1
|
Gallardo CM, Martin CS, Steele AD. Food Anticipatory Activity on Circadian Time Scales Is Not Dependent on Central Serotonin: Evidence From Tryptophan Hydroxylase-2 and Serotonin Transporter Knockout Mice. Front Mol Neurosci 2020; 13:534238. [PMID: 33041772 PMCID: PMC7517832 DOI: 10.3389/fnmol.2020.534238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/13/2020] [Indexed: 01/14/2023] Open
Abstract
A number of studies implicate biogenic amines in regulating circadian rhythms. In particular, dopamine and serotonin influence the entrainment of circadian rhythms to daily food availability. To study circadian entrainment to feeding, food availability is typically restricted to a short period within the light cycle daily. This results in a notable increase in pre-meal activity, termed "food anticipatory activity" (FAA), which typically develops within about 1 week of scheduled feeding. Several studies have implicated serotonin as a negative regulator of FAA: (1) aged rats treated with serotonin 5-HT2 and 3 receptor antagonists showed enhanced FAA, (2) mice lacking for the 2C serotonin receptor demonstrate enhanced FAA, and (3) pharmacologically increased serotonin levels suppressed FAA while decreased serotonin levels enhanced FAA in mice. We sought to confirm and extend these findings using genetic models with impairments in central serotonin production or re-uptake, but were surprised to find that both serotonin transporter (Slc6a4) and tryptophan hydroxylase-2 knockout mice demonstrated a normal behavioral response to timed, calorie restricted feeding. Our data suggest that FAA is largely independent of central serotonin and/or serotonin reuptake and that serotonin may not be a robust negative regulator of FAA.
Collapse
Affiliation(s)
- Christian M Gallardo
- Division of Biology, California Institute of Technology, Pasadena, CA, United States
| | - Camille S Martin
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| | - Andrew D Steele
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, United States
| |
Collapse
|
2
|
Hatcher KM, Royston SE, Mahoney MM. Modulation of circadian rhythms through estrogen receptor signaling. Eur J Neurosci 2018; 51:217-228. [PMID: 30270552 DOI: 10.1111/ejn.14184] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are physiological and behavioral processes that exhibit a 24-hr cycle. These daily rhythms are essential for living organisms to align their behavior and physiology with the environment to increase the likelihood of survival. In mammals, circadian rhythms synchronize with the environment primarily by the suprachiasmatic nucleus, a hypothalamic brain region that integrates exogenous and endogenous timing cues. Sex steroid hormones, including estrogens, are thought to modulate sexually dimorphic behaviors through developmental programming of the brain (i.e., organization), as well as acute receptor signaling during adulthood (i.e., activation). Importantly, there are known sex differences in the expression of circadian locomotor activity and molecular organization of the suprachiasmatic nucleus, likely due, in part, to the actions of circulating estrogens. Circadian locomotor rhythms, which are coordinated by the suprachiasmatic nucleus, have been shown to be regulated by developmental and adult levels of circulating estrogens. Further, increasing evidence suggests that estrogens can modulate expression of circadian clock genes that are essential for orchestration of circadian rhythms by the suprachiasmatic nucleus. In this review, we will discuss the organizational and activational modulation of the circadian timekeeping system by estrogens through estrogen receptor signaling.
Collapse
Affiliation(s)
- Katherine M Hatcher
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sara E Royston
- Department of Anesthesiology, Perioperative Medicine and Pain, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Spine and Pain Management, Christie Clinic, Champaign, Illinois
| | - Megan M Mahoney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
3
|
Sollars PJ, Ogilvie MD, Simpson AM, Pickard GE. Photic Entrainment Is Altered in the 5-HT1B Receptor Knockout Mouse. J Biol Rhythms 2016; 21:21-32. [PMID: 16461982 DOI: 10.1177/0748730405283765] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is a circadian oscillator that receives glutamatergic afferents from the retina and serotonergic afferents from the midbrain. Activation of presynaptic serotonin 1B (5-HT1B) receptors on retinal terminals in the SCN inhibits retinohypothalamic neurotransmission and light-induced behavioral phase shifts. To assess the role of 5-HT1B receptors in photic entrainment, 5-HT1B receptor knockout (5-HT1B KO) and wild-type (WT) mice were maintained in non-24 h L:D cycles (T cycles). WT mice entrained to T = 21 h and T = 22 h cycles, whereas 5-HT1B KO animals did not. 5-HT1B KO animals did entrain to T = 23 h and T = 26 h cycles, although their phase angle of entrainment was altered compared to WT animals. 5-HT1BKO mice were significantly more phase delayed under T = 23 h conditions and significantly more phase advanced under T = 26 h conditions compared to WT mice. When 5-HT1B KO mice were housed in a T = 23 h short-day photoperiod (9.5L:13.5D), the delayed phase angle of entrainment was more pronounced. Light-induced phase shifts were reduced in 5-HT1B KO mice, consistent with their behavior in T cycles, suggesting an attenuated response to light. Based on previous work, this attenuated response to light might not have been predicted but can be explained by consideration of GABAergic mechanisms within the SCN. Phase-delayed circadian rhythms during the short days of winter are characteristic of patients suffering from seasonal affective disorder, and 5-HT has been implicated in its pathophysiology. The 5-HT1B KO mouse may be useful for investigating the altered entrainment evident during this serious mood disorder.
Collapse
Affiliation(s)
- Patricia J Sollars
- Division of Neuroscience, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
4
|
Fuller PM, Fuller CA. Genetic Evidence for a Neurovestibular Influence on the Mammalian Circadian Pacemaker. J Biol Rhythms 2016; 21:177-84. [PMID: 16731657 DOI: 10.1177/0748730406288148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian circadian timing system (CTS) exerts endogenous temporal control over virtually every biochemical, physiological, and neurobiological process. Recent studies have suggested an interrelationship between the neurovestibular system, specifically the macular otoconial gravity receptors, and the CTS. To test for a functional relationship between these 2 seemingly disparate neuronal systems, the authors performed a study to evaluate the influence of the vestibular system on 3 fundamental properties of the CTS: entrainment, photic modulation, and period. The present study used a nonrecombinant mutant mouse, the head-tilt mouse (abbr. het), which lacks otoconia and hence gravity reception, to evaluate CTS function in mice lacking vestibular inputs. Circadian rhythms of body temperature (Tb) and locomotor activity (ACT) were recorded continuously by biotelemetry in het mice as well as wild-type (PWT) controls during exposure to 4 photic regimens: 12:12 LD, DD (0 μmoles s-1m-2), constant bright light (LLB; 0.5 μmoles s-1m-2), and constant dim light (LLD; 0.02 μmoles s-1m-2). In DD, the circadian period of the Tband ACT rhythms was significantly longer ( p < 0.001) in het than in PWT mice. In addition, the circadian period of Tband ACT was significantly longer ( p < 0.01) in LLBthan in DD for both the het and PWT groups, although increasing ambient illuminance (i.e., DD to LLB) had a significantly greater ( p < 0.01) period-lengthening effect in the PWT group than in the het group. The results of the present study demonstrate for the first time that the vestibular macular gravity receptors influence 2 fundamental properties of the mammalian CTS: (1) the intrinsic circadian pacemaker period and (2) the period-altering response to changes in tonic light intensity. The results of the present study thus provide the first neurobehavioral evidence for a vestibular-circadian interrelationship as well as suggest a novel mechanism underlying the signaling of activity-based nonphotic stimuli to the CTS.
Collapse
Affiliation(s)
- Patrick M Fuller
- Section of Neurobiology, Physiology & Behavior, University of California, Davis, CA 95616-8519, USA
| | | |
Collapse
|
5
|
Abstract
There is a growing recognition that the coordinated timing of behavioral, physiologic, and metabolic circadian rhythms is a requirement for a healthy body and mind. In mammals, the primary circadian oscillator is the hypothalamic suprachiasmatic nucleus (SCN), which is responsible for circadian coordination throughout the organism. Temporal homeostasis is recognized as a complex interplay between rhythmic clock gene expression in brain regions outside the SCN and in peripheral organs. Abnormalities in this intricate circadian orchestration may alter sleep patterns and contribute to the pathophysiology of affective disorders.
