1
|
Genetic, transcriptomic, and epigenetic studies of HIV-associated neurocognitive disorder. J Acquir Immune Defic Syndr 2014; 65:481-503. [PMID: 24583618 DOI: 10.1097/qai.0000000000000069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Human Genome Project, coupled with rapidly evolving high-throughput technologies, has opened the possibility of identifying heretofore unknown biological processes underlying human disease. Because of the opaque nature of HIV-associated neurocognitive disorder (HAND) neuropathogenesis, the utility of such methods has gained notice among NeuroAIDS researchers. Furthermore, the merging of genetics with other research areas has also allowed for application of relatively nascent fields, such as neuroimaging genomics, and pharmacogenetics, to the context of HAND. In this review, we detail the development of genetic, transcriptomic, and epigenetic studies of HAND, beginning with early candidate gene association studies and culminating in current "omics" approaches that incorporate methods from systems biology to interpret data from multiple levels of biological functioning. Challenges with this line of investigation are discussed, including the difficulty of defining a valid phenotype for HAND. We propose that leveraging known associations between biology and pathology across multiple levels will lead to a more reliable and valid phenotype. We also discuss the difficulties of interpreting the massive and multitiered mountains of data produced by current high-throughput omics assays and explore the utility of systems biology approaches in this regard.
Collapse
|
2
|
Dilek A, Alacam H, Ulger F, Bedir A, Ulus A, Murat N, Okuyucu A, Polat F. Comparison of predictive powers of S100B and cell-free plasma DNA values in intensive care unit patients with intracranial hemorrhage. J Crit Care 2013; 28:883.e1-7. [PMID: 23683570 DOI: 10.1016/j.jcrc.2013.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate predictive powers of S100B and cell-free DNA (cfDNA) levels in patients in the intensive care unit (ICU) who have with intracranial hemorrhage (ICH) for prognosis. METHODS Ninety-nine patients diagnosed with ICH were included in the study. The blood samples were drawn on the day of admittance to ICU and again on the third day. Duration of stay in the ICU and mortality were recorded. RESULTS A positive correlation was determined between the values of S100B and cfDNA from both the analysis and the Acute Physiology and Chronic Health Evaluation II scores. For all patients, there was a positive correlation between the duration of stay in the ICU and the values of S100B and cfDNA on the third day. The levels of both S100B and cfDNA in patients who died in the ICU were significantly higher than of those who survived on the day of admittance. CONCLUSIONS Both S100B and cfDNA values can be used as markers to predict the prognosis of ICU patients with ICH. However, S100B is more powerful for predicting the prognosis.
Collapse
Affiliation(s)
- Ahmet Dilek
- Department of Anesthesiology and Reanimation, School of Medicine, Ondokuz Mayis University, Kurupelit, 55139 Samsun, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Levine AJ, Horvath S, Miller EN, Singer EJ, Shapshak P, Baldwin GC, Martínez-Maza O, Witt MD, Langfelder P. Transcriptome analysis of HIV-infected peripheral blood monocytes: gene transcripts and networks associated with neurocognitive functioning. J Neuroimmunol 2013; 265:96-105. [PMID: 24094461 DOI: 10.1016/j.jneuroim.2013.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/15/2013] [Accepted: 09/21/2013] [Indexed: 02/06/2023]
Abstract
UNLABELLED Immunologic dysfunction, mediated via monocyte activity, has been implicated in the development of HIV-associated neurocognitive disorder (HAND). We hypothesized that transcriptome changes in peripheral blood monocytes relate to neurocognitive functioning in HIV+ individuals, and that such alterations could be useful as biomarkers of worsening HAND. METHODS mRNA was isolated from the monocytes of 86 HIV+ adults and analyzed with the Illumina HT-12 v4 Expression BeadChip. Neurocognitive functioning, HAND diagnosis, and other clinical and virologic variables were determined. Data were analyzed using standard expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS Neurocognitive functioning was correlated with multiple gene transcripts in the standard expression analysis. WGCNA identified two nominally significant co-expression modules associated with neurocognitive functioning, which were enriched with genes involved in mitotic processes and translational elongation. CONCLUSIONS Multiple modified gene transcripts involved in inflammation, cytoprotection, and neurodegeneration were correlated with neurocognitive functioning. The associations were not strong enough to justify their use as biomarkers of HAND; however, the associations of two co-expression modules with neurocognitive functioning warrant further exploration.
Collapse
Affiliation(s)
- Andrew J Levine
- Department of Neurology, National Neurological AIDS Bank, David Geffen School of Medicine, University of California, Los Angeles, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ondruschka B, Pohlers D, Sommer G, Schober K, Teupser D, Franke H, Dressler J. S100B and NSE as useful postmortem biochemical markers of traumatic brain injury in autopsy cases. J Neurotrauma 2013; 30:1862-71. [PMID: 23796187 DOI: 10.1089/neu.2013.2895] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postmortem analysis of relevant biomarkers might aid in characterizing causes of death and survival times in legal medicine. However, there are still no sufficiently established results of practical postmortem biochemical investigations in cases of traumatic brain injury (TBI). The two biomarkers--S100 protein subunit B (S100B) and neuronal specific enolase (NSE)--could be of special interest. Therefore, the aim of the present study was to investigate changes in their postmortem levels for further determination of brain damage in TBI. In 17 cases of TBI (average age, 58 years) and in 23 controls with different causes of death (average age, 59 years), serum and cerebrospinal fluid (CSF) samples were analyzed with a chemiluminescence immunoassay for marker expression. An increase in serum S100B, as well as a subsequent decrease after survival times>4 days, were detected in TBI cases (p<0.01). CSF NSE values >6,000 ng/mL and CSF S100B levels >10,000 ng/mL seem to indicate a TBI survival time of at least 15 min (p<0.01). It is of particular interest that CSF S100B levels (p<0.01) and serum S100B levels (p<0.05) as well as CSF NSE values (p<0.01) were significantly higher in TBI cases in comparison to the controls, especially when compared with fatal non-head injuries. In conclusion, the present findings emphasize that S100B and NSE are useful markers in postmortem biochemistry in cases of suspected TBI. Further, S100B may be helpful to estimate the survival time of fatal injuries in legal medicine.
