1
|
Visconti PE, Levin LR, Buck J. David Garbers and the Birth of cAMP Biology in Mammalian Sperm. Mol Reprod Dev 2024; 91:e23773. [PMID: 39385557 PMCID: PMC11910748 DOI: 10.1002/mrd.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Dr. David Garbers made many impactful contributions to science and vastly improved our understanding of sperm biology. In this review, we focus on his identification of a key role for the second messenger cAMP in mammalian sperm. As a graduate student David discovered that sperm motility, which is essential for sperm to fertilize the egg, is under the control of the (at the time) recently identified, prototypical second messenger cAMP. Fast-forwarding to the present, agents which turn off sperm's ability to generate cAMP and block sperm motility are being investigated as potential nonhormonal contraceptives for men and women. Should these efforts prove successful, Dave's discoveries will prove to be the spark which ignited a revolution in human health.
Collapse
Affiliation(s)
- Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
2
|
Thompson P, Vilkelyte V, Woronkowicz M, Tavakoli M, Skopinski P, Roberts H. Adenylyl Cyclase in Ocular Health and Disease: A Comprehensive Review. BIOLOGY 2024; 13:445. [PMID: 38927325 PMCID: PMC11200476 DOI: 10.3390/biology13060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Adenylyl cyclases (ACs) are a group of enzymes that convert adenosine-5'-triphosphate (ATP) to cyclic adenosine 3',5' monophosphate (cAMP), a vital and ubiquitous signalling molecule in cellular responses to hormones and neurotransmitters. There are nine transmembrane (tmAC) forms, which have been widely studied; however, the tenth, soluble AC (sAC) is less extensively characterised. The eye is one of the most metabolically active sites in the body, where sAC has been found in abundance, making it a target for novel therapeutics and biomarking. In the cornea, AC plays a role in endothelial cell function, which is vital in maintaining stromal dehydration, and therefore, clarity. In the retina, AC has been implicated in axon cell growth and survival. As these cells are irreversibly damaged in glaucoma and injury, this molecule may provide focus for future therapies. Another potential area for glaucoma management is the source of aqueous humour production, the ciliary body, where AC has also been identified. Furthering the understanding of lacrimal gland function is vital in managing dry eye disease, a common and debilitating condition. sAC has been linked to tear production and could serve as a therapeutic target. Overall, ACs are an exciting area of study in ocular health, offering multiple avenues for future medical therapies and diagnostics. This review paper explores the diverse roles of ACs in the eye and their potential as targets for innovative treatments.
Collapse
Affiliation(s)
- Polly Thompson
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
| | - Virginija Vilkelyte
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| | - Malgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK;
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Mitra Tavakoli
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| | - Piotr Skopinski
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK;
- University of Exeter Medical School, St Luke’s Campus, University of Exeter, Exeter EX1 2HZ, UK
| |
Collapse
|
3
|
Balbach M, Fushimi M, Huggins DJ, Steegborn C, Meinke PT, Levin LR, Buck J. Optimization of lead compounds into on-demand, nonhormonal contraceptives: leveraging a public-private drug discovery institute collaboration†. Biol Reprod 2021; 103:176-182. [PMID: 32307523 PMCID: PMC7401349 DOI: 10.1093/biolre/ioaa052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Efforts to develop new male or female nonhormonal, orally available contraceptives assume that to be effective and safe, targets must be (1) essential for fertility; (2) amenable to targeting by small-molecule inhibitors; and (3) restricted to the germline. In this perspective, we question the third assumption and propose that despite its wide expression, soluble adenylyl cyclase (sAC: ADCY10), which is essential for male fertility, is a valid target. We hypothesize that an acute-acting sAC inhibitor may provide orally available, on-demand, nonhormonal contraception for men without adverse, mechanism-based effects. To test this concept, we describe a collaboration between academia and the unique capabilities of a public-private drug discovery institute.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Makoto Fushimi
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David J Huggins
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Peter T Meinke
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Rossetti T, Jackvony S, Buck J, Levin LR. Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus 2021; 11:20200034. [PMID: 33633833 PMCID: PMC7898154 DOI: 10.1098/rsfs.2020.0034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Soluble adenylyl cyclase (sAC; ADCY10) is a bicarbonate (HCO3 -)-regulated enzyme responsible for the generation of cyclic adenosine monophosphate (cAMP). sAC is distributed throughout the cell and within organelles and, as such, plays a role in numerous cellular signalling pathways. Carbonic anhydrases (CAs) nearly instantaneously equilibrate HCO3 -, protons and carbon dioxide (CO2); because of the ubiquitous presence of CAs within cells, HCO3 --regulated sAC can respond to changes in any of these factors. Thus, sAC can function as a physiological HCO3 -/CO2/pH sensor. Here, we outline examples where we have shown that sAC responds to changes in HCO3 -, CO2 or pH to regulate diverse physiological functions.
Collapse
Affiliation(s)
- Tom Rossetti
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie Jackvony
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2019; 86:502-515. [PMID: 30746812 DOI: 10.1002/mrd.23128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/11/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract the concentration is around 1 µM. In this study, we characterize the role of Zn 2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of G protein-coupled receptor 39 (GPR39) type Zn-receptor localized mainly in the sperm tail. Zn 2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-AC-cAMP-PKA-Src-EGFR and phospholipase C. Both the transmembrane adenylyl cyclase (AC) and the soluble-AC are involved in the stimulation of HAM by Zn 2+ . The development of HAM is precisely regulated by cyclic adenosine monophosphate, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn 2+ were added to the cells; low Zn 2+ stimulated HAM, whereas at relatively high Zn 2+ , no effect was seen. We further demonstrate that the Ca 2+ -channel CatSper involved in Zn 2+ -stimulated HAM. These data support a role for extracellular Zn 2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina and Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|
7
|
Allouche-Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn 2. Mol Reprod Dev 2018; 85:543-556. [PMID: 29750435 DOI: 10.1002/mrd.22996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022]
Abstract
To fertilize the egg, sperm cells must reside in the female reproductive tract for several hours during which they undergo chemical and motility changes collectively called capacitation. During capacitation, the sperm develop a unique type of motility known as hyperactivated motility (HAM). The semen contains Zn2+ in millimolar concentrations, whereas in the female reproductive tract, the concentration is around 1 µM. In this study, we characterize the role of Zn2+ in human sperm capacitation focusing on its effect on HAM. Western blot analysis revealed the presence of GPR39-type Zn-receptor localized mainly in the sperm tail. Zn2+ at micromolar concentration stimulates HAM, which is mediated by a cascade involving GPR39-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A-tyrosine kinase Src (Src)-epidermal growth factor receptor and phospholipase C. Both the transmembrane AC and the soluble-AC are involved in the stimulation of HAM by Zn2+ . The development of HAM is precisely regulated by cAMP, in which relatively low concentration (5-10 µM) stimulated HAM, whereas at 30 µM no stimulation occurred. A similar response was seen when different concentrations of Zn2+ were added to the cells; low Zn2+ stimulated HAM, whereas at relatively high Zn2+ , no effect was seen. We further demonstrate that the Ca2+ -channel CatSper involved in Zn2+ -stimulated HAM. These data support a role for extracellular Zn2+ acting via GPR39 to regulate signaling pathways in sperm capacitation, leading to HAM induction.
