1
|
Shah PNM, Gilchrist JB, Forsberg BO, Burt A, Howe A, Mosalaganti S, Wan W, Radecke J, Chaban Y, Sutton G, Stuart DI, Boyce M. Characterization of the rotavirus assembly pathway in situ using cryoelectron tomography. Cell Host Microbe 2023; 31:604-615.e4. [PMID: 36996819 PMCID: PMC7615348 DOI: 10.1016/j.chom.2023.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.
Collapse
Affiliation(s)
- Pranav N M Shah
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford, UK.
| | - James B Gilchrist
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Björn O Forsberg
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Alister Burt
- Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Andrew Howe
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Shyamal Mosalaganti
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, PMB 407917, 465 21st Ave S, 5140 MRB3, Nashville, TN, USA
| | - Julika Radecke
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Yuriy Chaban
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Geoff Sutton
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK; CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Mark Boyce
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford, UK.
| |
Collapse
|
2
|
|
3
|
Nasiri K, Nassiri M, Tahmoorespur M, Haghparast A, Zibaee S. Design and Construction of Chimeric VP8-S2 Antigen for Bovine Rotavirus and Bovine Coronavirus. Adv Pharm Bull 2016; 6:91-8. [PMID: 27123423 PMCID: PMC4845540 DOI: 10.15171/apb.2016.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Bovine Rotavirus and Bovine Coronavirus are the most important causes of diarrhea in newborn calves and in some other species such as pigs and sheep. Rotavirus VP8 subunit is the major determinant of the viral infectivity and neutralization. Spike glycoprotein of coronavirus is responsible for induction of neutralizing antibody response. METHODS In the present study, several prediction programs were used to predict B and T-cells epitopes, secondary and tertiary structures, antigenicity ability and enzymatic degradation sites. Finally, a chimeric antigen was designed using computational techniques. The chimeric VP8-S2 antigen was constructed. It was cloned and sub-cloned into pGH and pET32a(+) expression vector. The recombinant pET32a(+)-VP8-S2 vector was transferred into E.oli BL21CodonPlus (DE3) as expression host. The recombinant VP8-S2 protein was purified by Ni-NTA chromatography column. RESULTS The results of colony PCR, enzyme digestion and sequencing showed that the VP8-S2 chimeric antigen has been successfully cloned and sub-cloned into pGH and pET32a(+).The results showed that E.coli was able to express VP8-S2 protein appropriately. This protein was expressed by induction of IPTG at concentration of 1mM and it was confirmed by Ni-NTA column, dot-blotting analysis and SDS-PAGE electrophoresis. CONCLUSION The results of this study showed that E.coli can be used as an appropriate host to produce the recombinant VP8-S2 protein. This recombinant protein may be suitable to investigate to produce immunoglobulin, recombinant vaccine and diagnostic kit in future studies after it passes biological activity tests in vivo in animal model and or other suitable procedure.
Collapse
Affiliation(s)
- Khadijeh Nasiri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Mohammadreza Nassiri
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. ; Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Alireza Haghparast
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran
| | - Saeed Zibaee
- Razi Vaccine and Serum Research Institute, Mashhad, Iran
| |
Collapse
|
4
|
Mijatovic-Rustempasic S, Teel EN, Kerin TK, Hull JJ, Roy S, Weinberg GA, Payne DC, Parashar UD, Gentsch JR, Bowen MD. Genetic analysis of G12P[8] rotaviruses detected in the largest U.S. G12 genotype outbreak on record. INFECTION GENETICS AND EVOLUTION 2013; 21:214-9. [PMID: 24270016 DOI: 10.1016/j.meegid.2013.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/30/2013] [Accepted: 11/10/2013] [Indexed: 01/13/2023]
Abstract
In 2006-07, 77 cases of gastroenteritis in Rochester, NY, USA were associated with rotavirus genotype G12P[8]. Sequence analysis identified a high degree of genetic relatedness among the VP7 and VP4 genes of the Rochester G12P[8] strains and between these strains and currently circulating human G12P[8] strains. Out of 77 samples, two and seven unique nucleotide sequences were identified for VP7 and VP4 genes, respectively. Rochester strain VP7 genes were found to occupy the G12-III lineage and VP4 genes clustered within the P[8]-3 lineage. Six strains contained non-synonymous nucleotide substitutions that produced amino acid changes at 6 sites in the VP8(∗) region of the VP4 gene. Two sites (amino acids 242 and 246) were located in or near a described trypsin cleavage site. Selection analyses identified one positively selected VP7 site (107) and strong purifying selection at 58 sites within the VP7 gene as well as 2 of the 6 variant sites (79 and 218) in VP4.