Collapse
Affiliation(s)
- Benjamin Ondruschka
- 1 Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig , Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Lee CY, Pappas GD, Kriho V, Huang BM, Yang HY. Proliferation of a subpopulation of reactive astrocytes following needle-insertion lesion in rat. Neurol Res 2013; 25:767-76. [PMID: 14579798 DOI: 10.1179/016164103101202156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is well known that traumatic injuries of the CNS induce a gliotic reaction, characterized by the presence of reactive astrocytes. Reactive astrocytes exhibit enhanced expression of the astrocyte-specific intermediate filament, glial fibrillary acidic protein (GFAP), hypertrophy, and thickened processes. Recently, we have demonstrated that injuries of the CNS induce a re-expression of an embryonic intermediate filament-associated protein, IFAP-70/280 kDa. Based on IFAP-70/280 kDa immunolabeling, we have shown that reactive astrocytes, activated by stab-wound injury, can be divided into two major groups: 1. persistent IFAP+/GFAP+ cells which are close to the wound in the area of glial scar, and 2. transient IFAP-/GFAP+ cells which are farther from the wound. In this study, we use BrdU incorporation to examine proliferation in these two groups of reactive astrocytes induced by stab injury of the rat cerebrum. Triple/double-label immunofluorescence microscopy was performed using antibodies to IFAP-70/280 kDa, GFAP, and BrdU. The results showed that BrdU+ reactive astrocytes (GFAP+) were always IFAB-70/280 kDa+ as well. However, not all IFAP+ reactive astrocytes are BrdU+. BrdU+ signal was not observed in any IFAP- reactive astrocytes. At five days post-lesion, IFAP+ reactive astrocytes were increasing in the area of the wound (0-50 micrograms from the wound edge), but had reached a peak in the proximal area (50-800 micrograms away from the wound edge). At eight days post-lesion, IFAP+ reactive astrocytes achieved the highest percentage in the wound area. At the same time, BrdU-containing reactive astrocytes occupied an area closer to the wound. By 20 days post-lesion, following the formation of the gliotic scar at the stab-wound, a few IFAP+/GFAP+ cells still persisted. BrdU-containing reactive astrocytes were only observed in the scar. These results indicate that many IFAP+ reactive astrocytes close to the wound, in contrast to the IFAP- ones farther from the wound, appear to regain their proliferative potential to increase in number and participate in the formation of the gliotic scar.
Collapse
Affiliation(s)
- Chung-Ying Lee
- Department of Zoology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
6
|
Lewis DK, Thomas KT, Selvamani A, Sohrabji F. Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol Aging 2012; 33:1123.e1-16. [PMID: 22154819 PMCID: PMC5636220 DOI: 10.1016/j.neurobiolaging.2011.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/07/2023]
Abstract
In middle-aged female rats, focal ischemia leads to a larger cortical infarction as compared with younger females. To determine if stroke-induced cytotoxicity in middle-aged females was associated with impaired astrocyte function, astrocytes were harvested and cultured from the ischemic cortex of young and middle-aged female rats. Middle-aged astrocytes cleared significantly less glutamate from media as compared with young female astrocytes. Furthermore, astrocyte-conditioned media from middle-aged female astrocytes induced greater migration of peripheral blood monocyte cells (PBMCs) and expressed higher levels of the chemoattractant macrophage inflammatory protein-1 (MIP-1). Middle-aged astrocytes also induced greater migration of neural progenitor cells (NPCs), however, their ability to promote neuronal differentiation of neural progenitor cells was similar to young astrocytes. In males, where cortical infarct volume is similar in young and middle-aged animals, no age-related impairment was observed in astrocyte function. These studies show that the aging astrocyte may directly contribute to infarct severity by inefficient glutamate clearance and enhanced cytokine production and suggest a cellular target for improved stroke therapy among older females.
Collapse
Affiliation(s)
- Danielle K. Lewis
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Kristen T. Thomas
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Amutha Selvamani
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| | - Farida Sohrabji
- Women’s Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A & M Health Science Center, College Station, TX, USA
| |
Collapse
|
7
|
Abstract
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.
Collapse
Affiliation(s)
- Mateja Prebil
- Laboratory of Neuroendocrinology and Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
8
|
Changes in nitric oxide content following injury to the neonatal rat brain. Brain Res 2011; 1367:319-29. [DOI: 10.1016/j.brainres.2010.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 01/05/2023]
|
9
|
Teepker M, Munk K, Mylius V, Haag A, Möller JC, Oertel WH, Schepelmann K. Serum concentrations of s100b and NSE in migraine. Headache 2009; 49:245-52. [PMID: 18783450 DOI: 10.1111/j.1526-4610.2008.01228.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The protein s100b indicates astrocytal damage as well as dysfunction of the blood-brain barrier (BBB), and neuron-specific enolase (NSE) is regarded as a marker for neuronal cell loss. Recently, s100b was shown to be a potentially useful marker for migraine in children. In this study, we investigated the levels of s100b and NSE in adult migraineurs during and after migraine attacks in order to gain some more insight into migraine pathophysiology. METHODS Serum levels of s100b and NSE were measured in 21 migraineurs and compared with 21 healthy subjects matched by sex and age. In migraineurs, blood samples were taken during a migraine attack and following a pain-free period of 2-4 days. RESULTS During migraine attacks elevated s100b levels could be observed. Maximal concentrations were detected in the pain-free period after 2-4 days. Regarding NSE, serum levels were decreased slightly during and after migraine bouts. CONCLUSIONS Our data suggest a prolonged disruption of BBB during and after migraine attacks. Other possible explanations concerning the detected serum levels of s100b and NSE will be discussed; however, neuronal cell death can be ruled out by the decreased serum concentrations of NSE. With regard to the results of the present study, further research is necessary to evaluate the role of s100b and NSE in migraine.