Collapse
Affiliation(s)
| | - Danit Bakhshi
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Stiles TL, Kapiloff MS, Goldberg JL. The role of soluble adenylyl cyclase in neurite outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2561-8. [PMID: 25064589 PMCID: PMC4262618 DOI: 10.1016/j.bbadis.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
Axon regeneration in the mature central nervous system is limited by extrinsic inhibitory signals and a postnatal decline in neurons' intrinsic growth capacity. Neuronal levels of the second messenger cAMP are important in regulating both intrinsic growth capacity and neurons' responses to extrinsic factors. Approaches which increase intracellular cAMP in neurons enhance neurite outgrowth and facilitate regeneration after injury. Thus, understanding the factors which affect cAMP in neurons is of potential therapeutic importance. Recently, soluble adenylyl cyclase (sAC, ADCY10), the ubiquitous, non-transmembrane adenylyl cyclase, was found to play a key role in neuronal survival and axon growth. sAC is activated by bicarbonate and cations and may translate physiologic signals from metabolism and electrical activity into a neuron's decision to survive or regenerate. Here we critically review the literature surrounding sAC and cAMP signaling in neurons to further elucidate the potential role of sAC signaling in neurite outgrowth and regeneration. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Travis L Stiles
- Shiley Eye Center, University of California, San Diego, CA 92093, USA
| | - Michael S Kapiloff
- Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
9
|
Michailov Y, Ickowicz D, Breitbart H. Zn2+-stimulation of sperm capacitation and of the acrosome reaction is mediated by EGFR activation. Dev Biol 2014; 396:246-55. [PMID: 25446533 DOI: 10.1016/j.ydbio.2014.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Extracellular zinc regulates cell proliferation via the MAP1 kinase pathway in several cell types, and has been shown to act as a signaling molecule. The testis contains a relatively high concentration of Zn(2+), required in both the early and late stages of spermatogenesis. Despite the clinical significance of this ion, its role in mature sperm cells is poorly understood. In this study, we characterized the role of Zn(2+) in sperm capacitation and in the acrosome reaction. Western blot analysis revealed the presence of ZnR of the GPR39 type in sperm cells. We previously demonstrated the presence of active epidermal growth factor receptor (EGFR) in sperm, its possible transactivation by direct activation of G-protein coupled receptor (GPCR), and its involvement in sperm capacitation and in the acrosome reaction (AR). We show here that Zn(2+) activates the EGFR during sperm capacitation, which is mediated by activation of trans-membrane adenylyl cyclase (tmAC), protein kinase A (PKA), and the tyrosine kinase, Src. Moreover, the addition of Zn(2+) to capacitated sperm caused further stimulation of EGFR and phosphatydil-inositol-3-kinase (PI3K) phosphorylation, leading to the AR. The stimulation of the AR by Zn(2+) also occurred in the absence of Ca(2+) in the incubation medium, and required the tmAC, indicating that Zn(2+) activates a GPCR. The AR stimulated by Zn(2+) is mediated by GPR39 receptor, PKA, Src and the EGFR, as well as the EGFR down-stream effectors PI3K, phospholipase C (PLC) and protein kinase C (PKC). These data support a role for extracellular zinc, acting through the ZnR, in regulating multiple signaling pathways in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Yulia Michailov
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Debbi Ickowicz
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
10
|
Kwon WS, Rahman MS, Pang MG. Diagnosis and prognosis of male infertility in mammal: the focusing of tyrosine phosphorylation and phosphotyrosine proteins. J Proteome Res 2014; 13:4505-17. [PMID: 25223855 DOI: 10.1021/pr500524p] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Male infertility refers to the inability of a man to achieve a pregnancy in a fertile female. In more than one-third of cases, infertility arises due to the male factor. Therefore, developing strategies for the diagnosis and prognosis of male infertility is critical. Simultaneously, a satisfactory model for the cellular mechanisms that regulate normal sperm function must be established. In this regard, tyrosine phosphorylation is one of the most common mechanisms through which several signal transduction pathways are adjusted in spermatozoa. It regulates the various aspects of sperm function, for example, motility, hyperactivation, capacitation, the acrosome reaction, fertilization, and beyond. Several recent large-scale studies have identified the proteins that are phosphorylated in spermatozoa to acquire fertilization competence. However, most of these studies are basal and have not presented an overall mechanism through which tyrosine phosphorylation regulates male infertility. In this review, we focus of this mechanism, discussing most of the tyrosine-phosphorylated proteins in spermatozoa that have been identified to date. We categorized tyrosine-phosphorylated proteins in spermatozoa that regulate male infertility using MedScan Reader (v5.0) and Pathway Studio (v9.0).
Collapse
Affiliation(s)
- Woo-Sung Kwon
- Department of Animal Science & Technology, Chung-Ang University , Anseong, Gyeonggi-do 456-756, Republic of Korea
| | | | | |
Collapse
|
11
|
Lee YS, Marmorstein LY, Marmorstein AD. Soluble adenylyl cyclase in the eye. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2579-83. [PMID: 25108282 DOI: 10.1016/j.bbadis.2014.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 11/26/2022]
Abstract
Adenylyl cyclases (ACs) are a family of enzymes which convert ATP to cAMP, an essential intermediate in many signal transduction pathways. Of the 10 AC genes in man, 9 fall into the category of transmembrane ACs (tmACs), which associate with G-protein coupled receptors (GPCRs) and are activated by forskolin. The 10th AC, termed soluble AC (sAC) is neither activated by forskolin nor does it interact with GPCRs. Rather, sAC can be found in many compartments within the cell and is activated by bicarbonate. As such, sAC is considered a major sensor of bicarbonate in many tissues. The pathways involving sAC vary in different tissues and organ systems, and are as diverse as facilitating sperm capacitation and regulating pressure in the eye. The role of sAC in the eye has only recently begun to receive significant attention. Here we summarize what is known about the roles of sAC in the eye. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Yong S Lee
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55902, USA
| | | | | |
Collapse
|
12
|
Rahman N, Buck J, Levin LR. pH sensing via bicarbonate-regulated "soluble" adenylyl cyclase (sAC). Front Physiol 2013; 4:343. [PMID: 24324443 PMCID: PMC3838963 DOI: 10.3389/fphys.2013.00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/06/2013] [Indexed: 01/03/2023] Open
Abstract
Soluble adenylyl cyclase (sAC) is a source of the second messenger cyclic adenosine 3′, 5′ monophosphate (cAMP). sAC is directly regulated by bicarbonate (HCO−3) ions. In living cells, HCO−3 ions are in nearly instantaneous equilibrium with carbon dioxide (CO2) and pH due to the ubiquitous presence of carbonic anhydrases. Numerous biological processes are regulated by CO2, HCO−3, and/or pH, and in a number of these, sAC has been shown to function as a physiological CO2/HCO3/pH sensor. In this review, we detail the known pH sensing functions of sAC, and we discuss two highly-studied, pH-dependent pathways in which sAC might play a role.
Collapse
Affiliation(s)
- Nawreen Rahman
- Department of Pharmacology, Weill Cornell Medical College New York, NY, USA
| | | | | |
Collapse
|
13
|
Chen H, Ruan YC, Xu WM, Chen J, Chan HC. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 2012; 18:703-13. [PMID: 22709980 DOI: 10.1093/humupd/dms027] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) and HCO(3)(-) conducting channel, mutations of which are known to be associated with male infertility. However, the underlying mechanisms remain elusive. METHODS Literature databases were searched for papers on the topics related to CFTR and male fertility and infertility with relevant keywords. Unpublished data from authors' laboratory were also included for analysis. RESULTS Clinical evidence shows increased mutation frequency or reduced CFTR expression in men with congenital bilateral absence of vas deferens (CBAVD) or sperm abnormalities, such as azoospermia teratospermia and oligoasthenospermia. Studies on primary rodent Sertoli cells and germ cells, as well as testes from CFTR knockout mice or a cryptorchidism model, yield findings indicating the involvement of CFTR in spermatogensis through the HCO(3)(-)/sAC/cAMP/CREB(CREM) pathway and the NF-κB/COX-2/PGE(2) pathway. Evidence also reveals a critical role of CFTR in sperm capacitation by directly or indirectly mediating HCO(3)(-) entry that is essential for capacitation. CFTR is emerging as a versatile player with roles in mediating different signaling pathways pertinent to various reproductive processes, in addition to its long-recognized role in electrolyte and fluid transport that regulates the luminal microenvironment of the male reproductive tract. CONCLUSIONS CFTR is a key regulator of male fertility, a defect of which may result in different forms of male infertility other than CBAVD. It would be worthwhile to further investigate the potential of developing novel diagnostic and contraceptive methods targeting CFTR.
Collapse
Affiliation(s)
- Hui Chen
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Buck J, Levin LR. Physiological sensing of carbon dioxide/bicarbonate/pH via cyclic nucleotide signaling. SENSORS 2012; 11:2112-28. [PMID: 21544217 PMCID: PMC3085406 DOI: 10.3390/s110202112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carbon dioxide (CO2) is produced by living organisms as a byproduct of metabolism. In physiological systems, CO2 is unequivocally linked with bicarbonate (HCO3−) and pH via a ubiquitous family of carbonic anhydrases, and numerous biological processes are dependent upon a mechanism for sensing the level of CO2, HCO3, and/or pH. The discovery that soluble adenylyl cyclase (sAC) is directly regulated by bicarbonate provided a link between CO2/HCO3/pH chemosensing and signaling via the widely used second messenger cyclic AMP. This review summarizes the evidence that bicarbonate-regulated sAC, and additional, subsequently identified bicarbonate-regulate nucleotidyl cyclases, function as evolutionarily conserved CO2/HCO3/pH chemosensors in a wide variety of physiological systems.
