maria Elena Pisanu
- Core Facilities, High Resolution NMR Unit, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Luisa Scattoni
- Coordination and Promotion of Research, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.C.); (M.M.); (G.G.); (M.L.S.)
| |
Collapse
|
2
|
Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson's disease. Arch Biochem Biophys 2021; 704:108877. [PMID: 33864752 DOI: 10.1016/j.abb.2021.108877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
The molecular mechanisms underlying the degeneration and neuronal death associated with Parkinson's disease (PD) are not clearly understood. Several pathways and models have been explored in an overwhelming number of studies. Overall, from these studies, mitochondrial dysfunction and nitroxidative stress have emerged as major contributors to degeneration of dopaminergic neurons in PD. In addition, an excessive or inappropriate production of nitric oxide (•NO) and an abnormal metabolism of dopamine have been independently implicated in both processes. However, the participation of •NO in reactions with dopamine relevant to neurotoxicity strongly suggests that dopamine or its metabolites may be potential targets for •NO, affecting the physiological chemistry of both, •NO and dopamine. In this short review, we provide a critical and integrative appraisal of the nitric oxide-dopamine pathway we have previously suggested and that might be operative in PD. This pathway emphasizes a connection between abnormal dopamine and •NO metabolism, which may potentially converge in an integrated mechanism with toxic cellular outcomes. In particular, it encompasses the synergistic interaction of •NO with 3,4-dihydroxyphenylacetic acid (DOPAC), a major dopamine metabolite, leading to dopaminergic cell death via mechanisms that involve mitochondrial dysfunction, gluthathione depletion and nitroxidative stress.
Collapse
|
3
|
Laranjinha J, Nunes C, Ledo A, Lourenço C, Rocha B, Barbosa RM. The Peculiar Facets of Nitric Oxide as a Cellular Messenger: From Disease-Associated Signaling to the Regulation of Brain Bioenergetics and Neurovascular Coupling. Neurochem Res 2020; 46:64-76. [PMID: 32193753 DOI: 10.1007/s11064-020-03015-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
In this review, we address the regulatory and toxic role of ·NO along several pathways, from the gut to the brain. Initially, we address the role on ·NO in the regulation of mitochondrial respiration with emphasis on the possible contribution to Parkinson's disease via mechanisms that involve its interaction with a major dopamine metabolite, DOPAC. In parallel with initial discoveries of the inhibition of mitochondrial respiration by ·NO, it became clear the potential for toxic ·NO-mediated mechanisms involving the production of more reactive species and the post-translational modification of mitochondrial proteins. Accordingly, we have proposed a novel mechanism potentially leading to dopaminergic cell death, providing evidence that NO synergistically interact with DOPAC in promoting cell death via mechanisms that involve GSH depletion. The modulatory role of NO will be then briefly discussed as a master regulator on brain energy metabolism. The energy metabolism in the brain is central to the understanding of brain function and disease. The core role of ·NO in the regulation of brain metabolism and vascular responses is further substantiated by discussing its role as a mediator of neurovascular coupling, the increase in local microvessels blood flow in response to spatially restricted increase of neuronal activity. The many facets of NO as intracellular and intercellular messenger, conveying information associated with its spatial and temporal concentration dynamics, involve not only the discussion of its reactions and potential targets on a defined biological environment but also the regulation of its synthesis by the family of nitric oxide synthases. More recently, a novel pathway, out of control of NOS, has been the subject of a great deal of controversy, the nitrate:nitrite:NO pathway, adding new perspectives to ·NO biology. Thus, finally, this novel pathway will be addressed in connection with nitrate consumption in the diet and the beneficial effects of protein nitration by reactive nitrogen species.
Collapse
Affiliation(s)
- João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal.
| | - Carla Nunes
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Cátia Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Bárbara Rocha
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| | - Rui M Barbosa
- Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Pólo 1, 3000-504, Coimbra, Portugal
| |
Collapse
|
4
|
Bortolato M, Floris G, Shih JC. From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency. J Neural Transm (Vienna) 2018; 125:1589-1599. [PMID: 29748850 DOI: 10.1007/s00702-018-1888-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/29/2018] [Indexed: 11/28/2022]
Abstract
The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct. Building on this discovery, subsequent studies were focused on the characterization of the role of MAOA in the neurobiology of antisocial conduct. MAO A knockout mice were found to display high levels of intermale aggression; however, further analyses of these mutants unveiled additional behavioral abnormalities mimicking the core symptoms of autism-spectrum disorder. These findings were strikingly confirmed in newly reported cases of Brunner syndrome. The role of MAOB in behavioral regulation remains less well-understood, even though Maob-deficient mice have been found to exhibit greater behavioral disinhibition and risk-taking responses, supporting previous clinical studies showing associations between low MAO B activity and impulsivity. Furthermore, lack of MAOB was found to exacerbate the severity of psychopathological deficits induced by concurrent MAOA deficiency. Here, we summarize how the convergence of clinical reports and behavioral phenotyping in mutant mice has helped frame a complex picture of psychopathological features in MAO-deficient individuals, which encompass a broad spectrum of neurodevelopmental problems. This emerging knowledge poses novel conceptual challenges towards the identification of the endophenotypes shared by autism-spectrum disorder, antisocial behavior and impulse-control problems, as well as their monoaminergic underpinnings.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, 30 S 2000 E, Salt Lake City, UT, 84112, USA.
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, L.S. Skaggs Hall, 30 S 2000 E, Salt Lake City, UT, 84112, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.,Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Critical role of c-jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury. Redox Biol 2015; 6:552-564. [PMID: 26491845 PMCID: PMC4625008 DOI: 10.1016/j.redox.2015.09.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
The mechanism by which c-Jun N-terminal protein kinase (JNK) promotes tissue injury is poorly understood. Thus we aimed at studying the roles of JNK and its phospho-target proteins in mouse models of acute liver injury. Young male mice were exposed to a single dose of CCl4 (50 mg/kg, IP) and euthanized at different time points. Liver histology, blood alanine aminotransferase, and other enzyme activities were measured in CCl4-exposed mice without or with the highly-specific JNK inhibitors. Phosphoproteins were purified from control or CCl4-exposed mice and analyzed by differential mass-spectrometry followed by further characterizations of immunoprecipitation and activity measurements. JNK was activated within 1 h while liver damage was maximal at 24 h post-CCl4 injection. Markedly increased phosphorylation of many mitochondrial proteins was observed between 1 and 8 h following CCl4 exposure. Pretreatment with the selective JNK inhibitor SU3327 or the mitochondria-targeted antioxidant mito-TEMPO markedly reduced the levels of p-JNK, mitochondrial phosphoproteins and liver damage in CCl4-exposed mice. Differential proteomic analysis identified many phosphorylated mitochondrial proteins involved in anti-oxidant defense, electron transfer, energy supply, fatty acid oxidation, etc. Aldehyde dehydrogenase, NADH-ubiquinone oxidoreductase, and α-ketoglutarate dehydrogenase were phosphorylated in CCl4-exposed mice but dephosphorylated after SU3327 pretreatment. Consistently, the suppressed activities of these enzymes were restored by SU3327 pretreatment in CCl4-exposed mice. These data provide a novel mechanism by which JNK, rapidly activated by CCl4, promotes mitochondrial dysfunction and acute hepatotoxicity through robust phosphorylation of numerous mitochondrial proteins. JNK was rapidly activated after carbon tetrachloride (CCl4) exposure. Activated JNK was translocated to mitochondria and phosphorylated many proteins. Many mitochondrial phosphoproteins were identified by mass-spec analysis. Mitochondrial ALDH2, α-KGDH, and complex I were inactivated by phosphorylation. JNK inhibition reduced phosphorylation of mitochondrial proteins and hepatotoxicity.
Collapse
|
6
|
Doorn JA, Florang VR, Schamp JH, Vanle BC. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat Disord 2014; 20 Suppl 1:S73-5. [PMID: 24262193 DOI: 10.1016/s1353-8020(13)70019-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neurotransmitter dopamine (DA) is important for numerous biological functions, including control of movement. Oxidation of DA to highly toxic and reactive species has been hypothesized to contribute to the selective neurodegeneration observed in Parkinson's disease (PD). DA catabolism is initiated by oxidative deamination via monoamine oxidase to yield 3,4-dihydroxyphenylacetaldehyde (DOPAL). Such metabolism can be problematic as it greatly increases the toxicity of DA by production of DOPAL, known to be a toxic and reactive intermediate. DOPAL undergoes carbonyl metabolism primarily via aldehyde dehydrogenase (ALDH) enzymes to a less toxic acid product. Previous studies from our laboratory have shown that cellular ALDH enzymes are sensitive towards products of oxidative stress and lipid peroxidation, which are thought to be elevated during PD pathogenesis. Inhibition of ALDH and the resulting accumulation of DOPAL are concerning as DOPAL is toxic to dopaminergic cells, readily modifies proteins and causes protein aggregation. In addition, pesticides with association between exposure and PD incidence can interfere with DA metabolism and trafficking and/or ALDH activity, directly or indirectly, yielding elevation of DOPAL. Therefore, impairment of carbonyl metabolism is a potential mechanistic link between cellular insult and generation of a toxic and reactive intermediate endogenous to dopamine neurons.