Collapse
Affiliation(s)
- Slavica Mijatovic-Rustempasic
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth N Teel
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tara K Kerin
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer J Hull
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sunando Roy
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Geoffrey A Weinberg
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Daniel C Payne
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jon R Gentsch
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
5
|
Tihova M, Dryden KA, Bellamy AR, Greenberg HB, Yeager M. Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J Mol Biol 2001; 314:985-92. [PMID: 11743716 DOI: 10.1006/jmbi.2000.5238] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The surface of rotavirus is decorated with 60 spike-like projections, each composed of a dimer of VP4, the viral hemagglutinin. Trypsin cleavage of VP4 generates two fragments, VP8*, which binds sialic acid (SA), and VP5*, containing an integrin binding motif and a hydrophobic region that permeabilizes membranes and is homologous to fusion domains. Although the mechanism for cell entry by this non-enveloped virus is unclear, it is known that trypsin cleavage enhances viral infectivity and facilitates viral entry. We used electron cryo-microscopy and difference map analysis to localize the binding sites for two neutralizing monoclonal antibodies, 7A12 and 2G4, which are directed against the SA-binding site within VP8* and the membrane permeabilization domain within VP5*, respectively. Fab 7A12 binds at the tips of the dimeric heads of VP4, and 2G4 binds in the cleft between the two heads of the spike. When these binding results are combined with secondary structure analysis, we predict that the VP4 heads are composed primarily of beta-sheets in VP8* and that VP5* forms the body and base primarily in beta-structure and alpha-helical conformations, respectively. Based on these results and those of others, a model is proposed for cell entry in which VP8* and VP5* mediate receptor binding and membrane permeabilization, and uncoating occurs during transfer across the lipid bilayer, thereby generating the transcriptionally active particle.
Collapse
Affiliation(s)
- M Tihova
- Departments of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
6
|
Méndez-Toss M, Romero-Guido P, Munguía ME, Méndez E, Arias CF. Molecular analysis of a serotype 8 human astrovirus genome. J Gen Virol 2000; 81:2891-2897. [PMID: 11086120 DOI: 10.1099/0022-1317-81-12-2891] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human astroviruses are an important cause of gastroenteritis. As part of a molecular epidemiological study carried out in Mexico a human astrovirus isolate, Yuc-8, was adapted to grow in CaCo-2 cells, and its entire genome was sequenced. A 15 amino acid deletion in ORF1a, which has been associated with adaptation of astroviruses to grow in cells other than CaCo-2, was present in Yuc-8. Comparative sequence analysis of the Yuc-8 ORF2 with reported human astrovirus sequences revealed that this isolate belongs to genotype (serotype) 8. Two distinct domains in ORF2 were observed: an amino-terminal domain (residues 1 to 415), with identities higher than 81% among the strains analysed, and a carboxy-terminal domain (residues 416 to 782) with identities between 36 and 60%. Two non-superimposable phylogenetic trees were generated by separate analysis of these two domains, suggesting that a differential selective pressure is exerted along the structural polyprotein.
Collapse
Affiliation(s)
- Martha Méndez-Toss
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico1
| | - Pedro Romero-Guido
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico1
| | - Maria Elena Munguía
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico1
| | - Ernesto Méndez
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico1
| | - Carlos F Arias
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico1
| |
Collapse
|
7
|
Baker TS, Olson NH, Fuller SD. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 1999; 63:862-922, table of contents. [PMID: 10585969 PMCID: PMC98980 DOI: 10.1128/mmbr.63.4.862-922.1999] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-A) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical.
Collapse
Affiliation(s)
- T S Baker
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | |
Collapse
|
8
|
Abstract
The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed.
Collapse
Affiliation(s)
- C F Arias
- Departamento de Genética y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
9
|
Falconer MM, Gilbert JM, Roper AM, Greenberg HB, Gavora JS. Rotavirus-induced fusion from without in tissue culture cells. J Virol 1995; 69:5582-91. [PMID: 7637004 PMCID: PMC189413 DOI: 10.1128/jvi.69.9.5582-5591.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present the first evidence of fusion from without induced in tissue culture cells by a nonenveloped virus. Electron micrographs of two strains of rotavirus, bovine rotavirus C486 and rhesus rotavirus, show that virally mediated cell-cell fusion occurs within 1 h postinfection. Trypsin activation is necessary for rotavirus to mediate cell-cell fusion. The extent of fusion is relative to the amount of virus used, and maximum fusion occurs between pHs 6.5 and 7.5. Fusion does not require virus-induced protein synthesis, as virus from both an empty capsid preparation and from an EDTA-treated preparation, which is noninfectious, can induce fusion. Incubation of rotavirus with neutralizing and nonneutralizing monoclonal antibodies before addition to cells indicates that viral protein 4 (VP4; in the form of VP5* and VP8*) and VP7 are involved in fusion. Light and electron micrographs document this fusion, including the formation of pores or channels between adjacent fused cells. These data support direct membrane penetration as a possible route of infection. Moreover, the assay should be useful in determining the mechanisms of cell entry by rotavirus.