Collapse
|
6
|
Rozenblit-Susan S, Chapnik N, Genzer Y, Froy O. Serotonin suppresses food anticipatory activity and synchronizes the food-entrainable oscillator during time-restricted feeding. Behav Brain Res 2015; 297:150-4. [PMID: 26467604 DOI: 10.1016/j.bbr.2015.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
The serotonergic and circadian systems are intertwined as serotonin modulates the response of the central brain suprachiasmatic nuclei (SCN) clock to light. Time-restricted feeding (RF) is characterized by increased food anticipatory activity (FAA) and controlled by the food-entrainable oscillator (FEO) rather than the SCN. Our objective was to test whether serotonin affects the FEO. Mice were treated with the selective serotonin reuptake inhibitor (SSRI) fluvoxamine (FLX) or the tryptophan hydroxylase inhibitor parachlorophenylalanine (PCPA) and locomotor activity under ad libitum feeding, RF and different lighting conditions was monitored. Under AL, FLX administration did not affect 24-h locomotor activity, while mice treated with PCPA exhibited increased activity. RF-FLX-treated mice showed less FAA 2h before food availability (ZT2-ZT4) compared to RF- or RF-PCPA-fed mice. Under DD, RF-PCPA-treated mice displayed increased activity, as was seen under LD conditions. Surprisingly, RF-PCPA-treated mice showed free running in the FAA component. These results emphasize the role of serotonin in SCN-mediated activity inhibition and FEO entrainment and activity.
Collapse
Affiliation(s)
- Sigal Rozenblit-Susan
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yoni Genzer
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Smith VM, Jeffers RT, Antle MC. Serotonergic enhancement of circadian responses to light: role of the raphe and intergeniculate leaflet. Eur J Neurosci 2015; 42:2805-17. [DOI: 10.1111/ejn.13064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Victoria M. Smith
- Department of Psychology; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
- Hotchkiss Brain Institute; University of Calgary; 3330 Hospital Drive NW Calgary AB Canada T2N 4N1
| | - Ryan T. Jeffers
- Department of Psychology; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
- Hotchkiss Brain Institute; University of Calgary; 3330 Hospital Drive NW Calgary AB Canada T2N 4N1
| | - Michael C. Antle
- Department of Psychology; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
- Hotchkiss Brain Institute; University of Calgary; 3330 Hospital Drive NW Calgary AB Canada T2N 4N1
- Department of Physiology and Pharmacology; University of Calgary; 3330 Hospital Drive NW Calgary AB Canada T2N 4N1
| |
Collapse
|
8
|
Prosser RA, Glass JD. Assessing ethanol's actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol 2015; 49:321-339. [PMID: 25457753 DOI: 10.1016/j.alcohol.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022]
Abstract
Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.
Collapse
|
9
|
Solarewicz JZ, Angoa-Perez M, Kuhn DM, Mateika JH. The sleep-wake cycle and motor activity, but not temperature, are disrupted over the light-dark cycle in mice genetically depleted of serotonin. Am J Physiol Regul Integr Comp Physiol 2014; 308:R10-7. [PMID: 25394829 DOI: 10.1152/ajpregu.00400.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We examined the role that serotonin has in the modulation of sleep and wakefulness across a 12-h:12-h light-dark cycle and determined whether temperature and motor activity are directly responsible for potential disruptions to arousal state. Telemetry transmitters were implanted in 24 wild-type mice (Tph2(+/+)) and 24 mice with a null mutation for tryptophan hydroxylase 2 (Tph2(-/-)). After surgery, electroencephalography, core body temperature, and motor activity were recorded for 24 h. Temperature for a given arousal state (quiet and active wake, non-rapid eye movement, and paradoxical sleep) was similar in the Tph2(+/+) and Tph2(-/-) mice across the light-dark cycle. The percentage of time spent in active wakefulness, along with motor activity, was decreased in the Tph2(+/+) compared with the Tph2(-/-) mice at the start and end of the dark cycle. This difference persisted into the light cycle. In contrast, the time spent in a given arousal state was similar at the remaining time points. Despite this similarity, periods of non-rapid-eye-movement sleep and wakefulness were less consolidated in the Tph2(+/+) compared with the Tph2(-/-) mice throughout the light-dark cycle. We conclude that the depletion of serotonin does not disrupt the diurnal variation in the sleep-wake cycle, motor activity, and temperature. However, serotonin may suppress photic and nonphotic inputs that manifest at light-dark transitions and serve to shorten the ultraradian duration of wakefulness and non-rapid-eye-movement sleep. Finally, alterations in the sleep-wake cycle following depletion of serotonin are unrelated to disruptions in the modulation of temperature.
Collapse
Affiliation(s)
- Julia Z Solarewicz
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan;
| |
Collapse
|
10
|
Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice. Physiol Behav 2014; 139:136-44. [PMID: 25446224 DOI: 10.1016/j.physbeh.2014.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) is an important regulator of the mammalian circadian system, and has been implicated in modulating entrained and free-running rhythms, as well as photic and non-photic phase shifting. In general, 5-HT appears to oppose the actions of light on the circadian system of nocturnal rodents. As well, 5-HT mediates, at least in part, some non-photic responses. The 5-HT1A, 1B and 7 receptors regulate these acute responses to zeitgebers. 5-HT also regulates some entrained and free-running properties of the circadian clock. The receptors that contribute to these phenomena have not been fully examined. Here, we use 5-HT1A receptor knockout (KO) mice to examine the response of the mouse circadian system to a variety of lighting conditions, including a normal light-dark cycle (LD), T-cycles, phase advanced LD cycles, constant darkness (DD), constant light (LL) and a 6 hour dark pulse starting at CT5. Relative to wildtype mice, the 5-HT1A receptor KO mice have lower levels of activity during the first 8h of the night/subjective night in LD and LL, later activity onsets on transient days during re-entrainment, shorter free-running periods in LL when housed with wheels, and smaller phase shifts to dark pulses. No differences were noted in activity levels during DD, alpha under any light condition, free-running period in DD, or phase angle of entrainment in LD. While the 5-HT1A receptor plays an important role in regulating photic and non-photic phase shifting, its contribution to entrained and free-running properties of the circadian clock is relatively minor.
Collapse
|
11
|
Aoki N, Watanabe H, Okada K, Aoki K, Imanishi T, Yoshida D, Ishikawa R, Shibata S. Involvement of 5-HT₃ and 5-HT₄ receptors in the regulation of circadian clock gene expression in mouse small intestine. J Pharmacol Sci 2014; 124:267-75. [PMID: 24492464 DOI: 10.1254/jphs.13253fp] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Several lines of evidence suggest that 5-HT receptors play a critical role in the expression of clock genes in the suprachiasmatic nucleus, the main circadian oscillator in hamsters. The contributions of 5-HT-receptor subtypes in the intestine, where they are expressed at high concentrations, are however not yet clarified. The 5-HT synthesis inhibitor, p-chlorophenylalanine, attenuated the daily rhythm of Per1 and Per2 gene expression in the intestine. Injection of 5-HT and agonists of the 5-HT3 and 5-HT4 receptors increased Per1/Per2 expression and decreased Bmal1 expression in a dose-dependent manner. Although treatment with antagonists of 5-HT3 and 5-HT4 alone did not affect clock gene expression, co-injection of these antagonists with 5-HT blocked the 5-HT-induced changes in clock gene expression. Increased tissue levels of 5-HT due to treatment with the antidepressants clomipramine and fluvoxamine did not affect clock gene expression. The present results suggest that the 5-HT system in the small intestine may play a critical role in regulating circadian rhythms through 5-HT3/5-HT4-receptor activation.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Animals
- Circadian Clocks/genetics
- Cricetinae
- Dose-Response Relationship, Drug
- Gene Expression/genetics
- Intestine, Small/metabolism
- Male
- Mice
- Mice, Inbred ICR
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Receptors, Serotonin, 5-HT3/metabolism
- Receptors, Serotonin, 5-HT3/physiology
- Receptors, Serotonin, 5-HT4/metabolism
- Receptors, Serotonin, 5-HT4/physiology
- Serotonin/physiology
- Serotonin 5-HT3 Receptor Agonists/pharmacology
- Serotonin 5-HT4 Receptor Agonists/pharmacology
Collapse
Affiliation(s)
- Natsumi Aoki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A daily oscillation in the fundamental frequency and amplitude of harmonic syllables of zebra finch song. PLoS One 2013; 8:e82327. [PMID: 24312654 PMCID: PMC3846747 DOI: 10.1371/journal.pone.0082327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/23/2013] [Indexed: 11/19/2022] Open
Abstract
Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking), but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF) and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills.