Collapse
Affiliation(s)
- Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
15
|
Koltsova SV, Akimova OA, Kotelevtsev SV, Grygorczyk R, Orlov SN. Hyperosmotic and isosmotic shrinkage differentially affect protein phosphorylation and ion transport. Can J Physiol Pharmacol 2012; 90:209-17. [DOI: 10.1139/y11-119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present work, we compared the outcome of hyperosmotic and isosmotic shrinkage on ion transport and protein phosphorylation in C11-MDCK cells resembling intercalated cells from collecting ducts and in vascular smooth muscle cells (VSMC) from the rat aorta. Hyperosmotic shrinkage was triggered by cell exposure to hypertonic medium, whereas isosmotic shrinkage was evoked by cell transfer from an hypoosmotic to an isosmotic environment. Despite a similar cell volume decrease of 40%–50%, the consequences of hyperosmotic and isosmotic shrinkage on cellular functions were sharply different. In C11-MDCK and VSMC, hyperosmotic shrinkage completely inhibited Na+,K+-ATPase and Na+,Pi cotransport. In contrast, in both types of cells isosmotic shrinkage slightly increased rather than suppressed Na+,K+-ATPase and did not change Na+,Pi cotransport. In C11-MDCK cells, phosphorylation of JNK1/2 and Erk1/2 mitogen-activated protein kinases was augmented in hyperosmotically shrunken cells by ∼7- and 2-fold, respectively, but was not affected in cells subjected to isosmotic shrinkage. These results demonstrate that the data obtained in cells subjected to hyperosmotic shrinkage cannot be considered as sufficient proof implicating cell volume perturbations in the regulation of cellular functions under isosmotic conditions.
Collapse
Affiliation(s)
- Svetlana V. Koltsova
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
| | - Olga A. Akimova
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
| | | | - Ryszard Grygorczyk
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
| | - Sergei N. Orlov
- Research Centre, Centre hospitalier de l’Université de Montréal (CHUM) – Technopôle Angus, Montreal, QC H1W 4A4, Canada
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute of General Pathology and Pathophysiology of the Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
16
|
Tresguerres M, Levin LR, Buck J. Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 2011; 79:1277-88. [PMID: 21490586 DOI: 10.1038/ki.2011.95] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soluble adenylyl cyclase (sAC) is a recently identified source of the ubiquitous second messenger cyclic adenosine 3',5' monophosphate (cAMP). sAC is distinct from the more widely studied source of cAMP, the transmembrane adenylyl cyclases (tmACs); its activity is uniquely regulated by bicarbonate anions, and it is distributed throughout the cytoplasm and in cellular organelles. Due to its unique localization and regulation, sAC has various functions in a variety of physiological systems that are distinct from tmACs. In this review, we detail the known functions of sAC, and we reassess commonly held views of cAMP signaling inside cells.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
17
|
Reid AT, Redgrove K, Aitken RJ, Nixon B. Cellular mechanisms regulating sperm-zona pellucida interaction. Asian J Androl 2010; 13:88-96. [PMID: 21042304 DOI: 10.1038/aja.2010.74] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For mammalian spermatozoa to exhibit the ability to bind the zona pellucida (ZP) they must undergo three distinct phases of maturation, namely, spermatogenesis (testis), epididymal maturation (epididymis) and capacitation (female reproductive tract). An impressive array of spermatozoa surface remodeling events accompany these phases of maturation and appear critical for recognition and adhesion of the outer vestments of the oocyte, a structure known as the ZP. It is becoming increasingly apparent that species-specific zona adhesion is not mediated by a single receptor. Instead, compelling evidence now points toward models implicating a multiplicity of receptor-ligand interactions. This notion is in keeping with emerging research that has shown that there is a dynamic aggregation of proteins believed to be important in sperm-ZP recognition to the regions of sperm that mediate this binding event. Such remodeling may in turn facilitate the assembly of a multimeric zona recognition complex (MZRC). Though formation of MZRCs raises questions regarding the nature of the block to polyspermy, formation and assembly of such a structure would no doubt explain the strenuous maturation process that sperm endure on their sojourn to functional maturity.
Collapse
Affiliation(s)
- Andrew T Reid
- Reproductive Science Group, Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
18
|
|
19
|
Tresguerres M, Buck J, Levin LR. Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch 2010; 460:953-64. [PMID: 20683624 DOI: 10.1007/s00424-010-0865-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/16/2010] [Accepted: 07/18/2010] [Indexed: 12/20/2022]
Abstract
In biological systems, carbon dioxide exists in equilibrium with bicarbonate and protons. The individual components of this equilibrium (i.e., CO₂, HCO₃⁻, and H(+)), which must be sensed to be able to maintain cellular and organismal pH, also function as signals to modulate multiple physiological functions. Yet, the molecular sensors for CO₂/HCO₃⁻/pH remained unknown until recently. Here, we review recent progress in delineating molecular and cellular mechanisms for sensing CO₂, HCO₃⁻, and pH.
Collapse
Affiliation(s)
- Martin Tresguerres
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, USA
| | | | | |
Collapse
|
20
|
Orlov SN, Hamet P. Intracellular monovalent ions as second messengers. J Membr Biol 2006; 210:161-72. [PMID: 16909338 DOI: 10.1007/s00232-006-0857-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/08/2006] [Indexed: 01/03/2023]
Abstract
It is generally accepted that electrochemical gradients of monovalent ions across the plasma membrane, created by the coupled function of pumps, carriers and channels, are involved in the maintenance of resting and action membrane potential, cell volume adjustment, intracellular Ca(2+ )handling and accumulation of glucose, amino acids, nucleotides and other precursors of macromolecular synthesis. In the present review, we summarize data showing that side-by-side with these classic functions, modulation of the intracellular concentration of monovalent ions in a physiologically reasonable range is sufficient to trigger numerous cellular responses, including changes in enzyme activity, gene expression, protein synthesis, cell proliferation and death. Importantly, the engagement of monovalent ions in regulation of the above-listed cellular responses occurs at steps upstream of Ca(2+) (i) and other key intermediates of intracellular signaling, which allows them to be considered as second messengers. With the exception of HCO (3) (-) -sensitive soluble adenylyl cyclase, the molecular origin of sensors involved in the function of monovalent ions as second messengers remains unknown.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal, (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
21
|
Huang YH, Kuo SP, Lin MH, Shih CM, Chu ST, Wei CC, Wu TJ, Chen YH. Signals of seminal vesicle autoantigen suppresses bovine serum albumin-induced capacitation in mouse sperm. Biochem Biophys Res Commun 2005; 338:1564-71. [PMID: 16274671 DOI: 10.1016/j.bbrc.2005.10.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
Capacitation is the prerequisite process for sperm to gain the ability for successful fertilization. Unregulated capacitation will cause sperm to undergo a spontaneous acrosome reaction and then fail to fertilize an egg. Seminal plasma is thought to have the ability to suppress sperm capacitation. However, the mechanisms by which seminal proteins suppress capacitation have not been well understood. Recently, we demonstrated that a major seminal vesicle secretory protein, seminal vesicle autoantigen (SVA), is able to suppress bovine serum albumin (BSA)-induced mouse sperm capacitation. To further identify the mechanism of SVA action, we determine the molecular events associated with SVA suppression of BSA's activity. In this communication, we demonstrate that SVA suppresses the BSA-induced increase of intracellular calcium concentration ([Ca2+]i), intracellular pH (pH(i)), the cAMP level, PKA activity, protein tyrosine phosphorylation, and capacitation in mouse sperm. Besides, we also found that the suppression ability of SVA against BSA-induced protein tyrosine phosphorylation and capacitation could be reversed by dbcAMP (a cAMP agonist).
Collapse
Affiliation(s)
- Yen Hua Huang
- Department of Biochemistry and Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, Buck J, Moss SB. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 2005; 9:249-59. [PMID: 16054031 PMCID: PMC3082461 DOI: 10.1016/j.devcel.2005.06.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 05/11/2005] [Accepted: 06/22/2005] [Indexed: 10/25/2022]
Abstract
Mammalian fertilization is dependent upon a series of bicarbonate-induced, cAMP-dependent processes sperm undergo as they "capacitate," i.e., acquire the ability to fertilize eggs. Male mice lacking the bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC), the predominant source of cAMP in male germ cells, are infertile, as the sperm are immotile. Membrane-permeable cAMP analogs are reported to rescue the motility defect, but we now show that these "rescued" null sperm were not hyperactive, displayed flagellar angulation, and remained unable to fertilize eggs in vitro. These deficits uncover a requirement for sAC during spermatogenesis and/or epididymal maturation and reveal limitations inherent in studying sAC function using knockout mice. To circumvent this restriction, we identified a specific sAC inhibitor that allowed temporal control over sAC activity. This inhibitor revealed that capacitation is defined by separable events: induction of protein tyrosine phosphorylation and motility are sAC dependent while acrosomal exocytosis is not dependent on sAC.