Collapse
Affiliation(s)
- M M Falconer
- Centre for Food and Animal Research, Agriculture Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|
10
|
Ijaz MK, Alkarmi TO, Sabara MI, Frenchick PJ, el Mekki AA, Naiem M, Nur-e-Kamal MS, Frossard PM, Dar FK, Babiuk LA. Characterization of a synthetic peptide mimicking trypsin-cleavage site of rotavirus VP4. Comp Immunol Microbiol Infect Dis 1995; 18:145-60. [PMID: 7554816 DOI: 10.1016/0147-9571(95)00001-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A synthetic peptide corresponding to the trypsin cleavage site on the 84 k protein of bovine rotavirus was synthesized (VP4-peptide). This synthetic peptide could be cleaved by trypsin and therefore possessed the enzyme binding site present on the authentic protein. Further proof that this peptide mimicks the authentic trypsin cleavage site was the specific reaction of anti-peptide serum with the 84 k protein. The reaction of anti-peptide serum with infectious virus neutralized infectivity thereby supporting the biological importance of this site. Another interesting characteristic of this peptide was its ability to bind to the nucleocapsid protein resulting in a laddering effect on the nucleocapsid monomer (45 k), dimer (90 k) and trimer (135 k) [Gorzilia et al., J. Gen. Virol. 66, 1889-1900 (1985); Sabara et al., J. Virol. 53, 58-66 (1985); Sabara et al., J. Gen. Virol. 67, 201-212 (1986)]. Definitive proof of binding was provided by the fact that the increments in the ladder corresponded to the molecular weight of the synthetic peptide and that anti-peptide serum specifically reacted with the ladder formations. The laddering of the nucleocapsid could be eliminated by incubation with trypsin thus further supporting the formation of a synthetic peptide-nucleocapsid complex. Due to the ability of the peptide to bind to trypsin and to the nucleocapsid protein its biological activity was investigated. It appeared that increasing concentrations of the peptide reduced the rate of virus plaque formation, thereby suggesting that virus replication was inhibited. These results illustrate two features of this synthetic peptide which warrant further investigation; (1) its capacity to mimic an enzyme cleavage site and, (2) its ability to complex tightly to another protein. In protection-challenge experiments performed using a murine model, animals immunized with VP4-peptide provided protection passively, to neonates suckling on the immune dams, against a virulent rotavirus. The potential applications of this peptide in rotavirus diagnosis, therapy and synthetic peptides based vaccine is discussed.
Collapse
Affiliation(s)
- M K Ijaz
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- U Desselberger
- Clinical Microbiology and Public Health Laboratory, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
12
|
Affiliation(s)
- G W Both
- CSIRO Division of Biomolecular Engineering, North Ryde, NSW, Australia
| | | | | |
Collapse
|
13
|
Méndez E, Arias CF, López S. Genomic rearrangements in human rotavirus strain Wa; analysis of rearranged RNA segment 7. Arch Virol 1992; 125:331-8. [PMID: 1339264 DOI: 10.1007/bf01309651] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two rotavirus variants containing genomic rearrangements were isolated from human rotavirus strain Wa. In one variant (H5) the rearrangement involves the RNA segment 5, while in the other variant (H57) two genes, 5 and 7 are rearranged. The rearranged genes are composed exclusively of sequences from the genes they substitute. Sequence analysis of the rearranged segment 7 indicated that it is a partial duplication of the wild type gene, in a head-to-tail orientation.
Collapse
Affiliation(s)
- E Méndez
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | |
Collapse
|
14
|
|
15
|
Hardy ME, Woode GN, Xu ZC, Gorziglia M. Comparative amino acid sequence analysis of VP4 for VP7 serotype 6 bovine rotavirus strains NCDV, B641, and UK. J Virol 1991; 65:5535-8. [PMID: 1654450 PMCID: PMC249053 DOI: 10.1128/jvi.65.10.5535-5538.1991] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In a previous study (S. Zheng, G. N. Woode, D. R. Melendy, and R. F. Ramig, J. Clin. Microbiol. 27:1939-1945, 1989), it was predicted that the VP7 serotype 6 bovine rotavirus strains NCDV and B641 do not share antigenically similar VP4s. In this study, gene 4 and the VP7 gene of B641 were sequenced, and the amino acid sequences were deduced and compared with those of NCDV and bovine rotavirus strain UK. Amino acid sequence homology in VP7 between the three strains was greater than 94%, confirming their relationship as VP7 serotype 6 viruses. VP4 of B641 showed amino acid homology to UK of 94% but only 73% homology to NCDV. Sequence comparison of a variable region of VP8 demonstrated amino acid homology of 53% between B641 and NCDV, whereas B641 and UK were 89% homologous in this region. These results confirm the earlier prediction that although the same serotype by VP7 reactivity, B641 and NCDV represent different VP4 serotypes. This difference in VP4 may have contributed to the lack of homotypic protection observed in calves, implicating VP4 as an important antigen in the active immune response to rotavirus infection in bovines.