Collapse
Affiliation(s)
- Michael Teepker
- Department of Neurology, Philipps-University, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Bloomfield SM, McKinney J, Smith L, Brisman J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit Care 2007; 6:121-38. [PMID: 17522796 DOI: 10.1007/s12028-007-0008-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
S100B is a protein biomarker that reflects CNS injury. It can be measured in the CSF or serum with readily available immunoassay kits. The excellent sensitivity of S100B has enabled it to confirm the existence of subtle brain injury in patients with mild head trauma, strokes, and after successful resuscitation from cardiopulmonary arrest. The extent of S100B elevation has been found to be useful in predicting clinical outcome after brain injury. Elevations of S100B above certain threshold levels might be able to reliably predict brain death or mortality. A normal S100B level reliably predicts the absence of significant CNS injury. The specificity of S100B levels as a reflection of CNS injury is compromised by the findings that extra-cranial injuries can lead to elevations in the absence of brain injury. This potential problem can most likely be avoided by measuring serial S100B levels along with other biomarkers and carefully noting peripheral injuries. Serum markers GFAP and NSE are both more specific for CNS injury and have little to no extra-cranial sources. Sustained elevations of S100B over 24 h along with elevations of GFAP and NSE can more reliably predict the extent of brain injury and clinical outcomes. In the future, S100B measurements might reliably predict secondary brain injury and enable physicians to initiate therapeutic interventions in a timelier manner. S100B levels have been shown to rise hours to days before changes in ICP, neurological examinations, and neuroimaging tests. S100B levels may also be used to monitor the efficacy of treatments.
Collapse
Affiliation(s)
- Stephen M Bloomfield
- New Jersey Neuroscience, Institute JFK Hospital and Medical Center, Edison, NJ 08818, USA.
| | | | | | | |
Collapse
|
11
|
Elting JW, de Jager AE, Teelken AW, Schaaf MJ, Maurits NM, van der Naalt J, Sibinga CT, Sulter GA, De Keyser J. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci 2000; 181:104-10. [PMID: 11099719 DOI: 10.1016/s0022-510x(00)00442-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Temporal changes in serum S-100 protein levels were compared between patients with ischemic stroke, transient ischemic attack (TIA) and traumatic brain injury (TBI). In addition, S-100 levels were correlated with clinical severity and outcome. Measurements were done with a LIA-mat((R)) Sangtec((R)) 100 using an automated immunoluminometric assay. Serum S-100 was measured in 21 stroke patients, 18 TIA patients and ten TBI patients on days 1 (0-24 h), 2, 3, 4, 5 or 6 and 8 or 9. In a control group of 28 healthy volunteers one measurement was done. For the stroke and TIA patients, National Institutes of Health Stroke Scale (NIHSS) scores were obtained on admission and on day 10. For the TBI patients, Glasgow Coma Scale (GCS) scores were obtained on admission and Glasgow Outcome Scale (GOS) scores were obtained after 6 months. Changes in serum S-100 levels over the first 3 days were significantly different between stroke and TBI patients (P=0.014) and between stroke and TIA patients (P=0.006). Peak concentrations of S-100 were most often observed on day 3 or 4 after stroke and on day 1 or 2 after TBI. In the stroke patients individual S-100 peak levels correlated well with the NIHSS score on admission (r=0.58 P=0.014) and the change in NIHSS score between day 10 and day 1 (r=0.65, P=0. 005). In the TBI patients a good correlation between individual peak levels of S-100 and the GCS score on admission (r=-0.81, P=0.010) and the GOS score 6 months after the trauma was found (r=-0.87, P=0. 004). We conclude that there is a significant difference in temporal changes of S-100 levels between ischemic stroke and TBI patients. This suggests different pathophysiological mechanisms. The results of this study further confirm that peak levels of serum S-100 correlate with neurological deficit resulting from either stroke or TBI.
Collapse
Affiliation(s)
- J W Elting
- Department of Neurology, University Hospital Groningen, Hanzenplein 1, P.O. Box 30.001, 9700RB, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Niitsu Y, Hori O, Yamaguchi A, Bando Y, Ozawa K, Tamatani M, Ogawa S, Tohyama M. Exposure of cultured primary rat astrocytes to hypoxia results in intracellular glucose depletion and induction of glycolytic enzymes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:26-34. [PMID: 10640673 DOI: 10.1016/s0169-328x(99)00245-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the neurotrophic properties of astrocytes in response to ischemia, the current work focuses on the mechanism for cultured astrocytes to adapt to a hypoxic environment. Intracellular glucose levels in primary cultured rat astrocytes exposed to hypoxia fell by 30% within 24 h, in parallel with a decrease in glycogen stores. Glycolytic metabolism was crucial for cell survival during hypoxia, as 2-deoxyglucose resulted in rapid ATP depletion and cell death. The mechanism for maintaining glucose levels under these conditions appeared to be mobilization of glycogen stores, rather than increased extracellular uptake of glucose, as gluconolactone (an inhibitor of beta1-4 amyloglucosidase) induced a rapid fall in cellular ATP in cultures subjected to hypoxia, whereas cytochalasin B was without affect. Addition of cycloheximide diminished the viability of astrocytes in hypoxia, suggesting an obligatory role of de-novo gene expression to respond to hypoxia. Consistently, the results of differential display suggested the induction of glycolytic enzymes, including aldolase A (EC 4.1.2.13), hexokinase II (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1), and triosephosphate isomerase (EC 5.3.1.1) in the hypoxic culture. Marked induction of these glycolytic enzymes in hypoxic astrocytes was confirmed by Northern blot analysis. These data provide a theoretical basis to understand the ability of astrocytes to tolerate ischemic condition.