Collapse
Affiliation(s)
- Kenneth C. Hess
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Brian H. Jones
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Becky Marquez
- Department of Biomedical Sciences College of Veterinary Medicine Cornell University Ithaca, New York 14853
| | - Yanqiu Chen
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Teri S. Ord
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Margarita Kamenetsky
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Catarina Miyamoto
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Jonathan H. Zippin
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Gregory S. Kopf
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Susan S. Suarez
- Department of Biomedical Sciences College of Veterinary Medicine Cornell University Ithaca, New York 14853
| | - Lonny R. Levin
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
- Correspondence: (L.R.L.), (S.B.M.)
| | - Carmen J. Williams
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
| | - Jochen Buck
- Department of Pharmacology Joan and Sanford Weill Medical College Graduate School of Medical Sciences of Cornell University New York, New York 10021
| | - Stuart B. Moss
- Center for Research on Reproduction and Women’s Health University of Pennsylvania Medical Center Philadelphia, Pennsylvania 19104
- Correspondence: (L.R.L.), (S.B.M.)
| |
Collapse
|
23
|
Tardif S, Lefièvre L, Gagnon C, Bailey JL. Implication of cAMP during porcine sperm capacitation and protein tyrosine phosphorylation. Mol Reprod Dev 2005; 69:428-35. [PMID: 15457543 DOI: 10.1002/mrd.20178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Second messengers are involved in sperm fertilizing potential, as both motility and the acrosome reaction are influenced by cAMP. Moreover, the activity of cyclic nucleotides is implicated in the appearance of tyrosine phosphorylated sperm proteins, which is associated with capacitation in the mammalian spermatozoa. Nevertheless, the involvement of the cAMP/protein kinase A (PK-A) pathway during pig sperm capacitation may be different from that observed in other mammals. The objective of the present study was to clarify the cAMP/PK-A pathway during the capacitation of porcine spermatozoa and to evaluate this impact on the p32 sperm tyrosine phosphoprotein appearance. The presence of p32 was assessed after incubating fresh pig sperm with IBMX/db-cAMP, H-89, a PK-A inhibitor or bistyrphostin, a tyrosine kinase inhibitor, in capacitating (CM) or non-capacitating conditions (NCM) by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. When pig spermatozoa were incubated in CM supplemented with H-89 (50 microM) or bistyrphostin (1.2 microM), capacitation decreased significantly (P < 0.001). The p32 sperm tyrosine phosphoprotein, previously shown to be associated with capacitation of porcine sperm though not necessarily an end point of this phenomenon, was not modulated by IBMX/db-cAMP (100 microM/1 mM), H-89 (50 microM) nor bistyrphostin (1.2 microM). Our results indicate, therefore, that pig sperm are regulated somewhat differently than as described for other mammals, because although the cAMP/PK-A and tyrosine kinase pathways are involved in capacitation, they do not influence the appearance of p32.
Collapse
Affiliation(s)
- Steve Tardif
- Centre de Recherche en Biologie de la Reproduction, Département des sciences animales, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
24
|
Galantino-Homer HL, Florman HM, Storey BT, Dobrinski I, Kopf GS. Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. Mol Reprod Dev 2004; 67:487-500. [PMID: 14991741 DOI: 10.1002/mrd.20034] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.
Collapse
Affiliation(s)
- Hannah L Galantino-Homer
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
25
|
Da Ros VG, Munuce MJ, Cohen DJ, Marín-Briggiler CI, Busso D, Visconti PE, Cuasnicú PS. Bicarbonate Is Required for Migration of Sperm Epididymal Protein DE (CRISP-1) to the Equatorial Segment and Expression of Rat Sperm Fusion Ability1. Biol Reprod 2004; 70:1325-32. [PMID: 14711787 DOI: 10.1095/biolreprod.103.022822] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Numerous studies have demonstrated that sperm capacitation is a bicarbonate-dependent process. In the rat, capacitation has not been studied as much as in other species, mainly because of the difficulties in carrying out functional assays with this animal model. In the present study, we have examined the influence of bicarbonate in the overall rat sperm capacitation process by analyzing involvement of the anion in 1) protein tyrosine phosphorylation, 2) migration of epididymal protein DE (also known as CRISP-1) from the dorsal region to the equatorial segment of the sperm head that occurs during capacitation, and 3) ability of sperm to fuse with the egg. Incubation of sperm under capacitating conditions produced a time-dependent increase in protein tyrosine phosphorylation. This phosphorylation did not occur in the absence of HCO3- and rapidly increased by either exposure of sperm to HCO3- or replacement of the anion by a cAMP analog (dibutyryl-cAMP) and a phosphodiesterase inhibitor (pentoxifylline). The absence of HCO3- also produced a significant decrease in the percentage of cells showing migration of DE to the equatorial segment. This parameter was completely restored by addition of the anion, but dibutyryl-cAMP and pentoxifylline were not sufficient to overcome the decrease in DE migration. Sperm capacitated in the absence of HCO3- were unable to penetrate zona-free eggs independent of the presence of the anion during gamete coincubation. Exposure of these sperm to bicarbonate, or replacement of the anion by dibutyryl-cAMP and pentoxifylline, only partially restored the sperm fusion ability. Altogether, these results indicate that, in addition to its influence on protein tyrosine phosphorylation, bicarbonate is required to support other rat sperm capacitation- associated events, such as migration of DE to the equatorial segment, and expression of the ability of sperm to fuse with the egg.
Collapse
Affiliation(s)
- Vanina G Da Ros
- Instituto de Biología y Medicina Experimental, Buenos Aires 1428, Argentina.
| | | | | | | | | | | | | |
Collapse
|
26
|
Rodeheffer C, Shur BD. Sperm from beta1,4-galactosyltransferase I-null mice exhibit precocious capacitation. Development 2003; 131:491-501. [PMID: 14695373 DOI: 10.1242/dev.00885] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian sperm must undergo a physiological maturation, termed capacitation, before they are able to fertilize eggs. Despite its importance, the molecular mechanisms underlying capacitation are poorly understood. In this paper, we describe the capacitation phenotype of sperm lacking the long isoform of beta1,4-galactosyltransferase I (GalT I), a sperm surface protein that functions as a receptor for the zona pellucida glycoprotein, ZP3, and as an inducer of the acrosome reaction following ZP3-dependent aggregation. As expected, wild-type sperm must undergo capacitation in order to bind the zona pellucida and undergo a Ca(2+) ionophore-induced acrosome reaction. By contrast, GalT I-null sperm behave as though they are precociously capacitated, in that they demonstrate maximal binding to the zona pellucida and greatly increased sensitivity to ionophore-induced acrosome reactions without undergoing capacitation in vitro. The loss of GalT I from sperm results in an inability to bind epididymal glycoconjugates that normally maintain sperm in an 'uncapacitated' state; removing these decapacitating factors from wild-type sperm phenocopies the capacitation behavior of GalT I-null sperm. Interestingly, capacitation of GalT I-null sperm is independent of the presence of albumin, Ca(2+) and HCO(3)(-); three co-factors normally required by wild-type sperm to achieve capacitation. This implies that intracellular targets of albumin, Ca(2+) and/or HCO(3)(-) may be constitutively active in GalT I-null sperm. Consistent with this, GalT I-null sperm have increased levels of cAMP that correlate closely with both the accelerated kinetics and co-factor-independence of GalT I-null sperm capacitation. By contrast, the kinetics of protein tyrosine phosphorylation and sperm motility are unaltered in mutant sperm relative to wild-type. These data suggest that GalT I may function as a negative regulator of capacitation in the sperm head by suppressing intracellular signaling pathways that promote this process.
Collapse
Affiliation(s)
- Carey Rodeheffer
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
27
|
Medina JF, Recalde S, Prieto J, Lecanda J, Saez E, Funk CD, Vecino P, van Roon MA, Ottenhoff R, Bosma PJ, Bakker CT, Elferink RPJO. Anion exchanger 2 is essential for spermiogenesis in mice. Proc Natl Acad Sci U S A 2003; 100:15847-52. [PMID: 14673081 PMCID: PMC307656 DOI: 10.1073/pnas.2536127100] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Na+-independent anion exchangers (AE) mediate electroneutral exchange of Cl- for HCO3- ions across cell membranes, being involved in intracellular pH and cell volume regulation and in transepithelial hydroionic fluxes. Bicarbonate activation of adenylyl cyclase is known to be necessary for sperm motility and sperm capacitation, and a few studies have suggested a possible role of AE carriers in reproduction. Among the four AE genes identified in mammals thus far, only Ae2 (Slc4a2) has been determined to be expressed in the male reproductive system, especially in developing spermatozoa and in epididymal epithelium. Most AE genes drive alternative transcription, which in mouse Ae2 results in several Ae2 isoforms. Here, we generated mice carrying a targeted disruption of Ae2 that prevents the expression of the three AE2 isoforms (Ae2a, Ae2b1, and Ae2b2) normally found in mouse testes. Male Ae2-/- mice (but not female Ae2-/- mice) are infertile. Histopathological analysis of Ae2-/- testes shows an interruption of spermiogenesis, with only a few late spermatids and a complete absence of spermatozoa in the seminiferous tubules. The number of apoptotic bodies is increased in the seminiferous tubules and in the epididymis, which also shows squamous metaplasia of the epididymal epithelium. Our findings reveal an essential role of Ae2 in mouse spermiogenesis and stress the recently postulated involvement of bicarbonate in germ-cell differentiation through the bicarbonate-sensitive soluble-adenylyl-cyclase pathway.