Collapse
Affiliation(s)
- M E Hardy
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station 77843-4467
| | | | | | | |
Collapse
|
16
|
López S, López I, Romero P, Méndez E, Soberón X, Arias CF. Rotavirus YM gene 4: analysis of its deduced amino acid sequence and prediction of the secondary structure of the VP4 protein. J Virol 1991; 65:3738-45. [PMID: 1645789 PMCID: PMC241399 DOI: 10.1128/jvi.65.7.3738-3745.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have determined the complete nucleotide sequence of the VP4 gene of porcine rotavirus YM. It is 2,362 nucleotides long, with a single open reading frame coding for a protein of 776 amino acids. A phylogenetic tree was derived from the deduced YM VP4 amino acid sequence and 18 other available VP4 sequences of rotavirus strains belonging to different serotypes and isolated from different animal species. In this tree, VP4 proteins were grouped by the hosts that the corresponding viruses infect rather than by the serotypes they belong to, suggesting that this protein is involved in the host specificity of the viruses. In an attempt to predict the secondary structure of the VP4 protein, we selected the more divergent VP4 sequences and made a secondary structure analysis of each protein. In spite of variations within the individual structures predicted, there was a general structural pattern which suggested the existence of at least two different domains. One, comprising the amino-terminal 63% of the protein, is predicted to be a possible globular domain rich in beta-strands alternated with turns and coils. The second domain, represented by the remaining, carboxy-terminal part of VP4, is rich in long stretches of alpha-helix, one of which, 63 amino acids long, has heptad repeats resembling those found in proteins known to form alpha-helical coiled-coils. The predicted secondary structure correlates well with the available data on the protein accessibility delineated by immunological and biochemical findings and with the spike structure of the protein, which has been determined by cryoelectron microscopy.
Collapse
Affiliation(s)
- S López
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México, Morelos
| | | | | | | | | | | |
Collapse
|
17
|
Yeager M, Dryden KA, Olson NH, Greenberg HB, Baker TS. Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J Cell Biol 1990; 110:2133-44. [PMID: 2161857 PMCID: PMC2116141 DOI: 10.1083/jcb.110.6.2133] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The structure of rhesus rotavirus was examined by cryoelectron microscopy and image analysis. Three-dimensional reconstructions of infectious virions were computed at 26- and 37-A resolution from electron micrographs recorded at two different levels of defocus. The major features revealed by the reconstructions are (a) both outer and inner capsids are constructed with T = 13l icosahedral lattice symmetry; (b) 60 spikelike projections, attributed to VP4, extend at least 100 A from the outer capsid surface; (c) the outer capsid, attributed primarily to VP7, has a smoothly rippled surface at a mean radius of 377 A and is perforated by 132 aqueous holes ranging from 40-65 A in diameter; (d) the inner capsid has a "bristled" outer surface composed of 260 trimeric-shaped columns of density, attributed to VP6, which merge with a smooth, spherical shell of density at a lower, mean radius of 299 A, and which is perforated by holes in register with those in the outer capsid; (e) a "core" region contains a third, nonspherical shell of density at a mean radius of 225 A that encapsidates the double-stranded RNA genome; and (f) the space between the outer and inner capsids forms an open aqueous network that may provide pathways for the diffusion of ions and small regulatory molecules as well as the extrusion of RNA. The assignment of different viral structural proteins to specific features of the reconstruction has been tentatively made on the basis of excluded volume estimates and previous biochemical characterizations of rotavirus.
