1
|
Vallejo-Cremades M, Merino J, Carmona R, Córdoba L, Salvador B, Martínez L, Tovar JA, Llamas MÁ, Muñoz-Chápuli R, Fresno M. Toll-like receptors ligand immunomodulators for the treatment congenital diaphragmatic hernia. Orphanet J Rare Dis 2024; 19:386. [PMID: 39425191 PMCID: PMC11487987 DOI: 10.1186/s13023-024-03384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a rare disease that affects the development of the diaphragm, leading to abnormal lung development. Unfortunately, there is no established therapy for CDH. Retinoic acid pathways are implicated in the ethology of CDH and macrophages are known to play a role in repairing organ damage. METHODS We have analyzed the effect of several Toll like receptor (TLR) ligands in the nitrofen-induced CDH model in pregnant rats widely used to study this disease and in the G2-GATA4Cre;Wt1fl/fl CDH genetic mice model. Morphometric and histological studies were carried out. Immune cell infiltration was assayed by immunochemistry and immunofluorescence and retinoic pathway gene expression analyzed in vivo and in vitro in macrophages. RESULTS We found that administering a single dose of atypical TLR2/4 ligands (CS1 or CS2), 3 days after nitrofen, cured diaphragmatic hernia in 73% of the fetuses and repaired the lesion with complete diaphragm closure being on the other hand nontoxic for the mothers or pups. Moreover, these immunomodulators also improved pulmonary hypoplasia and alveolar maturation and vessel hypertrophy, enhancing pulmonary maturity of fetuses. We also found that CS1 treatment rescued the CDH phenotype in the G2-GATA4Cre;Wt1fl/fl CDH genetic mice model. Only 1 out of 11 mutant embryos showed CDH after CS1 administration, whereas CDH prevalence was 70% in untreated mutant embryos. Mechanistically, CS1 stimulated the infiltration of repairing M2 macrophages (CD206+ and Arg1+) into the damaged diaphragm and reduced T cell infiltration. Additionally, those TLR ligands induced retinol pathway genes, including RBP1, RALDH2, RARα, and RARβ, in the affected lungs and the diaphragm and in macrophages in vitro. CONCLUSIONS Our research has shown that TLR ligand immunomodulators that influence anti-inflammatory macrophage activation can be effective in treating CDH, being nontoxic for the mothers or pups suggesting that those TLR ligands are a promising solution for CDH leading to orphan drug designation for CS1. The immune system of the fetus would be responsible for repairing the damage and closure of the hernia in the diaphragm and enhanced proper lung development after CS1 treatment.
Collapse
Affiliation(s)
| | - Javier Merino
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain
| | | | - Laura Córdoba
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain
| | | | | | | | | | | | - Manuel Fresno
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, Madrid, Spain.
| |
Collapse
|
2
|
Lange C, Boneva S, Wieghofer P, Sebag J. Hyalocytes-guardians of the vitreoretinal interface. Graefes Arch Clin Exp Ophthalmol 2024; 262:2765-2784. [PMID: 38568222 PMCID: PMC11377362 DOI: 10.1007/s00417-024-06448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 09/06/2024] Open
Abstract
Originally discovered in the nineteenth century, hyalocytes are the resident macrophage cell population in the vitreous body. Despite this, a comprehensive understanding of their precise function and immunological significance has only recently emerged. In this article, we summarize recent in-depth investigations deciphering the critical role of hyalocytes in various aspects of vitreous physiology, such as the molecular biology and functions of hyalocytes during development, adult homeostasis, and disease. Hyalocytes are involved in fetal vitreous development, hyaloid vasculature regression, surveillance and metabolism of the vitreoretinal interface, synthesis and breakdown of vitreous components, and maintenance of vitreous transparency. While sharing certain resemblances with other myeloid cell populations such as retinal microglia, hyalocytes possess a distinct molecular signature and exhibit a gene expression profile tailored to the specific needs of their host tissue. In addition to inflammatory eye diseases such as uveitis, hyalocytes play important roles in conditions characterized by anomalous posterior vitreous detachment (PVD) and vitreoschisis. These can be hypercellular tractional vitreo-retinopathies, such as macular pucker, proliferative vitreo-retinopathy (PVR), and proliferative diabetic vitreo-retinopathy (PDVR), as well as paucicellular disorders such as vitreo-macular traction syndrome and macular holes. Notably, hyalocytes assume a significant role in the early pathophysiology of these disorders by promoting cell migration and proliferation, as well as subsequent membrane contraction, and vitreoretinal traction. Thus, early intervention targeting hyalocytes could potentially mitigate disease progression and prevent the development of proliferative vitreoretinal disorders altogether, by eliminating the involvement of vitreous and hyalocytes.
Collapse
Affiliation(s)
- Clemens Lange
- Department of Ophthalmology, St. Franziskus Hospital, Muenster, Germany.
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - J Sebag
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA.
- Doheny Eye Institute, UCLA, Pasadena, CA, USA.
- Department of Ophthalmology, Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Rosmus DD, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T, Kierdorf K, Hansen SM, Kuhrt H, Fröba J, Wolf J, Boneva S, Gericke M, Ajami B, Prinz M, Lange C, Wieghofer P. Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. J Neuroinflammation 2024; 21:168. [PMID: 38961498 PMCID: PMC11223341 DOI: 10.1186/s12974-024-03110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.
Collapse
Affiliation(s)
- Dennis-Dominik Rosmus
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Jana Koch
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Annika Hausmann
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Aude Chiot
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Franz Arnhold
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Katrin Kierdorf
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Stefanie Marie Hansen
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA, 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Bahareh Ajami
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Ophtha Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145, Münster, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany.
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany.
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
4
|
Suvandjieva V, Tsacheva I, Santos M, Kararigas G, Rashkov P. Modelling the Impact of NETosis During the Initial Stage of Systemic Lupus Erythematosus. Bull Math Biol 2024; 86:66. [PMID: 38678489 PMCID: PMC11056343 DOI: 10.1007/s11538-024-01291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil's nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.
Collapse
Affiliation(s)
- Vladimira Suvandjieva
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akad. Georgi Bonchev, blok 8, 1113, Sofia, Bulgaria
| | - Ivanka Tsacheva
- Faculty of Biology, Sofia University "Sveti Kliment Ohridski", bul. Dragan Tsankov 8, 1164, Sofia, Bulgaria
| | - Marlene Santos
- LAQV/REQUIMTE, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101, Reykjavik, Iceland
| | - Peter Rashkov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akad. Georgi Bonchev, blok 8, 1113, Sofia, Bulgaria.
| |
Collapse
|
5
|
Zhao J, Andreev I, Silva HM. Resident tissue macrophages: Key coordinators of tissue homeostasis beyond immunity. Sci Immunol 2024; 9:eadd1967. [PMID: 38608039 DOI: 10.1126/sciimmunol.add1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Resident tissue macrophages (RTMs) encompass a highly diverse set of cells abundantly present in every tissue and organ. RTMs are recognized as central players in innate immune responses, and more recently their importance beyond host defense has started to be highlighted. Despite sharing a universal name and several canonical markers, RTMs perform remarkably specialized activities tailored to sustain critical homeostatic functions of the organs they reside in. These cells can mediate neuronal communication, participate in metabolic pathways, and secrete growth factors. In this Review, we summarize how the division of labor among different RTM subsets helps support tissue homeostasis. We discuss how the local microenvironment influences the development of RTMs, the molecular processes they support, and how dysregulation of RTMs can lead to disease. Last, we highlight both the similarities and tissue-specific distinctions of key RTM subsets, aiming to coalesce recent classifications and perspectives into a unified view.
Collapse
Affiliation(s)
- Jia Zhao
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ilya Andreev
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hernandez Moura Silva
- Laboratory of Immunophysiology, Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
6
|
Barnes JL, Yoshida M, He P, Worlock KB, Lindeboom RGH, Suo C, Pett JP, Wilbrey-Clark A, Dann E, Mamanova L, Richardson L, Polanski K, Pennycuick A, Allen-Hyttinen J, Herczeg IT, Arzili R, Hynds RE, Teixeira VH, Haniffa M, Lim K, Sun D, Rawlins EL, Oliver AJ, Lyons PA, Marioni JC, Ruhrberg C, Tuong ZK, Clatworthy MR, Reading JL, Janes SM, Teichmann SA, Meyer KB, Nikolić MZ. Early human lung immune cell development and its role in epithelial cell fate. Sci Immunol 2023; 8:eadf9988. [PMID: 38100545 PMCID: PMC7615868 DOI: 10.1126/sciimmunol.adf9988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/03/2023] [Indexed: 12/17/2023]
Abstract
Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1β drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1β-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.