Collapse
Affiliation(s)
- Juan F Medina
- Division of Hepatology and Gene Therapy, University Hospital/School of Medicine, Fundación para la Investigación Medica Aplicada, University of Navarra, E-31008 Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The onset of clinical assisted reproduction, a quarter of a century ago, required the isolation of motile spermatozoa. As the indication of assisted reproduction shifted from mere gynaecological indications to andrological indications during the years, this urged andrological research to understand the physiology of male germ cell better and develop more sophisticated techniques to separate functional spermatozoa from those that are immotile, have poor morphology or are not capable to fertilize oocytes. Initially, starting from simple washing of spermatozoa, separation techniques, based on different principles like migration, filtration or density gradient centrifugation evolved. The most simple and cheapest is the conventional swim-up procedure. A more sophisticated and most gentle migration method is migration-sedimentation. However, its yield is relatively small and the technique is therefore normally only limited to ejaculates with a high number of motile spermatozoa. Recently, however, the method was also successfully used to isolate spermatozoa for intracytoplasmic sperm injection (ICSI). Sperm separation methods that yield a higher number of motile spermatozoa are glass wool filtration or density gradient centrifugation with different media. Since Percoll as a density medium was removed from the market in 1996 for clinical use in the human because of its risk of contamination with endotoxins, other media like IxaPrep, Nycodenz, SilSelect, PureSperm or Isolate were developed in order to replace Percoll. Today, an array of different methods is available and the selection depends on the quality of the ejaculates, which also includes production of reactive oxygen species (ROS) by spermatozoa and leukocytes. Ejaculates with ROS production should not be separated by means of conventional swim-up, as this can severely damage the spermatozoa. In order to protect the male germ cells from the influence of ROS and to stimulate their motility to increase the yield, a number of substances can be added to the ejaculate or the separation medium. Caffeine, pentoxifylline and 2-deoxyadenosine are substances that were used to stimulate motility. Recent approaches to stimulate spermatozoa include bicarbonate, metal chelators or platelet-activating factor (PAF). While the use of PAF already resulted in pregnancies in intrauterine insemination, the suitability of the other substances for the clinical use still needs to be tested. Finally, the isolation of functional spermatozoa from highly viscous ejaculates is a special challenge and can be performed enzymatically to liquefy the ejaculate. The older method, by which the ejaculate is forcefully aspirated through a narrow-gauge needle, should be abandoned as it can severely damage spermatozoa, thus resulting in immotile sperm.
Collapse
Affiliation(s)
- Ralf R Henkel
- Department of Dermatology and Andrology, Justus Liebig University, Giessen, Gaffkystr. 14, Germany
| | - Wolf-Bernhard Schill
- Department of Dermatology and Andrology, Justus Liebig University, Giessen, Gaffkystr. 14, Germany
| |
Collapse
|
29
|
Rivlin J, Mendel J, Rubinstein S, Etkovitz N, Breitbart H. Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod 2003; 70:518-22. [PMID: 14561655 DOI: 10.1095/biolreprod.103.020487] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The generation of reactive oxygen species (ROS) has been implicated in the regulation of sperm capacitation and acrosome reaction; however, the mechanisms underlying this regulation remain unclear. To examine the cellular processes involved, we studied the effect of different concentrations of hydrogen peroxide (H(2)O(2)) on protein tyrosine phosphorylation under various conditions. Treatment of spermatozoa with H(2)O(2) in medium without heparin caused a time- and dose-dependent increase in protein tyrosine phosphorylation of at least six proteins in which maximal effect was seen after 2 h of incubation with 50 microM H(2)O(2). At much higher concentrations of H(2)O(2) (0.5 mM), there is significant reduction in the phosphorylation level, and no protein tyrosine phosphorylation is observed at 5 mM H(2)O(2) after 4 h of incubation. Exogenous NADPH enhanced protein tyrosine phosphorylation similarly to H(2)O(2). These two agents, but not heparin, induced Ca(2+)-dependent tyrosine phosphorylation of an 80-kDa protein. Treatment with H(2)O(2) (50 microM) caused approximately a twofold increase in cAMP, which is comparable to the effect of bicarbonate, a known activator of soluble adenylyl cyclase in sperm. This report suggests that relatively low concentrations of H(2)O(2) are beneficial for sperm capacitation, but that too high a concentration inhibits this process. We also conclude that H(2)O(2) activates adenylyl cyclase to produce cAMP, leading to protein kinase A-dependent protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- J Rivlin
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900 Israel
| | | | | | | | | |
Collapse
|
30
|
Jaiswal BS, Conti M. Calcium regulation of the soluble adenylyl cyclase expressed in mammalian spermatozoa. Proc Natl Acad Sci U S A 2003; 100:10676-81. [PMID: 12958208 PMCID: PMC196863 DOI: 10.1073/pnas.1831008100] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Indexed: 11/18/2022] Open
Abstract
In mammals, Ca2+ and HCO3- ions play a critical role in the regulation of sperm function, most likely by regulation of cAMP levels. Mammalian germ cells contain a soluble adenylyl cyclase (sAC) with properties distinct from the well characterized membrane-bound enzymes Here we investigated whether the cyclase expressed in mature spermatozoa has the properties of sAC and whether it is regulated by Ca2+. In addition to an HCO3--dependent activation, the cyclase endogenous to human spermatozoa is stimulated 2- to 3-fold by Ca2+ in a concentration-dependent manner (EC50 approximately 400 nM). In a similar fashion, Ca2+ activates the recombinant rat and human full-length sAC with similar EC50 values. The Ca2+ stimulation was also observed when sAC was activated with HCO3-, was independent of calmodulin, and was associated with an increase in Vmax without changes in Km for ATP-Mg2+. An increase in intracellular Ca2+ by ionophore or by a muscarinic cholinergic receptor agonist increases cAMP in cells transfected with FL-hsAC, but not in mock-transfected cells. Similarly, both Ca2+ and HCO3- stimulate cAMP accumulation in human spermatozoa. These findings provide evidence that human spermatozoa express a cyclase with the properties of sAC and that Ca2+ can substitute for HCO3- in the stimulation of this enzyme, underscoring an important role for sAC in the control of sperm functions.
Collapse
Affiliation(s)
- Bijay S Jaiswal
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305-5317, USA
| | | |
Collapse
|
31
|
Baker MA, Lewis B, Hetherington L, Aitken RJ. Development of the signalling pathways associated with sperm capacitation during epididymal maturation. Mol Reprod Dev 2003; 64:446-57. [PMID: 12589657 DOI: 10.1002/mrd.10255] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As spermatozoa mature within the epididymis they acquire the potential for capacitation and ultimately fertilization. In biochemical terms, the former is reflected in the progressive activation of a signal transduction pathway characterized by cAMP-mediated induction of phosphotyrosine expression on the sperm tail. In this study, we have examined the cellular mechanisms controlling this maturational event. Caput epididymal spermatozoa exhibited tyrosine phosphorylation on the sperm head that was largely unresponsive to cAMP and not significantly impaired by removal of extracellular HCO(3) (-). In contrast, caudal epididymal spermatozoa exhibited low levels of phosphorylation on the sperm head, yet responded dramatically to cAMP by phosphorylating a new set of proteins on the sperm tail via mechanisms that were highly dependent on extracellular HCO(3) (-). The impact of extracellular HCO(3) (-) depletion on caudal cells was not associated with a significant change in the redox regulation of cAMP but could be fully reversed by buffering the intracellular pH with N-Tris[Hydroxymethyl]methyl-3-amino-propanesulfonic acid (TAPS). The pattern of tyrosine phosphorylation was also profoundly influenced by the presence or absence of added extracellular calcium. In the presence of this cation, only caudal spermatozoa could respond to increased extracellular cAMP with tyrosine phosphorylation of the sperm tail. However, in calcium-depleted medium, this difference completely disappeared. Under these conditions, caput and caudal spermatozoa were equally competent to exhibit phosphotyrosine expression on the sperm tail in response to cAMP. These results emphasize the pivotal role played by calcium and HCO(3) (-) in modulating the changes in tyrosine phosphorylation observed during epididymal maturation.