Collapse
Affiliation(s)
- M Yeager
- Scripps Clinic and Research Foundation, Department of Molecular Biology, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- A R Bellamy
- Department of Cellular and Molecular Biology, University of Auckland, New Zealand
| | | |
Collapse
|
19
|
Arias CF, Garcia G, Lopez S. Priming for rotavirus neutralizing antibodies by a VP4 protein-derived synthetic peptide. J Virol 1989; 63:5393-8. [PMID: 2555564 PMCID: PMC251206 DOI: 10.1128/jvi.63.12.5393-5398.1989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the rotavirus SA11 surface protein VP4, the trypsin cleavage sites associated with the enhancement of infectivity are flanked by two amino acid regions that are highly conserved among different rotaviruses. We have tested the ability of synthetic peptides that mimic these two regions to induce and prime for a rotavirus neutralizing antibody response in mice. After the peptide immunization schedule, both peptides induced peptide antibodies, but neither was able to induce virus antibodies, as measured by an enzyme-linked immunosorbent assay or a neutralization assay. However, when the peptide-inoculated mice were subsequently injected with intact SA11 virus, a rapid and high neutralizing antibody response was observed in mice that had previously received the peptide comprising amino acids 220 to 233 of the VP4 protein. This neutralizing activity was serotype specific; however, this peptide was also able to efficiently prime the immune system of mice for a neutralizing antibody response to the heterotypic rotavirus ST3 when the ST3 virus was used for the secondary inoculation.
Collapse
Affiliation(s)
- C F Arias
- Departamento de Biologia Molecular, Universidad Nacional Autonoma de Mexico, Cuernavaca
| | | | | |
Collapse
|
20
|
Abstract
Knowledge of the structure and function of the genes and proteins of the rotaviruses has expanded rapidly. Information obtained in the last 5 years has revealed unexpected and unique molecular properties of rotavirus proteins of general interest to virologists, biochemists, and cell biologists. Rotaviruses share some features of replication with reoviruses, yet antigenic and molecular properties of the outer capsid proteins, VP4 (a protein whose cleavage is required for infectivity, possibly by mediating fusion with the cell membrane) and VP7 (a glycoprotein), show more similarities with those of other viruses such as the orthomyxoviruses, paramyxoviruses, and alphaviruses. Rotavirus morphogenesis is a unique process, during which immature subviral particles bud through the membrane of the endoplasmic reticulum (ER). During this process, transiently enveloped particles form, the outer capsid proteins are assembled onto particles, and mature particles accumulate in the lumen of the ER. Two ER-specific viral glycoproteins are involved in virus maturation, and these glycoproteins have been shown to be useful models for studying protein targeting and retention in the ER and for studying mechanisms of virus budding. New ideas and approaches to understanding how each gene functions to replicate and assemble the segmented viral genome have emerged from knowledge of the primary structure of rotavirus genes and their proteins and from knowledge of the properties of domains on individual proteins. Localization of type-specific and cross-reactive neutralizing epitopes on the outer capsid proteins is becoming increasingly useful in dissecting the protective immune response, including evaluation of vaccine trials, with the practical possibility of enhancing the production of new, more effective vaccines. Finally, future analyses with recently characterized immunologic and gene probes and new animal models can be expected to provide a basic understanding of what regulates the primary interactions of these viruses with the gastrointestinal tract and the subsequent responses of infected hosts.
Collapse
|
21
|
Burns JW, Chen D, Estes MK, Ramig RF. Biological and immunological characterization of a simian rotavirus SA11 variant with an altered genome segment 4. Virology 1989; 169:427-35. [PMID: 2539699 DOI: 10.1016/0042-6822(89)90168-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have studied a variant virus isolated from a stock of SA11 virus (H. G. Pereira, R. S. Azeredo, A. M. Fialho, and M. N. P. Vidal, 1984, J. Gen. Virol. 65, 815-818). This virus, designated 4F, was initially identified by its faster electrophoretic mobility for genome segment 4. The variant was analyzed to determine if the altered electrophoretic mobility of genome segment 4 could be correlated with phenotypic changes. Comparison of our standard laboratory SA11 virus (clone 3) with the 4F variant showed the following: (i) The 4F variant possesses a viral hemagglutinin (VP4) with a higher apparent molecular weight than clone 3. (ii) The 4F variant produces large plaques when assayed in vitro, as compared to clone 3. (iii) The 4F variant produces plaques in the absence of proteolytic enzymes, whereas clone 3 does not. (iv) The 4F variant reacts with serotype-specific neutralizing monoclonal antibodies to VP7, but fails to react with several neutralizing anti-VP4 monoclonal antibodies generated to SA11 clone 3. (v) The 4F variant grows to a higher titer and is more stable than clone 3. (vi) The 4F variant produces a VP4 that appears to be more susceptible to cleavage by trypsin than is the VP4 of clone 3. Further analyses with the 4F variant may lead to an understanding of the molecular basis for these altered phenotypes that appear to be related, at least in part, to the product of genome segment 4.