Collapse
Affiliation(s)
- Josephine L Barnes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, UK
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kaylee B Worlock
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Rik G H Lindeboom
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Adam Pennycuick
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | | | - Iván T Herczeg
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Romina Arzili
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Robert E Hynds
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Vitor H Teixeira
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - James L Reading
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- Tumour Immunodynamics and Interception Laboratory, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
- CRUK Lung Cancer Centre Of Excellence, UCL Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Department of Physics/Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, UK
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Yu Y, Qiao Y, Chen S, Hu J, Li J, Yao K, Yu Y. Non-typical persistent hyperplastic primary vitreous: a rare case report and review of the literature. BMC Ophthalmol 2023; 23:267. [PMID: 37312173 DOI: 10.1186/s12886-023-03024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Persistent hyperplastic primary vitreous (PHPV), also known as persistent fetal vasculature (PFV), is a clinical entity that traditionally presents with leukocoria, microphthalmia, retinal dysplasia, or eyeball shrinkage which is associated with poor vision. However, there is a dearth of literature on cases of PHPV in adulthood or with asymptomatic occurrence. This report presents the clinical and pathological findings of a non-typical PHPV case and discuss the current knowledge for this condition. CASE PRESENTATION A 68-year-old healthy male was referred to our outpatient department for evaluation of age-related cataract without other visual symptoms. Preoperative fundus examination occasionally detected an isolated stalk-like band extending to the posterior pole of the eye with normal central vitreous and retina. Other ocular examinations including b-mode ultrasonography, optical coherence tomography did not unveil any abnormalities, which caused diagnostic uncertainty. We referred to cataract surgery along with histopathological study, that revealed characteristics of PHPV including fibrous connective tissues mainly composed of fibrocyte proliferation and a very few capillary vessels. Thereafter, a definitive diagnosis of non-typical PHPV was established. CONCLUSION Our case is unique due to it was not discovered until adulthood, presence with only age-related cataract, and accompanied with normal central vitreous and retina. Histopathological explorations lead to an accurate diagnosis of the condition. Those results broaden the phenotype spectrums of PHPV and further provide clinical clues for the cognition of the disease.
Collapse
Affiliation(s)
- Yinhui Yu
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Yue Qiao
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Silong Chen
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Jianghua Hu
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Ophthalmology, Jiande Branch, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyu Li
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China
| | - Ke Yao
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| | - Yibo Yu
- Department of Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
8
|
Wen L, Yan W, Zhu L, Tang C, Wang G. The role of blood flow in vessel remodeling and its regulatory mechanism during developmental angiogenesis. Cell Mol Life Sci 2023; 80:162. [PMID: 37221410 PMCID: PMC11072276 DOI: 10.1007/s00018-023-04801-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/06/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell (EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein (CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, several mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell (VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel remodeling.
Collapse
Affiliation(s)
- Lin Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenhua Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Zhu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou, 215123, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
9
|
Chen S, Li J, Meng S, He T, Shi Z, Wang C, Wang Y, Cao H, Huang Y, Zhang Y, Gong Y, Gao Y. Microglia and macrophages in the neuro-glia-vascular unit: From identity to functions. Neurobiol Dis 2023; 179:106066. [PMID: 36889483 DOI: 10.1016/j.nbd.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Although both are myeloid cells located surrounding cerebral vasculature, vessel-associated microglia (VAM) and perivascular macrophages (PVMs) can be distinguished by their distinct morphologies, signatures and microscopic location. As key component of neuro-glia-vascular unit (NGVU), they play prominent roles in neurovasculature development and pathological process of various central nervous system (CNS) diseases, including phagocytosis, angiogenesis, vessel damage/protection and blood flow regulation, therefore serving as potential targets for therapeutics of a broad array of CNS diseases. Herein, we will provide a comprehensive overview of heterogeneity of VAM/PVMs, highlight limitations of current understanding in this field, and discuss possible directions of future investigations.
Collapse
Affiliation(s)
- Shuning Chen
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Li
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shan Meng
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tingyu He
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ziyu Shi
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chenran Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yana Wang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Hui Cao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yichen Huang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Zhang
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Yanqin Gao
- Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Molecular and Cellular Regulations in the Development of the Choroidal Circulation System. Int J Mol Sci 2023; 24:ijms24065371. [PMID: 36982446 PMCID: PMC10048934 DOI: 10.3390/ijms24065371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Disorders in the development and regulation of blood vessels are involved in various ocular disorders, such as persistent hyperplastic primary vitreous, familial exudative vitreoretinopathy, and choroidal dystrophy. Thus, the appropriate regulation of vascular development is essential for healthy ocular functions. However, regulation of the developing choroidal circulation system has not been well studied compared with vascular regulation in the vitreous and the retina. The choroid is a vascular-rich and uniquely structured tissue supplying oxygen and nutrients to the retina, and hypoplasia and the degeneration of the choroid are involved in many ocular disorders. Therefore, understanding the developing choroidal circulation system expands our knowledge of ocular development and supports our understanding of ocular disorders. In this review, we examine studies on regulating the developing choroidal circulation system at the cellular and molecular levels and discuss the relevance to human diseases.
Collapse
|
11
|
Abstract
Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.
Collapse
Affiliation(s)
| | - Jeffrey W Pollard
- MRC-Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Wieghofer P, Engelbert M, Chui TYP, Rosen RB, Sakamoto T, Sebag J. Hyalocyte origin, structure, and imaging. EXPERT REVIEW OF OPHTHALMOLOGY 2022; 17:233-248. [PMID: 36632192 PMCID: PMC9831111 DOI: 10.1080/17469899.2022.2100762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
Introduction Hyalocytes have been recognized as resident tissue macrophages of the vitreous body since the mid-19th century. Despite this, knowledge about their origin, turnover, and dynamics is limited. Areas covered Historically, initial studies on the origin of hyalocytes used light and electron microscopy. Modern investigations across species including rodents and humans will be described. Novel imaging is now available to study human hyalocytes in vivo. The shared ontogeny with retinal microglia and their eventual interdependence as well as differences will be discussed. Expert opinion Owing to a common origin as myeloid cells, hyalocytes and retinal microglia have similarities, but hyalocytes appear to be distinct as resident macrophages of the vitreous body.
Collapse
Affiliation(s)
- Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstraße 2, 86159 Augsburg, Germany
| | - Michael Engelbert
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY 10065, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA
| | - Toco YP Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - J Sebag
- Doheny Eye Institute, UCLA, Los Angeles, CA, USA
- Clinical Ophthalmology, Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA
| |
Collapse
|
13
|
Boneva SK, Wolf J, Wieghofer P, Sebag J, Lange CAK. Hyalocyte functions and immunology. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Stefaniya K Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - J Sebag
- Doheny Eye Institute, UCLA, Pasadena, CA, USA
- UCLA Geffen School of Medicine, Los Angeles, CA, USA
- VMR Institute for Vitreous Macula Retina, Huntington Beach, California, USA
| | - Clemens AK Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| |
Collapse
|
14
|
Mehl LC, Manjally AV, Bouadi O, Gibson EM, Tay TL. Microglia in brain development and regeneration. Development 2022; 149:275253. [PMID: 35502782 PMCID: PMC9124570 DOI: 10.1242/dev.200425] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It has recently emerged that microglia, the tissue-resident macrophages of the central nervous system, play significant non-innate immune roles to support the development, maintenance, homeostasis and repair of the brain. Apart from being highly specialized brain phagocytes, microglia modulate the development and functions of neurons and glial cells through both direct and indirect interactions. Thus, recognizing the elements that influence the homeostasis and heterogeneity of microglia in normal brain development is crucial to understanding the mechanisms that lead to early disease pathogenesis of neurodevelopmental disorders. In this Review, we discuss recent studies that have elucidated the physiological development of microglia and summarize our knowledge of their non-innate immune functions in brain development and tissue repair.