Collapse
Affiliation(s)
- Y Niitsu
- Department of Anatomy and Neuroscience, Osaka University Medical School, 2-2 Yamada-oka, Suita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pawliński R, Janeczko K. Intracerebral injection of interferon-gamma inhibits the astrocyte proliferation following the brain injury in the 6-day-old rat. J Neurosci Res 1997; 50:1018-22. [PMID: 9452016 DOI: 10.1002/(sici)1097-4547(19971215)50:6<1018::aid-jnr12>3.0.co;2-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study examines the influence of interferon-gamma (IFN-gamma) on the astrocyte proliferation in the rat brain injured within the early period of postnatal development. Six-day-old male rats received a lesion in the left cerebral hemisphere and a single injection of recombinant rat IFN-gamma into the lesion cavity. One or 2 days after the injury the rats were injected with 3H-thymidine. Brain sections were immunostained for glial fibrillary acidic protein (GFAP), subjected to autoradiography, and examined microscopically to record proliferating GFAP-immunopositive astrocytes labeled with 3H-thymidine. In the IFN-gamma-injected rats, a statistically significant decrease in the intensity of reactive astrocyte proliferation was revealed. On day 1 after injury the intensity of astrocyte proliferation showed dose-dependent changes. Relations between the astrocyte reactivity and multiple factors existing in the injured and IFN-gamma-injected brain are discussed. The results represent the first in vivo evidence of a dose-dependent action of IFN-gamma on the astrocyte proliferation in response to injury.
Collapse
Affiliation(s)
- R Pawliński
- Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
14
|
Tagliaferro P, Ramos AJ, López EM, Pecci Saavedra J, Brusco A. Neural and astroglial effects of a chronic parachlorophenylalanine-induced serotonin synthesis inhibition. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 32:195-211. [PMID: 9437667 DOI: 10.1007/bf02815176] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Serotonin (5HT) is one of the classical neurotransmitters expressed earlier in the embryonic rat brain, and it was proposed as a developmental signal in the central nervous system. In the adult brain, 5HT seems to be involved in neuronal plasticity. It was postulated that S-100 protein, a glial neurotrophic factor, could be modulated by 5HT probably through the glial 5HT1A receptors. In a model of chronic inhibition of endogenous 5HT synthesis produced by the daily administration of parachlorophenylalanine (PCPA) for 2 wk, we have studied by immunohistochemical methods and digital morphometric analysis the expression of two proteins present in rat brain astrocytes: glial fibrillary acidic protein (GFAP) and S-100 protein. The effectiveness of the PCPA treatment was tested by the use of specific anti-5HT antibodies that showed absence of 5HT fibers in 5HT innervation areas like frontal cortex and hippocampus. Different effects of PCPA treatment on serotoninergic raphe nuclei were observed: dorsal raphe nucleus (DRN) seemed to be more sensitive to the PCPA's action than ventral raphe nucleus (VRN). In DRN and in the two 5HT innervation areas studied, glial cells responded to the 5HT depletion induced by PCPA showing astrocytes with large and tortuous processes. Astrocytes from 5HT-depleted regions showed higher immunostaining for S-100 protein than controls. There was not any modification in optical density of S-100 protein immunostaining in VRN, the area less sensitive to PCPA treatment. These observations indicated that astrocytes are sensitive to the 5HT level, and in presence of low 5HT concentration in the intercellular space, astrocytes could react by synthesizing glial proteins like GFAP and S-100 protein.
Collapse
Affiliation(s)
- P Tagliaferro
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina U.B.A., Universidad de Buenos Aires, Paraguay, Argentina
| | | | | | | | | |
Collapse
|
15
|
Matsuo N, Ogawa S, Takagi T, Wanaka A, Mori T, Matsuyama T, Pinsky DJ, Stern DM, Tohyama M. Cloning of a putative vesicle transport-related protein, RA410, from cultured rat astrocytes and its expression in ischemic rat brain. J Biol Chem 1997; 272:16438-44. [PMID: 9195952 DOI: 10.1074/jbc.272.26.16438] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To elucidate the role of astrocytes in the stress response of the central nervous system to ischemia, early gene expression was evaluated in cultured rat astrocytes subjected to hypoxia/reoxygenation. Using differential display, a novel putative vesicle transport-related factor (RA410) was cloned from reoxygenated astrocytes. Analysis of the deduced amino acid sequence showed RA410 to be composed of domains common to vesicle transport-related proteins of the Sec1/Unc18 family, including Sly1p and Sec1p (yeast), Rop (Drosophila), Unc18 (Caenorhabditis elegans), and Munc18 (mammalian), suggesting its possible role in vesicular transport. Northern analysis of normal rat tissues showed the highest expression of RA410 transcripts in testis. When astrocyte cultures were subjected to a period of hypoxia followed by reoxygenation, induction of RA410 mRNA was observed within 15 min of reoxygenation, reaching a maximum by 60 min. At the start of reoxygenation, the addition of diphenyl iodonium, an NADPH oxidase inhibitor, blocked in parallel astrocyte generation of reactive oxygen intermediates and expression of RA410 message. In contrast, cycloheximide did not affect RA410 mRNA levels, indicating that RA410 is an immediate-early gene in the setting of reoxygenation. Using polyclonal antibody raised against an RA410-derived synthetic peptide, Western blotting of lysates from reoxygenated astrocytes displayed an immunoreactive band of approximately 70 kDa, the expression of which followed induction of the mRNA. Fractionation of astrocyte lysates on sucrose gradients showed RA410 antigen to be predominantly in the plasma membrane. Immunoelectron microscopic analysis demonstrated RA410 in large vesicles associated with the Golgi, but not in the Golgi apparatus itself, consistent with its participation in post-Golgi transport. Consistent with these in vitro data, RA410 expression was observed in rat brain astrocytes following transient occlusion of the middle cerebral artery. These data provide insight into a new protein (RA410) that participates in the ischemia-related stress response in astrocytes.