Collapse
Affiliation(s)
- Mark A Baker
- Discipline of Biological Sciences, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | |
Collapse
|
32
|
Demarco IA, Espinosa F, Edwards J, Sosnik J, De La Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE. Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation. J Biol Chem 2003; 278:7001-9. [PMID: 12496293 DOI: 10.1074/jbc.m206284200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian sperm are incapable of fertilizing eggs immediately after ejaculation; they acquire fertilization capacity after residing in the female tract for a finite period of time. The physiological changes sperm undergo in the female reproductive tract that render sperm able to fertilize constitute the phenomenon of "sperm capacitation." We have demonstrated that capacitation is associated with an increase in the tyrosine phosphorylation of a subset of proteins and that these events are regulated by an HCO(3)(-)/cAMP-dependent pathway involving protein kinase A. Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. Here we present evidence that, in addition to its role in the regulation of adenylyl cyclase, HCO(3)(-) has a role in the regulation of plasma membrane potential in mouse sperm. Addition of HCO(3)(-) but not Cl(-) induces a hyperpolarizing current in mouse sperm plasma membranes. This HCO(3)(-)-dependent hyperpolarization was not observed when Na(+) was replaced by the non-permeant cation choline(+). Replacement of Na(+) by choline(+) also inhibited the capacitation-associated increase in protein tyrosine phosphorylation as well as the zona pellucida-induced acrosome reaction. The lack of an increase in protein tyrosine phosphorylation was overcome by the presence of cAMP agonists in the incubation medium. The lack of a hyperpolarizing HCO(3)(-) current and the inhibition of the capacitation-dependent increase in protein tyrosine phosphorylation in the absence of Na(+) suggest that a Na(+)/HCO(3)(-) cotransporter is present in mouse sperm and is coupled to events regulating capacitation.
Collapse
Affiliation(s)
- Ignacio A Demarco
- Center for Research in Contraception and Reproductive Health, Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tardif S, Dubé C, Bailey JL. Porcine sperm capacitation and tyrosine kinase activity are dependent on bicarbonate and calcium but protein tyrosine phosphorylation is only associated with calcium. Biol Reprod 2003; 68:207-13. [PMID: 12493715 DOI: 10.1095/biolreprod.102.005082] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian sperm undergo capacitation in the female reproductive tract or under defined conditions in vitro. Although capacitation is now considered to be mediated by intracellular signaling events, including protein phosphorylation, the regulation of the transduction mechanisms is poorly understood. The objective of the present study was to evaluate the importance of medium components on capacitation of porcine sperm, the appearance of an M(r) 32 000 sperm protein (p32), and activity of a tyrosine kinase (TK-32). As determined by the ability of the sperm to undergo the A23187-induced acrosome reaction, pig sperm require bicarbonate and calcium but not BSA for capacitation in vitro. The appearance of p32 was assessed by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. The appearance of p32 requires calcium, although p32 appears even in the absence of bicarbonate in the incubation medium, demonstrating that the appearance of this tyrosine phosphoprotein is not a final end point of pig sperm capacitation. An in-gel tyrosine kinase renaturation assay showed that TK-32 activity depends on calcium and bicarbonate in the incubation medium. Immunoprecipitation experiments using an anti-phosphotyrosine antibody and inhibitor demonstrated that p32 and TK-32 are different proteins. These data indicate that the signal transduction mechanisms of capacitation in pig sperm are different from those in other mammals, suggesting that certain species specificity may exist with respect to this phenomenon.
Collapse
Affiliation(s)
- Steve Tardif
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
34
|
Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Shetty J, Coonrod SA, Klotz KL, Kim YH, Bush LA, Flickinger CJ, Herr JC. CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol 2002; 242:236-54. [PMID: 11820818 DOI: 10.1006/dbio.2001.0527] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To reach fertilization competence, sperm undergo an incompletely understood series of morphological and molecular maturational processes, termed capacitation, involving, among other processes, protein tyrosine phosphorylation and increased intracellular calcium. Hyperactivated motility and an ability to undergo the acrosome reaction serve as physiological end points to assess successful capacitation. We report here that acidic (pI 4.0) 86-kDa isoforms of a novel, polymorphic, testis-specific protein, designated calcium-binding tyrosine phosphorylation-regulated protein (CABYR), were tyrosine phosphorylated during in vitro capacitation and bound (45)Ca on 2D gels. Acidic 86-kDa calcium-binding forms of CABYR increased during in vitro capacitation, and calcium binding to these acidic forms was abolished by dephosphorylation with alkaline phosphatase. Six variants of CABYR containing two coding regions (CR-A and CR-B) were cloned from human testis cDNA libraries, including five variants with alternative splice deletions. A motif homologous to the RII dimerization domain of PK-A was present in the N-terminus of CR-A in four CABYR variants. A single putative EF handlike motif was noted in CR-A at aas 197-209, while seven potential tyrosine phosphorylation-like sites were noted in CR-A and four in CR-B. Pro-X-X-Pro (PXXP) modules were identified in the N- and C-termini of CR-A and CR-B. CABYR localizes to the principal piece of the human sperm flagellum in association with the fibrous sheath and is the first demonstration of a sperm protein that gains calcium-binding capacity when phosphorylated during capacitation.
Collapse
Affiliation(s)
- Soren Naaby-Hansen
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, W1P 8BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Visconti PE, Westbrook VA, Chertihin O, Demarco I, Sleight S, Diekman AB. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 2002; 53:133-50. [PMID: 11730911 DOI: 10.1016/s0165-0378(01)00103-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capacitation is a complex series of molecular events that occurs in sperm after epididymal maturation and confers on sperm the ability to fertilize an egg. This process can be mimicked in vitro in defined media, the composition of which is based on the electrolyte concentration of oviductal fluid. In most cases, capacitation media contain energy substrates, such as pyruvate, lactate and glucose, a cholesterol acceptor (usually serum albumin), NaHCO(3), Ca(2+), low K(+), and physiological Na(+) concentrations. The mechanism of action by which these compounds promote capacitation is poorly understood at the molecular level; however, some molecular events significant to the initiation of capacitation have been identified. For example, capacitation correlates with cholesterol efflux from the sperm plasma membrane, increased membrane fluidity, modulations in intracellular ion concentrations, hyperpolarization of the sperm plasma membrane and increased protein tyrosine phosphorylation. These molecular events are required for the subsequent induction of hyperactivation and the acrosome reaction. This review discusses the recent progress that has been made in elucidating mechanisms which regulate sperm capacitation.
Collapse
Affiliation(s)
- P E Visconti
- Center for Recombinant Gamete Contraceptive Vaccinogens, Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, Gadella BM. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci 2001; 114:3543-55. [PMID: 11682613 DOI: 10.1242/jcs.114.19.3543] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian sperm cells are activated prior to fertilization by high bicarbonate levels, which facilitate lipoprotein-mediated cholesterol efflux. The role of bicarbonate and cholesterol acceptors on the cholesterol organization in the sperm plasma membrane was tested. Bicarbonate induced an albumin-independent change in lipid architecture that was detectable by an increase in merocyanine staining (due to protein kinase A-mediated phospholipid scrambling). The response was limited to a subpopulation of viable sperm cells that were sorted from the non-responding subpopulation by flow cytometry. The responding cells had reduced cholesterol levels (30% reduction) compared with non-responding cells. The subpopulation differences were caused by variable efficiencies in epididymal maturation as judged by cell morphology. Membrane cholesterol organization was observed with filipin, which labeled the entire sperm surface of non-stimulated and non-responding cells, but labeled only the apical surface area of bicarbonate-responding cells. Addition of albumin caused cholesterol efflux, but only in bicarbonate-responding cells that exhibited virtually no filipin labeling in the sperm head area. Albumin had no effect on other lipid components, and no affinity for cholesterol in the absence of bicarbonate. Therefore, bicarbonate induces first a lateral redistribution in the low cholesterol containing spermatozoa, which in turn facilitates cholesterol extraction by albumin. A model is proposed in which phospholipid scrambling induces the formation of an apical membrane raft in the sperm head surface that enables albumin mediated efflux of cholesterol.