Collapse
Affiliation(s)
- Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
7
|
Bakala H, Ladouce R, Baraibar MA, Friguet B. Differential expression and glycative damage affect specific mitochondrial proteins with aging in rat liver. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2057-67. [PMID: 23906978 DOI: 10.1016/j.bbadis.2013.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated. In the present study, proteomic analyses looking at both changes at the expression level as well as to glycative modifications of the mitochondrial proteome were performed. Two-dimensional difference gel electrophoresis analysis revealed 16 differentially expressed proteins with aging. Thirteen exhibited a decreased expression and are crucial enzymes related to OXPHOS chain complex I/V components, TCA cycle or fatty acid β-oxidation reaction. On the other hand, 2 enzymes involved in fatty acid β-oxidation cycle were increased in aged mitochondria. Immunodetection and further identification of glycated proteins disclosed a set of advanced glycation end product-modified proteins, including 6 enzymes involved in the fatty acid β-oxidation process, and 2 enzymes of the TCA/urea cycles. A crucial antioxidant enzyme, catalase, was among the most strongly glycated proteins. In addition, several AGE-damaged enzymes (aldehyde dehydrogenase 2, medium chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA dehydrogenase) exhibited a decreased activity with age. Taken together, these data suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to (i) decreased expression of OXPHOS complex I/V components and (ii) glycative damage to key fatty acid β-oxidation and TCA/urea cycle enzymes.
Collapse
Affiliation(s)
- Hilaire Bakala
- Université Paris Diderot-Paris 7, Sorbonne Paris Cité, UFR SDV, 75205 Paris Cedex 13, France; Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 75252 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
8
|
Rodríguez-Gutiérrez G, Duthie GG, Wood S, Morrice P, Nicol F, Reid M, Cantlay LL, Kelder T, Horgan GW, Fernández-Bolaños Guzmán J, de Roos B. Alperujo extract, hydroxytyrosol, and 3,4-dihydroxyphenylglycol are bioavailable and have antioxidant properties in vitamin E-deficient rats-a proteomics and network analysis approach. Mol Nutr Food Res 2012; 56:1137-47. [DOI: 10.1002/mnfr.201100808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/24/2012] [Accepted: 03/12/2012] [Indexed: 01/21/2023]
Affiliation(s)
- Guillermo Rodríguez-Gutiérrez
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
- Instituto de la Grasa (CSIC); Sevilla Spain
| | - Garry G. Duthie
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| | - Sharon Wood
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| | - Phil Morrice
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| | - Fergus Nicol
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| | - Martin Reid
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| | - Louise L. Cantlay
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| | - Thomas Kelder
- TNO; Research Group Microbiology & Systems Biology; Zeist The Netherlands
| | | | | | - Baukje de Roos
- Rowett Institute of Nutrition & Health; University of Aberdeen; Aberdeen United Kingdom
| |
Collapse
|
9
|
Anderson DW, Schray RC, Duester G, Schneider JS. Functional significance of aldehyde dehydrogenase ALDH1A1 to the nigrostriatal dopamine system. Brain Res 2011; 1408:81-7. [PMID: 21784415 DOI: 10.1016/j.brainres.2011.06.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/18/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022]
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1) is a member of a superfamily of detoxification enzymes found in various tissues that participate in the oxidation of both aliphatic and aromatic aldehydes. In the brain, ALDH1A1 participates in the metabolism of catecholamines including dopamine (DA) and norepinephrine, but is uniquely expressed in a subset of dopaminergic (DAergic) neurons in the ventral mesencephalon where it converts 3,4-dihydroxyphenylacetaldehyde, a potentially toxic aldehyde, to 3,4-dihydroxyphenylacetic acid, a non toxic metabolite. Therefore, loss of ALDH1A1 expression could be predicted to alter DA metabolism and potentially increase neurotoxicity in ventral mesencephalic DA neurons. Recent reports of reduced levels of expression of both Aldh1a1 mRNA and protein in the substantia nigra (SN) of Parkinson's disease patients suggest possible involvement of ALDH1A1 in this progressive neurodegenerative disease. The present study used an Aldh1a1 null mouse to assess the influence of ALDH1A1 on the function and maintenance of the DAergic system. Results indicate that the absence of Aldh1a1 did not negatively affect growth and development of SN DA neurons nor alter protein expression levels of tyrosine hydroxylase, the DA transporter or vesicular monoamine transporter 2. However, absence of Aldh1a1 significantly increased basal extracellular DA levels, decreased KCl and amphetamine stimulated DA release and decreased DA re-uptake and resulted in more tyrosine hydroxylase expressing neurons in the SN than in wildtype animals. These data suggest that in young adult animals with deletion of the Aldh1a1 gene there is altered DA metabolism and dysfunction of the DA transporter and DA release mechanisms.
Collapse
Affiliation(s)
- David W Anderson
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
10
|
Inhibition and covalent modification of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite. Neurotoxicology 2011; 32:471-7. [PMID: 21514317 DOI: 10.1016/j.neuro.2011.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 11/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective loss of dopaminergic neurons, leading to a decrease of the neurotransmitter dopamine (DA). DA is metabolized by monoamine oxidase to 3,4-dihydroxyphenyacetaldehyde (DOPAL). While the mechanism of pathogenesis of PD is unknown, DOPAL has demonstrated the ability to covalently modify proteins and cause cell death at concentrations elevated from physiologic levels. Currently, the identities of protein targets of the aldehyde are unknown, but previous studies have demonstrated the ability of catechols and other DA-catabolism products to interact with and inhibit tyrosine hydroxylase (TH). Given that DOPAL is structurally related to DA and is a highly reactive electrophile, it was hypothesized to modify and inhibit TH. The data presented in this study positively identified TH as a protein target of DOPAL modification and inhibition. Furthermore, western blot analysis demonstrated a concentration-dependent decrease in antibody recognition of TH. DOPAL in cell lysate significantly inhibited TH activity as measured by decreased l-DOPA production. Inhibition of TH was semi-reversible, with the recovery of activity being time and concentration-dependent upon removal of DOPAL. These data indicate DOPAL to be a reactive DA-metabolite with the capability of modifying and inhibiting an enzyme important to DA synthesis.
Collapse
|
11
|
Upreti VV, Eddington ND, Moon KH, Song BJ, Lee IJ. Drug interaction between ethanol and 3,4-methylenedioxymethamphetamine ("ecstasy"). Toxicol Lett 2009; 188:167-72. [PMID: 19446252 PMCID: PMC3596109 DOI: 10.1016/j.toxlet.2009.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 01/02/2023]
Abstract
Alcohol (ethanol) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are frequently co-abused, but recent findings indicate a harmful drug interaction between these two agents. In our previous study, we showed that MDMA exposure inhibits the activity of the acetaldehyde (ACH) metabolizing enzyme, aldehyde dehydrogenase2 (ALDH2). Based on this finding, we hypothesized that the co-administration of MDMA and ethanol would reduce the metabolism of ACH and result in increased accumulation of ACH. Rats were treated with MDMA or vehicle and then administered a single dose of ethanol. Liver ALDH2 activity decreased by 35% in the MDMA-treated rats compared to control rats. The peak concentration and the area under the concentration versus time curve of plasma ACH were 31% and 59% higher, respectively, in the MDMA-ethanol group compared to the ethanol-only group. In addition, the MDMA-ethanol group had 80% higher plasma transaminase levels than the ethanol-only group, indicating greater hepatocellular damage. Our results not only support a drug interaction between MDMA and ethanol but a novel underlying mechanism for the interaction.
Collapse
Affiliation(s)
- Vijay V. Upreti
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Natalie D. Eddington
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Kwan-Hoon Moon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Insong J. Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
George AK, Anju TR, Paulose CS. Enhanced 5-HT(2A) receptors in brain stem and ALDH activity in brain stem and liver: 5-HT(2A) regulation on ALDH in primary hepatocytes cultures in vitro. Neurochem Res 2009; 34:1535-41. [PMID: 19288193 DOI: 10.1007/s11064-009-9940-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 02/24/2009] [Indexed: 11/26/2022]
Abstract
Brain serotonin (5-HT) modulates the neural effects of ethanol. In the present study, we investigated the changes in 5-HT level, 5-HT(2A) receptor binding and aldehyde dehydrogenase (ALDH) activity in brain stem and liver of ethanol treated rats and 5-HT(2A) regulation on ALDH in hepatocyte cultures in vitro. The 5-HT content in the brain stem and liver significantly decreased with an increased 5-HIAA/5-HT ratio in the ethanol treated rats compared to control. Scatchard analysis of [(3)H] (+/-)2,3-dimethoxyphenyl-1-[2-(-4-piperidine)-methanol] [(3)H] MDL 100907 against ketanserin in brain stem of ethanol treated rats showed a significant increase in B (max) without any change in K (d) compared to control. The competition curve for [(3)H] MDL 100907 against ketanserin fitted one-site model in both control and ethanol treated rats with unity as Hill slope value. A significant increase in V (max) of ALDH activity in liver and a significant decrease in K (m) in liver and brain stem of ethanol treated rats compared to control was observed. In 24 h culture studies, an increase in enzyme activity was observed in cells in medium with 10% ethanol. The elevated ALDH activity in ethanol treated cells was reversed to control level in presence of 10(-5) and 10(-7) M 5-HT. Ketanserin, an antagonist of 5-HT(2A), reversed the effect of 5HT on 10% ethanol induced ALDH activity in hepatocytes. Our results showed that there was a decreased 5-HT content with an enhanced 5-HT(2A) receptor and aldehyde dehydrogenase activity in the brain stem of alcohol treated rats and in vitro hepatocyte cultures. The enhanced ALDH activity in ethanol supplemented hepatocytes was reversed to control level in presence of 10(-5) and 10(-7) M 5-HT.