Collapse
Affiliation(s)
- Lindsey C Mehl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Ouzéna Bouadi
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tuan L Tay
- Faculty of Biology, University of Freiburg, Freiburg, 79104, Germany.,BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, 79110, Germany.,Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
15
|
Thompson B, Davidson EA, Chen Y, Orlicky DJ, Thompson DC, Vasiliou V. Oxidative stress induces inflammation of lens cells and triggers immune surveillance of ocular tissues. Chem Biol Interact 2022; 355:109804. [PMID: 35123994 PMCID: PMC9136680 DOI: 10.1016/j.cbi.2022.109804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 11/03/2022]
Abstract
Recent reports have challenged the notion that the lens is immune-privileged. However, these studies have not fully identified the molecular mechanism(s) that promote immune surveillance of the lens. Using a mouse model of targeted glutathione (GSH) deficiency in ocular surface tissues, we have investigated the role of oxidative stress in upregulating cytokine expression and promoting immune surveillance of the eye. RNA-sequencing of lenses from postnatal day (P) 1-aged Gclcf/f;Le-CreTg/- (KO) and Gclcf/f;Le-Cre-/- control (CON) mice revealed upregulation of many cytokines (e.g., CCL4, GDF15, CSF1) and immune response genes in the lenses of KO mice. The eyes of KO mice had a greater number of cells in the aqueous and vitreous humors at P1, P20 and P50 than age-matched CON and Gclcw/w;Le-CreTg/- (CRE) mice. Histological analyses revealed the presence of innate immune cells (i.e., macrophages, leukocytes) in ocular structures of the KO mice. At P20, the expression of cytokines and ROS content was higher in the lenses of KO mice than in those from age-matched CRE and CON mice, suggesting that oxidative stress may induce cytokine expression. In vitro administration of the oxidant, hydrogen peroxide, and the depletion of GSH (using buthionine sulfoximine (BSO)) in 21EM15 lens epithelial cells induced cytokine expression, an effect that was prevented by co-treatment of the cells with N-acetyl-l-cysteine (NAC), a antioxidant. The in vivo and ex vivo induction of cytokine expression by oxidative stress was associated with the expression of markers of epithelial-to-mesenchymal transition (EMT), α-SMA, in lens cells. Given that EMT of lens epithelial cells causes posterior capsule opacification (PCO), we propose that oxidative stress induces cytokine expression, EMT and the development of PCO in a positive feedback loop. Collectively these data indicate that oxidative stress induces inflammation of lens cells which promotes immune surveillance of ocular structures.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA
| | - David J Orlicky
- Department of Pathology, Anschutz School of Medicine, University of Colorado, Aurora, CO, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA; Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, USA.
| |
Collapse
|
16
|
Ranawat N, Masai I. Mechanisms underlying microglial colonization of developing neural retina in zebrafish. eLife 2021; 10:70550. [PMID: 34872632 PMCID: PMC8651297 DOI: 10.7554/elife.70550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina. The immune system is comprised of many different cells which protect our bodies from infection and other illnesses. The brain contains its own population of immune cells called microglia. Unlike neurons, these cells form outside the brain during development. They then travel to the brain and colonize specific regions like the retina, the light-sensing part of the eye in vertebrates. It is poorly understood how newly formed microglia migrate to the retina and whether their entry depends on the developmental state of nerve cells (also known as neurons) in this region. To help answer these questions, Ranawat and Masai attached fluorescent labels that can be seen under a microscope to microglia in the embryos of zebrafish. Developing zebrafish are transparent, making it easy to trace the fluorescent microglia as they travel to the retina and insert themselves among its neurons. Ranawat and Masai found that blood vessels around the retina act as a pathway that microglia move along. Once they reach the retina, the microglia remain attached and only enter the retina at sites where brain cells are starting to mature in to adult neurons. Further experiments showed that microglia fail to infiltrate and colonize the retina when blood vessels are damaged or neuron maturation is blocked. These findings reveal some of the key elements that guide microglia to the retina during development. However, further work is needed to establish the molecular and biochemical processes that allow microglia to attach to blood vessels and detect when cells in the retina are starting to mature.
Collapse
Affiliation(s)
- Nishtha Ranawat
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Ichiro Masai
- Developmental Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
17
|
Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, Lam E, Luo HR, Sun Y. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine 2021; 73:103632. [PMID: 34688035 PMCID: PMC8546367 DOI: 10.1016/j.ebiom.2021.103632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Background Pathological neovascularization in neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. Increasing evidence shows that cells of myeloid lineage play important roles in controlling pathological endothelium formation. Suppressor of cytokine signaling 3 (SOCS3) pathway has been linked to neovascularization. Methods We utilised a laser-induced choroidal neovascularization (CNV) mouse model to investigate the neovascular aspect of human AMD. In several cell lineage reporter mice, bone marrow chimeric mice and Socs3 loss-of-function (knockout) and gain-of-function (overexpression) mice, immunohistochemistry, confocal, and choroidal explant co-culture with bone marrow-derived macrophage medium were used to study the mechanisms underlying pathological CNV formation via myeloid SOCS3. Findings SOCS3 was significantly induced in myeloid lineage cells, which were recruited into the CNV lesion area. Myeloid Socs3 overexpression inhibited laser-induced CNV, reduced myeloid lineage-derived macrophage/microglia recruitment onsite, and attenuated pro-inflammatory factor expression. Moreover, SOCS3 in myeloid regulated vascular sprouting ex vivo in choroid explants and SOCS3 agonist reduced in vivo CNV. Interpretation These findings suggest that myeloid lineage cells contributed to pathological CNV formation regulated by SOCS3. Funding This project was funded by NIH/NEI (R01EY030140, R01EY029238), BrightFocus Foundation, American Health Assistance Foundation (AHAF), and Boston Children's Hospital Ophthalmology Foundation for YS and the National Institutes of Health/National Heart, Lung and Blood Institute (U01HL098166) for PZ.
Collapse
Affiliation(s)
- Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Pingzhu Zhou
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Xuemei Xie
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Yohei Tomita
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Steve Cho
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Demetrios Tsirukis
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hongbo Robert Luo
- Division of Blood Bank, Department of Laboratory Medicine, Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA, USA; Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Thomas DM, Kannabiran C, Balasubramanian D. Identification of Key Genes and Pathways in Persistent Hyperplastic Primary Vitreous of the Eye Using Bioinformatic Analysis. Front Med (Lausanne) 2021; 8:690594. [PMID: 34485332 PMCID: PMC8409525 DOI: 10.3389/fmed.2021.690594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The failure of the embryonic hyaloid vascular system to regress naturally causes persistent hyperplastic primary vitreous (PHPV), a congenital eye disease. PHPVs molecular pathway, candidate genes, and drug targets are unknown. The current paper describes a comprehensive analysis using bioinformatics to identify the key genes and molecular pathways associated with PHPV, and to evaluate potential therapeutic agents for disease management. Methods: The genes associated with PHPV were identified using the pubmed2ensembl text mining platform. GeneCodis was employed to evaluate the Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Search Tool for the Retrieval of Interacting Genes (STRING) constructed a protein-protein interaction (PPI) network from the text mining genes (TMGs) in Cytoscape. The significant modules were clustered using Molecular Complex Detection (MCODE), and the GO and KEGG analysis for the hub genes were analyzed with the Database of Annotation, Visualization and Integrated Discovery (DAVID) tool. ClueGO, CluePedia, and ShinyGo were used to illustrate the functions and pathways of the clustered hub genes in a significant module. The Drug-Gene Interaction database (DGIdb) was used to evaluate drug-gene interactions of the hub genes to identify potential PHPV drug candidates. Results: A total of 50 genes associated with PHPV were identified. Overall, 35 enriched GO terms and 15 KEGG pathways were discovered by the gene functional enrichment analysis. Two gene modules were obtained from the PPI network constructed with 31 nodes with 42 edges using MCODE. We selected 14 hub genes as core candidate genes: TP53, VEGFA, SMAD2, CDKN2A, FOXC, FZD4, LRP5, KDR, FZD5, PAX6, MYCN, NDP, PITX2, and PAX2, primarily associated with camera-type eye morphogenesis, pancreatic cancer, the apoptotic process involved in morphogenesis, and the VEGF receptor signaling pathway. We discovered that 26 Food and Drug Administration (FDA)-approved drugs could target 7 of the 14 hub genes. Conclusions: In conclusion, the results revealed a total of 14 potential genes, 4 major pathways, 7 drug gene targets, and 26 candidate drugs that could provide the basis of novel targeted therapies for targeted treatment and management of PHPV.