Collapse
|
13
|
Paulus EV, Mintz EM. Photic and nonphotic responses of the circadian clock in serotonin-deficient Pet-1 knockout mice. Chronobiol Int 2013; 30:1251-60. [PMID: 24059871 DOI: 10.3109/07420528.2013.815198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neurotransmitter serotonin plays an important role in the regulation of the circadian clock. To gain further insight into the mechanisms by which serotonin regulates rhythmicity, the authors investigated photic and nonphotic effects on the circadian clock in Pet-1 knockout mice. In these mice, the serotonergic system suffers a developmental loss of 70% of serotonin neurons, with the remaining neurons being deficient in serotonergic function as well. Pet-1 knockout mice show significantly decreased phase delays of the circadian clock in response to light pulses in the early night; however, this difference was not reflected in a difference in the expression of Fos protein in the suprachiasmatic nucleus. There were no genotypic differences detected in the phase-shifting response to injection of the 5-HT1A/7 (serotonin 1A and 7) agonist 8-OH-DPAT ((±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide); however, there were small but significant differences in the phase-shifting responses to cages between genotypes and sexes. Several different patterns of wheel-running activity were observed in knockout mice that differed from those in wild-type mice, suggesting that normal serotonergic function is necessary for the proper consolidation of nocturnal activity. Overall, these data are consistent with other pharmacological and genetic studies demonstrating a significant role for serotonin in circadian clock function.
Collapse
Affiliation(s)
- Erin V Paulus
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University , Kent, Ohio , USA
| | | |
Collapse
|
14
|
Kiryanova V, Smith VM, Dyck RH, Antle MC. The effects of perinatal fluoxetine treatment on the circadian system of the adult mouse. Psychopharmacology (Berl) 2013; 225:743-51. [PMID: 22972413 DOI: 10.1007/s00213-012-2861-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
RATIONAL Depression is prevalent among women of childbearing age and is frequently treated with selective serotonin reuptake inhibitors (SSRIs). As some SSRIs, such as fluoxetine (Flx), can cross the placenta, it is possible that the neurodevelopment of the fetus may be affected, leading to altered behavior in adulthood. OBJECTIVES In this study, we examined the effects of perinatal Flx exposure on the subsequent expression of circadian rhythms in adult mice. METHODS Dams were treated with 25 mg/kg/day Flx in their drinking water from embryonic day 15 to postnatal day 12. Circadian organization of wheel running rhythms and phase shifts to photic and non-photic stimuli were assessed in the offspring starting at 6 weeks of age. RESULTS We found that perinatal Flx exposure led to larger light-induced phase advances (1.19 ± 0.51 vs. 0.55 ± 0.25 h), smaller phase advances to the serotonin agonist 8-OH-DPAT during the mid-subjective day (0.44 ± 0.15 vs. 0.70 ± 0.17 h), and a shorter free-running period in constant darkness (23.47 ± 0.13 vs. 23.64 ± 0.13 h). CONCLUSIONS These results suggest that perinatal exposure to SSRIs may have consequences for the functioning of the circadian system later in life.
Collapse
Affiliation(s)
- Veronika Kiryanova
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
15
|
Abstract
In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus generates a 24 h rhythm of sleep and arousal. While neuronal spiking activity in the SCN provides a functional circadian oscillator that propagates throughout the brain, the ultradian sleep-wake state is regulated by the basal forebrain/preoptic area (BF/POA). How this SCN circadian oscillation is integrated into the shorter sleep-wake cycles remains unclear. We examined the temporal patterns of neuronal activity in these key brain regions in freely behaving rats. Neuronal activity in various brain regions presented diurnal rhythmicity and/or sleep-wake state dependence. We identified a diurnal rhythm in the BF/POA that was selectively degraded when diurnal arousal patterns were disrupted by acute brain serotonin depletion despite robust circadian spiking activity in the SCN. Local blockade of serotonergic transmission in the BF/POA was sufficient to disrupt the diurnal sleep-wake rhythm of mice. These results suggest that the serotonergic system enables the BF/POA to couple the SCN circadian signal to ultradian sleep-wake cycles, thereby providing a potential link between circadian rhythms and psychiatric disorders.
Collapse
|
16
|
Paulus EV, Mintz EM. Developmental disruption of the serotonin system alters circadian rhythms. Physiol Behav 2012; 105:257-63. [DOI: 10.1016/j.physbeh.2011.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 08/03/2011] [Accepted: 08/24/2011] [Indexed: 11/28/2022]
|
17
|
Nexon L, Sage D, Pévet P, Raison S. Glucocorticoid-mediated nycthemeral and photoperiodic regulation of tph2 expression. Eur J Neurosci 2011; 33:1308-17. [PMID: 21299657 DOI: 10.1111/j.1460-9568.2010.07586.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the Syrian hamster dorsal and median raphé nuclei, the tryptophan hydroxylase 2 gene (tph2), which codes the rate-limiting enzyme of serotonin synthesis, displays daily variations in its expression in animals entrained to a long but not to a short photoperiod. The present study aimed to assess the role of glucocorticoids in the nycthemeral and photoperiodic regulation of daily tph2 expression. In hamsters held in long photoperiod from birth, after adrenalectomy and glucocorticoid implants the suppression of glucocorticoid rhythms induced an abolition of the daily variations in tph2-mRNA concentrations, a decrease in the amplitude of body temperature rhythms and an increase in testosterone levels. All these effects were reversed after experimental restoration of a clear daily rhythm in the plasma glucocorticoid concentrations. We conclude that the photoperiod-dependent rhythm of glucocorticoids is the main regulator of tph2 daily expression.
Collapse
Affiliation(s)
- Laurent Nexon
- Département de Neu\robiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR-3212, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
18
|
Hale MW, Lowry CA. Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology (Berl) 2011; 213:243-64. [PMID: 21088958 DOI: 10.1007/s00213-010-2089-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/29/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Dysfunction of serotonergic systems is thought to play an important role in a number of neurological and psychiatric disorders. Recent studies suggest that there is anatomical and functional diversity among serotonergic systems innervating forebrain systems involved in the control of physiologic and behavioral responses, including the control of emotional states. OBJECTIVE Here, we highlight the methods that have been used to investigate the heterogeneity of serotonergic systems and review the evidence for the unique anatomical, hodological, and functional properties of topographically organized subpopulations of serotonergic neurons in the midbrain and pontine raphe complex. CONCLUSION The emerging understanding of the topographically organized synaptic regulation of brainstem serotonergic systems, the topography of the efferent projections of these systems, and their functional properties, should enable identification of novel therapeutic approaches to treatment of neurological and psychiatric conditions that are associated with dysregulation of serotonergic systems.
Collapse
Affiliation(s)
- Matthew W Hale
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354, USA
| | | |
Collapse
|
19
|
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light in the absence of all rod and cone photoreceptor input. The existence of these ganglion cell photoreceptors, although predicted from observations scattered over many decades, was not established until it was shown that a novel photopigment, melanopsin, was expressed in retinal ganglion cells of rodents and primates. Phototransduction in mammalian ipRGCs more closely resembles that of invertebrate than vertebrate photoreceptors and appears to be mediated by transient receptor potential channels. In the retina, ipRGCs provide excitatory drive to dopaminergic amacrine cells and ipRGCs are coupled to GABAergic amacrine cells via gap junctions. Several subtypes of ipRGC have been identified in rodents based on their morphology, physiology and expression of molecular markers. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions including photoentrainment of the biological clock located in the hypothalamus, the pupillary light reflex, sleep and perhaps some aspects of vision. In addition, ipRGCs may also contribute irradiance signals that interface directly with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. Here we review the early work that provided the motivation for searching for a new mammalian photoreceptor, the ground-breaking discoveries, current progress that continues to reveal the unusual properties of these neuron photoreceptors, and directions for future investigation.