Collapse
Affiliation(s)
- Akash K George
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | | |
Collapse
|
13
|
Akash KG, Balarama KS, Paulose CS. Enhanced 5-HT(2A) receptor status in the hypothalamus and corpus striatum of ethanol-treated rats. Cell Mol Neurobiol 2008; 28:1017-25. [PMID: 18425575 PMCID: PMC11515037 DOI: 10.1007/s10571-008-9281-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 03/27/2008] [Indexed: 10/22/2022]
Abstract
AIM Brain is the major target for the actions of ethanol and it can affect the brain in a variety of ways. In the present study we have investigated the changes in 5-HT level and the 5-HT(2A) receptors in the ethanol-treated rats. METHODS Wistar adult male rats of 180-200 g body weight were given free access to 15% (v/v) (approx.7.5 g/Kg body wt./day) ethanol for 15 days. Controls were given free access to water for 15 days. Brain 5-HT and its metabolites were assayed by high performance liquid chromatography (HPLC) integrated with an electrochemical detector (ECD) fitted with C-18-CLS-ODS reverse phase column. 5-HT(2A) receptor binding assay was done with different concentrations of [3H] MDL 100907. RESULTS The hypothalamic 5-HT content significantly increased (P < 0.001) with a decreased (P < 0.001) 5-HIAA/5-HT turnover in the ethanol-treated rats when compared to control. The corpus striatum 5-HT content significantly decreased (P < 0.01) with increased (P < 0.01) 5-HIAA/5- HT turnovers in the ethanol-treated rats when compared to control. Scatchard analysis of [(3)H] MDL 100907 against ketanserin in hypothalamus showed a significant increase (P < 0.001) in B(max )with a decreased affinity (P < 0.001) in ethanol-treated rats when compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. An increased K(i) and log (EC(50)) value were also observed in ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in the corpus striatum of ethanol-treated rats showed a significant increase (P < 0.001) in B(max) and in affinity (P < 0.01) when compared to control. The change in affinity of the receptor protein in both corpus striatum and hypothalamus shows an altered receptor. The competition curve for [(3)H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. There was no significant change in K(i) and log (EC (50)) value in ethanol-treated rats when compared to control. CONCLUSION The present study demonstrated the enhanced 5-HT(2A) receptor status in hypothalamus and corpus striatum. The ethanol-induced enhanced 5-HT(2A) receptors in the hypothalamus and corpus striatum has clinical significance in the better management of ethanol addiction. This will have therapeutic application.
Collapse
Affiliation(s)
- K. G. Akash
- Molecular neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala India
| | - K. S. Balarama
- Molecular neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala India
| | - C. S. Paulose
- Molecular neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022 Kerala India
| |
Collapse
|
14
|
Nunes C, Almeida L, Laranjinha J. 3,4-Dihydroxyphenylacetic acid (DOPAC) modulates the toxicity induced by nitric oxide in PC-12 cells via mitochondrial dysfunctioning. Neurotoxicology 2008; 29:998-1007. [DOI: 10.1016/j.neuro.2008.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/09/2008] [Indexed: 01/12/2023]
|
15
|
Quintanilla ME, Bustamante D, Tampier L, Israel Y, Herrera-Marschitz M. Dopamine release in the nucleus accumbens (shell) of two lines of rats selectively bred to prefer or avoid ethanol. Eur J Pharmacol 2007; 573:84-92. [PMID: 17651729 DOI: 10.1016/j.ejphar.2007.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/14/2007] [Accepted: 06/18/2007] [Indexed: 11/16/2022]
Abstract
Lower tissue levels of dopamine and 5-hydroxytryptamine (5-HT) have been found in the nucleus accumbens of alcohol-naïve rats selectively bred to prefer ethanol than in rats bred to avoid it. These findings have led to the hypothesis that differences in the dopamine and 5-HT tone may be linked to ethanol preference. In the present study we used the in vivo microdialysis technique to determine the actual extracellular levels of dopamine, its metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPALD), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-HT and 5-hydroxyindolacetic acid (5-HIAA) in the shell of nucleus accumbens of rat lines selectively bred as either high-ethanol (UChB) or low-ethanol (UChA) drinkers. Basal extracellular levels of dopamine, DOPALD, DOPAC and HVA were lower in the shell of nucleus accumbens of ethanol-naïve UChB than in UChA rats. In agreement, when perfused with 100 microM d-amphetamine or 100 mM KCl lower dopamine increases were observed in nucleus accumbens of UChB rats compared to UChA rats, indicating lower cytosolic (d-amphetamine releasable) and vesicular (KCl releasable) dopamine pools in UChB animals. Since the experiments were performed in ethanol-naïve rats, the present results suggest an innate deficiency in the mesolimbic dopamine system of UChB rats. There were no line differences in basal, d-amphetamine or KCl stimulated 5-HT levels. Thus, the present findings support a role of dopamine, but not of 5-HT, as predictor of ethanol preference in UChB rats. Overall, data obtained are in agreement with previous reports in other rat lines showing that lower dopamine levels and its metabolites are associated with a genetic predisposition to ethanol preference.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Programme of Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine; PO Box 70,000 Santiago 7, Chile.
| | | | | | | | | |
Collapse
|
16
|
Moon KH, Abdelmegeed MA, Song BJ. Inactivation of cytosolic aldehyde dehydrogenase via S-nitrosylation in ethanol-exposed rat liver. FEBS Lett 2007; 581:3967-72. [PMID: 17673211 PMCID: PMC2693367 DOI: 10.1016/j.febslet.2007.07.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 06/22/2007] [Accepted: 07/12/2007] [Indexed: 01/02/2023]
Abstract
Aldehyde dehydrogenase (ALDH) isozymes are critically important in the metabolism of acetaldehyde, thus preventing its accumulation after ethanol-exposure. We previously reported that mitochondrial ALDH2 could be inactivated via S-nitrosylation in ethanol-exposed rats. This study was aimed at investigating whether cytosolic ALDH1, with a relatively-low-Km value (11-18 microM) for acetaldehyde, could be also inhibited in ethanol-exposed rats. Chronic or binge ethanol-exposure significantly decreased ALDH1 activity, which was restored by addition of dithiothreitol. Immunoblot analysis with the anti-S-nitroso-Cys antibody showed one immunoreactive band in the immunoprecipitated ALDH1 only from ethanol-exposed rats, but not from pair-fed controls, suggesting S-nitrosylation of ALDH1. Therefore inactivation of ALDH1 via S-nitrosylation can result in accumulation of acetaldehyde upon ethanol-exposure.
Collapse
Affiliation(s)
| | | | - Byoung-Joon Song
- To whom correspondence should be addressed: Dr. B. J. Song, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville pike, Bethesda, Maryland 20892-9410, USA, Phone: +1-301-496-3985; Fax: +1-301-594-3113; E-mail:
| |
Collapse
|
17
|
Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007; 59:125-50. [PMID: 17379813 DOI: 10.1124/pr.59.2.1] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aldehydes are highly reactive molecules formed during the biotransformation of numerous endogenous and exogenous compounds, including biogenic amines. 3,4-Dihydroxyphenylacetaldehyde is the aldehyde metabolite of dopamine, and 3,4-dihydroxyphenylglycolaldehyde is the aldehyde metabolite of both norepinephrine and epinephrine. There is an increasing body of evidence suggesting that these compounds are neurotoxic, and it has been recently hypothesized that neurodegenerative disorders may be associated with increased levels of these biogenic aldehydes. Aldehyde dehydrogenases are a group of NAD(P)+ -dependent enzymes that catalyze the oxidation of aldehydes, such as those derived from catecholamines, to their corresponding carboxylic acids. To date, 19 aldehyde dehydrogenase genes have been identified in the human genome. Mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria, and pyridoxine-dependent seizures, most of which are characterized by neurological abnormalities. Several pharmaceutical agents and environmental toxins are also known to disrupt or inhibit aldehyde dehydrogenase function. It is, therefore, possible to speculate that reduced detoxification of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde from impaired or deficient aldehyde dehydrogenase function may be a contributing factor in the suggested neurotoxicity of these compounds. This article presents a comprehensive review of what is currently known of both the neurotoxicity and respective metabolism pathways of 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde with an emphasis on the role that aldehyde dehydrogenase enzymes play in the detoxification of these two aldehydes.
Collapse
Affiliation(s)
- Satori A Marchitti
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
18
|
George AK, Balarama Kaimal S, Paulose CS. Decreased dopamine D(2) receptor function in cerebral cortex and brain stem: their role in hepatic ALDH regulation in ethanol treated rats. Mol Cell Biochem 2007; 304:181-8. [PMID: 17530188 DOI: 10.1007/s11010-007-9498-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
Ethanol exerts numerous pharmacological effects through its interaction with various neurotransmitters. The dopaminergic pathway is associated with cognitive, endocrine, and motor functions, and reinforcement of addictive substances or behaviours. Aldehyde dehydrogenase (ALDH) is a vital enzyme involved with alcohol metabolism and detoxification. In the present study, we investigated the role of cerebral cortex and brain stem dopamine D(2) receptors in the functional regulation on ALDH enzyme activity, in ethanol administrated rats. Two groups of rats were selected viz. control and alcoholic. Cerebral cortex, brain stem and the liver dopamine content was decreased significantly (P < 0.05, 0.05, 0.001, respectively) and homovanillic acid/dopamine (HVA/DA) ratio has significantly increased (P < 0.05, 0.001 and 0.001), respectively in ethanol treated rats when compared to control. Scatchard analysis of [(3)H]YM-09151-2 binding to synaptic membrane preparations of cerebral cortex and brain stem showed a significant decrease (P < 0.001, 0.05, respectively) in B (max) in ethanol treated rats compared to control and the K (d) also decreased significantly (P < 0.05). The ALDH analysis showed a significant increase (P < 0.05) in V (max) in cerebral cortex, plasma and liver of experimental rats when compared with control without having significant change in brain stem but with decreased K (m) (P < 0.001). Our results suggest that decreased function of dopamine mediated through DA D(2) receptor in the cerebral cortex and brain stem enhanced the brain, plasma and liver ALDH activity in ethanol treated rats. This ALDH regulation has significance to correct alcoholics from addiction due to allergic reaction observed in aldehyde accumulation.