Collapse
Affiliation(s)
- Derin M Thomas
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| | - D Balasubramanian
- Kallam Anji Reddy Molecular Genetics Laboratory, Prof. Brien Holden Eye Research Center, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
19
|
Macrophage recruitment in immune-privileged lens during capsule repair, necrotic fiber removal, and fibrosis. iScience 2021; 24:102533. [PMID: 34142044 PMCID: PMC8188486 DOI: 10.1016/j.isci.2021.102533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Emerging evidence challenges the lens as an immune-privileged organ. Here, we provide a direct mechanism supporting a role of macrophages in lens capsule rupture repair. Posterior lens capsule rupture in a connexin 50 and aquaporin 0 double-knockout mouse model resulted in lens tissue extrusion into the vitreous cavity with formation of a “tail-like” tissue containing delayed regressed hyaloid vessels, fibrotic tissue and macrophages at postnatal (P) 15 days. The macrophages declined after P 30 days with M2 macrophages detected inside the lens. By P 90 days, the “tail-like” tissue completely disappeared and the posterior capsule rupture was sealed with thick fibrotic tissue. Colony-stimulating factor 1 (CSF-1) accelerated capsule repair, whereas inhibition of the CSF-1 receptor delayed the repair. Together, these results suggest that lens posterior rupture leads to the recruitment of macrophages delivered by the regression delayed hyaloid vessels. CSF-1-activated M2 macrophages mediate capsule rupture repair and development of fibrosis. Lens posterior rupture delays regression of the hyaloid vessels. Lens posterior rupture recruits macrophages delivered by the hyaloid vessels. Macrophages mediate necrotic fiber cell removal and capsule rupture sealing. CSF-1 activated M2 macrophages facilitate capsular rupture sealing by fibrosis.
Collapse
|
20
|
Abstract
Tissue-resident macrophages are present in most tissues with developmental, self-renewal, or functional attributes that do not easily fit into a textbook picture of a plastic and multifunctional macrophage originating from hematopoietic stem cells; nor does it fit a pro- versus anti-inflammatory paradigm. This review presents and discusses current knowledge on the developmental biology of macrophages from an evolutionary perspective focused on the function of macrophages, which may aid in study of developmental, inflammatory, tumoral, and degenerative diseases. We also propose a framework to investigate the functions of macrophages in vivo and discuss how inherited germline and somatic mutations may contribute to the roles of macrophages in diseases.
Collapse
Affiliation(s)
- Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Maria Pokrovskii
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
21
|
Sharma K, Bisht K, Eyo UB. A Comparative Biology of Microglia Across Species. Front Cell Dev Biol 2021; 9:652748. [PMID: 33869210 PMCID: PMC8047420 DOI: 10.3389/fcell.2021.652748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Microglia are unique brain-resident, myeloid cells. They have received growing interest for their implication in an increasing number of neurodevelopmental, acute injury, and neurodegenerative disorders of the central nervous system (CNS). Fate-mapping studies establish microglial ontogeny from the periphery during development, while recent transcriptomic studies highlight microglial identity as distinct from other CNS cells and peripheral myeloid cells. This evidence for a unique microglial ontogeny and identity raises questions regarding their identity and functions across species. This review will examine the available evidence for microglia in invertebrate and vertebrate species to clarify similarities and differences in microglial identity, ontogeny, and physiology across species. This discussion highlights conserved and divergent microglial properties through evolution. Finally, we suggest several interesting research directions from an evolutionary perspective to adequately understand the significance of microglia emergence. A proper appreciation of microglia from this perspective could inform the development of specific therapies geared at targeting microglia in various pathologies.
Collapse
Affiliation(s)
- Kaushik Sharma
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Kanchan Bisht
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Tisch N, Ruiz de Almodóvar C. Contribution of cell death signaling to blood vessel formation. Cell Mol Life Sci 2021; 78:3247-3264. [PMID: 33783563 PMCID: PMC8038986 DOI: 10.1007/s00018-020-03738-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
The formation of new blood vessels is driven by proliferation of endothelial cells (ECs), elongation of maturing vessel sprouts and ultimately vessel remodeling to create a hierarchically structured vascular system. Vessel regression is an essential process to remove redundant vessel branches in order to adapt the final vessel density to the demands of the surrounding tissue. How exactly vessel regression occurs and whether and to which extent cell death contributes to this process has been in the focus of several studies within the last decade. On top, recent findings challenge our simplistic view of the cell death signaling machinery as a sole executer of cellular demise, as emerging evidences suggest that some of the classic cell death regulators even promote blood vessel formation. This review summarizes our current knowledge on the role of the cell death signaling machinery with a focus on the apoptosis and necroptosis signaling pathways during blood vessel formation in development and pathology.
Collapse
Affiliation(s)
- Nathalie Tisch
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carmen Ruiz de Almodóvar
- Department of Vascular Dysfunction, European Center for Angioscience (ECAS), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
23
|
Relapse of pathological angiogenesis: functional role of the basement membrane and potential treatment strategies. Exp Mol Med 2021; 53:189-201. [PMID: 33589713 PMCID: PMC8080572 DOI: 10.1038/s12276-021-00566-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
Blinding eye diseases such as corneal neovascularization, proliferative diabetic retinopathy, and age-related macular degeneration are driven by pathological angiogenesis. In cancer, angiogenesis is key for tumor growth and metastasis. Current antiangiogenic treatments applied clinically interfere with the VEGF signaling pathway-the main angiogenic pathway-to inhibit angiogenesis. These treatments are, however, only partially effective in regressing new pathologic vessels, and the disease relapses following cessation of treatment. Moreover, the relapse of pathological angiogenesis can be rapid, aggressive and more difficult to treat than angiogenesis in the initial phase. The manner in which relapse occurs is poorly understood; however, recent studies have begun to shed light on the mechanisms underlying the revascularization process. Hypotheses have been generated to explain the rapid angiogenic relapse and increased resistance of relapsed disease to treatment. In this context, the present review summarizes knowledge of the various mechanisms of disease relapse gained from different experimental models of pathological angiogenesis. In addition, the basement membrane-a remnant of regressed vessels-is examined in detail to discuss its potential role in disease relapse. Finally, approaches for gaining a better understanding of the relapse process are discussed, including prospects for the management of relapse in the context of disease.
Collapse
|
24
|
Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology 2020; 9:e1222. [PMID: 33363732 PMCID: PMC7750014 DOI: 10.1002/cti2.1222] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| | - Andrew J Fleetwood
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Prabhakara R Nagareddy
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| |
Collapse
|
25
|
Abstract
Cell death occurs when a pathogen invades a host organism or the organism is subjected to sterile injury. Thus, cell death is often closely associated with the induction of an immune response. Furthermore, cell death can occur as a consequence of the immune response and precedes the tissue renewal and repair responses that are initiated by innate immune cells during resolution of an immune response. Beyond immunity, cell death is required for development, morphogenesis and homeostasis. How can such a ubiquitous event as cell death trigger such a wide range of context-specific effector responses? Dying cells are sensed by innate immune cells using specialized receptors and phagocytosed through a process termed efferocytosis. Here, we outline a general principle whereby signals within the dead cell as well as the environment are integrated by specific efferocytes to define the appropriate effector response.