Collapse
Affiliation(s)
- J W Burns
- Department of Virology and Epidemiology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
22
|
Haddow J, Clark B, Ni Y, Desselberger U. Biological function of the rotavirus protein VP4: observations on porcine isolates from China. Med Microbiol Immunol 1989; 178:163-76. [PMID: 2546024 DOI: 10.1007/bf00198015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rotaviruses isolated from pigs in China were grown in MA104 cells. One tissue-culture-adapted isolate consisted of two subpopulations (variants), the RNA profiles of which differed in the relative migration of RNA segment 4 only. The variants were separated by plaque purification and by recovery from limiting dilutions and remained genetically stable. The variant possessing the slower migrating RNA segment 4, called 4S, grew faster and formed large plaques after 4-6 days incubation, whereas the variant possessing the faster migrating RNA segment 4, called 4F, grew more slowly and formed only microscopic plaques after 10-14 days incubation. The protein product of the 4F RNA occurred in much lower concentration in infected cells than the product of the 4S RNA. The RNA segments 4 of the two variants were found to be closely related when tested by dot hybridization under stringent conditions. The 4S RNA is more resistant to denaturation with methyl mercuric hydroxide than is the 4F RNA. The relevance of these findings to the biological functions of rotaviruses is discussed.
Collapse
Affiliation(s)
- J Haddow
- Institute of Virology, University of Glasgow, UK
| | | | | | | |
Collapse
|
23
|
Matsui SM, Mackow ER, Greenberg HB. Molecular determinant of rotavirus neutralization and protection. Adv Virus Res 1989; 36:181-214. [PMID: 2472045 DOI: 10.1016/s0065-3527(08)60585-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S M Matsui
- Department of Medicine, Stanford University School of Medicine, California 94305
| | | | | |
Collapse
|
24
|
Cyr-Coats KS, Payne HR, Storz J. The influence of the host cell and trypsin treatment on bovine coronavirus infectivity. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1988; 35:752-9. [PMID: 3218397 DOI: 10.1111/j.1439-0450.1988.tb00555.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Flores J, Sears J, Green KY, Perez-Schael I, Morantes A, Daoud G, Gorziglia M, Hoshino Y, Chanock RM, Kapikian AZ. Genetic stability of rotaviruses recovered from asymptomatic neonatal infections. J Virol 1988; 62:4778-81. [PMID: 2846889 PMCID: PMC253598 DOI: 10.1128/jvi.62.12.4778-4781.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The sequence of the VP7 gene from 19 rotavirus strains recovered from asymptomatically infected newborn infants was determined by direct analysis of transcript RNAs synthesized from virus present in the stool. For five viruses the entire VP7 gene was sequenced, whereas in the remaining instances only a portion of the gene could be sequenced. In 19 specimens collected over a 4-year period, only five nucleotide substitutions were detected. None of them resulted in an amino acid substitution. Examination of a 306-nucleotide segment of gene 4 in 11 specimens yielded similar results. These results suggest that the mutation rate of rotaviruses in nature is lower than that of single-stranded RNA viruses such as poliovirus and influenza virus.
Collapse
Affiliation(s)
- J Flores
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Streckert HJ, Brüssow H, Werchau H. A synthetic peptide corresponding to the cleavage region of VP3 from rotavirus SA11 induces neutralizing antibodies. J Virol 1988; 62:4265-9. [PMID: 2845138 PMCID: PMC253860 DOI: 10.1128/jvi.62.11.4265-4269.1988] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antibodies were elicited in rabbits by immunization with the synthetic tetradecapeptide Gln-Asn-Thr-Arg-Asn-Ile-Val-Pro-Val-Ser-Ile-Val-Ser-Arg, corresponding to amino acids 228 to 241 of SA11-VP3. Protein specificity of the antipeptide serum is demonstrated. The antipeptide serum revealed neutralizing activity directed against SA11 in a neutralization assay. Human rotavirus strains Wa, S2, and Hochi and bovine strains NCDV and UK were not neutralized, demonstrating the strain-specific neutralizing activity of the raised antipeptide serum. Upon immune electron microscopy, aggregation of SA11 particles was observed.