Collapse
Affiliation(s)
- Akash K George
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala, India
| | | | | |
Collapse
|
19
|
Westerlund M, Belin AC, Felder MR, Olson L, Galter D. High and complementary expression patterns of alcohol and aldehyde dehydrogenases in the gastrointestinal tract: implications for Parkinson's disease. FEBS J 2007; 274:1212-23. [PMID: 17257171 DOI: 10.1111/j.1742-4658.2007.05665.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous movement disorder characterized by progressive degeneration of dopamine neurons in substantia nigra. We have previously presented genetic evidence for the possible involvement of alcohol and aldehyde dehydrogenases (ADH; ALDH) by identifying genetic variants in ADH1C and ADH4 that associate with PD. The absence of the corresponding mRNA species in the brain led us to the hypothesis that one cause of PD could be defects in the defense systems against toxic aldehydes in the gastrointestinal tract. We investigated cellular expression of Adh1, Adh3, Adh4 and Aldh1 mRNA along the rodent GI tract. Using oligonucleotide in situ hybridization probes, we were able to resolve the specific distribution patterns of closely related members of the ADH family. In both mice and rats, Adh4 is transcribed in the epithelium of tongue, esophagus and stomach, whereas Adh1 was active from stomach to rectum in mice, and in duodenum, colon and rectum in rats. Adh1 and Adh4 mRNAs were present in the mouse gastric mucosa in nonoverlapping patterns, with Adh1 in the gastric glands and Adh4 in the gastric pits. Aldh1 was found in epithelial cells from tongue to jejunum in rats and from esophagus to colon in mice. Adh3 hybridization revealed low mRNA levels in all tissues investigated. The distribution and known physiological functions of the investigated ADHs and Aldh1 are compatible with a role in a defense system, protecting against alcohols, aldehydes and formaldehydes as well as being involved in retinoid metabolism.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
20
|
Fernandez E, Koek W, Ran Q, Gerhardt GA, France CP, Strong R. Monoamine metabolism and behavioral responses to ethanol in mitochondrial aldehyde dehydrogenase knockout mice. Alcohol Clin Exp Res 2006; 30:1650-8. [PMID: 17010132 DOI: 10.1111/j.1530-0277.2006.00200.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND It is widely accepted that, in addition to removing acetaldehyde produced during the metabolism of ethanol, mitochondrial aldehyde dehydrogenase (ALDH2) functions in the pathway by which aldehyde metabolites of the monoamines dopamine (DA) and serotonin (5-HT) are converted to their acidic metabolites. Moreover, studies of ALDH2 inhibitors used for treating alcoholism suggest that their antidipsotropic effects may be related to inhibition of monoamine metabolism. Therefore, we examined the hypothesis that altered brain monoamine metabolism is related to the influence of ALDH2 on behavioral responses to ethanol. METHODS Mice were generated with a gene-trap mutation of the ALDH2 gene. ALDH2 mRNA was absent in ALDH2-/- mice. Western blot analysis of liver mitochondria confirmed the absence of ALDH2 protein in the ALDH2-/- mice. Wild-type and ALDH2-deficient mice were tested for the effects of different doses of ethanol on locomotor activity, ataxia, and a 2-bottle ethanol-water preference test. RESULTS Wild-type and ALDH2+/- mice preferred ethanol to water. However, ALDH2-/- mice drank significantly less ethanol than wild-type or ALDH2+/- mice. Locomotor activity and ataxia were significantly more affected by ethanol in ALDH2-/- mice than in wild-type or ALDH2+/- mice. There was no effect of genotype on levels of 5-HT, DA, or their precursors or metabolites in several brain regions, as measured by HPLCec. CONCLUSIONS The results indicate that: (1) the effect of the mutant genotype on behavioral responses to ethanol is unrelated to altered brain monoamine metabolism and (2) ALDH2 is not required for the metabolism of brain monoamines in vivo.
Collapse
Affiliation(s)
- Elizabeth Fernandez
- Research Service and Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA. Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology 2006; 28:76-82. [PMID: 16956664 DOI: 10.1016/j.neuro.2006.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/19/2006] [Accepted: 07/27/2006] [Indexed: 10/24/2022]
Abstract
Recent evidence indicates a role for oxidative stress and resulting products, e.g. 4-hydroxy-2-nonenal (4HNE) in the pathogenesis of Parkinson's disease (PD). 4HNE is a known inhibitor of mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme very important to the dopamine (DA) metabolic pathway. DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily to 3,4-dihydroxyphenylacetic acid (DOPAC) via ALDH2. The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Therefore, 4HNE produced via oxidative stress may inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. To test this hypothesis, ALDH2 in various model systems was treated with 4HNE and activity toward DOPAL measured. Incubation of human recombinant ALDH2 with 4HNE (1.5-30 microM) yielded inhibition of activity toward DOPAL. Furthermore, ALDH2 in rat brain mitochondrial lysate as well as isolated rat brain mitochondria was also sensitive to the lipid peroxidation product at low micromolar, as evident by a decrease in the rate of DOPAL to DOPAC conversion measured using HPLC. Taken together, these data indicate that 4HNE at low micromolar inhibits mitochondrial biotransformation of DOPAL to DOPAC, and generation of the lipid peroxidation product may represent a mechanism yielding aberrant levels of DOPAL, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to PD.
Collapse
Affiliation(s)
- V R Florang
- Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
22
|
Genova ML, Abd-Elsalam NM, Mahdy ESME, Bernacchia A, Lucarini M, Pedulli GF, Lenaz G. Redox cycling of adrenaline and adrenochrome catalysed by mitochondrial Complex I. Arch Biochem Biophys 2006; 447:167-73. [PMID: 16487923 DOI: 10.1016/j.abb.2006.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/13/2006] [Accepted: 01/14/2006] [Indexed: 11/16/2022]
Abstract
Complex I in bovine heart submitochondrial particles catalyses the NADH-supported generation of superoxide anion; adrenaline is oxidised by superoxide to adrenochrome that, on its hand, is reduced by Complex I, thus establishing a redox cycle that amplifies the superoxide production. The routes in Complex I for superoxide formation and for adrenochrome reduction appear to be different, since they have a different sensitivity to Complex I inhibitors. The results are discussed in terms of current assays for superoxide detection and of pathologies linked to catecholamine oxidation.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Biochimica "G. Moruzzi," Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Moon KH, Kim BJ, Song BJ. Inhibition of mitochondrial aldehyde dehydrogenase by nitric oxide-mediated S-nitrosylation. FEBS Lett 2005; 579:6115-20. [PMID: 16242127 PMCID: PMC1350915 DOI: 10.1016/j.febslet.2005.09.082] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 09/22/2005] [Indexed: 12/24/2022]
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) is responsible for the metabolism of acetaldehyde and other toxic lipid aldehydes. Despite many reports about the inhibition of ALDH2 by toxic chemicals, it is unknown whether nitric oxide (NO) can alter the ALDH2 activity in intact cells or in vivo animals. The aim of this study was to investigate the effects of NO on ALDH2 activity in H4IIE-C3 rat hepatoma cells. NO donors such as S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine, and 3-morpholinosydnonimine significantly increased the nitrite concentration while they inhibited the ALDH2 activity. Addition of GSH-ethylester (GSH-EE) completely blocked the GSNO-mediated ALDH2 inhibition and increased nitrite concentration. To directly demonstrate the NO-mediated S-nitrosylation and inactivation, ALDH2 was immunopurified from control or GSNO-treated cells and subjected to immunoblot analysis. The anti-nitrosocysteine antibody recognized the immunopurified ALDH2 only from the GSNO-treated samples. All these results indicate that S-nitrosylation of ALDH2 in intact cells leads to reversible inhibition of ALDH2 activity.
Collapse
Affiliation(s)
| | | | - Byoung J. Song
- Corresponding author. Fax: +1 301 594 3113., E-mail address: (B.J. Song)
| |
Collapse
|
24
|
Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev 2004; 56:331-49. [PMID: 15317907 DOI: 10.1124/pr.56.3.1] [Citation(s) in RCA: 680] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article provides an update about catecholamine metabolism, with emphasis on correcting common misconceptions relevant to catecholamine systems in health and disease. Importantly, most metabolism of catecholamines takes place within the same cells where the amines are synthesized. This mainly occurs secondary to leakage of catecholamines from vesicular stores into the cytoplasm. These stores exist in a highly dynamic equilibrium, with passive outward leakage counterbalanced by inward active transport controlled by vesicular monoamine transporters. In catecholaminergic neurons, the presence of monoamine oxidase leads to formation of reactive catecholaldehydes. Production of these toxic aldehydes depends on the dynamics of vesicular-axoplasmic monoamine exchange and enzyme-catalyzed conversion to nontoxic acids or alcohols. In sympathetic nerves, the aldehyde produced from norepinephrine is converted to 3,4-dihydroxyphenylglycol, not 3,4-dihydroxymandelic acid. Subsequent extraneuronal O-methylation consequently leads to production of 3-methoxy-4-hydroxyphenylglycol, not vanillylmandelic acid. Vanillylmandelic acid is instead formed in the liver by oxidation of 3-methoxy-4-hydroxyphenylglycol catalyzed by alcohol and aldehyde dehydrogenases. Compared to intraneuronal deamination, extraneuronal O-methylation of norepinephrine and epinephrine to metanephrines represent minor pathways of metabolism. The single largest source of metanephrines is the adrenal medulla. Similarly, pheochromocytoma tumor cells produce large amounts of metanephrines from catecholamines leaking from stores. Thus, these metabolites are particularly useful for detecting pheochromocytomas. The large contribution of intraneuronal deamination to catecholamine turnover, and dependence of this on the vesicular-axoplasmic monoamine exchange process, helps explain how synthesis, release, metabolism, turnover, and stores of catecholamines are regulated in a coordinated fashion during stress and in disease states.