Collapse
Affiliation(s)
- N Matsuo
- Department of Anatomy and Neuroscience, Osaka University Medical School, 2-2 Yamada-oka, Suita City, Osaka 565, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lundberg C, Martínez-Serrano A, Cattaneo E, McKay RD, Björklund A. Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol 1997; 145:342-60. [PMID: 9217071 DOI: 10.1006/exnr.1997.6503] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The in vivo properties of four different neural stem cell lines, generated from embryonic striatum or hippocampus by immortalization with the temperature-sensitive (s) A58/U19 allele of the SV40 Large T-antigen, have been studied with respect to their ability to survive, differentiate, and integrate after transplantation to the adult rat striatum. The cells were labeled with [3H]thymidine prior to grafting, and combined autoradiography and immunohistochemistry was used to characterize their phenotypic differentiation within the adult brain environment. The results show that all four types of cells survived well, up to at least 1.5-6 months postgrafting, without any signs of tissue perturbation or tumor formation. The cells underwent, on average, 2-3 cell divisions during the first 5 days after implantation and exhibited extensive migration over a distance of 1-1.5 mm from the injection site to become morphologically integrated with the surrounding host striatum. The cell number and tissue distribution attained by 2 weeks remained stable for up to 6 months postgrafting with the exception of one cell line, which showed a 40% loss of cells between 2 and 6 weeks. Twice the number of [3H]thymidine-labeled cells were recovered when the cells were grafted into a 1-week-old excitotoxic striatal lesion, probably due to an increased proliferation of the cells in response to the neuron-depleting depleting lesion. The immortalized cells behaved as multipotent neural progenitors. The vast majority of the cells developed a glial-like morphology, 6-14% being clearly GFAP-positive; however, a small but consistent proportion of them (1-3%) expressed MAP-2 and exhibited neuron-like morphology. In mature transplants about 75-80% of the grafted cells were located in the striatal grey matter, and 10-15% in white matter, some of which are proposed to have differentiated into oligodendrocytes. Remaining 5-10% occurred around small blood vessels (resembling pericytes) and in the subventricular zone underneath the ependyma of the lateral ventricle. It is concluded that the ts cell lines are highly suitable for intracerebral transplantation and that they allow the creation of a regionally confined cellular chimeras where the graft-derived glial cells become stably integrated with the resident glial cell matrix.
Collapse
Affiliation(s)
- C Lundberg
- Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
17
|
Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T, Yanagi H. Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 1997; 230:94-9. [PMID: 9020069 DOI: 10.1006/bbrc.1996.5890] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have cloned a cDNA encoding the human 150 kDa oxygen-regulated protein (ORP150) from hypoxia-treated astrocytoma U373 cDNA library. The deduced amino acid sequence of 999 residues contains a signal peptide and an ER retention-like signal at the N- and C-termini, respectively. It has a striking sequence similarity (91% identity) with Chinese hamster 170 kDa glucose-regulated protein (GRP170). The N-terminal half of ORP150 exhibits significant similarity to the ATPase domain of HSP70 family proteins with well-conserved ATP binding motifs. Northern blot analysis revealed that induction of ORP150 in U373 cells was not limited to hypoxia but also observed by 2-deoxyglucose or tunicamycin treatment. Furthermore, tissue specificity of expression of ORP150 was quite similar to that of GRP78. These findings suggest that ORP150 participates in quality control of proteins in the ER in response to diverse environmental stresses.
Collapse
Affiliation(s)
- J Ikeda
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vecino E, Velasco A, Caminos E, Aijón J. Distribution of S100 immunoreactivity in the retina and optic nerve head of the teleost Tinca tinca L. Microsc Res Tech 1997; 36:17-25. [PMID: 9031258 DOI: 10.1002/(sici)1097-0029(19970101)36:1<17::aid-jemt2>3.0.co;2-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of S100 immunoreactivity within the normal and regenerating retina and optic nerve head of the teleost Tinca tinca L. has been investigated using the avidin-biotin complex (ABC) method and a polyclonal antibody against S100. Astrocytes and Müller cells were labeled with this antibody. This represents the first description of astrocytes localized in the optic nerve head and in the nerve fiber layer of the fish retina displaying a typical bipolar morphology. Horizontal cells in the inner nuclear layer were immunolabeled; we also observed species-specific S100 labeling of horizontal cells of the H1 subtype. No significant changes were seen in the S100 immunoreactive Müller cells, astrocytes, or horizontal cells in the tench retina after optic nerve crushing and during regeneration. These results might help to understand the function of glial cells in the normal and experimentally induced regenerating fish visual system.