Collapse
|
26
|
Vrolyk V, Desmarais MJ, Lambert D, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Göttingen Minipigs and Domestic Pigs: A Histomorphological and Immunohistochemical Study. Vet Pathol 2020; 57:889-914. [PMID: 33021158 DOI: 10.1177/0300985820954551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pigs are considered one of the relevant animal models for ocular research as they share several histological and anatomical similarities with the human eye. With the increasing interest in juvenile animal models, this study aimed to describe the postnatal development of ocular structures in 16 Göttingen minipigs and 25 F2 domestic pigs, between birth and 6 months of age, using histopathology and immunohistochemistry against Ki-67, caspase-3, calbindin, glial fibrillary acidic protein, rhodopsin, and synaptophysin. All ocular structures in both pig breeds were incompletely developed at birth and for variable periods postnatally. Noteworthy histological features of immaturity included vascularization in the corneal stroma in neonatal Göttingen minipigs, increased cellularity in different substructures, remnants of the hyaloid vasculature, short and poorly ramified ciliary body processes, and a poorly developed cone inner segment. Increased cellular proliferation, highlighted by abundant Ki-67 immunolabeling, was observed in almost all developing structures of the pig eye for variable periods postnatally. Apoptosis, highlighted with caspase-3 immunolabeling, was observed in the retinal inner nuclear layer at birth and in the regressing hyaloid vasculature remnants. Immunohistochemistry against rhodopsin, synaptophysin, and calbindin demonstrated the short size of the developing photoreceptors and the immature cone inner segment morphology. Calbindin labeling revealed significant differences in the amount of positively labeled cone nuclei between the retinal area centralis and the non-area centralis regions. The elongation of Müller cell processes in the developing retina was shown with glial fibrillary acidic protein. In both pig breeds, the eyes reached histomorphological and immunohistochemical maturity at 6 months of age.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | | | - Daniel Lambert
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Julius Haruna
- 67115Charles River Laboratories Montreal ULC, Laval, Quebec, Canada
| | - Marie-Odile Benoit-Biancamano
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Disease Research Center (CRIPA), Faculty of Veterinary Medicine, 70354Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
27
|
An inhibitor of endothelial ETS transcription factors promotes physiologic and therapeutic vessel regression. Proc Natl Acad Sci U S A 2020; 117:26494-26502. [PMID: 33020273 DOI: 10.1073/pnas.2015980117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed. In this study we exploited the hyaloid vascular network in murine eyes, which naturally undergoes regression after birth, to gain mechanistic insights that could be therapeutically adapted for driving neovessel regression in ocular diseases. We found that endothelial cells of regressing hyaloid vessels underwent down-regulation of two structurally related E-26 transformation-specific (ETS) transcription factors, ETS-related gene (ERG) and Friend leukemia integration 1 (FLI1), prior to apoptosis. Moreover, the small molecule YK-4-279, which inhibits the transcriptional and biological activity of ETS factors, enhanced hyaloid regression in vivo and drove Human Umbilical Vein Endothelial Cells (HUVEC) tube regression and apoptosis in vitro. Importantly, exposure of HUVECs to sheer stress inhibited YK-4-279-induced apoptosis, indicating that low-flow vessels may be uniquely susceptible to YK-4-279-mediated regression. We tested this hypothesis by administering YK-4-279 to mice in an oxygen-induced retinopathy model that generates disorganized and poorly perfused neovascular tufts that mimic human ocular diseases. YK-4-279 treatment significantly reduced neovascular tufts while sparing healthy retinal vessels, thereby demonstrating the therapeutic potential of this inhibitor.
Collapse
|
28
|
Macrophages fine-tune pupil shape during development. Dev Biol 2020; 464:137-144. [PMID: 32565279 DOI: 10.1016/j.ydbio.2020.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 11/21/2022]
Abstract
Tissue macrophages, which are ubiquitously present innate immune cells, play versatile roles in development and organogenesis. During development, macrophages prune transient or unnecessary synapses in neuronal development, and prune blood vessels in vascular development, facilitating appropriate tissue remodeling. In the present study, we identified that macrophages contributed to the development of pupillary morphology. Csf1op/op mutant mice, in which ocular macrophages are nearly absent, exhibited abnormal pupillary edges, with abnormal protrusions of excess iris tissue into the pupillary space. Macrophages located near the pupillary edge engulfed pigmented debris, which likely consisted of unnecessary iris protrusions that emerge during smoothening of the pupillary edge. Indeed, pupillary edge macrophages phenotypically possessed some features of M2 macrophages, consistent with robust tissue engulfment and remodeling activities. Interestingly, protruding irises in Csf1op/op mice were only detected in gaps between regressing blood vessels. Taken together, our findings uncovered a new role for ocular macrophages, demonstrating that this cell population is important for iris pruning during development.
Collapse
|
29
|
In vivo imaging of the hyaloid vascular regression and retinal and choroidal vascular development in rat eyes using optical coherence tomography angiography. Sci Rep 2020; 10:12901. [PMID: 32733052 PMCID: PMC7393149 DOI: 10.1038/s41598-020-69765-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study investigates the hyaloid vascular regression and its relationship to the retinal and choroidal vascular developments using optical coherence tomography angiography (OCTA). Normal and oxygen-induced retinopathy (OIR) rat eyes at postnatal day 15, 18, 21, and 24 were longitudinally imaged using OCTA. At each day, two consecutive imaging for visualizing the hyaloid vasculature and the retinal and choroidal vasculatures were conducted. The hyaloid vessel volume and the retinal and choroidal vessel densities were measured. The hyaloid vessel volumes gradually decreased during the regression, although the OIR eyes exhibited large vessel volumes at all time points. A spatial relationship between persistent hyaloid vasculature and retardation of underlying retinal vascular development was observed in the OIR eyes. Furthermore, anti-vascular endothelial growth factor (VEGF) was administered intravitreally to additional OIR eyes to observe its effect on the vascular regression and development. The VEGF injection to OIR eyes showed reduced persistent hyaloid vessels in the injected eyes as well as in the non-injected fellow eyes. This study presents longitudinal imaging of intraocular vasculatures in the developing eye and shows the utility of OCTA that can be widely used in studies of vascular development and regression and preclinical evaluation of new anti-angiogenic drugs.
Collapse
|
30
|
Hagan AS, Zhang B, Ornitz DM. Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis. Development 2020; 147:dev.181032. [PMID: 31862844 DOI: 10.1242/dev.181032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Alveologenesis is an essential developmental process that increases the surface area of the lung through the formation of septal ridges. In the mouse, septation occurs postnatally and is thought to require the alveolar myofibroblast (AMF). Though abundant during alveologenesis, markers for AMFs are minimally detected in the adult. After septation, the alveolar walls thin to allow efficient gas exchange. Both loss of AMFs or retention and differentiation into another cell type during septal thinning have been proposed. Using a novel Fgf18:CreERT2 allele to lineage trace AMFs, we demonstrate that most AMFs are developmentally cleared during alveologenesis. Lung mesenchyme also contains other poorly described cell types, including alveolar lipofibroblasts (ALF). We show that Gli1:CreERT2 marks both AMFs as well as ALFs, and lineage tracing shows that ALFs are retained in adult alveoli while AMFs are lost. We further show that multiple immune cell populations contain lineage-labeled particles, suggesting a phagocytic role in the clearance of AMFs. The demonstration that the AMF lineage is depleted during septal thinning through a phagocytic process provides a mechanism for the clearance of a transient developmental cell population.
Collapse
Affiliation(s)
- Andrew S Hagan
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
31
|
Kurd NS, Lutes LK, Yoon J, Chan SW, Dzhagalov IL, Hoover AR, Robey EA. A role for phagocytosis in inducing cell death during thymocyte negative selection. eLife 2019; 8:48097. [PMID: 31868579 PMCID: PMC6957271 DOI: 10.7554/elife.48097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Autoreactive thymocytes are eliminated during negative selection in the thymus, a process important for establishing self-tolerance. Thymic phagocytes serve to remove dead thymocytes, but whether they play additional roles during negative selection remains unclear. Here, using a murine thymic slice model in which thymocytes undergo negative selection in situ, we demonstrate that phagocytosis promotes negative selection, and provide evidence for the escape of autoreactive CD8 T cells to the periphery when phagocytosis in the thymus is impaired. We also show that negative selection is more efficient when the phagocyte also presents the negative selecting peptide. Our findings support a model for negative selection in which the death process initiated following strong TCR signaling is facilitated by phagocytosis. Thus, the phagocytic capability of cells that present self-peptides is a key determinant of thymocyte fate.