Collapse
Affiliation(s)
- Graeme Eisenhofer
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Dr., MSC-1620, Bethesda, MD 20892-1620, USA.
| | | | | |
Collapse
|
25
|
Keung WM. Anti-dipsotropic isoflavones: the potential therapeutic agents for alcohol dependence. Med Res Rev 2003; 23:669-96. [PMID: 12939789 DOI: 10.1002/med.10049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Daidzin is the active principle of Radix puerariae (RP), an herbal remedy that has been used apparently safely and effectively for the treatment of "alcohol addiction" in China for more than a millennium. It has been shown to reduce alcohol consumption in all animal models tested to date. A link between daidzin's capacity to reduce alcohol consumption and its ability to increase liver mitochondrial monoamine oxidase (MAO): aldehyde dehydrogenase (ALDH-2) activity ratio has been established. Daidzin analogs that potently inhibit ALDH-2 but not MAO are the most anti-dipsotropic, whereas those that also inhibit MAO are not. On the basis of these findings, it was proposed that the liver mitochondrial MAO-ALDH-2 pathway is the primary site of action of daidzin and that a biogenic aldehyde derived from the action of MAO mediates its anti-dipsotropic action. Therefore, to design and synthesize more potent anti-dipsotropic analogs, structural features that would enhance ALDH-2 inhibition and/or decrease MAO inhibition needed to be evaluated. Structure-activity-relationship (SAR) studies have revealed that a sufficient set of criteria for a potent anti-dipsotropic analog is an isoflavone with a free 4'-OH function and a straight-chain alkyl at the 7 position that has a terminal polar function such as -OH, -COOH, or -NH2. The preferable chain lengths for the 7-O-omega-carboxy, 7-O-omega-hydroxy, and 7-O-omega-amino substituents are 5 < or = n < or = 10, 2 < or = n < or = 6, and n > or = 4, respectively. Analogs that meet these criteria have increased potency for ALDH-2 inhibition and/or decreased potency for MAO inhibition and are, therefore, likely to be potent anti-dipsotropic agents.
Collapse
Affiliation(s)
- Wing Ming Keung
- Department of Psychiatry, Massachusetts Mental Health Center, and Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, One Kendall Square, Building 600, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
26
|
Moncada C, Fuentes N, Lladser A, Encina G, Sapag A, Karahanian E, Israel Y. Use of an "acetaldehyde clamp" in the determination of low-KM aldehyde dehydrogenase activity in H4-II-E-C3 rat hepatoma cells. Alcohol 2003; 31:19-24. [PMID: 14615007 DOI: 10.1016/j.alcohol.2003.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The high-affinity (K(M)<1 microM) mitochondrial class 2 aldehyde dehydrogenase (ALDH2) metabolizes most of the acetaldehyde generated in the hepatic oxidation of ethanol. H4-II-E-C3 rat hepatoma cells have been found to express ALDH2. We report a method to assess ALDH2 activity in intact hepatoma cells that does not require mitochondrial isolation. To determine only the high-affinity ALDH2 activity it is necessary to keep constant low concentrations of acetaldehyde in the cells to minimize its metabolism by high-K(M) aldehyde dehydrogenases. To maintain both low and constant concentrations of acetaldehyde we used an "acetaldehyde clamp," which keeps acetaldehyde at a concentration of 4.2+/-0.4 microM. The clamp is attained by addition of excess yeast alcohol dehydrogenase, 14C-ethanol, and oxidized form of nicotinamide adenine dinucleotide (NAD(+)) to the hepatoma cell culture medium. The concentration of 14C-acetaldehyde attained follows the equilibrium constant of the alcohol dehydrogenase reaction. Thus, 14C-acetate is generated virtually by the low-K(M) aldehyde dehydrogenase activity. 14C-acetate is separated from the culture medium by an anionic resin and its radioactivity is determined. We showed that (1) acetate production is linear for 120 min, (2) addition of 160 microM cyanamide to the culture medium leads to a 75%-80% reduction of acetate generated, and (3) ALDH2 activity is dependent on cell-to-cell contact and increases after cells reach confluence. The clamp system allows the determination of ALDH2 activity in less than one million H4-II-E-C3 rat hepatoma cells. The specificity and sensitivity of the "acetaldehyde clamp" assay should be of value in evaluation of the effects of new agents that modify Aldh2 gene expression, as well as in the study of ALDH2 regulation in intact cells.
Collapse
Affiliation(s)
- Claudio Moncada
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, and Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
27
|
Murphy TC, Amarnath V, Gibson KM, Picklo MJ. Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A). J Neurochem 2003; 86:298-305. [PMID: 12871571 DOI: 10.1046/j.1471-4159.2003.01839.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elevated levels of 4-hydroxy-trans-2-nonenal (HNE) are implicated in the pathogenesis of numerous neurodegenerative disorders. Although well-characterized in the periphery, the mechanisms of detoxification of HNE in the CNS are unclear. HNE is oxidized to a non-toxic metabolite in the rat cerebral cortex by mitochondrial aldehyde dehydrogenases (ALDHs). Two possible ALDH enzymes which might oxidize HNE in CNS mitochondria are ALDH2 and succinic semialdehyde dehydrogenase (SSADH/ALDH5A). It was previously established that hepatic ALDH2 can oxidize HNE. In this work, we tested the hypothesis that SSADH oxidizes HNE. SSADH is critical in the detoxification of the GABA metabolite, succinic semialdehyde (SSA). Recombinant rat SSADH oxidized HNE and other alpha,beta-unsaturated aldehydes. Inhibition and competition studies in rat brain mitochondria showed that SSADH was the predominant oxidizing enzyme for HNE but only contributed a portion of the total oxidizing activity in liver mitochondria. In vivo administration of diethyldithiocarbamate (DEDC) effectively inhibited (86%) ALDH2 activity but not HNE oxidation in liver mitochondria. The data suggest that a relationship between the detoxification of SSA and the neurotoxic aldehyde HNE exists in the CNS. Furthermore, these studies show that multiple hepatic aldehyde dehydrogenases are able to oxidize HNE.
Collapse
Affiliation(s)
- Tonya C Murphy
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The present review summarizes the findings of the effects of extracts of purified compounds from several plants on alcohol intake in alcohol-preferring rats. These include St. John's wort (Hypericum perforatum, HPE), kudzu (Pueraria lobata) and ibogaine (Tabernanthe iboga). Alcohol-preferring (P), Marchigian Sardinian (msP), high-alcohol-drinking (HAD), Fawn-Hooded (FH) rats were allowed to drink alcohol or water voluntarily to establish baseline levels. Pure compounds (puerarin, daidzin, daidzein or analogs) isolated from kudzu, extracts from HPE or ibogaine and its analog were given by either intraperitoneal or oral administration. After acute administration, all agents dose-dependently reduced alcohol intake with minimal effects on food intake. Puerarin and HPE were also effective following chronic treatment. Overall, it is clear that pure compounds (daidzin, puerarin), extracts from St. John's wort, ibogaine and an ibogaine analog suppress alcohol intake in animal models of excessive drinking with minimal effects on other appetitive behaviors. Although the true mechanisms of action of these compounds on alcohol intake are not fully understood, with the current information, it appears that these compounds exert their effects by modulating several neuronal systems implicated in drinking behavior. However, their role in the future of pharmacotherapy for alcoholism will depend upon the outcome of carefully conducted clinical trials.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry, Duke University Medical Center, Box 3412, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
29
|
Niknahad H, Shuhendler A, Galati G, Siraki AG, Easson E, Poon R, O'Brien PJ. Modulating carbonyl cytotoxicity in intact rat hepatocytes by inhibiting carbonyl metabolizing enzymes. II. Aromatic aldehydes. Chem Biol Interact 2003; 143-144:119-28. [PMID: 12604196 DOI: 10.1016/s0009-2797(02)00195-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular cytotoxic mechanisms of dietary benzaldehydes towards hepatocytes and its modulation by metabolizing enzymes were compared. Salicylaldehyde was found to be the most cytotoxic followed by cinnamaldehyde and both rapidly depleted some glutathione before an inhibition of respiration occurred, which preceded cell lysis. Reactive oxygen species were formed, but lipid peroxidation was induced with cinnamaldehyde, but not salicylaldehyde. Glutathione depleted hepatocytes were more susceptible to cytotoxicity. Mitochondrial toxicity and cytotoxicity were prevented by glycolytic substrates (e.g. fructose), citric acid cycle substrates (e.g. glutamine) or cyclosporin, the mitochondrial permeability transition inhibitor. Inhibition of mitochondrial ALDH with chloral hydrate, crotonaldehyde or citral or decreasing mitochondrial NAD+ with rotenone increased cinnamaldehyde induced cytotoxicity with a much smaller effect on salicylaldehyde induced cytotoxicity. Cyanamide was the most effective ALDH inhibitor for increasing cinnamaldehyde induced cytotoxicity, presumably because cyanamide also inhibits microsomal ALDH. Although cinnamaldehyde was a better substrate than salicylaldehyde for ADH1, cytosolic NADH generators (e.g. xylitol) prevented salicylaldehyde and cinnamaldehyde cytotoxicity similarly. This could be explained as salicylaldehyde was not a substrate for the ALDHs and would then be more dependent on ADH for detoxification.