Collapse
Affiliation(s)
- Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA.
| | | |
Collapse
|
20
|
5-HT1B receptor in the suprachiasmatic nucleus of the common marmoset (Callithrix jacchus). Neurosci Lett 2011; 488:6-10. [DOI: 10.1016/j.neulet.2010.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/02/2010] [Accepted: 10/28/2010] [Indexed: 11/18/2022]
|
21
|
Acute MDMA administration alters the distribution and circadian rhythm of wheel running activity in the rat. Brain Res 2010; 1359:128-36. [DOI: 10.1016/j.brainres.2010.08.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/21/2010] [Accepted: 08/30/2010] [Indexed: 12/29/2022]
|
22
|
Yamakawa GR, Antle MC. Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 2010; 31:1974-83. [PMID: 20604802 DOI: 10.1111/j.1460-9568.2010.07228.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The circadian clock, located in the suprachiasmatic nucleus (SCN), receives a major afferent from the median raphe nucleus (MRN). In the Syrian hamster, only about 50% of the cells giving rise to this afferent contain serotonin. There is mixed evidence as to whether the serotonergic portion of this projection is involved in non-photic phase shifting of circadian locomotor rhythms. In order to better characterize the non-serotonergic projections, we conducted retrograde tract tracing using the beta subunit of cholera toxin combined with multi-label immunohistochemistry. Similar to previous findings, almost half of the retrogradely labeled cells contained serotonin. Additionally, approximately 30% of the retrogradely labeled cells contained vesicular glutamate transporter 3 (VGLUT3), but not serotonin. Surprisingly, some dorsal raphe cholera toxin labeling was also noted, particularly in animals with central-SCN injections. To determine if the non-serotonergic projections were important for non-photic phase shifts elicited by MRN stimulation, the MRN was electrically stimulated in animals pretreated with SCN injection of either the serotonin neurotoxin 5,7-dihydroxytryptamine or vehicle control. Intact animals phase advanced to midday electrical stimulation of the raphe while lesioned animals did not. Together, these results show that although some of the non-serotonergic raphe projections to the SCN contain VGLUT3, it is the serotonergic raphe innervation of the SCN that is critical for non-photic phase shifting elicited by MRN stimulation.
Collapse
Affiliation(s)
- Glenn R Yamakawa
- Brain and Cognitive Sciences Research Group, Department of Psychology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
23
|
Intrinsically photosensitive retinal ganglion cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:58-67. [PMID: 20596956 DOI: 10.1007/s11427-010-0024-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/30/2009] [Indexed: 01/13/2023]
Abstract
A new mammalian photoreceptor was recently discovered to reside in the ganglion cell layer of the inner retina. These intrinsically photosensitive retinal ganglion cells (ipRGCs) express a photopigment, melanopsin that confers upon them the ability to respond to light in the absence of all rod and cone photoreceptor input. Although relatively few in number, ipRGCs extend their dendrites across large expanses of the retina making them ideally suited to function as irradiance detectors to assess changes in ambient light levels. Phototransduction in ipRGCs appears to be mediated by transient receptor potential channels more closely resembling the phototransduction cascade of invertebrate than vertebrate photoreceptors. ipRGCs convey irradiance information centrally via the optic nerve to influence several functions. ipRGCs are the primary retinal input to the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator and biological clock, and this input entrains the SCN to the day/night cycle. ipRGCs contribute irradiance signals that regulate pupil size and they also provide signals that interface with the autonomic nervous system to regulate rhythmic gene activity in major organs of the body. ipRGCs also provide excitatory drive to dopaminergic amacrine cells in the retina, providing a novel basis for the restructuring of retinal circuits by light. Here we review the ground-breaking discoveries, current progress and directions for future investigation.
Collapse
|
24
|
Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 2009; 19:887-97. [PMID: 19604677 DOI: 10.1016/j.euroneuro.2009.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/16/2009] [Indexed: 11/20/2022]
Abstract
Though serotonergic mechanisms modulate circadian rhythms, roles of individual serotonin (5-HT) receptors remain uncertain since data are lacking for antagonists. Herein, both the 5-HT(5A) receptor antagonist, A843277 (10 mg/kg), and the 5-HT(1B) antagonist, SB224289 (1 mg/kg), inhibited light-induced phase advances in hamster circadian wheel-running rhythms. Conversely, though 5-HT(1A) and 5-HT(7) receptors are likewise implicated in circadian scheduling, their blockade by WAY100635 (0.5 mg/kg) and SB269970 (1 mg/kg), respectively, was ineffective. Since actions of 5-HT reuptake inhibitors are modified by antagonists, we evaluated their influence on suppression of phase advances by citalopram (10 mg/kg). Its action was potentiated by WAY100635 and the 5-HT(2C) antagonist, SB242084 (1 mg/kg), but not by A842377, SB224289, SB269970, and antagonists at 5-HT(2A) (MDL100907) and 5-HT(6) (SB399885) receptors. In conclusion, this is the first in vivo evidence for an influence of 5-HT(5A) receptors upon circadian rhythms, but no single class of 5-HT receptor mediates their control by citalopram.
Collapse
|
25
|
Functional neuroanatomy of sleep and circadian rhythms. ACTA ACUST UNITED AC 2009; 61:281-306. [PMID: 19695288 DOI: 10.1016/j.brainresrev.2009.08.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/02/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
The daily sleep-wake cycle is perhaps the most dramatic overt manifestation of the circadian timing system, and this is especially true for the monophasic sleep-wake cycle of humans. Considerable recent progress has been made in elucidating the neurobiological mechanisms underlying sleep and arousal, and more generally, of circadian rhythmicity in behavioral and physiological systems. This paper broadly reviews these mechanisms from a functional neuroanatomical and neurochemical perspective, highlighting both historical and recent advances. In particular, I focus on the neural pathways underlying reciprocal interactions between the sleep-regulatory and circadian timing systems, and the functional implications of these interactions. While these two regulatory systems have often been considered in isolation, sleep-wake and circadian regulation are closely intertwined processes controlled by extensively integrated neurobiological mechanisms.
Collapse
|
26
|
Khedhaier A, Ben‐Attia M, Gadacha W, Sani M, Reinberg A, Boughattas NA. Seasonal Modulation of the 8‐and 24‐Hour Rhythms of Ondansetron Tolerance in Mice. Chronobiol Int 2009; 24:1199-212. [DOI: 10.1080/07420520701798047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Vidal C, Herzog C, Haeberle A, Bombarde C, Miquel M, Carimalo J, Launay J, Mouillet-Richard S, Lasmézas C, Dormont D, Kellermann O, Bailly Y. Early dysfunction of central 5-HT system in a murine model of bovine spongiform encephalopathy. Neuroscience 2009; 160:731-43. [DOI: 10.1016/j.neuroscience.2009.02.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 12/16/2022]
|
28
|
Smith VM, Sterniczuk R, Phillips CI, Antle MC. Altered photic and non-photic phase shifts in 5-HT(1A) receptor knockout mice. Neuroscience 2008; 157:513-23. [PMID: 18930788 DOI: 10.1016/j.neuroscience.2008.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/30/2022]
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) is thought to be modulated by 5-HT. 5-HT is though to inhibit photic phase shifts by inhibiting the release of glutamate from retinal terminals, as well as by decreasing the responsiveness of retinorecipient cells in the SCN. Furthermore, there is also evidence that 5-HT may underlie, in part, non-photic phase shifts of the circadian system. Understanding the mechanism by which 5-HT accomplishes these goals is complicated by the wide variety of 5-HT receptors found in the SCN, the heterogeneous organization of both the circadian clock and the location of 5-HT receptors, and by a lack of sufficiently selective pharmacological agents for the 5-HT receptors of interest. Genetically modified animals engineered to lack a specific 5-HT receptor present an alternative avenue of investigation to understand how 5-HT regulates the circadian system. Here we examine behavioral and molecular responses to both photic and non-photic stimuli in mice lacking the 5-HT(1A) receptor. When compared with wild-type controls, these mice exhibit larger phase advances to a short late-night light pulse and larger delays to long 12 h light pulses that span the whole subjective night. Fos and mPer1 expression in the retinorecipient SCN is significantly attenuated following late-night light pulses in the 5-HT(1A) knockout animals. Finally, non-photic phase shifts to (+/-)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) are lost in the knockout animals, while attenuation of the phase shift to the long light pulse due to rebound activity following a wheel lock is unaffected. These findings suggest that the 5-HT(1A) receptor plays an inhibitory role in behavioral phase shifts, a facilitatory role in light-induced gene expression, a necessary role in phase shifts to 8-OH-DPAT, and is not necessary for activity-induced phase advances that oppose photic phase shifts to long light pulses.