Collapse
Affiliation(s)
- E Vecino
- Dpto. Biología Celular y Ciencias Morfológicas, Facultad de Medicina, Universidad del País Vasco, Vizcaya, Spain
| | | | | | | |
Collapse
|
19
|
Krushel LA, Sporns O, Cunningham BA, Crossin KL, Edelman GM. Neural cell adhesion molecule (N-CAM) inhibits astrocyte proliferation after injury to different regions of the adult rat brain. Proc Natl Acad Sci U S A 1995; 92:4323-7. [PMID: 7753806 PMCID: PMC41936 DOI: 10.1073/pnas.92.10.4323] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
After a penetrating lesion in the central nervous system, astrocytes enlarge, divide, and participate in creating an environment that adversely affects neuronal regeneration. We have recently shown that the neural cell adhesion molecule (N-CAM) partially inhibits the division of early postnatal rat astrocytes in vitro. In the present study, we demonstrate that addition of N-CAM, the third immunoglobulin-like domain of N-CAM, or a synthetic decapeptide corresponding to a putative homophilic binding site in N-CAM partially inhibits astrocyte proliferation after a stab lesion in the adult rat brain. Animals were lesioned in the cerebral cortex, hippocampus, or striatum with a Hamilton syringe and needle at defined stereotaxic positions. On one side, the lesions were concomitantly infused with N-CAM or with one of the N-CAM-related molecules. As a control, a peptide of the same composition as the N-CAM decapeptide but of random sequence was infused on the contralateral side of the brain. We consistently found that the population of dividing astrocytes was significantly smaller on the side in which N-CAM or one of the N-CAM-related molecules was infused than on the opposite side. The inhibition was greatest in the cortical lesion sites (approximately 50%) and was less pronounced in the hippocampus (approximately 25%) and striatum (approximately 20%). Two weeks after the lesion, the cerebral cortical sites infused with N-CAM continued to exhibit a significantly smaller population of dividing astrocytes than the sites on the opposite side. When N-CAM and basic fibroblast growth factor, which is known to stimulate astrocyte division in vitro, were coinfused into cortical lesion sites, astrocyte proliferation was still inhibited. These results suggest the hypothesis that, by reducing glial proliferation, N-CAM or its peptides may help create an environment that is more suitable for neuronal regeneration.
Collapse
Affiliation(s)
- L A Krushel
- Department of Neurobiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
20
|
Penkowa M, Moos T. Disruption of the blood-brain interface in neonatal rat neocortex induces a transient expression of metallothionein in reactive astrocytes. Glia 1995; 13:217-27. [PMID: 7782107 DOI: 10.1002/glia.440130308] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exposure of the adult rat brain parenchyma to zinc induces an increase in the intracerebral expression of the metal-binding protein, metallothionein, which is normally confined to astrocytes, ependymal cells, choroid plexus epithelial cells, and brain endothelial cells. Metallothionein is expressed only in diminutive amounts in astrocytes of the neonatal rat brain, which could imply that neonatal rats are devoid of the capacity to detoxify free metals released from a brain wound. In order to examine the influence of a brain injury on the expression of metallothionein in the neonatal brain, PO rats were subjected to a localized freeze lesion of the neocortex of the right temporal cortex. This lesion results in a disrupted blood-brain interface, leading to extravasation of plasma proteins. From 16 h, reactive astrocytosis, defined as an increase in the number and size of cells expressing GFAP and vimentin, was observed surrounding the neocortical lesion site. Astrocytes and pial cells situated adjacent to the area of injury also became positively stained for metallothionein. At 3-6 days post-lesion, the highest level of reactive astrocytes expressing metallothionein was observed. Neo-Timm staining revealed that histochemically reactive zinc had disappeared from the lesion site. Extracellular albumin and metallothionein-positive astrocytes were absent approximately 2 weeks after the lesion, whereas reactive astrocytosis was still observed. These results show that a lesion of the neonatal rat brain induces a transient expression of metallothionein in reactive astrocytes, probably as a response to metals released from the site of the brain injury.
Collapse
Affiliation(s)
- M Penkowa
- Institute of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
21
|
Maeda Y, Matsumoto M, Hori O, Kuwabara K, Ogawa S, Yan SD, Ohtsuki T, Kinoshita T, Kamada T, Stern DM. Hypoxia/reoxygenation-mediated induction of astrocyte interleukin 6: a paracrine mechanism potentially enhancing neuron survival. J Exp Med 1994; 180:2297-308. [PMID: 7964502 PMCID: PMC2191781 DOI: 10.1084/jem.180.6.2297] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To elucidate mechanisms underlying neuroprotective properties of astrocytes in brain ischemia, production of neurotrophic mediators was studied in astrocytes exposed to hypoxia/reoxygenation (H/R). Rat astrocytes subjected to H/R released increased amounts of interleukin (IL) 6 in a time-dependent manner, whereas levels of tumor necrosis factor and IL-1 remained undetectable. IL-6 transcripts were induced in hypoxia and the early phase of reoxygenation, whereas synthesis and release of IL-6 antigen/activity occurred during reoxygenation. Elevated levels of IL-6 mRNA were due, at least in part, to increased transcription, as shown by nuclear runoff analysis. The mechanism stimulating synthesis and release of IL-6 antigen by astrocytes was probably production of reactive oxygen intermediates (ROIs), which occurred within 15-20 minutes after placing hypoxia cultures back into normoxia, as the inhibitor diphenyl iodonium inhibited the burst of ROIs and subsequent IL-6 generation (blockade of nitric oxide formation had no effect on ROI generation or IL-6 production). Enhanced IL-6 generation was also observed in human astrocytoma cultures exposed to H/R. Survival of differentiated PC12 cells exposed to H/R was potentiated by conditioned medium from H/R astrocytes, an effect blocked by neutralizing anti-IL-6 antibody. In a gerbil model of brain ischemia, IL-6 activity was lower in the hippocampus, an area sensitive to ischemia, compared with IL-6 activity in the cortex, an area more resistant to ischemia. IL-6 antigen, demonstrated immunohistochemically, was increased in astrocytes from ischemic regions of gerbil brain. These data suggest that H/R enhances transcription of IL-6, resulting in increased translation and release of IL-6 antigen after the burst of ROI generated early during reoxygenation. Release of IL-6 from astrocytes could exert a paracrine neurotrophic effect in brain ischemia.