Collapse
Affiliation(s)
- Hossein Niknahad
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, 71345, Fars, Iran
| | | | | | | | | | | | | |
Collapse
|
30
|
Overstreet DH, Keung WM, Rezvani AH, Massi M, Lee DYW. Herbal remedies for alcoholism: promises and possible pitfalls. Alcohol Clin Exp Res 2003; 27:177-85. [PMID: 12605067 DOI: 10.1097/01.alc.0000051022.26489.cf] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the findings of the effects on alcohol intake in alcohol-preferring rats of extracts or purified compounds from two of the most promising herbs: kudzu (Pueraria lobata) and St. John's Wort (Hypericum perforatum). It is a summary of a symposium presented at the 2002 RSA meeting in San Francisco. The meeting organizers/co-chairs were David Overstreet and Wing-Ming Keung. The presentations were (1) Introduction to the symposium, by David Y. W. Lee and David H. Overstreet; (2) Effects of daidzin on alcohol intake-search for mechanisms of action, by Wing-Ming Keung; (3) Long-term suppressive effects of puerarin on alcohol drinking in rats, by David Overstreet and David Y. W. Lee; (4) St. John's Wort extract reduces alcohol intake in FH and P rats, by Amir Rezvani and David Overstreet; and (5) extracts reduce alcohol intake in Marchigian Sardinian alcohol-preferring rats, by Maurizio Massi.
Collapse
Affiliation(s)
- David H Overstreet
- Bowles Center for Alchohol Studies (DHO), University of North Carolina, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
This study aimed to characterize the redox interaction between 3,4-dihydroxyphenylacetic acid (DOPAC) and nitric oxide (.NO), and to assess the reductive and oxidative decay pathways of the DOPAC semiquinone originating from this interaction. The reaction between DOPAC and.NO led to the formation of the DOPAC semiquinone radical, detected by electron paramagnetic resonance (EPR) and stabilized by Mg(2+), and the nitrosyl anion detected as nitrosylmyoglobin. The EPR signal corresponding to the DOPAC semiquinone was modulated as follows: (i) it was suppressed by glutathione and ascorbic acid with the formation of new EPR spectra corresponding to the glutathionyl and ascorbyl radical, respectively; (ii) it was enhanced by Cu,Zn-superoxide dismutase; the enzyme also accelerated the decay of the semiquinone species to DOPAC quinone. These results are interpreted as a one-electron oxidation of DOPAC by.NO; the reductive decay of the semiquinone back to DOPAC was facilitated by reducing agents, such as glutathione and ascorbate, whereas the oxidative decay to DOPAC quinone was facilitated by superoxide dismutase. The latter effect is understood in terms of a reversible conversion of nitrosyl anion to.NO by the enzyme. The biological relevance of these reactions is also discussed in terms of the reactivity of peroxynitrite towards DOPAC as a model with implications for aerobic conditions.
Collapse
Affiliation(s)
- João Laranjinha
- Faculty of Pharmacy and Center for Neurosciences, University of Coimbra, Couraça dos Apóstolos 51, r/c, 3000 Coimbra, Portugal.
| | | |
Collapse
|
32
|
Yang CS, Weiner H. Yeast two-hybrid screening identifies binding partners of human Tom34 that have ATPase activity and form a complex with Tom34 in the cytosol. Arch Biochem Biophys 2002; 400:105-10. [PMID: 11913976 DOI: 10.1006/abbi.2002.2778] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the accompany paper (Mukhopadhyay, A., Avramova, L. V. and Weiner, H., Arch. Biochem. Biophys.), it was shown that Tom34, a previously proposed putative translocase of the mitochondrial outer membrane, binds to the mature region of a precursor protein and appears to be a cytosol protein. Here Tom34 was used as bait in a yeast two-hybrid screening to search for its potential binding partners. Two of the identified proteins were the ATPase-related valosin-containing protein (VCP) and the lysosomal H(+)-transporting ATPase member M (ATP6M). Tom34 was found primarily in the cytosol while VCP and ATP6M were found in the cytosol as well as in nonmitochondrial organelles. Tom34 formed a approximately 400-kDa complex with them in the cytosol. Tom34 was found to possess a weak ATPase activity that did not change when associated with VCP. The tetratricopeptide repeat (TPR) motif region of Tom34 (residue 201-256) was responsible for binding to the other proteins. Tom34 appears not to be a member of the mitochondrial outer membrane translocase family but might function as a chaperone-like protein during protein translocation.
Collapse
Affiliation(s)
- Chun-Song Yang
- Biochemistry Department, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
33
|
Garver E, Tu Gc, Cao QN, Aini M, Zhou F, Israel Y. Eliciting the low-activity aldehyde dehydrogenase Asian phenotype by an antisense mechanism results in an aversion to ethanol. J Exp Med 2001; 194:571-80. [PMID: 11535626 PMCID: PMC2195938 DOI: 10.1084/jem.194.5.571] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 07/17/2001] [Indexed: 01/02/2023] Open
Abstract
A mutation in the gene encoding for the liver mitochondrial aldehyde dehydrogenase (ALDH2-2), present in some Asian populations, lowers or abolishes the activity of this enzyme and results in elevations in blood acetaldehyde upon ethanol consumption, a phenotype that greatly protects against alcohol abuse and alcoholism. We have determined whether the administration of antisense phosphorothioate oligonucleotides (ASOs) can mimic the low-activity ALDH2-2 Asian phenotype. Rat hepatoma cells incubated for 24 h with an antisense oligonucleotide (ASO-9) showed reductions in ALDH2 mRNA levels of 85% and ALDH2 (half-life of 22 h) activity of 55% equivalent to a >90% inhibition in ALDH2 synthesis. Glutamate dehydrogenase mRNA and activity remained unchanged. Base mismatches in the oligonucleotide rendered ASO-9 virtually inactive, confirming an antisense effect. Administration of ASO-9 (20 mg/kg/day for 4 d) to rats resulted in a 50% reduction in liver ALDH2 mRNA, a 40% inhibition in ALDH2 activity, and a fourfold (P < 0.001) increase in circulating plasma acetaldehyde levels after ethanol (1 g/kg) administration. Administration of ASO-9 to rats by osmotic pumps led to an aversion (-61%, P < 0.02) to ethanol. These studies provide a proof of principle that specific inhibition of gene expression can be used to mimic the protective effects afforded by the ALDH2-2 phenotype.
Collapse
MESH Headings
- Acetaldehyde/blood
- Alcohol Drinking/blood
- Alcohol Drinking/genetics
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Aldehyde Dehydrogenase, Mitochondrial
- Animals
- Asia/ethnology
- Asian People/genetics
- Cycloheximide/pharmacology
- Gene Expression Regulation, Enzymologic/drug effects
- Glutamate Dehydrogenase/metabolism
- Humans
- Liver/enzymology
- Liver Neoplasms, Experimental
- Male
- Mitochondria, Liver/enzymology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Phenotype
- RNA, Messenger/genetics
- Rats
- Rats, Inbred Lew
- Rats, Sprague-Dawley
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
- Water Deprivation
Collapse
Affiliation(s)
- E Garver
- Department of Pathology, Anatomy and Cell Biology, and the Alcohol Research Center, Thomas Jefferson University, Philadelphia PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Keung WM. Biogenic aldehyde(s) derived from the action of monoamine oxidase may mediate the antidipsotropic effect of daidzin. Chem Biol Interact 2001; 130-132:919-30. [PMID: 11306106 DOI: 10.1016/s0009-2797(00)00245-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Daidzin, a major active principle of an ancient herbal treatment for 'alcohol addiction', was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.
Collapse
Affiliation(s)
- W M Keung
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, 250 Longwood Avenue, 02115, Boston, MA, USA.
| |
Collapse
|
35
|
Jeong KS, Soh Y, Jeng J, Felder MR, Hardwick JP, Song BJ. Cytochrome P450 2E1 (CYP2E1)-dependent production of a 37-kDa acetaldehyde-protein adduct in the rat liver. Arch Biochem Biophys 2000; 384:81-7. [PMID: 11147839 DOI: 10.1006/abbi.2000.2119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol-inducible cytochrome P450 2E1 (CYP2E1) has been shown to be involved in the metabolism of both ethanol and acetaldehyde. Acetaldehyde, produced from ethanol metabolism, is highly reactive and can form various protein adducts. In this study, we investigated the role of CYP2E1 in the production of a 37-kDa acetaldehyde-protein adduct. Rats were pairfed an isocaloric control or an alcohol liquid diet with and without cotreatment of YH439, an inhibitor of CYP2E1 gene transcription, for 4 weeks. The soluble proteins from rat livers of each group were separated on SDS-polyacrylamide gels followed by immunoblot analysis using specific antibodies against the 37-kDa protein acetaldehyde adduct. In addition, catalytic activities of the enzymes involved in alcohol and acetaldehyde metabolism were measured and compared with the adduct level. Immunoblot analysis revealed that the 37-kDa adduct, absent in the pair-fed control, was evident in alcohol-fed rats but markedly reduced by YH439 treatment. Immunohistochemical analysis also showed that the 37-kDa adduct is predominantly localized in the pericentral region of the liver where CYP2E1 protein is mainly expressed. This staining disappeared in the pericentral region after YH439 treatment. The levels of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase isozymes were unchanged after YH439 treatment. However, the level of the 37-kDa protein adduct positively correlated with the hepatic content of P4502E1. These data indicate that the 37-kDa adduct could be produced by CYP2E1-mediated ethanol metabolism in addition to the ADH-dependent formation.