Collapse
Affiliation(s)
- V M Smith
- Department of Psychology, University of Calgary, 2500 University Drive Northwest, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
29
|
Rosenwasser A, Vogt LJ, Pellowski MW. Circadian phase shifting induced by clonidine injections in Syrian hamsters. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291019509360358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A.M. Rosenwasser
- a Department of Psychology , University of Maine , Orono, ME, 04469–5742
- b Department of Psychology , University of Maine , 5742 Little Hall, Orono, ME, 04469–5742 Phone: Fax:
| | - L. J. Vogt
- a Department of Psychology , University of Maine , Orono, ME, 04469–5742
| | - M. W. Pellowski
- a Department of Psychology , University of Maine , Orono, ME, 04469–5742
| |
Collapse
|
30
|
Sterniczuk R, Stepkowski A, Jones M, Antle M. Enhancement of photic shifts with the 5-HT1A mixed agonist/antagonist NAN-190: Intra-suprachiasmatic nucleus pathway. Neuroscience 2008; 153:571-80. [DOI: 10.1016/j.neuroscience.2008.02.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/14/2008] [Accepted: 02/01/2008] [Indexed: 01/02/2023]
|
31
|
Sollars PJ, Simpson AM, Ogilvie MD, Pickard GE. Light-induced Fos expression is attenuated in the suprachiasmatic nucleus of serotonin 1B receptor knockout mice. Neurosci Lett 2006; 401:209-13. [PMID: 16581182 DOI: 10.1016/j.neulet.2006.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 02/28/2006] [Accepted: 03/08/2006] [Indexed: 11/18/2022]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is a circadian oscillator that receives a dense serotonergic innervation from the median raphe nucleus. Serotonin (5-HT) modulates the effects of light on circadian behavior by acting on 5-HT1B receptors on retinohypothalamic (RHT) terminals in the SCN. Activation of 5-HT1B presynaptic receptors on RHT terminals inhibits glutamate release. However, 5-HT1B receptor knockout (5-HT1B KO) mice have attenuated behavioral responses to light [P.J. Sollars, M.D. Ogilvie, A.M. Simpson, G.E. Pickard, Photic entrainment is altered in the 5-HT1B receptor knockout mouse, J. Biol. Rhythms 21 (2006) 21-32]. To assess the cellular response of the 5-HT1B KO SCN to light, light-induced Fos expression was analyzed in 5-HT1B KO and wild-type (WT) mice. In addition, the distribution of melanopsin containing retinal ganglion cells that contribute the majority of axons to the RHT was examined in 5-HT1B KO mice and compared to that of WT mice. Light-induced Fos expression in the SCN was reduced in 5-HT1B KO mice compared to WT mice at circadian time (CT) 16 and CT 23 in a manner similar to the reduction previously described in light-induced behavioral phase shifts. The number of melanopsin retinal ganglion cells was similar in WT and 5-HT1B KO mice. These data taken together with previous data suggest that functional removal of the 5-HT1B receptor results in reduced functional light input to the SCN.
Collapse
Affiliation(s)
- Patricia J Sollars
- Division of Neuroscience, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
32
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
33
|
Lall GS, Harrington ME. Potentiation of the resetting effects of light on circadian rhythms of hamsters using serotonin and neuropeptide Y receptor antagonists. Neuroscience 2006; 141:1545-52. [PMID: 16750888 DOI: 10.1016/j.neuroscience.2006.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/10/2006] [Accepted: 04/19/2006] [Indexed: 11/23/2022]
Abstract
Circadian rhythms are entrained by light/dark cycles. In hamsters, the effects of light on circadian rhythms can be modulated by serotonergic input to the suprachiasmatic nucleus from the raphe nuclei and by neuropeptide Y containing afferents to the suprachiasmatic nucleus from the intergeniculate leaflet in the thalamus. In this study we measured effects of compounds acting on serotonergic 1A and neuropeptide Y Y5 receptors to determine if combined serotonergic-neuropeptide Y inhibition could synergistically potentiate effects of light on rhythms. We used mixed serotonergic agonist/antagonists BMY 7378 or NAN-190 as well as a neuropeptide Y Y5 antagonist CP-760,542. Both BMY 7378 and NAN-190 are thought to block serotonin release via acting as agonists at the 5-hydroxytryptamine 1A (5-HT1A) autoreceptors on cells in the raphe, and also block response of target cells by acting as antagonists at post-synaptic 5-HT1A receptors, for example, in the suprachiasmatic nuclei or the intergeniculate leaflet. Replicating prior work, we found that pretreatment with either drug alone increased the phase shift to light at circadian time 19. The combined effect of BMY 7378 and CP-760,542 given prior to light at circadian time 19 was to further potentiate the subsequent phase shift in wheel-running rhythms (the phase shift was 317% of controls; light alone: 1.35 h phase shift vs. BMY 7378, CP-760,542, and light: 4.27 h phase shift). Combined treatment with NAN-190 and CP-760,542 produced a light-induced phase shift 576% of controls (phase shift to light alone: 1.23 h vs. NAN-190, CP-760,542, and light: 7.1 h phase shift). These results suggest that the resetting effects of light on circadian rhythms can be greatly potentiated in hamsters by using pharmacological treatments that block both serotonergic and neuropeptide Y afferents to the suprachiasmatic nuclei.
Collapse
Affiliation(s)
- G S Lall
- Neuroscience Program, Clark Science Center, Smith College, Northampton, MA 01063, USA
| | | |
Collapse
|
34
|
Gardani M, Blance RN, Biello SM. MDMA alters the response of the mammalian circadian clock in hamsters: effects on re-entrainment and triazolam-induced phase shifts. Brain Res 2005; 1046:105-15. [PMID: 15904898 DOI: 10.1016/j.brainres.2005.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/21/2005] [Accepted: 03/29/2005] [Indexed: 12/31/2022]
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is a neurotransmitter that is involved in a wide range of behavioural and physiological processes. Previous work has indicated that serotonin is important in the regulation of the circadian clock, which is located in the suprachiasmatic nuclei (SCN) of the hypothalamus. 3,4-methylenedioxymethamphetamine (MDMA or 'Ecstasy'), which is widely used as a recreational drug of abuse, is a serotonin neurotoxin in animals and non-human primates. Previous work has shown that MDMA exposure can alter circadian clock function both in vitro and in vivo. Evidence shows that 5-HT may have a modulatory role in the regulation of the circadian clock by non-photic stimuli, such as the benzodiazepine triazolam (TRZ). Triazolam is a short-acting benzodiazepine that results in phase advances of the wheel running activity in hamsters when administered during the mid-subjective day. In the present study, male Syrian hamsters treated with TRZ (5 mg/kg) at ZT6 significantly phase advanced their clock. Treatment with MDMA significantly diminished the TRZ induced phase shift in hamsters. Previous evidence shows the involvement of 5-HT in the re-synchronisation of the endogenous clock to a new shifted light-dark cycle. Untreated animals were successfully entrained to a new, 6 h advanced light-dark cycle within an average of 4.5 +/- 0.1 days. Following treatment with MDMA, these animals took an average of 8.3 +/- 0.1 days to re-entrain to a shifted environmental cycle. Immunohistochemical analysis revealed that animals treated with MDMA showed reduced serotonin staining, as evidenced by a decrease in innervation density in the SCN. No significant differences were found in cell counts within the raphe nuclei. These results demonstrate the importance of the serotonergic system in the modulation of photic and non-photic responses of the circadian pacemaker.
Collapse
Affiliation(s)
- M Gardani
- Department of Psychology, University of Glasgow, UK.
| | | | | |
Collapse
|
35
|
Bramley JR, Sollars PJ, Pickard GE, Dudek FE. 5-HT1B Receptor-Mediated Presynaptic Inhibition of GABA Release in the Suprachiasmatic Nucleus. J Neurophysiol 2005; 93:3157-64. [PMID: 15716370 DOI: 10.1152/jn.00770.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) receives a dense serotonergic innervation that modulates photic input to the SCN via serotonin 1B (5-HT1B) presynaptic receptors on retinal glutamatergic terminals. However, the majority of 5-HT1B binding sites in the SCN are located on nonretinal terminals and most axonal terminals in the SCN are GABAergic. We therefore tested the hypothesis that 5-HT1B receptors might also be located on SCN GABAergic terminals by examining the effects of the highly selective 5-HT1B receptor agonist CP-93,129 on SCN miniature inhibitory postsynaptic currents (mIPSCs). Whole cell patch-clamp recordings of mIPSCs were obtained from rat and mouse SCN neurons in hypothalamic slices. Using CsCl-containing microelectrodes with QX314, we isolated mPSCs that were sensitive to the GABAA receptor antagonist, bicuculline. Bath application of CP-93,129 (1 μM) decreased the frequency of mIPSCs by an average of 22% ( n = 7) in rat SCN neurons and by an average of 30% ( n = 8) in mouse SCN neurons with no clear effect on mIPSC amplitude. In mice lacking functional 5-HT1B receptors, CP-93,129 (1 μM) had no clear effect on the frequency or the amplitude of mIPSCs recorded in any of the cells tested ( n = 4). The decrease in the frequency of mIPSCs of SCN neurons produced by the selective 5-HT1B receptor agonist CP-93,129 is consistent with the interpretation that 5-HT1B receptors are located on GABA terminals in the SCN and that 5-HT inhibits GABA release via a 5-HT1B presynaptic receptor-mediated mechanism.