Collapse
Affiliation(s)
- Y Maeda
- Department of Immunoregulation, Osaka University, Suita City, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Korr H, Horsmann C, Schürmann M, Delaunoy JP, Labourdette G. Problems encountered when immunocytochemistry is used for quantitative glial cell identification in autoradiographic studies of cell proliferation in the brain of the unlesioned adult mouse. Cell Tissue Res 1994; 278:85-95. [PMID: 7525071 DOI: 10.1007/bf00305780] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have used sections of adult mouse brain to determine whether antibodies specific for oligodendroglia (anti-carbonic anhydrase II, CA II; anti-galactocerebroside, GC; anti-myelin basic protein, MBP) and astroglia (anti-glial fibrillary acidic protein, GFAP; anti-S 100 protein) are suitable for quantitative studies of the proliferation and subsequent differentiation of these cells. Unlesioned adult mice received a single injection of 3H-thymidine (TdR) and were killed between 1 h and 70 days later. Quantitative evaluations of autoradiographs of 2-microns-thick serial sections stained immunocytochemically with the antibodies mentioned above or with Richardson's method for histological control led to the following conclusions. Anti-GC and anti-MBP stained only the oligodendrocytic processes and, thus, cannot be used in well-myelinated brain areas. Anti-CA II stained only a portion of the differentiated oligodendrocytes, but no proliferating cells. Anti-S 100 protein recognized all the astrocytes, but also many (interfascicular) oligodendrocytes. Anti-GFAP stained only a few astrocytes in the unlesioned mouse; all astrocytes may become GFAP-immunopositive only after wounding the brain. Thus, in contrast to in vitro studies, immunocytochemical studies with these antibodies on sections of adult animals cannot be recommended for the quantitative analysis of cell proliferation. In addition, our results show that differentiated glial cells proliferate in adult mice. Astro- and oligodendrocytes divide with the same cell cycle parameters and mode of proliferation up to about 1 month after 3H-TdR injection. In contrast to oligodendrocytes, some astrocytes might re-enter the cycle after a few weeks of quiescence.
Collapse
Affiliation(s)
- H Korr
- Institute of Anatomy, RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
23
|
Lurie DI, Rubel EW. Astrocyte proliferation in the chick auditory brainstem following cochlea removal. J Comp Neurol 1994; 346:276-88. [PMID: 7962719 DOI: 10.1002/cne.903460207] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Astrocytes in the central nervous system (CNS) respond to injury and disease by proliferating and extending processes. The intermediate filament protein of astrocytes, glial fibrillary acidic protein (GFAP) also increases in astrocytes. These cells are called "reactive astrocytes" and are thought to play a role in CNS repair. We have previously demonstrated rapid increases (< 6 hours) in GFAP-immunoreactive and silver-impregnated glial processes in the chick cochlear nucleus, nucleus magnocellularis (NM), following cochlea removal or activity blockade of the eighth nerve. It was not known whether these changes were the result of glial proliferation, glial hypertrophy, or both. The present study examined the time course of astrocyte proliferation in NM following cochlea removal. Postnatal chicks received unilateral cochlea removal and survived for 6, 12, 18, 24, 36, 48, and 72 hours. Bromodeoxyuridine was used to label proliferating cells. The volume and number of labeled cells in NM was calculated for both the experimental and control sides of the brains for experimental animals was well as for unoperated control animals. A subset of astrocytes continuously divide in the normal posthatch chick brainstem. The percentage of labeled nuclei increases within NM 36 hours following cochlea removal and is robust by 48 hours. This increase is due to astrocyte proliferation within, rather than migration to, NM. These results indicate that rapid increases in GFAP following reduced activity are independent of cell proliferation. The time course of astrocyte proliferation suggests that cellular degeneration within the nucleus may play a role in upregulating astrocyte proliferation.
Collapse
Affiliation(s)
- D I Lurie
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle 98195
| | | |
Collapse
|
24
|
Janeczko K. Age-dependent changes in the proliferative response of S-100 protein-positive glial cells to injury in the rat brain. Int J Dev Neurosci 1994; 12:431-40. [PMID: 7817786 DOI: 10.1016/0736-5748(94)90027-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A mechanical injury was inflicted to the left cerebral hemisphere in rats of four age groups: newborns, 6, 14 and 30 days old. The injury was followed by [3H]thymidine injections at different time intervals. Brain sections were immunostained for S-100 protein and subjected to autoradiography. During microscopic observations of the injury region, locations and numbers of the autoradiographically labeled astrocytes expressing S-100 protein were recorded. On the basis of the observations, injury-induced changes in the total number of proliferating astrocytes, as well as in their distribution, were analysed quantitatively. In rats injured neonatally, as well as those injured on postnatal days 6 and 14, the reactive increase in the number of proliferating astrocytes began on the first post-traumatic day. In 30-day-old rats the increase was slower and appeared on day 2. The maximal increase in the astrocyte proliferative activity occurred in 6-day-old rats as early as day 1 after injury and was about eight times higher than that recorded in newborns, and nearly twice as high as that recorded in brains of 30-day-old rats. The results suggest that the intensity of astrocyte proliferative response to injury cannot be regarded as simply being proportional to the developmental progress of the brain tissue. Rather, these results indicate that changes in glial proliferative responses to injury follow a developmental time course, with a peak around the end of the first postnatal week.
Collapse
Affiliation(s)
- K Janeczko
- Department of Neuroanatomy, Jagiellonian University, Kraków, Poland
| |
Collapse
|
25
|
Giordana MT, Attanasio A, Cavalla P, Migheli A, Vigliani MC, Schiffer D. Reactive cell proliferation and microglia following injury to the rat brain. Neuropathol Appl Neurobiol 1994; 20:163-74. [PMID: 8072646 DOI: 10.1111/j.1365-2990.1994.tb01175.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The non-astrocytic cells which proliferate in the rat brain after the induction of an area of necrosis have been characterized and counted by means of combined in vivo bromodeoxyuridine (BrdU) administration and immunohistochemical demonstration of glial fibrillary acid protein (GFAP), vimentin, Ricinus communis agglutinin 120 (RCA-1), Griffonia simplicifolia B4 isolectin (GSI-B4), keratan sulphate (KS), carbonic anhydrase C (CA.C), transferrin (TF) and ferritin. Two days after the injury, 7.5% of the proliferating cells were GFAP-positive reactive astrocytes, 5.7% were RCA-1-positive cells and 17.4% were GSI-B4-positive cells. Lectin-binding cells had the microscopic and ultrastructural aspects of microglia; they proliferated around the needle track and in the corpus callosum. Microglia represented a large fraction of the proliferating cells. Evidence is presented for the origin of at least a proportion of perilesional astrocytes and microglia from the periventricular matrix, and of microglia from blood precursors. Other non-proliferating microglia cells transiently appeared in the normal brain around the wound, in agreement with the existence of two different microglia cell populations reacting with different modalities to an area of necrosis.