Collapse
Affiliation(s)
- Nadia S Kurd
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Lydia K Lutes
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jaewon Yoon
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ivan L Dzhagalov
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ashley R Hoover
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
32
|
Koller GM, Schafer C, Kemp SS, Aguera KN, Lin PK, Forgy JC, Griffin CT, Davis GE. Proinflammatory Mediators, IL (Interleukin)-1β, TNF (Tumor Necrosis Factor) α, and Thrombin Directly Induce Capillary Tube Regression. Arterioscler Thromb Vasc Biol 2019; 40:365-377. [PMID: 31852224 DOI: 10.1161/atvbaha.119.313536] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this work, we examine the molecular basis for capillary tube regression and identify key proregressive factors, signaling pathways, and pharmacological antagonists of this process. Approach and Results: We demonstrate that the proinflammatory mediators, IL (interleukin)-1β, TNF (tumor necrosis factor) α, and thrombin, singly and in combination, are potent regulators of capillary tube regression in vitro. These proregressive factors, when added to endothelial cell-pericyte cocultures, led to selective loss of endothelial cell-lined tube networks, with retention and proliferation of pericytes despite the marked destruction of adjacent capillary tubes. Moreover, treatment of macrophages with the TLR (toll-like receptor) agonists Pam3CSK4 and lipopolysaccharide generates conditioned media with marked proregressive activity, that is completely blocked by a combination of neutralizing antibodies directed to IL-1β and TNFα but not to other factors. The same combination of blocking antibodies, as well as the anti-inflammatory cytokine IL-10, interfere with macrophage-dependent hyaloid vasculature regression in mice suggesting that proinflammatory cytokine signaling regulates capillary regression in vivo. In addition, we identified a capillary regression signaling signature in endothelial cells downstream of these proregressive agents that is characterized by increased levels of ICAM-1 (intercellular adhesion molecule-1), phospho-p38, and phospho-MLC2 (myosin light chain-2) and decreased levels of phospho-Pak2, acetylated tubulin, phospho-cofilin, and pro-caspase3. Finally, we identified combinations of pharmacological agents (ie, FIST and FISTSB) that markedly rescue the proregressive activities of IL-1β, TNFα, and thrombin, individually and in combination. CONCLUSIONS Overall, these new studies demonstrate that the major proinflammatory mediators, IL-1β, TNFα, and thrombin, are key regulators of capillary tube regression-a critical pathological process regulating human disease.
Collapse
Affiliation(s)
- Gretchen M Koller
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Christopher Schafer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (C.S., C.T.G.), University of Oklahoma Health Sciences Center
| | - Scott S Kemp
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Kalia N Aguera
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Prisca K Lin
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Joshua C Forgy
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (C.S., C.T.G.), University of Oklahoma Health Sciences Center.,Department of Cell Biology (C.T.G.), University of Oklahoma Health Sciences Center
| | - George E Davis
- From the Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa (G.M.K., S.S.K., K.N.A., P.K.L., J.C.F., G.E.D.)
| |
Collapse
|
33
|
Cosin-Roger J, Ortiz-Masià MD, Barrachina MD. Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Front Immunol 2019; 10:2297. [PMID: 31608072 PMCID: PMC6769121 DOI: 10.3389/fimmu.2019.02297] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The Wnt signaling pathway is a conserved pathway involved in important cellular processes such as the control of embryonic development, cellular polarity, cellular migration, and cell proliferation. In addition to playing a central role during embryogenesis, this pathway is also an essential part of adult homeostasis. Indeed, it controls the proliferation of epithelial cells in different organs such as intestine, lung, and kidney, and guarantees the maintenance of the mucosa in physiological conditions. The origin of this molecular pathway is the binding between Wnt ligands (belonging to a family of 19 different homologous secreted glycoproteins) and their specific membrane receptors, from the Frizzled receptor family. This specific interaction triggers the activation of the signaling cascade, which in turn activates or suppresses the expression of different genes in order to change the behavior of the cell. On the other hand, alterations of this pathway have been described in pathological conditions such as inflammation, fibrosis, and cancer. In recent years, macrophages-among other cell types-have emerged as a potential source of Wnt ligands. Due to their high plasticity, macrophages, which are central to the innate immune response, are capable of adopting different phenotypes depending on their microenvironment. In the past, two different phenotypes were described: a proinflammatory phenotype-M1 macrophages-and an anti-inflammatory phenotype-M2 macrophages-and a selective expression of Wnt ligands has been associated with said phenotypes. However, nowadays it is assumed that macrophages in vivo move through a continual spectrum of functional phenotypes. In both physiological and pathological (inflammation, fibrosis and cancer) conditions, the accumulation and polarization of macrophages conditions the future of the tissue, facilitating various scenarios, such as resolution of inflammation, activation of fibrosis, and cancer development due to the modulation of the Wnt signaling pathway, in autocrine and paracrine manner. In this work, we provide an overview of studies that have explored the role of macrophages and how they act as a source of Wnt ligands and as mediators of mucosal integrity.
Collapse
Affiliation(s)
| | - Mª Dolores Ortiz-Masià
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Mª Dolores Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
34
|
Crespo-Garcia S, Reichhart N, Wigdahl J, Skosyrski S, Kociok N, Strauß O, Joussen AM. Lack of netrin-4 alters vascular remodeling in the retina. Graefes Arch Clin Exp Ophthalmol 2019; 257:2179-2184. [PMID: 31451908 DOI: 10.1007/s00417-019-04447-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Netrin-4 (NTN4) is a protein that plays an important role in the regulation of angiogenesis in the pathological retina. Some evidences show that it can also have a role in inflammation and vascular stability. We will explore these questions in vivo in the mature mouse retina. METHODS We created a NTN4 knockout that expresses EGFP in mononuclear phagocytes (CSFR1-positive cells) to track inflammation in vivo in the retina by scanning laser ophthalmoscopy (SLO). Fundus angiography permitted to study blood vessels. Retinal function was assessed with electroretinography (ERG). RESULTS Lack of NTN4 leads to an increased amount of amoeboid mononuclear phagocytes in the adult retina, and blood vessels displayed increased tortuosity when compared with the wildtype. Inner retina function also seemed affected in NTN4 null. Lack of NTN4 resulted in a higher persistence of hyaloid artery and spontaneous leakage in the adult retina. No differences were found regarding vessel bifurcation, vessel width, or vein/artery ratio. CONCLUSIONS These in vivo data show for the first time that lack of NTN4 induces changes in the retinal vascular phenotype in a non-pathological scenario. This evidence widens the role of NTN4 as a guidance cue in vascular remodeling.
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Canada. .,Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montréal, Canada.
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Sergej Skosyrski
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität, Humboldt-University, the Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
35
|
Li J, Zhang J, Lu P. Regression of fetal vasculature and visual improvement in nonsurgical persistent hyperplastic primary vitreous: a case report. BMC Ophthalmol 2019; 19:161. [PMID: 31349817 PMCID: PMC6660677 DOI: 10.1186/s12886-019-1173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 07/22/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Persistent hyperplastic primary vitreous (PHPV) is a rare congenital developmental ocular disorder caused by incomplete regression of the embryonic hyaloid vasculature. Here we report a case of nonsurgical unilateral anterior PHPV that was managed by amblyopia treatment and resulted in an improvement of visual acuity and regression of the fetal vasculature. CASE PRESENTATION A three-year-old girl was diagnosed with unilateral anterior PHPV in the left eye, manifested with posterior pole cataract, posterior capsule opacification, tunica vasculosa lentis, and a floating hyaloid artery connected to the retrolental mass. The plaque was not large enough to fill the pupil, and conservative management along with amblyopia treatment was conducted. Nineteen months later, the visual acuity in the affected eye improved from 20/100 to 20/50 with correction, and the fetal vasculature regressed gradually and finally into a nonperfusion ghost vessel. CONCLUSIONS In PHPV-affected children, regression of the fetal vasculature may be observed, and conservative management and amblyopia treatment may be helpful for visual improvement.