Collapse
Affiliation(s)
- Jayne R Bramley
- Dept. of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
36
|
Muscat L, Tischler RC, Morin LP. Functional analysis of the role of the median raphe as a regulator of hamster circadian system sensitivity to light. Brain Res 2005; 1044:59-66. [PMID: 15862790 DOI: 10.1016/j.brainres.2005.02.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 12/31/2022]
Abstract
The retinohypothalamic tract, a monosynaptic retinal projection to the suprachiasmatic nucleus (SCN), is the path by which light entrains the circadian system to the external photoperiod. Serotonergic neurons in the mesencephalic median raphe nucleus (MnR) also give rise to a major SCN afferent projection. The present study was designed to determine the extent to which MnR serotonergic projections regulate sensitivity of the circadian rhythm system to light. Serotonergic neurons in the MnR were destroyed by the direct application of the neurotoxin, 5,7-dihydroxytryptamine. Animals in constant darkness were given 5-min white light pulses at circadian time 19. Light intensity varied from 0.0011 to 70 microW/cm2. Assessment of rhythm phase response to light by lesioned and control animals revealed that animals lacking the MnR serotonergic projection are considerably more sensitive to light at high irradiances. The results are consistent with behavioral and physiological evidence implicating serotonin as an inhibitory modulator of the effects of light on circadian rhythmicity.
Collapse
Affiliation(s)
- Louise Muscat
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
37
|
Caldelas I, Chimal-Monroy J, Martínez-Gómez M, Hudson R. Non-photic circadian entrainment in mammals: A brief review and proposal for study during development. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Muscat L, Huberman AD, Jordan CL, Morin LP. Crossed and uncrossed retinal projections to the hamster circadian system. J Comp Neurol 2003; 466:513-24. [PMID: 14566946 DOI: 10.1002/cne.10894] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hamster suprachiasmatic nucleus (SCN), site of the circadian clock, has been thought to be equally and completely innervated by each retina. This issue was studied in animals that had received an injection of the tracer cholera toxin subunit B (CTb) conjugated to Alexa 488 into the vitreous of one eye, with CTb-Alexa 594 injected into the other. Retinal projections to the SCN and other nuclei of the circadian system were simultaneously evaluated by using confocal laser microscopy. Each retina provides completely overlapping terminal fields throughout each SCN. Although SCN innervation by the contralateral retina is slightly denser than that from the ipsilateral retina, there are distinct SCN regions where input from one side is predominant, but not exclusive. A dense terminal field from the contralateral retina encompasses, and extends dorsally beyond, the central SCN subnucleus identified by calbindin-immunoreactive neurons. Surrounding the dense terminal field, innervation is largely derived from the ipsilateral retina. The densest terminal field in the intergeniculate leaflet is from the contralateral retina, which completely overlaps the ipsilateral projection. Most nuclei of the pretectum receive innervation largely, but not solely, from the contralateral retina, although the olivary pretectal nucleus has very dense patches of innervation derived exclusively from one retina or the other. Retina-dependent variation in terminal field density within the three closely examined nuclei may indicate areas of specialized function not previously appreciated. This issue is discussed in the context of the melanopsin-containing retinal ganglion cell projections to several nuclei in the circadian visual system.
Collapse
Affiliation(s)
- Louise Muscat
- Graduate Program in Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
39
|
Abstract
The median (MnR), but not the dorsal (DR) raphe, sends a serotonergic projection to the suprachiasmatic (SCN) nucleus. Stimulation of either nucleus by electrode or serotonin agonist yields equivalent effects on circadian rhythmicity. This and other evidence suggests the existence of a functional serotonergic pathway from the DR to the MnR that may participate in circadian rhythm regulation. The present investigation was designed to identify such a connection. Tract tracer studies revealed cells in the DR that project to the MnR, as well as cells in the MnR that project to the DR. Double label immunofluorescence methods demonstrated that some of the cells projecting from either nucleus to the other contain serotonin immunoreactivity. The results support the existence of a reciprocal pathway between the DR and MnR that is at least partially serotonergic.
Collapse
Affiliation(s)
- Rebecca C Tischler
- Graduate Program in Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
40
|
Gannon RL. Serotonergic serotonin (1A) mixed agonists/antagonists elicit large-magnitude phase shifts in hamster circadian wheel-running rhythms. Neuroscience 2003; 119:567-76. [PMID: 12770569 DOI: 10.1016/s0306-4522(03)00161-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The biological clock that generates circadian rhythms in mammals is located within the suprachiasmatic nuclei at the base of the hypothalamus. The circadian clock is entrained to the daily light/dark cycle by photic information from the retina. The retinal input to the clock is inhibited by exogenously applied serotonin agonists, perhaps mimicking an endogenous inhibitory serotonergic input to the clock arriving from the midbrain raphe. In the present study, a unique class of serotonergic compounds was tested for its ability to modulate retinal input to the circadian clock. The serotonergic ligands 8-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-8-azaspiro(4.5)decane-7,9-dione dihydrochloride (BMY 7378), S 15535, and 8-[2-(1,4-benzodioxan-2-ylmethylamino)ethyl]-8-azaspiro[4.5]decane-7,9-dione hydrochloride (MDL 73005 EF) can all be classified as mixed agonists/antagonists at type 1A serotonin receptors. Circadian wheel-running activity rhythms were monitored in Syrian hamsters maintained in constant darkness. Dim white-light pulses administered to the hamsters at circadian time 19 advanced the phase of their running rhythms by 1-2 h. Injection of BMY 7378, S 15535, and to a lesser degree MDL 73005 EF, prior to the light pulses resulted in phase advances from 5 to 6 h, and by as much as 8 h. Neither BMY 7378 nor S 15535 had any effect on light-induced phase delays in hamster activity rhythms at circadian time 14. Further, BMY 7378 is able to phase advance circadian rhythms by approximately 1 h at night even without light exposure. Finally, the effects of BMY 7378 on circadian rhythms is opposite to that observed with the prototypical serotonin 1A agonist (+/-)-8-hydroxy-2-(DI-n-propyl-amino)tetralin hydrobromide (8-OH-DPAT) (8-OH-DPAT elicits non-photic phase advances in the day and inhibits photic-induced phase advances at night). These results suggest that pharmacologically blocking raphe input to the suprachiasmatic circadian clock results in substantially larger photically induced phase advances in wheel-running rhythms. This is further evidence that raphe input to the circadian clock is probably acting to dampen the clock's response to light under certain conditions. The large-magnitude phase shifts, and temporal-activity profile seen with BMY 7378 and S 15535, suggest that compounds with this unique pharmacological profile may be beneficial in the treatment of circadian phase delays recently reported to be a complication resulting from Alzheimer's disease.
Collapse
Affiliation(s)
- R L Gannon
- Department of Biology, Dowling College, Oakdale, Long Island, NY 11769, USA.
| |
Collapse
|
41
|
Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat 2003; 25:293-310. [PMID: 12842274 DOI: 10.1016/s0891-0618(03)00042-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of serotonergic afferents in the hypothalamic suprachiasmatic nucleus (SCN) is well documented and several functional roles of serotonin (5-HT) in circadian function are well established. However, there is some controversy about the precise location of the serotonergic neurones from where this input arises. Discrete injection of the tracer Cholera toxin, subunit B, (ChB) was centred in the rat SCN, and a few retrograde labelled neurones were distributed in the dorsal and median raphe nuclei (MnR) and in the rostral part of the raphe magnus (RMg), but no neurones were found in the raphe pallidus or raphe obscurus. In addition, a group of neurones was consistently found in the medial part of the pontine supra lemniscal nucleus but not including the serotonergic B(9) region. A combination of retrograde tracing with Fluoro-Gold together with 5-HT-immunolabelling, showed few double-labelled neurones in the dorsal, MnR and B(9). However, the majority of projecting neurones were not co-storing 5-HT immunoreactivity. Phaseolus vulgaris-leucoagglutinin (PHA-L) injections in the dorsal raphe resulted in faint labelling, whereas the MnR gave rise to several labelled fibres in the SCN. Individual delicate PHA-L nerve fibres were found in all compartments of the SCN both in terms of rostrocaudal, ventromedial and dorsomedial extent, without any sign of a topographical organisation of the MnR input to the SCN. PHA-L injections into RMg gave rise to labelling of a few processes within the SCN. In conclusion, the main serotonergic input to the rat SCN originates from a few neurones in the MnR.