Collapse
Affiliation(s)
- M T Giordana
- Second Department of Neurology, University of Turin, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Hori O, Matsumoto M, Maeda Y, Ueda H, Ohtsuki T, Stern DM, Kinoshita T, Ogawa S, Kamada T. Metabolic and biosynthetic alterations in cultured astrocytes exposed to hypoxia/reoxygenation. J Neurochem 1994; 62:1489-95. [PMID: 7907652 DOI: 10.1046/j.1471-4159.1994.62041489.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the astrocyte response to hypoxia/reoxygenation, as a model relevant to the pathogenesis of ischemic injury, cultured rat astrocytes were exposed to hypoxia. On restoration of astrocytes to normoxia, there was a dramatic increase in protein synthesis within 3 h, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocyte lysates showed multiple induced bands on fluorograms. Levels of cellular ATP declined during the first 3 h of reoxygenation and the concentration of AMP increased to approximately 3.6 nmol/mg of protein within 1 h of reoxygenation. Reoxygenated astrocytes generated oxygen free radicals early after replacement into ambient air, and addition of diphenyliodonium, an NADPH oxidase inhibitor, diminished the generation of free radicals as well as the induction of several bands on fluorogram. Although addition of cycloheximide on reoxygenation resulted in inhibition of both astrocyte protein synthesis and accumulation of cellular AMP, it caused cell death within 6 h, suggesting the importance of protein synthesis in adaptation of hypoxic astrocytes to reoxygenation. Potential physiologic significance of biosynthetic products of astrocytes in hypoxia/reoxygenation was suggested by the recovery of glutamate uptake. These results indicate that the astrocyte response to hypoxia/reoxygenation includes generation of oxygen free radicals and de novo synthesis of products that influence cell viability and function in ischemia.
Collapse
Affiliation(s)
- O Hori
- First Department of Medicine, Osaka University Medical School Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Janeczko K. Co-expression of GFAP and vimentin in astrocytes proliferating in response to injury in the mouse cerebral hemisphere. A combined autoradiographic and double immunocytochemical study. Int J Dev Neurosci 1993; 11:139-47. [PMID: 8328297 DOI: 10.1016/0736-5748(93)90074-n] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Changes in the distribution of proliferating astrocytes expressing glial fibrillary acidic protein (GFAP) and/or vimentin were examined in the injured cerebral hemisphere in adult mice. The injury was followed by [3H]thymidine injections at different time intervals. The brain sections were doubly immunostained for GFAP and vimentin and subjected to autoradiography. In that way three cell types were distinguished immunocytochemically: (1) astrocytes co-expressing glial fibrillary acidic protein (GFAP) and vimentin, (2) astrocytes expressing only GFAP and (3) astrocyte-like cells expressing vimentin. Thereafter, numbers of immunopositive and autoradiographically labelled cells and their locations within the region of injury were recorded at each stage of the experiment. Two hours as well as 1 day after the injury proliferation of GFAP-positive astrocytes and of those co-expressing GFAP and vimentin could only be seen as statistically insignificant phenomena. On day 2 the reactive proliferation of each immunocytochemically defined cell type was already maximal, then gradually decreased and its last signs were recorded on day 8. On day 2, among all the proliferating GFAP-positive astrocytes, 67.2% were also vimentin-positive. Later, the proportion declined to 50.7% and 38.5% on days 4 and 8, respectively. The labelled astrocyte-like vimentin-positive cells were located closest to the lesion margins. In comparison, the astrocytes co-expressing GFAP and vimentin and those expressing exclusively GFAP, occupied regions progressively farther from the lesion site. At the initial stages of the response to injury, vimentin expression in cells starting their reactive proliferation did not precede the expression of GFAP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Janeczko
- Department of Neuroanatomy, Jagiellonian University, Kraków, Poland
| |
Collapse
|
28
|
Schiffer D, Giordana MT, Cavalla P, Vigliani MC, Attanasio A. Immunohistochemistry of glial reaction after injury in the rat: double stainings and markers of cell proliferation. Int J Dev Neurosci 1993; 11:269-80. [PMID: 7687086 DOI: 10.1016/0736-5748(93)90085-r] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The astrocytic reaction in the rat after brain injury has been studied immunohistochemically for intermediate filaments (GFAP and vimentin), also with double staining procedures, and for markers of proliferation (BrdU and PCNA). GFAP-positive reactive astrocytes appeared around the lesion, where they were vimentin-positive and at a distance. BrdU and PCNA showed a high labelling index around the wound at day 2 and scattered positive nuclei were also found at a distance in the ipsilateral side. BrdU-positive astrocytes represented a minor fraction of GFAP- and vimentin-positive astrocytes. The expression of vimentin persisted at least 15 days after the lesion. Our results could suggest that distant reactive astrocytes originate through hypertrophy while those close to lesion arise by hyperplasia from mature or immature glial cells. The hypothesis is formulated that cells of the periventricular matrix contribute to the post-traumatic proliferative activity.
Collapse
Affiliation(s)
- D Schiffer
- II Dept. Neurology, University of Turin, Italy
| | | | | | | | | |
Collapse
|