Collapse
Affiliation(s)
- K S Jeong
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kathmann EC, Lipsky JJ. Cloning and expression of a cDNA encoding a constitutively expressed rat liver cytosolic aldehyde dehydrogenase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:237-41. [PMID: 10352691 DOI: 10.1007/978-1-4615-4735-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- E C Kathmann
- Department of Pharmacology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
37
|
Keung WM, Vallee BL. Daidzin and its antidipsotropic analogs inhibit serotonin and dopamine metabolism in isolated mitochondria. Proc Natl Acad Sci U S A 1998; 95:2198-203. [PMID: 9482862 PMCID: PMC19293 DOI: 10.1073/pnas.95.5.2198] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/1997] [Indexed: 02/06/2023] Open
Abstract
Daidzin, a major active principle of an ancient Chinese herbal treatment (Radix puerariae) for alcohol abuse, selectively suppresses ethanol intake in all rodent models tested. It also inhibits mitochondrial aldehyde dehydrogenase (ALDH-2). Studies on ethanol intake suppression and ALDH-2 inhibition by structural analogs of daidzin established a link between these two activities and suggested that daidzin may suppress ethanol intake by inhibiting ALDH-2. ALDH-2 is a principal enzyme involved in serotonin (5-HT) and dopamine (DA) metabolism. Thus, daidzin may act by inhibiting 5-HT and DA metabolism. To evaluate this possibility, we have studied the effect of daidzin and its analogs on 5-HT and DA metabolism in isolated hamster and rat liver mitochondria. Daidzin potently inhibits the formation of 5-hydroxyindole-3-acetic acid (5-HIAA) and 3,4-dihydroxyphenylacetic acid (DOPAC) from their respective amines in isolated mitochondria. Inhibition is concentration-dependent and is accompanied by a concomitant accumulation of 5-hydroxyindole-3-acetaldehyde and 3, 4-dihydroxyphenylacetaldehyde. Daidzin analogs that suppress hamster ethanol intake also inhibit 5-HIAA and DOPAC formation. Comparing their effects on mitochondria-catalyzed 5-HIAA or DOPAC formation and hamster ethanol intake reveals a positive correlation-the stronger the inhibition on 5-HIAA or DOPAC formation, the greater the ethanol intake suppression. Daidzin and its active analogs, at concentrations that significantly inhibit 5-HIAA formation, have little or no effect on mitochondria-catalyzed 5-HT depletion. It appears that the antidipsotropic action of daidzin is not mediated by 5-HT (or DA) but rather by its reactive intermediates 5-hydroxyindole-3-acetaldehyde and, presumably, 3, 4-dihydroxyphenylacetaldehyde as well, which accumulates in the presence of daidzin.
Collapse
Affiliation(s)
- W M Keung
- Center for Biochemical and Biophysical Sciences and Medicine, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
38
|
Kathmann EC, Lipsky JJ. Cloning of a cDNA encoding a constitutively expressed rat liver cytosolic aldehyde dehydrogenase. Biochem Biophys Res Commun 1997; 236:527-31. [PMID: 9240474 DOI: 10.1006/bbrc.1997.6998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The presence of a constitutively expressed aldehyde dehydrogenase (ALDH) in the rat liver cytosol is controversial (Tottmar et al., 1973; Lindahl and Evces, 1984; Berger and Weiner, 1977; Tank et al., 1981; Truesdale-Mahoney et al., 1981; Cao et al., 1989). A cDNA encoding a constitutively expressed rat liver cytosolic class 1 ALDH was cloned using a PCR-based strategy. The open reading frame consisted of 1503 nucleotides which encoded a protein of 501 amino acids. In order to compare the rat and human nucleotide sequences, we sequenced the entire open reading frame of a human liver cytosolic ALDH cDNA clone (Zheng et al., 1993). Rat liver constitutively expressed cytosolic ALDH was 99.7, 91.8, 89.0, and 83.8% identical to rat kidney, mouse liver, rat liver phenobarbital-inducible, and human liver cytosolic class 1 ALDH cDNAs, respectively. Northern blot analysis indicated that constitutively expressed rat cytosolic ALDH mRNA is expressed in lung, kidney, liver, skeletal muscle, and testis, with weak expression in heart and brain. These results strongly suggest that a constitutively expressed ALDH is present in rat liver cytosol.
Collapse
Affiliation(s)
- E C Kathmann
- Clinical Pharmacology Unit, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
39
|
Sheikh S, Weiner H. Allosteric inhibition of human liver aldehyde dehydrogenase by the isoflavone prunetin. Biochem Pharmacol 1997; 53:471-8. [PMID: 9105397 DOI: 10.1016/s0006-2952(96)00837-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Isoflavonoid derivatives including prunetin (4',5-dihydroxy-7-methoxyisoflavone) were shown to be potent inhibitors of human aldehyde dehydrogenases (Keung W-M and Vallee BL, Proc Natl Acad Sci USA 90: 1247-1251, 1993). The inhibition reaction was reinvestigated using recombinantly expressed human aldehyde dehydrogenases. The kinetic analyses showed that prunetin inhibits competitively against both NAD and propionaldehyde with the mitochondrial and cytoplasmic enzymes. The Ki value for the mitochondrial enzyme was much lower than for the cytoplasmicenzyme. A mixed pattern of inhibition was obtaiend with the mitochondrial enzyme in the presence of Mg2+. Only one mole of prunetin binds per mole of tetrameric mitochondrial enzyme, which remains unaltered in the presence of Mg2+. Prunetin did not displace NADH from the enzyme-NADH complex. Propionaldehyde did not reverse the loss of fluorescence obtained due to enzyme-prunetin complex formation, indicating that prunetin may not be interacting at the substrate site. The esterase activity of the mitochondrial enzyme was also inhibited by prunetin in a competitive manner. The replacement of lysine 192 by glutamine resulted in a mutant with a 20% kcat and a 100-fold increase in the Km for NAI) compared with the native enzyme. However, the Ki value of prunetin against NAD was similar to that observed with the native enzyme. Prunetin, even at a very high concentration, was not an inhibitor of alcohol and malate dehydrogenase. It was concluded that prunetin may act as an allosteric inhibitor of aldehyde dehydrogenase.
Collapse
Affiliation(s)
- S Sheikh
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| | | |
Collapse
|
40
|
Kathmann EC, Lipsky JJ. A preliminary report on the cloning of a constitutively expressed rat liver cytosolic ALDH cDNA by PCR. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 414:69-72. [PMID: 9059608 DOI: 10.1007/978-1-4615-5871-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E C Kathmann
- Department of Pharmacology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
41
|
Sood C, O'Brien PJ. Chloroacetaldehyde-induced hepatocyte cytotoxicity. Mechanisms for cytoprotection. Biochem Pharmacol 1994; 48:1025-32. [PMID: 8093090 DOI: 10.1016/0006-2952(94)90374-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
2-Chloroacetaldehyde (CAA)-induced cytotoxicity in isolated hepatocytes was enhanced markedly if hepatocyte alcohol or aldehyde dehydrogenase was inhibited prior to CAA addition. Hepatocyte GSH depletion, ATP depletion and lipid peroxidation by CAA were also enhanced markedly. Furthermore, CAA was about 10- and 70-fold more cytotoxic than its oxidative or reductive metabolite chloroacetate or chloroethanol, respectively. Nutrients such as lactate, xylitol, sorbitol or glycerol, which increase cytosolic NADH levels, prevented CAA cytotoxicity in normal hepatocytes but further enhanced cytotoxicity toward alcohol dehydrogenase inactivated hepatocytes, suggesting that increased cytosolic NADH reduces CAA via alcohol dehydrogenase in normal hepatocytes but prevents CAA oxidation in alcohol dehydrogenase inactivated hepatocytes. However, increasing cytosolic NADH levels with ethanol or NADH-generating nutrients after CAA had been metabolized also prevented cytotoxicity and caused a partial ATP recovery, whereas oxidation of cytosolic NADH with pyruvate markedly increased cytotoxicity. This indicates that cytotoxic CAA concentrations cause oxidative stress and that ATP levels can be restored if cellular redox homeostasis is normalized with reductants. Furthermore, except for fructose, nutrients that did not increase NADH did not affect CAA-induced cytotoxicity. Fructose also caused a partial ATP recovery, and its protection was prevented by the glycolytic inhibitor fluoride. Hepatocytes isolated from fasted animals were 4- to 6-fold more susceptible to CAA-induced ATP depletion and cytotoxicity. No lipid peroxidation occurred at these lower CAA concentrations. Furthermore, all nutrients, including alanine, glutamine and glucose, prevented cytotoxicity toward hepatocytes isolated from fasted animals. The susceptibility of hepatocytes to CAA cytotoxicity, therefore, depends on both cellular redox homeostasis and cellular energy supply.
Collapse
Affiliation(s)
- C Sood
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Lee HS, Csallany AS. The influence of vitamin E and selenium on lipid peroxidation and aldehyde dehydrogenase activity in rat liver and tissue. Lipids 1994; 29:345-50. [PMID: 8015365 DOI: 10.1007/bf02537188] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Malondialdehyde (MDA) production and cytosolic aldehyde dehydrogenase (ALDH) response were examined in rat liver tissues after feeding different levels of dietary vitamin E and/or selenium and polyunsaturated fat for 12-38 wk. MDA production was significantly increased by vitamin E deficiency or by high levels of polyunsaturated fat intake, but not by selenium deficiency. The activity of cytosolic ALDH increased upon increased production of MDA after 12-16 wk of feeding the lipid peroxidation-inducing diets. However, ALDH activity was suppressed after 38 wk of feeding the vitamin E-deficient diet. The results indicate that the hepatic cytosolic ALDH may be involved in the metabolism of MDA during a relatively short-term increase in in vivo lipid peroxidation, but that ALDH activity becomes suppressed after more severe in vivo lipid peroxidation has been produced. Hepatic and plasma alpha-tocopherol levels and lipid peroxidation products were measured for the various dietary groups.