Collapse
Affiliation(s)
- Anders Hay-Schmidt
- Department of Medical Anatomy, The Panum Institute, 18.2, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
42
|
Moriya T, Ikeda M, Teshima K, Hara R, Kuriyama K, Yoshioka T, Allen CN, Shibata S. Facilitation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor transmission in the suprachiasmatic nucleus by aniracetam enhances photic responses of the biological clock in rodents. J Neurochem 2003; 85:978-87. [PMID: 12716429 DOI: 10.1046/j.1471-4159.2003.01758.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to test whether the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-facilitating drug, aniracetam, could potentiate photic responses of the biological clock in the suprachiasmatic nucleus (SCN) of rodents. Using the whole-cell patch technique, we first demonstrated that AMPA currents elicited by either local AMPA application or optic chiasm stimulation were augmented by aniracetam in the neurons of the SCN. The AMPA application-elicited increase of intracellular Ca2+ concentration in SCN slices was also enhanced by aniracetam treatment. The systemic injection of aniracetam dose-dependently (10-100 mg/kg) potentiated the phase delay in behavioral rhythm induced by brief light exposure of low intensity (3 lux) but not high intensity (10 or 60 lux) during early subjective night. Under the blockade of NMDA receptors by (+) MK801, aniracetam failed to potentiate a light (3 lux)-induced phase delay in behavioral rhythm. Aniracetam increased the photic induction of c-Fos protein in the SCN that was elicited by low intensity light exposure (3 lux). These results suggest that AMPA receptor-mediated responses facilitated by aniracetam can explain enhanced photic responses of the biological clock in the SCN of rodents.
Collapse
Affiliation(s)
- Takahiro Moriya
- Departments of Pharmacology and Brain Science, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa-shi, Saitama 359-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) receives multiple afferent signals that could potentially modulate its phase. One input, the serotonin (5-HT) projection from the raphe nuclei, has been extensively investigated in rats and hamsters, yet its role(s) in modulating circadian clock phase remains controversial. To expand our investigation of 5-HT modulation of the SCN clock, we investigated the phase-shifting effects of 5-HT and its agonist, (+)8-hydroxy-2-(di-n-propylamino)tetralin (DPAT), when applied to mouse SCN brain slices. 5-HT induced 2-3 h phase advances when applied during subjective day, while non-significant phase shifts were seen after 5-HT application at other times. These phase shifts were completely blocked by the 5-HT antagonist, metergoline. DPAT also induced phase shifts when applied during mid-subjective day, and this effect appeared dose-dependent. Together, these results demonstrate that the mouse SCN, like that of the rat, is directly sensitive to in vitro phase-resetting by 5-HT.
Collapse
Affiliation(s)
- Rebecca A Prosser
- University of Tennessee, Department of Biochemistry and Cellular and Molecular Biology, M407 Walter's Life Sciences Building, Knoxville, TN 37996, USA.
| |
Collapse
|
44
|
Sanggaard KM, Hannibal J, Fahrenkrug J. Serotonin inhibits glutamate- but not PACAP-induced per gene expression in the rat suprachiasmatic nucleus at night. Eur J Neurosci 2003; 17:1245-52. [PMID: 12670312 DOI: 10.1046/j.1460-9568.2003.02562.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Circadian rhythms of physiology and behaviour generated by the brain's biological clock located in the suprachiasmatic nucleus are entrained by light via the retinohypothalamic tract. Two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), found in this monosynaptic pathway mediate the effects of light to the clock. It is well known that not only light entrains the clock. Nonphotic cues mediated by neurotransmitters such as serotonin reaching the suprachiasmatic nucleus from the midbrain raphe nucleus modulate light-induced phase shifts at night. Two clock genes, per1 and per2, have been attributed a role in light-induced phase shift. In the present study, using an in vitro brain slice model and quantitative in situ hybridization for per1 and per2, we have shown that serotonin induces per1 gene expression at late subjective night but not at early night. Furthermore, serotonin application before glutamate or PACAP blocked glutamate-induced per1 expression at early night and per2 gene expression at late night. In contrast, serotonin did not influence PACAP-induced per gene expression at late night. Triple antigen immunohistochemistry and confocal microscopy supported both a pre- and post-synaptic interaction of retinohypothalamic tract (PACAP-immunoreactive) and serotonin projections on vasoactive intestinal peptide- and gastrin-releasing peptide-containing cell bodies in the ventro-lateral suprachiasmatic nucleus. Our findings suggest that the per genes could be the molecular target for the modulatory effects of serotonin on light signalling to the clock.
Collapse
Affiliation(s)
- K M Sanggaard
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, DK-2400 Copenhagen NV, Denmark
| | | | | |
Collapse
|
45
|
Colbron S, Jones M, Biello SM. MDMA alters the response of the circadian clock to a photic and non-photic stimulus. Brain Res 2002; 956:45-52. [PMID: 12426045 DOI: 10.1016/s0006-8993(02)03478-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or 'Ecstasy') is a widely used recreational drug that damages serotonin 5-HT neurons in animals and possibly humans. Published literature has shown that the serotonergic system is involved in photic and non-photic phase shifting of the circadian clock, which is located in the suprachiasmatic nuclei. Despite the dense innervation of the circadian system by 5-HT and the known selective neurotoxicity of MDMA, little is known about the effects of MDMA on the circadian oscillator. This study investigated whether repeated exposure to the serotonin neurotoxin MDMA alters the behavioural response of the Syrian hamster to phase shift to the serotonin 5-HT1A/7 receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT). This agonist was administered under an Aschoff Type I (CT8) and Aschoff Type II (ZT8) paradigm (5 mg/kg) and was given before and after treatment with MDMA (10, 15 and 20 mg/kg administered on successive days). Pre-treatment with MDMA significantly attenuated phase shifts to 8-OH-DPAT. We also tested the ability of the clock to phase shift to a photic stimulus after treatment with MDMA. A 15-min light pulse (mean lux 125 at CT14 or ZT14) was administered before and after treatment with MDMA. Phase shifts to a photic stimulus were significantly attenuated by pre-treatment with MDMA. Our study demonstrates that repeated exposure to MDMA may alter the ability of the circadian clock to phase shift to a photic and non-photic stimulus in the hamster. Disruption of circadian function has been linked with a variety of clinical conditions such as sleep disorders, mood, concentration difficulties and depression, consequently outlining the potential dangers of long-term ecstasy use.
Collapse
Affiliation(s)
- Suzanne Colbron
- Department of Psychology, University of Glasgow, 58 Hillhead Street, G12 8QB, Glasgow, UK
| | | | | |
Collapse
|
46
|
Sollars PJ, Ogilvie MD, Rea MA, Pickard GE. 5-HT1B receptor knockout mice exhibit an enhanced response to constant light. J Biol Rhythms 2002; 17:428-37. [PMID: 12375619 DOI: 10.1177/074873002237137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serotonin (5-HT) can act presynaptically at 5-HT1B receptors on retinal terminals in the suprachiasmatic nucleus (SCN) to inhibit glutamate release, thereby modulating the effects of light on circadian behavior. 5-HT1B receptor agonists (1) inhibit light-induced phase shifts of circadian activity rhythms, (2) attenuate light-induced Fos expression in the SCN, and (3) reduce the amplitude of optic nerve-evoked excitatory postsynaptic currents in SCN neurons in vitro. To determine whether functional disruption of the 5-HT1B presynaptic receptors would result in an amplified response of the SCN to light, the period (tau) of the circadian rhythm of wheel-running activity was estimated under several different conditions in 5-HT1B receptor knockout (KO) mice and genetically matched wild-type animals. Under constant light (LL) conditions, the tau of 5-HT1B receptor KO mice was significantly greater than the tau of wild-type mice. A quantitative analysis of the wheel-running activity revealed no differences between wild-type and KO mice in either total activity or the temporal distribution of activity under LL conditions, suggesting that the observed increase in tau was not a function of reduced activity. Under constant dark conditions, the period of the circadian rhythm of wheel-running activity of wild-type and 5-HT1B receptor KO mice was similar. In addition, no differences were noted between wild-type and 5-HT1B receptor KO mice in the rate of reentrainment to a 6 h phase advance in the 12:12 light:dark cycle or in phase shifts in response to a 10 min light pulse presented at circadian time 16. The enhanced response of the SCN circadian clock of the 5-HT1B receptor KO mice to LL conditions is consistent with the hypothesis that the endogenous activation of 5-HT1B presynaptic receptors modulates circadian behavior by attenuating photic input to the SCN.