Collapse
Affiliation(s)
- H J Streckert
- Abteilung für Medizinische Mikrobiologie und Virologie, Ruhr-Universität Bochum, Federal Republic of Germany
| | | | | |
Collapse
|
27
|
Ruiz AM, López IV, López S, Espejo RT, Arias CF. Molecular and antigenic characterization of porcine rotavirus YM, a possible new rotavirus serotype. J Virol 1988; 62:4331-6. [PMID: 2845146 PMCID: PMC253868 DOI: 10.1128/jvi.62.11.4331-4336.1988] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In 1983, we isolated a porcine rotavirus (strain YM) that was prevalent in several regions of Mexico, as judged by the frequency of its characteristic electropherotype. By a focus reduction neutralization test, rotavirus YM was clearly distinguished from prototype rotavirus strains belonging to serotypes 1 (Wa), 2 (S2), 3 (SA11), 4 (ST3), 5 (OSU), and 6 (NCDV). Minor, one-way cross-neutralization (1 to 5%) was observed when antisera to the various rotavirus strains were incubated with rotavirus YM. In addition, the YM virus was not neutralized by neutralizing monoclonal antibodies with specificity to serotypes 1, 2, 3, and 5. The subgroup of the virus was determined to be I by enzyme-linked immunosorbent assay. To characterize the serotype-specific glycoprotein of the virus at the molecular level, we cloned and sequenced the gene coding for VP7. Comparison of the deduced amino acid sequence with reported homologous sequences from human and animal rotavirus strains belonging to six different serotypes further supported the distinct immunological identity of the YM VP7 protein.
Collapse
Affiliation(s)
- A M Ruiz
- Departamento de Biologia Molecular, Centro de Investigaciones sobre Ingenieria Genetica y Biotecnologia, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
28
|
Nishikawa K, Taniguchi K, Torres A, Hoshino Y, Green K, Kapikian AZ, Chanock RM, Gorziglia M. Comparative analysis of the VP3 gene of divergent strains of the rotaviruses simian SA11 and bovine Nebraska calf diarrhea virus. J Virol 1988; 62:4022-6. [PMID: 2845121 PMCID: PMC253831 DOI: 10.1128/jvi.62.11.4022-4026.1988] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gene encoding outer capsid protein VP3 of subpopulations of two animal rotaviruses, simian SA11 and Nebraska calf diarrhea virus (NCDV), was analyzed. Two laboratory strains of simian SA11 rotavirus (SA11-SEM and SA11-FEM) differed with respect to VP3. This dimorphism was indicated by a difference in electrophoretic mobility and a difference in reactivity with anti-VP3 monoclonal antibodies. The overall VP3 amino acid homology between the two SA11 VP3 proteins was 82.7%, whereas the VP3 protein of SA11-FEM was 98.5% homologous in amino acid sequence to NCDV VP3, suggesting that SA11-FEM VP3 was derived by gene reassortment in the laboratory during contamination with a bovine rotavirus. A comparison of the deduced amino acid sequence of the VP3 of two virulent NCDV strains and an attenuated NCDV strain (RIT 4237), revealed only five amino acid differences which were scattered throughout the protein but did not involve the trypsin cleavage sites. Of interest, the VP3 of the standard strain of NCDV which is virulent for cows differed in only one amino acid (position 23, Gln to Lys) from the VP3 of an NCDV mutant which was attenuated both for cows and for children.
Collapse
Affiliation(s)
- K Nishikawa
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kantharidis P, Dyall-Smith ML, Tregear GW, Holmes IH. Nucleotide sequence of UK bovine rotavirus segment 4: possible host restriction of VP3 genes. Virology 1988; 166:308-15. [PMID: 2845645 DOI: 10.1016/0042-6822(88)90501-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bovine UK and simian SA11 rotaviruses are commonly used VP7-type reference strains. Since the surface protein VP3 is a significant neutralization antigen, it is important to fully characterize the VP3 types associated with current reference strains. Here we present the complete nucleotide and predicted amino acid sequence of VP3 from UK rotavirus (VP7 type 6) and compare it to the published sequences of SA114fm and RV-5. We also compare the deduced amino acid sequence covering the trypsin cleavage region of UK VP3 to 25 other available sequences. The UK protein is clearly different from that of bovine NCDV (another commonly used VP7 type 6 strain) and represents a second VP3 type associated with bovine rotaviruses. Our SA11 sequence differs from that determined by Lopez et al. [1985, Virology 144, 11-19; later referred to as SA114fM by Lopez et al. (1986, Virology 154, 224-227], their sequence being very similar to the published sequence of NCDV VP3. The significance of these results with regard to virus serotypes is discussed. Finally, in analyzing the nucleotide sequence surrounding the initiation codon, a potential hairpin-loop structure was identified which may be involved in translational regulation.
Collapse
Affiliation(s)
- P Kantharidis
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
30
|
Saif LJ, Rosen BI, Kang SY, Miller KL. Cell culture propagation of rotaviruses. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01404268] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Kaljot KT, Shaw RD, Rubin DH, Greenberg HB. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J Virol 1988; 62:1136-44. [PMID: 2831376 PMCID: PMC253121 DOI: 10.1128/jvi.62.4.1136-1144.1988] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 [VP3]; 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. Cleavage of VP3 does not alter viral binding to cell monolayers. In previous electron microscopic studies of infected cell cultures, it has been demonstrated that rotavirus particles enter cells by both endocytosis and direct cell membrane penetration. To determine whether trypsin treatment affected rotavirus internalization, we studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Endocytosis inhibitors (sodium azide, dinitrophenol) and lysosomotropic agents (ammonium chloride, chloroquine) had a limited effect on the entry of infectious virus into cells. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 medicated 51Cr, [14C]choline, and [3H]inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.