Collapse
Affiliation(s)
- Jianqing Li
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Jiaju Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Peirong Lu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
36
|
McWilliams TG, Prescott AR, Villarejo-Zori B, Ball G, Boya P, Ganley IG. A comparative map of macroautophagy and mitophagy in the vertebrate eye. Autophagy 2019; 15:1296-1308. [PMID: 30786807 PMCID: PMC6613837 DOI: 10.1080/15548627.2019.1580509] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Photoreception is pivotal to our experience and perception of the natural world; hence the eye is of prime importance for most vertebrate animals to sense light. Central to visual health is mitochondrial homeostasis, and the selective autophagic turnover of mitochondria (mitophagy) is predicted to play a key role here. Despite studies that link aberrant mitophagy to ocular dysfunction, little is known about the prevalence of basal mitophagy, or its relationship to general autophagy, in the visual system. In this study, we utilize the mito-QC mouse and a closely related general macroautophagy reporter model to profile basal mitophagy and macroautophagy in the adult and developing eye. We report that ocular macroautophagy is widespread, but surprisingly mitophagy does not always follow the same pattern of occurrence. We observe low levels of mitophagy in the lens and ciliary body, in stark contrast to the high levels of general MAP1LC3-dependent macroautophagy in these regions. We uncover a striking reversal of this process in the adult retina, where mitophagy accounts for a larger degree of the macroautophagy taking place, specifically in the photoreceptor neurons of the outer nuclear layer. We also show the developmental regulation of autophagy in a variety of ocular tissues. In particular, mitophagy in the adult mouse retina is reversed in localization during the latter stages of development. Our work thus defines the landscape of mitochondrial homeostasis in the mammalian eye, and in doing so highlights the selective nature of autophagy in vivo and the specificity of the reporters used. Abbreviations: ATG: autophagy related; GFP: green fluorescent protein; LC3: microtubule associated protein 1 light chain 3; ONH: optic nerve head; ONL: outer nuclear layer; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Thomas G. McWilliams
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre School of Life Sciences, University of Dundee, Dundee, UK
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Graeme Ball
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
37
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
38
|
Wang Z, Liu CH, Huang S, Chen J. Assessment and Characterization of Hyaloid Vessels in Mice. J Vis Exp 2019. [PMID: 31157789 DOI: 10.3791/59222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the eye, the embryonic hyaloid vessels nourish the developing lens and retina and regress when the retinal vessels develop. Persistent or failed regression of hyaloid vessels can be seen in diseases such as persistent hyperplastic primary vitreous (PHPV), leading to an obstructed light path and impaired visual function. Understanding the mechanisms underlying the hyaloid vessel regression may lead to new molecular insights into the vascular regression process and potential new ways to manage diseases with persistent hyaloid vessels. Here we describe the procedures for imaging hyaloid in live mice with optical coherence tomography (OCT) and fundus fluorescein angiography (FFA) and a detailed technical protocol of isolating and flat-mounting hyaloid ex vivo for quantitative analysis. Low-density lipoprotein receptor-related protein 5 (LRP5) knockout mice were used as an experimental model of persistent hyaloid vessels, to illustrate the techniques. Together, these techniques may facilitate a thorough assessment of hyaloid vessels as an experimental model of vascular regression and studies on the mechanism of persistent hyaloid vessels.
Collapse
Affiliation(s)
- Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School;
| |
Collapse
|
39
|
Iwanaga T, Nio-Kobayashi J, Takahashi-Iwanaga H. Bush-like integrin filament networks associated with hyaloid vasculature in murine neonate eyes. Biomed Res 2019; 40:79-85. [PMID: 30982803 DOI: 10.2220/biomedres.40.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The vitreous of perinatal mice temporarily develops a unique vascular system, called the vasa hyaloidea propria (VHP). Observations showed the vessels possessed an extracellular matrix including the basement membrane in their entire length. Immunostaining of whole mount preparations of VHP with integrin β1 antibody displayed a bush-like network consisting of long and straight fibers which were associated with the VHP but extended apart from the blood vessels. Electron microscopically, each fiber was composed of a bundle of thin filaments different from collagen fibrils. Macrophages associated with the VHP appeared to be arrested by the integrin bushes. The integrin bushes fragmented and disappeared by postnatal day 10, just before the regression of the VHP. Macrophages were involved in the digestion and clearance of integrin bushes. The vitreous integrin bushes appear to provide a scaffold for architectural maintenance of the hyaloid vessels and macrophages.
Collapse
Affiliation(s)
- Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| | - Hiromi Takahashi-Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine
| |
Collapse
|
40
|
Managlia E, Liu SXL, Yan X, Tan XD, Chou PM, Barrett TA, De Plaen IG. Blocking NF-κB Activation in Ly6c + Monocytes Attenuates Necrotizing Enterocolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:604-618. [PMID: 30593820 PMCID: PMC6412404 DOI: 10.1016/j.ajpath.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/06/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease affecting premature infants with intestinal inflammation and necrosis. The neonatal intestinal inflammatory response is rich in macrophages, and blood monocyte count is low in human NEC. We previously found that NF-κB mediates the intestinal injury in experimental NEC. However, the role of NF-κB in myeloid cells during NEC remains unclear. Herein, inhibitor of kappaB kinase β (IKKβ), a critical kinase mediating NF-κB activation, was deleted in lysozyme M (Lysm)-expressing cells, which were found to be Cd11b+Ly6c+ monocytes but not Cd11b+Ly6c- macrophages in the dam-fed neonatal mouse intestine. NEC induced differentiation of monocytes into intestinal macrophages and up-regulation of monocyte recruitment genes (eg, L-selectin) in the macrophage compartment in wild-type mice, but not in pups with IKKβ deletion in Lysm+ cells. Thus, NF-κB is required for NEC-induced monocyte activation, recruitment, and differentiation in neonatal intestines. Furthermore, pups with Lysm-IKKβ deletion had improved survival and decreased incidence of severe NEC compared with littermate controls. Decreased NEC severity was not associated with an improved intestinal barrier. In contrast, NEC was unabated in mice with IKKβ deletion in intestinal epithelial cells. Together, these data suggest that recruitment of Ly6c+ monocytes into the intestine, NF-κB activation in these cells, and differentiation of Ly6c+ monocytes into macrophages are critical cellular and molecular events in NEC development to promote disease.
Collapse
Affiliation(s)
- Elizabeth Managlia
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Shirley X L Liu
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Xiaocai Yan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Xiao-Di Tan
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Division of Gastroenterology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Pauline M Chou
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Terrence A Barrett
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Isabelle G De Plaen
- Center for Intestinal and Liver Inflammation Research, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois; Division of Neonatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Stanley Manne Children's Research Institute, Northwestern University, Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
41
|
Ruedl C, Jung S. DTR-mediated conditional cell ablation-Progress and challenges. Eur J Immunol 2019; 48:1114-1119. [PMID: 29974950 DOI: 10.1002/eji.201847527] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
Cell ablation is a valuable complement to mutagenesis for experimentally defining specific cell functions in physiology and pathophysiology in small animal models. One of the most popular ablation strategies involves transgenic expression of a primate diphtheria toxin receptor (DTR) on murine cells that are otherwise resistant to the bacterial exotoxin. The efforts of many laboratories using the DTR approach over the years have yielded numerous valuable insights into specific cell functions. Here, we will discuss the technical aspects of the DTR approach, including the strengths, pitfalls, and future strategies to overcome the shortcomings, highlighting a recent paper published in the European Journal of Immunology [El Hachem et al. Eur. J. Immunol. 2018 https://doi.org/10.1002/eji.201747351]. A particular focus will be given to the application of DTR approach to decipher in vivo functions of the murine myeloid cell compartment.