Collapse
Affiliation(s)
- Patricia J Sollars
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523-1670, USA.
| | | | | | | |
Collapse
|
47
|
Yamazaki S, Alones V, Menaker M. Interaction of the retina with suprachiasmatic pacemakers in the control of circadian behavior. J Biol Rhythms 2002; 17:315-29. [PMID: 12164248 DOI: 10.1177/074873040201700405] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the central circadian pacemaker governing the circadian rhythm of locomotor activity in mammals. The mammalian retina also contains circadian oscillators, but their roles are unknown. To test whether the retina influences circadian rhythms of locomotor behavior, the authors compared the activity of bilaterally enucleated hamsters with the activity of intact controls held in constant darkness (DD). Enucleated hamsters showed a broader range of free-running periods (tau) than did intact hamsters held for the same length of time in DD. This effect was independent of the age at enucleation (on postnatal days 1, 7, or 28). The average tau of intact animals kept in DD from days 7 or 28 was significantly longer than that of intact animals kept in DD from day 1 or any of the enucleated groups. This indicates that early exposure to light-dark cycles lengthens the tau and that the eye is required to maintain this effect even in DD. These data suggest that hypothalamic circadian pacemakers may interact continuously with the retina to determine the tau of locomotor activity. Enucleation caused a large decrease in glial fibrillary acidic protein in the SCN but has no (or slight) effects on calbindin, neuropeptide Y, vasopressin, or vasoactive intestinal polypeptide, which suggests that enucleation does not produce major damage to the SCN, an interpretation that is supported by the fact that enucleated animals retain robust circadian rhythmicity. The presence of an intact retina appears to contribute to system-level circadian organization in mammals perhaps as a consequence of interaction between its circadian oscillators and those in the SCN.
Collapse
Affiliation(s)
- Shin Yamazaki
- Department of Biology and National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville 22904-4328, USA.
| | | | | |
Collapse
|
48
|
Takahashi S, Yoshinobu Y, Aida R, Shimomura H, Akiyama M, Moriya T, Shibata S. Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J Neurosci Res 2002; 68:470-8. [PMID: 11992474 DOI: 10.1002/jnr.10225] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We reported previously that (S)-5-[3-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole hydrochloride (MKC-242) (3 mg kg(-1), i.p.), a selective 5-HT(1A) receptor agonist, accelerated the re-entrainment of hamster wheel-running rhythms to a new 8 hr delayed or advanced light-dark cycle, and also potentiated the phase advance of the wheel-running rhythm produced by light pulses. The molecular mechanism underlying MKC-242-induced potentiation of this phase shift, however, has not yet been elucidated. We examined the effects of MKC-242 on light-induced mPer1 and mPer2 mRNA expression in the suprachiasmatic nucleus (SCN) of mice. MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced mPer1 and mPer2 expression in the SCN of mice housed in constant darkness for 2 days, when mRNA levels were observed 3 hr after light-exposure. More potentiating action of MKC-242 on mPer2 expression in the SCN was observed in mice housed in constant darkness for 9-10 days. This facilitatory action of MKC-242 on mPer1 expression was antagonized by WAY100635, a selective 5-HT(1A) receptor blocker, indicating that MKC-242 activated 5-HT(1A) receptors. Other drugs such as 8-hydroxy-dipropylaminotetralin (10 mg kg(-1), i.p.), paroxetine (10 mg kg(-1), i.p.), buspirone (10 mg kg(-1), i.p.), and diazepam (10 mg kg(-1), i.p.) did not display a potentiating action on light-induced mPer1 and mPer2 expression in the SCN. In the behavioral experiments, we found that MKC-242 (5 mg kg(-1), i.p.) potentiated light-induced phase delays of free-running rhythm in mice. The present results suggest that prolonged increase of mPer1 or mPer2 expression in the SCN by MKC-242 may be involved in the potentiation of photic entrainment by MKC-242 in mice.
Collapse
Affiliation(s)
- Satomi Takahashi
- Department of Pharmacology and Brain Science, School of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Barassin S, Raison S, Saboureau M, Bienvenu C, Maître M, Malan A, Pévet P. Circadian tryptophan hydroxylase levels and serotonin release in the suprachiasmatic nucleus of the rat. Eur J Neurosci 2002; 15:833-40. [PMID: 11906525 DOI: 10.1046/j.1460-9568.2002.01928.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serotonin (5-HT) plays an important role in the regulation of the time-keeping system in rodents. In the present study, we have investigated the interplay between the rhythms of 5-HT synthesis and release in the suprachiasmatic nuclei (SCN) of the rat. The quantitative distribution of tryptophan hydroxylase (TpH) protein was used as an index of 5-HT synthesis, in perikarya and terminals areas. In the raphe medianus, the maximal levels of TpH was reached in the early daytime period, followed by a decrease before the onset of darkness. Conversely, in the axon terminals of the SCN the highest levels of TpH were found before the onset of the dark-period. Furthermore, TpH amount in SCN displays variations depending on the anatomical area of the SCN. Extracellular 5-HT peaked at the beginning of the night, as evidenced by in vivo microdialysis in the SCN. The 5-HT metabolite, 5-HIAA, presented a similar pattern, but the acrophase occurred in the middle of the dark period. These results suggest that TpH is transported from the soma to the nerve terminals in which 5-HT is synthesized during daytime. This would fill the intracellular stores of 5-HT to provide for its nocturnal release.
Collapse
Affiliation(s)
- Stéphane Barassin
- Neurobiologie des Rythmes, UMR 7518, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Hayashi S, Ueda M, Amaya F, Matusda T, Tamada Y, Ibata Y, Tanaka M. Serotonin modulates expression of VIP and GRP mRNA via the 5-HT(1B) receptor in the suprachiasmatic nucleus of the rat. Exp Neurol 2001; 171:285-92. [PMID: 11573980 DOI: 10.1006/exnr.2001.7759] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of vasoactive intestinal peptide (VIP) and gastrin-releasing peptide (GRP) in the suprachiasmatic nucleus (SCN) changes depending on light. VIP mRNA increases and GRP mRNA decreases in the light phase, while they do not show change without light. In the present study we investigated the involvement of serotonin (5-HT) in the expression of VIP and GRP messenger RNA in the SCN of the rat. The decrease in VIP mRNA and the increase in GRP mRNA in the light phase were amplified by 5-HT depletion using 5,6-dihydroxytryptamine injected into the lateral ventricle. These enhancements due to 5-HT depletion were reversed to control levels by applying 5-HT(1B) agonists TFMPP and CGS12066A, but not a 5-HT(1A)/5-HT(7) agonist, 8-OH-DPAT. The 5-HT(1B) receptor is known to exist on the terminals of the retinohypothalamic tract (RHT). Therefore, next we investigated the morphological relationship of RHT and 5-HT terminals by double-labeling immunocytochemistry and demonstrated that 5-HT-immunoreactive fibers and cholera toxin B subunit-labeled RHT terminals were intermingled in the ventrolateral SCN, and 5-HT axon processes had close contact with RHT terminals. Collectively, these pharmacological and morphological results suggest that 5-HT afferents from raphe nuclei modulate VIP and GRP expression in neurons of the ventrolateral SCN by activating the 5-HT(1B) receptor in the RHT.
Collapse
Affiliation(s)
- S Hayashi
- Department of Anatomy & Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji Kamikyo-ku, Kyoto, 602-0841, Japan
| | | | | | | | | | | | | |
Collapse
|