Collapse
Affiliation(s)
- K T Kaljot
- Department of Medicine, Stanford University School of Medicine, California 95305
| | | | | | | |
Collapse
|
32
|
Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN, Greenberg HB. The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci U S A 1988; 85:645-9. [PMID: 2829198 PMCID: PMC279611 DOI: 10.1073/pnas.85.3.645] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The complete gene 4 nucleotide sequence was determined for rhesus rotavirus and each of 11 viral variants selected by neutralizing monoclonal antibodies. Gene 4 is 2362 bases in length and encodes a protein, VP3, of 776 amino acids with a calculated Mr of 86,500. A conserved trypsin cleavage site, located at amino acid 247, divides VP3 into VP8 and VP5. Neutralizing monoclonal antibodies directed at VP3 were used to select variants that escaped neutralization. Each variant contains a single gene 4 mutation that permits viral growth in the presence of the antibody. Variant mutations were identified in six distinct neutralization regions in VP8 and VP5. Five of the six neutralization regions were found in VP8. The VP8 regions were primarily associated with strain-specific or limited heterotypic rotavirus neutralization. One region was identified in VP5 by three monoclonal antibodies that neutralize a broad range of rotavirus serotypes. The VP5 neutralization region is largely hydrophobic and is similar to putative fusion sequences of Sindbis and Semliki Forest viruses.
Collapse
Affiliation(s)
- E R Mackow
- Department of Medicine, Stanford University, CA 94305
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
It is an accepted concept that the pathogenicity of a virus is of polygenic nature. Because of their segmented genome, influenza viruses provide a suitable system to prove this concept. The studies employing virus mutants and reassortants have indicated that the pathogenicity depends on the functional integrity of each gene and on a gene constellation optimal for the infection of a given host. As a consequence, virtually every gene product of influenza virus has been reported to contribute to pathogenicity, but evidence is steadily growing that a key role has to be assigned to hemagglutinin. As the initiator of infection, hemagglutinin has a double function: (1) promotion of adsorption of the virus to the cell surface, and (2) penetration of the viral genome through a fusion process among viral and cellular membranes. Adsorption is based on the binding to neuraminic acid-containing receptors, and different virus strains display a distinct preference for specific oligosaccharides. Fusion capacity depends on proteolytic cleavage by host proteases, and variations in amino acid sequence at the cleavage site determine whether hemagglutinin is activated in a given cell. Differences in cleavability and presumably also in receptor specificity are important determinants for host tropism, spread of infection, and pathogenicity. The concept that proteolytic activation is a determinant for pathogenicity was originally derived from studies on avian influenza viruses, but there is now evidence that it may also be relevant for the disease in humans because bacterial proteases have been found to promote the development of influenza pneumonia in mammals.
Collapse
Affiliation(s)
- H D Klenk
- Institut für Virologie, Philipps-Universität Marburg, Federal Republic of Germany
| | | |
Collapse
|
34
|
Rott R, Klenk HD. Significance of viral glycoproteins for infectivity and pathogenicity. ZENTRALBLATT FUR BAKTERIOLOGIE, MIKROBIOLOGIE, UND HYGIENE. SERIES A, MEDICAL MICROBIOLOGY, INFECTIOUS DISEASES, VIROLOGY, PARASITOLOGY 1987; 266:145-54. [PMID: 3122462 PMCID: PMC7134480 DOI: 10.1016/s0176-6724(87)80028-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Disease resulting from virus infection is a complex event depending on the close interaction of viral and cellular factors. Through the application of biochemical and genetic methods, it is now possible to gain an insight into the molecular basis of these interactions. Thus, it has been shown that the glycoproteins of enveloped viruses play a central role in the initiation of infection. They are responsible not only for the adsorption of virions to cellular receptors, but are also for the entry of the genome into the cell by the fusion of viral envelopes with cellular membranes. Evidence is growing that the fusogenic glycoproteins are frequently activated by cellular proteases. The structure of the proteins at the cleavage site and the availability of a suitable protease are critical for tissue tropism, spread of the virus in the infected organism and, thus, for pathogenicity. This will be demonstrated here by the example of the haemagglutinin of influenza viruses.
Collapse
Affiliation(s)
- R Rott
- Institut für Virologie, Justus-Liebig-Universität Giessen
| | | |
Collapse
|