Collapse
Affiliation(s)
- F M Flesch
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, 3584 CM, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Patel TB, Du Z, Pierre S, Cartin L, Scholich K. Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 2001; 269:13-25. [PMID: 11376933 DOI: 10.1016/s0378-1119(01)00448-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Signal transduction through the cell membrane requires the participation of one or more plasma membrane proteins. For many transmembrane signaling events adenylyl cyclases (ACs) are the final effector enzymes which integrate and interpret divergent signals from different pathways. The enzymatic activity of adenylyl cyclases is stimulated or inhibited in response to the activation of a large number of receptors in virtually all cells of the human body. To date, ten different mammalian isoforms of adenylyl cyclase (AC) have been cloned and characterized. Each isoform has its own distinct tissue distribution and regulatory properties, providing possibilities for different cells to respond diversely to similar stimuli. The product of the enzymatic reaction catalyzed by ACs, cyclic AMP (cAMP) has been shown to play a crucial role for a variety of fundamental physiological cell functions ranging from cell growth and differentiation, to transcriptional regulation and apoptosis. In the past, investigations into the regulatory mechanisms of ACs were limited by difficulties associated with their purification and the availability of the proteins in any significant amount. Moreover, nearly every cell expresses several AC isoforms. Therefore, it was difficult to perform biochemical characterization of the different AC isoforms and nearly impossible to assess the physiological roles of the individual isoforms in intact cells, tissue or organisms. Recently, however, different molecular biological approaches have permitted several breakthroughs in the study of ACs. Recombinant technologies have allowed biochemical analysis of adenylyl cyclases in-vitro and the development of transgenic animals as well as knock-out mice have yielded new insights in the physiological role of some AC isoforms. In this review, we will focus mainly on the most novel approaches and concepts, which have delineated the mechanisms regulating AC and unravelled novel functions for this enzyme.
Collapse
Affiliation(s)
- T B Patel
- Department of Pharmacology and the Vascular Biology Center of Excellence, University of Tennessee, Memphis, 874 Union Avenue, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
38
|
Chamberland A, Fournier V, Tardif S, Sirard MA, Sullivan R, Bailey JL. The effect of heparin on motility parameters and protein phosphorylation during bovine sperm capacitation. Theriogenology 2001; 55:823-35. [PMID: 11245268 DOI: 10.1016/s0093-691x(01)00446-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is generally accepted that incubation with heparin is required to induce capacitation of ejaculated bovine spermatozoa in vitro. The capacitation process implicates many biochemical events, and is correlated with modified sperm motility and the phosphorylation of specific proteins on tyrosine residues. To better understand the molecular basis of heparin-induced capacitation, bovine spermatozoa were incorporated with a radioactive substrate of protein kinases [gamma32P]-ATP, to observe protein phosphorylation dynamics over time. Sperm motion parameters including the percentage of motile spermatozoa, amplitude of lateral head displacement (ALH) and flagellar beat cross frequency (BCF) were assessed to determine whether the protein phosphorylation patterns induced by heparin also promote changes in motility. Capacitation was confirmed using the chlortetracycline fluorescence assay and the appearance of 'pattern B' stained spermatozoa. Evaluation of the different motility parameters during capacitation reveal that heparin has a marked negative effect, over time, on the percentage of motile spermatozoa, consistent with hyperactivation. Indeed, the presence of heparin greatly increases the BCF of bull spermatozoa and induces a significant increase in the ALH compared to spermatozoa incubated without heparin. We detected several sperm proteins that are phosphorylated over time. A 45 kDa protein is the most intensely phosphorylated of the sperm proteins. However, it is visible regardless of the presence of heparin. Interestingly, a second phosphorylated protein of approximately 50 kDa undergoes more intense phosphorylation with heparin than without. In summary, the present study demonstrated that heparin induces physiological changes in several sperm motility parameters including ALH, BCF and the percentage of motile spermatozoa. Heparin also increases the intensity of phosphorylation of a 50 kDa sperm protein. These results suggest that capacitation of bovine spermatozoa and capacitation-associated motility changes may be regulated by a mechanism that includes protein phosphorylation, and that a presently unknown protein kinase is involved.
Collapse
Affiliation(s)
- A Chamberland
- Département des sciences animales, Centre de recherche en Biologie de la Reproduction, Université Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:197-235. [PMID: 11063883 DOI: 10.1016/s0304-4157(00)00018-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sexual reproduction requires the fusion of sperm cell and oocyte during fertilization to produce the diploid zygote. In mammals complex changes in the plasma membrane of the sperm cell are involved in this process. Sperm cells have unusual membranes compared to those of somatic cells. After leaving the testes, sperm cells cease plasma membrane lipid and protein synthesis, and vesicle mediated transport. Biophysical studies reveal that lipids and proteins are organized into lateral regions of the sperm head surface. A delicate reorientation and modification of plasma membrane molecules take place in the female tract when sperm cells are activated by so-called capacitation factors. These surface changes enable the sperm cell to bind to the extra cellular matrix of the egg (zona pellucida, ZP). The ZP primes the sperm cell to initiate the acrosome reaction, which is an exocytotic process that makes available the enzymatic machinery required for sperm penetration through the ZP. After complete penetration the sperm cell meets the plasma membrane of the egg cell (oolemma). A specific set of molecules is involved in a disintegrin-integrin type of anchoring of the two gametes which is completed by fusion of the two gamete plasma membranes. The fertilized egg is activated and zygote formation preludes the development of a new living organism. In this review we focus on the involvement of processes that occur at the sperm plasma membrane in the sequence of events that lead to successful fertilization. For this purpose, dynamics in adhesive and fusion properties, molecular composition and architecture of the sperm plasma membrane, as well as membrane derived signalling are reviewed.
Collapse
Affiliation(s)
- F M Flesch
- Department of Biochemistry and Cell Biology, and Department of Farm Animal Health, Graduate School of Animal Health and Institute for Biomembranes, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | | |
Collapse
|
40
|
Abstract
The life-span of sperm may be short but it is certainly busy. The three principal molecular events that prepare sperm for fertilization are all controlled by the intracellular nucleotide adenosine 3',5'-monophosphate (cAMP). One of these, capacitation, is also regulated by bicarbonate ions. The elusive connection between cAMP and bicarbonate ions now appears to be solved as Kaupp and Weyand explain in their Perspective. Bicarbonate ions enter sperm through the anion transporter in the sperm plasma membrane and activate the soluble form of adenylyl cyclase, the enzyme that synthesizes cAMP (Chen et al.)
Collapse
Affiliation(s)
- U B Kaupp
- Biologische Informationsverarbeitung, Forschungszentrum Jlich, Germany
| | | |
Collapse
|
41
|
Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 2000; 289:625-8. [PMID: 10915626 DOI: 10.1126/science.289.5479.625] [Citation(s) in RCA: 659] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spermatozoa undergo a poorly understood activation process induced by bicarbonate and mediated by cyclic adenosine 3',5'-monophosphate (cAMP). It has been assumed that bicarbonate mediates its effects through changes in intracellular pH or membrane potential; however, we demonstrate here that bicarbonate directly stimulates mammalian soluble adenylyl cyclase (sAC) activity in vivo and in vitro in a pH-independent manner. sAC is most similar to adenylyl cyclases from cyanobacteria, and bicarbonate regulation of cyclase activity is conserved in these early forms of life. sAC is also expressed in other bicarbonate-responsive tissues, which suggests that bicarbonate regulation of cAMP signaling plays a fundamental role in many biological systems.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Gadella BM, Harrison RA. The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development 2000; 127:2407-20. [PMID: 10804182 DOI: 10.1242/dev.127.11.2407] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A flow cytometric procedure was used to follow the effect of bicarbonate, a key inducer of sperm capacitation in vitro, on the transbilayer behavior of C6NBD-phospholipids in the plasma membrane of living acrosome-intact boar spermatozoa under physiological conditions. In the absence of bicarbonate, 97% of C6NBD-phosphatidylserine and 78% of C6NBD-phosphatidylethanolamine was rapidly translocated from the outer leaflet to the inner, whereas relatively little C6NBD-phosphatidylcholine and C6NBD-sphingomyelin was translocated (15% and 5%, respectively). Inclusion of 15 mM bicarbonate/5%CO(2) markedly slowed down the rates of translocation of the aminophospholipids without altering their final distribution, whereas it increased the proportions of C6NBD-phosphatidylcholine and C6NBD-sphingomyelin translocated (30% and 20%, respectively). Bicarbonate activated very markedly the outward translocation of all four phospholipid classes. The changes in C6NBD-phospholipid behavior were accompanied by increased membrane lipid disorder as detected by merocyanine 540, and also by increased potential for phospholipase catabolism of the C6NBD-phospholipid probes. All three changes were mediated via a cAMP-dependent protein phosphorylation pathway. We suspect that the changes result from an activation of the non- specific bidirectional translocase ('scramblase'). They have important implications with respect to sperm fertilizing function.