Collapse
Affiliation(s)
- H S Lee
- Department of Food Science and Nutrition, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
43
|
Pruñonosa Piera J, Obach R, Sagristá ML, Bozal J. Inhibition of rat hepatic mitochondrial aldehyde dehydrogenase isozymes by repeated cyanamide administration: pharmacokinetic-pharmacodynamic relationships. Biopharm Drug Dispos 1993; 14:419-28. [PMID: 8218960 DOI: 10.1002/bdd.2510140508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The inhibition of rat hepatic mitochondrial aldehyde dehydrogenase (ALDH) isozymes was studied in apparent steady-state conditions after repeated intra-peritoneal cyanamide administration. The low-Km mitochondrial ALDH isozyme was more susceptible to cyanamide-induced inhibition (DI50 = 0.104 mg kg-1) than the high-Km isozyme (DI50 = 8.52 mg kg-1), with almost complete inhibition occurring at 0.35 mg kg-1 total cyanamide administered for the low-Km isozyme. The relationships between plasma and liver cyanamide concentrations and the inhibition of high-Km ALDH were established by means of the sigmoid Imax model. The effect of dosing rate on the plasma concentration of cyanamide at apparent steady-state showed non-linearity, indicating that clearance or first-pass metabolism of cyanamide during its absorption after intraperitoneal administration did not remain constant throughout the range of doses studied.
Collapse
Affiliation(s)
- J Pruñonosa Piera
- Department of Biochemistry and Physiology, Faculty of Chemistry, University of Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Hurley TD, Yang Z, Bosron WF, Weiner H. Crystallization and preliminary X-ray analysis of bovine mitochondrial aldehyde dehydrogenase and human glutathione-dependent formaldehyde dehydrogenase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:245-50. [PMID: 8493900 DOI: 10.1007/978-1-4615-2904-0_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202
| | | | | | | |
Collapse
|
45
|
Abstract
Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs--1, 2, and 3--have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism. Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression. This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms. The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may an important determinant of the effectiveness of certain chemotherapeutic agents.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Lindahl
- Department of Biochemistry and Molecular Biology, University of South Dakota School of Medicine, Vermillion 57069
| |
Collapse
|
46
|
Carr LG, Mellencamp RJ, Crabb DW, Weiner H, Lumeng L, Li TK. Polymorphism of the rat liver mitochondrial aldehyde dehydrogenase cDNA. Alcohol Clin Exp Res 1991; 15:753-6. [PMID: 1755504 DOI: 10.1111/j.1530-0277.1991.tb00593.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In humans, a deficiency in mitochondrial aldehyde dehydrogenase (Class 2 ALDH) activity due to a single base-pair exchange in its structural gene serves as a deterrent to excessive alcohol consumption. Differences in Class 2 ALDH isozyme patterns on isoelectric focusing gels have been observed in the selectively bred, alcohol-preferring (P) and alcohol-nonpreferring (NP) lines of rats. To determine whether the differences are the result of sequence variation in the structural gene, we sequenced the cDNAs for Class 2 ALDH from P and NP rats. A synonymous exchange was seen in the codon for amino acid 473 in both lines, when compared with published sequences. Additionally, when the cDNA from P rats was used as reference, a substitution (G for A) was identified in the cDNA of NP rats which changes amino acid 67 from Gln (CAG codon; ALDH2Q allele) to Arg (CGG codon; ALDH2R allele). The Arg for Gln substitution makes the enzyme more basic and could account for the different electrophoretic mobilities. To determine whether the polymorphism was associated with drinking behavior, we genotyped the ALDH2 locus by amplifying rat genomic DNA encompassing the nucleotide exchange followed by probing with allele-specific oligonucleotides. There are highly significant differences in the frequencies of the two alleles in the P and NP rat lines. The frequency of the ALDH2R allele is 63% in the NP line and only 18% in the P line, whereas the frequency of the ALDH2Q allele is 82% in the P line and 37% in the NP line.
Collapse
Affiliation(s)
- L G Carr
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5121
| | | | | | | | | | | |
Collapse
|
47
|
Ambroziak W, Kurys G, Pietruszko R. Aldehyde dehydrogenase (EC 1.2.1.3): comparison of subcellular localization of the third isozyme that dehydrogenates gamma-aminobutyraldehyde in rat, guinea pig and human liver. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1991; 100:321-7. [PMID: 1799975 DOI: 10.1016/0305-0491(91)90382-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.
Collapse
Affiliation(s)
- W Ambroziak
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08855-0969
| | | | | |
Collapse
|
48
|
Wang TT, Pak YK, Weiner H. Effects of alcohol on the import of aldehyde dehydrogenase precursor into rat liver mitochondria. Alcohol Clin Exp Res 1990; 14:600-4. [PMID: 2221289 DOI: 10.1111/j.1530-0277.1990.tb01209.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously showed that incubation of rat liver mitochondria with alcohols resulted in the inhibition of the import of aldehyde dehydrogenase precursor but not that of ornithine transcarbamylase precursor (Wang TTY, Farrés J, and Weiner H: Arch Biochem Biophys 272:440-449, 1989). The time required for inhibition of import to occur was now measured with ethanol (200 mM) and butanol (100 mM) at 0 degree and 30 degrees C. It required approximately 30 min to achieve 50% inhibition with butanol and 50 min with ethanol. To further substantiate the membrane perturbing effects of alcohols, we also examined the effect of oleic acid on import. We found that incubation of mitochondria with oleic acid (0-100 microM) resulted in inhibition of aldehyde dehydrogenase precursor import in a dose response fashion. In addition to in vitro effects of alcohols on import, we conducted a preliminary study on import of protein into liver mitochondria isolated from rats fed ethanol. We found that the rate of aldehyde dehydrogenase precursor import into liver mitochondria isolated from ethanol fed rats was identical to that from control. The results are consistent with finding that the activity and amount of aldehyde dehydrogenase was the same in mitochondria isolated from the alcohol-fed or control animals.
Collapse
Affiliation(s)
- T T Wang
- Department of Biochemistry, Purdue University, West Lafayette University, Indiana 47907
| | | | | |
Collapse
|
49
|
Farrés J, Guan KL, Weiner H. Primary structures of rat and bovine liver mitochondrial aldehyde dehydrogenases deduced from cDNA sequences. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:67-74. [PMID: 2540003 DOI: 10.1111/j.1432-1033.1989.tb14616.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cDNA coding for rat liver mitochondrial aldehyde dehydrogenase was cloned and sequenced. It contained an open reading frame of 1557 bp. Of the deduced 519 amino acid residues, 19 were proposed to correspond to the signal peptide necessary to allow the protein to enter the mitochondria [Farrés, J., Guan, K.-L. and Weiner, H. (1987) Biochem. Biophys. Res. Commun. 150, 1083 - 1087]. The sequence of the 500 amino acid residues comprising the mature subunit was 96% identical to that of the corresponding human liver mitochondrial enzyme. The longest cDNA isolated coding for the bovine liver enzyme contained sequence information corresponding to residues 72 - 500 of the rat or human enzyme. The deduced protein sequence of these residues was 94% identical to those of the human enzyme. Over 60% of the bases in the coding region of the rat cDNA were G and C. These residues were clustered non-randomly and two potentially stable stem-loop structures could be calculated as existing in the mRNA. One would be found in the region coding for amino acid residues 64 - 79; a similar secondary structure could be responsible for the existing truncated cDNAs from the bovine-cDNA libraries. Comparisons with the amino acid sequences of other aldehyde dehydrogenases support the suggestion that the NAD-binding domain may be located in the middle portion of the mature enzyme.
Collapse
Affiliation(s)
- J Farrés
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | | | | |
Collapse
|
50
|
Mitchell DY, Petersen DR. Oxidation of aldehydic products of lipid peroxidation by rat liver microsomal aldehyde dehydrogenase. Arch Biochem Biophys 1989; 269:11-7. [PMID: 2916835 DOI: 10.1016/0003-9861(89)90081-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipid peroxidation in microsomal membranes produces a large number of aldehydes, alcohols, and ketones, some of which have been shown to be cytotoxic. This study has determined the kinetic parameters for the oxidation of aldehyde lipid peroxidation products by purified rat hepatic microsomal aldehyde dehydrogenase (ALDH). Livers were obtained from male Sprague-Dawley rats for preparation of microsomal ALDH which was purified 400-fold. Kinetic parameters, Vmax and V/K, were determined for saturated and unsaturated aldehydes of three to nine carbons in length in the presence of NAD+. Of the aldehydes examined, only acrolein and 4-hydroxynonenal were not oxidized by ALDH. The Vmax values (mumol NADH produced/min/mg protein) increased linearly with carbon chain length and ranged from 6.5 to 23 for the saturated series and 4.0 to 9.0 for the unsaturated aldehydes. The affinity constant V/K (nmol NADH produced/min/mg protein/nmol aldehyde/liter) also increased with carbon chain length and ranged from 12 to 9000 for the saturated aldehydes and 13 to 5300 for the unsaturated aldehydes. These results suggest that microsomal ALDH may serve a biological role for detoxification of reactive aldehydes produced by lipid peroxidation of microsomal membranes.
Collapse
Affiliation(s)
- D Y Mitchell
- Hepatobiliary Research Center, University of Colorado Health Sciences Center, Denver 80220
| | | |
Collapse
|