Collapse
Affiliation(s)
- B M Gadella
- Institute of Biomembranes, Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
43
|
Abstract
Bicarbonate/CO(2), a physiological effector of sperm capacitation, has been shown to induce a rapid and reversible change in the lipid architecture of the plasma membrane of live boar sperm: the change is detectable as an increase in the cells' ability to bind the fluorescent dye merocyanine, a characteristic which implied an increase in lipid packing disorder (Harrison et al. 1996. Mol Reprod Dev 45:378-391). Evidence suggested that cAMP may act as a second messenger in the system, and we have therefore investigated this cAMP-dependency in more detail. Bicarbonate stimulates cAMP levels within 1 min in a dose-dependent fashion, prior to parallel increases in merocyanine binding. Although the potent somatic cell adenylyl cyclase activator forskolin is unable to induce significant increases in cAMP or merocyanine binding, increases in merocyanine binding are inducible in a dose-dependent fashion by 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole 3',5'-cyclic monophosphothioate, a cAMP analogue highly specific in its ability to stimulate protein kinase A; moreover, the bicarbonate-induced membrane change is inhibited by H89, a specific protein kinase A inhibitor. Neither bisindolylmaleimide I (protein kinase C inhibitor) nor lavendustin A (protein tyrosine kinase inhibitor) are inhibitory. In the presence of low levels of the potent phosphodiesterase inhibitor papaverine, increases in merocyanine binding are enhanced by okadaic acid and (more effectively) by calyculin (both protein phosphatase inhibitors). We conclude that boar sperm plasma membrane lipid architecture is controlled via a target protein that is dynamically phosphorylated by cAMP-dependent protein kinase and dephosphorylated by protein phosphatase type 1. Mol. Reprod. Dev. 55:220-228, 2000.
Collapse
Affiliation(s)
- R A Harrison
- Laboratory of Gamete Function, The Babraham Institute, Babraham, Cambridge, United Kingdom.
| | | |
Collapse
|
44
|
Tardif S, Sirard MA, Sullivan R, Bailey JL. Identification of capacitation-associated phosphoproteins in porcine sperm electroporated with ATP-gamma-(32)P. Mol Reprod Dev 1999; 54:292-302. [PMID: 10497351 DOI: 10.1002/(sici)1098-2795(199911)54:3<292::aid-mrd10>3.0.co;2-f] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our objectives were to incorporate ATP-gamma-(32)P into boar sperm to radiolabel endogenous phosphoproteins and compare phosphorylation patterns from sperm incubated in capacitating (CM) and non-capacitating conditions (NCM). Sperm were electroporated (1000 V/cm, 125 microF/cm, 65 Omega/cm, 0.3 msec) with ATP-gamma-(32)P which moderately decreased sperm viability (P < 0.01), but did not affect motility (P = 0.34) or the appearance of spontaneous acrosome reactions (P = 0.49). Sperm incubated in CM for 3 hr underwent capacitation, determined by the ability to undergo ionophore-induced acrosome reactions (P </= 0.05). Furthermore, more sperm in CM than in NCM exhibited chlortetracycline (CTC) pattern B (capacitated) fluorescence (P </= 0.01). SDS-PAGE, autoradiography and phosphoimagery of extracted, (32)P-labeled sperm proteins revealed a subset of phosphoproteins (Mr 28,000-60,000) from cells incubated in CM, whereas only two phosphorylated proteins were evident from sperm in NCM (44 and 57 kDa). The appearance of phosphoproteins increased concomitant with capacitation (P </= 0.05). In NCM, the 44 kDa protein was unaffected by time (P > 0.05) and the 57 kDa phosphoprotein increased after capacitation (P </= 0.05). Computer-assisted analysis revealed that the percentage of motile sperm in either medium decreased with time, and CM only transiently maintained motility over NCM (P >/= 0.02). ATP-gamma-(32)P can, therefore, be incorporated into porcine sperm to radiolabel endogenous phosphoproteins, and the different profiles from sperm incubated in NCM versus CM suggest that capacitation is mediated by signaling events involving protein phosphorylation.
Collapse
Affiliation(s)
- S Tardif
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | |
Collapse
|
45
|
Visconti PE, Ning X, Fornés MW, Alvarez JG, Stein P, Connors SA, Kopf GS. Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol 1999; 214:429-43. [PMID: 10525345 DOI: 10.1006/dbio.1999.9428] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that mouse sperm capacitation is accompanied by a time-dependent increase in protein tyrosine phosphorylation that is dependent on the presence of BSA, Ca2+, and NaHCO(3), all three of which are also required for this maturational event. We also demonstrated that activation of protein kinase A (PK-A) is upstream of this capacitation-associated increase in protein tyrosine phosphorylation. BSA is hypothesized to modulate capacitation through the removal of cholesterol from the sperm plasma membrane. In this report, we demonstrate that incubation of mouse sperm medium containing BSA results in a release of cholesterol from the sperm plasma membrane to the medium; release of this sterol does not occur in medium devoid of BSA. We next determined whether cholesterol release leads to changes in protein tyrosine phosphorylation. Blocking the action of BSA by adding exogenous cholesterol-SO-(4) to the BSA-containing medium inhibits the increase in protein tyrosine phosphorylation as well as capacitation. This inhibitory effect is overcome by (1) the addition of increasing concentrations of BSA at a given concentration of cholesterol-SO-(4) and (2) the addition of dibutyryl cAMP plus IBMX. High-density lipoprotein (HDL), another cholesterol binding protein, also supports the capacitation-associated increase in protein tyrosine phosphorylation through a cAMP-dependent pathway, whereas proteins that do not interact with cholesterol have no effect. HDL also supports sperm capacitation, as assessed by fertilization in vitro. Finally, we previously demonstrated that HCO-(3) is necessary for the capacitation-associated increase in protein tyrosine phosphorylation and demonstrate here, by examining the effectiveness of HCO-(3) or BSA addition to sperm on protein tyrosine phosphorylation, that the HCO-(3) effect is downstream of the site of BSA action. Taken together, these data demonstrate that cholesterol release is associated with the activation of a transmembrane signal transduction pathway involving PK-A and protein tyrosine phosphorylation, leading to functional maturation of the sperm.
Collapse
Affiliation(s)
- P E Visconti
- Center for Research on Reproduction & Women's Health, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6080, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Burton KA, Treash-Osio B, Muller CH, Dunphy EL, McKnight GS. Deletion of type IIalpha regulatory subunit delocalizes protein kinase A in mouse sperm without affecting motility or fertilization. J Biol Chem 1999; 274:24131-6. [PMID: 10446185 DOI: 10.1074/jbc.274.34.24131] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP stimulates sperm motility in a variety of mammalian species, but the molecular details of the intracellular signaling pathway responsible for this effect are unclear. The type IIalpha isoform of protein kinase A (PKA) is induced late in spermatogenesis and is thought to localize PKA to the flagellar apparatus where it binds cAMP and stimulates motility. A targeted disruption of the type IIalpha regulatory subunit (RIIalpha) gene allowed us to examine the role of PKA localization in sperm motility and fertility. In wild type sperm, PKA is found primarily in the detergent-resistant particulate fraction and localizes to the mitochondrial-containing midpiece and the principal piece. In mutant sperm, there is a compensatory increase in RIalpha protein and a dramatic relocalization of PKA such that the majority of the holoenzyme now appears in the soluble fraction and colocalizes with the cytoplasmic droplet. Unexpectedly the RIIalpha mutant mice are fertile and have no significant changes in sperm motility. Our results demonstrate that the highly localized pattern of PKA seen in mature sperm is not essential for motility or fertilization.
Collapse
Affiliation(s)
- K A Burton
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195-7750, USA
| | | | | | | | | |
Collapse
|
47
|
Visconti PE, Stewart-Savage J, Blasco A, Battaglia L, Miranda P, Kopf GS, Tezón JG. Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and the spontaneous acrosome reaction of hamster sperm. Biol Reprod 1999; 61:76-84. [PMID: 10377034 DOI: 10.1095/biolreprod61.1.76] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.
Collapse
Affiliation(s)
- P E Visconti
- Center for Research on Reproduction & Women's Health, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6080, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
An Intimate Biochemistry: Egg-Regulated Acrosome Reactions of Mammalian Sperm. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1064-2722(08)60021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
49
|
Capacitation of the Mammalian Spermatozoon. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1064-2722(08)60017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
50
|
Affiliation(s)
- P E Visconti
- Center for Research on Reproduction & Women's Health, University of Pennsylvania Medical Center, Philadelphia 19104-6080, USA.
| | | |
Collapse
|