Collapse
Affiliation(s)
- Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Cavaillon JM. Historical links between toxinology and immunology. Pathog Dis 2018; 76:4923027. [PMID: 29718183 DOI: 10.1093/femspd/fty019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/01/2018] [Indexed: 01/28/2023] Open
Abstract
Research on bacterial toxins is closely linked to the birth of immunology. Our understanding of the interaction of bacterial protein toxins with immune cells has helped to decipher immunopathology, develop preventive and curative treatments for infections, and propose anti-cancer immunotherapies. The link started when Behring and Kitasato demonstrated that serotherapy was effective against 'the strangling angel', namely diphtheria, and its dreadful toxin discovered by Roux and Yersin. The antitoxin treatment helped to save thousands of children. Glenny demonstrated the efficacy of the secondary immune response compared to the primary one. Ramon described anatoxins that allowed the elaboration of effective vaccines and discovered the use of adjuvant to boost the antibody response. Similar approaches were later made for the tetanus toxin. Studying antitoxin antibodies Ehrlich demonstrated, for the first time, the transfer of immunity from mother to newborns. In 1989 Marrack and Kappler coined the concept of 'superantigens' to characterize protein toxins that induce T-lymphocyte proliferation, and cytokine release by both T-lymphocytes and antigen presenting cells. More recently, immunotoxins have been designed to kill cancer cells targeted by either specific antibodies or cytokines. Finally, the action of IgE antibodies against toxins may explain their persistence through evolution despite their side effect in allergy.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines and Inflammation, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
43
|
Nayak G, Odaka Y, Prasad V, Solano AF, Yeo EJ, Vemaraju S, Molkentin JD, Trumpp A, Williams B, Rao S, Lang RA. Developmental vascular regression is regulated by a Wnt/β-catenin, MYC and CDKN1A pathway that controls cell proliferation and cell death. Development 2018; 145:dev154898. [PMID: 29777010 PMCID: PMC6031408 DOI: 10.1242/dev.154898] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
Abstract
Normal development requires tight regulation of cell proliferation and cell death. Here, we have investigated these control mechanisms in the hyaloid vessels, a temporary vascular network in the mammalian eye that requires a Wnt/β-catenin response for scheduled regression. We investigated whether the hyaloid Wnt response was linked to the oncogene Myc, and the cyclin-dependent kinase inhibitor CDKN1A (P21), both established regulators of cell cycle progression and cell death. Our analysis showed that the Wnt pathway co-receptors LRP5 and LRP6 have overlapping activities that mediate the Wnt/β-catenin signaling in hyaloid vascular endothelial cells (VECs). We also showed that both Myc and Cdkn1a are downstream of the Wnt response and are required for hyaloid regression but for different reasons. Conditional deletion of Myc in VECs suppressed both proliferation and cell death. By contrast, conditional deletion of Cdkn1a resulted in VEC overproliferation that countered the effects of cell death on regression. When combined with analysis of MYC and CDKN1A protein levels, this analysis suggests that a Wnt/β-catenin and MYC-CDKN1A pathway regulates scheduled hyaloid vessel regression.
Collapse
Affiliation(s)
- Gowri Nayak
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yoshinobu Odaka
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alyssa F Solano
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eun-Jin Yeo
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shruti Vemaraju
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Bart Williams
- Center for Skeletal Disease Research and Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Sujata Rao
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- The Cleveland Clinic, Ophthalmic Research, 9500 Euclid Avenue, OH 44195, USA
| | - Richard A Lang
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Chronobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Divisions of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
44
|
Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H, Martin P. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J 2018; 37:embj.201797786. [PMID: 29866703 PMCID: PMC6028026 DOI: 10.15252/embj.201797786] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Wound angiogenesis is an integral part of tissue repair and is impaired in many pathologies of healing. Here, we investigate the cellular interactions between innate immune cells and endothelial cells at wounds that drive neoangiogenic sprouting in real time and in vivo. Our studies in mouse and zebrafish wounds indicate that macrophages are drawn to wound blood vessels soon after injury and are intimately associated throughout the repair process and that macrophage ablation results in impaired neoangiogenesis. Macrophages also positively influence wound angiogenesis by driving resolution of anti‐angiogenic wound neutrophils. Experimental manipulation of the wound environment to specifically alter macrophage activation state dramatically influences subsequent blood vessel sprouting, with premature dampening of tumour necrosis factor‐α expression leading to impaired neoangiogenesis. Complementary human tissue culture studies indicate that inflammatory macrophages associate with endothelial cells and are sufficient to drive vessel sprouting via vascular endothelial growth factor signalling. Subsequently, macrophages also play a role in blood vessel regression during the resolution phase of wound repair, and their absence, or shifted activation state, impairs appropriate vessel clearance.
Collapse
Affiliation(s)
| | - Charlotte E Severn
- School of Biochemistry, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products, University of Bristol, Bristol, UK
| | | | | | - Jenna Cash
- School of Biochemistry, University of Bristol, Bristol, UK.,MRC Centre for Inflammation Research, Edinburgh Medical School, The Queen's Medical Research Institute, Edinburgh, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, UK.,National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products, University of Bristol, Bristol, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Filton, Bristol, UK
| | - Harry Mellor
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK .,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.,School of Medicine, University of Cardiff, Cardiff, UK
| |
Collapse
|
45
|
Kishimoto A, Kimura S, Nio-Kobayashi J, Takahashi-Iwanaga H, Park AM, Iwanaga T. Histochemical characteristics of regressing vessels in the hyaloid vascular system of neonatal mice: Novel implication for vascular atrophy. Exp Eye Res 2018; 172:1-9. [PMID: 29596849 DOI: 10.1016/j.exer.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
The hyaloid vasculature constitutes a transitory system nourishing the internal structures of the developing eye, but the mechanism of vascular regression and its cell biological characteristics are not fully understood. The present study aimed to reveal the specificity of the hyaloid vessels by a systematic immunohistochemical approach for marker substances of myeloid cells and the extracellular matrix (ECM) in neonatal mice. Macrophages immunoreactive for F4/80, cathepsin D, and LYVE-1 gathered around the vasa hyaloidea propria (VHP), while small round cells in vascular lumen of VHP were selectively immunoreactive for galectin-3; their segmented nuclei and immunoreactivities for Ly-6G, CD11b, and myeloperoxidase indicated their neutrophilic origin. VHP possessed thick ECM and a dense pericyte envelope as demonstrated by immunostaining for laminin, type IV collagen, integrin β1, and NG2. The galectin-3+ cells loosely aggregated with numerous erythrocytes in the lumen of hyaloid vessels in a manner reminiscent of vascular congestion. Galectin-3 is known to polymerize and form a complex with ECM and NG2 as well as recruit leukocytes on the endothelium. Observation of galectin-3 KO mice implicated the involvement of galectin-3 in the regression of hyaloid vasculature. Since macrophages may play central roles including blocking of the blood flow and the induction of apoptosis in the regression, galectin-3+ neutrophils may play a supportive role in the macrophage-mediated involution of the hyaloid vascular system.
Collapse
Affiliation(s)
- Ayuko Kishimoto
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiromi Takahashi-Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| |
Collapse
|
46
|
Chaqour J, Lee S, Ravichandra A, Chaqour B. Abscisic acid - an anti-angiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages. J Cell Sci 2018; 131:jcs.210492. [PMID: 29361545 DOI: 10.1242/jcs.210492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) has shown anti-inflammatory and immunoregulatory properties in preclinical models of diabetes and inflammation. Herein, we studied the effects of ABA on angiogenesis, a strictly controlled process that, when dysregulated, leads to severe angiogenic disorders including vascular overgrowth, exudation, cellular inflammation and organ dysfunction. By using a 3D sprouting assay, we show that ABA effectively inhibits migration, growth and expansion of endothelial tubes without affecting cell viability. Analyses of the retinal vasculature in developing normoxic and hyperoxic mice challenged by oxygen toxicity reveal that exogenously administered ABA stunts the development and regeneration of blood vessels. In these models, ABA downregulates endothelial cell (EC)-specific growth and migratory genes, interferes with tip and stalk cell specification, and hinders the function of filopodial protrusions required for precise guidance of vascular sprouts. In addition, ABA skews macrophage polarization towards the M1 phenotype characterized by anti-angiogenic marker expression. In accordance with this, ABA treatment accelerates macrophage-induced programmed regression of fetal blood vessels. These findings reveal protective functions of ABA against neovascular growth through modulation of EC and macrophage plasticity, suggesting the potential utility of ABA as a treatment in vasoproliferative diseases.
Collapse
Affiliation(s)
- Julienne Chaqour
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sangmi Lee
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Aashreya Ravichandra
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Brahim Chaqour
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA .,The Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
47
|
Lutty GA, McLeod DS. Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog Retin Eye Res 2018; 62:58-76. [PMID: 29081352 PMCID: PMC5776052 DOI: 10.1016/j.preteyeres.2017.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 01/06/2023]
Abstract
The development of the ocular vasculatures is perfectly synchronized to provide the nutritional and oxygen requirements of the forming human eye. The fetal vasculature of vitreous, which includes the hyaloid vasculature, vasa hyaloidea propria, and tunica vasculosa lentis, initially develops around 4-6 weeks gestation (WG) by hemo-vasculogenesis (development of blood and blood vessels from a common progenitor, the hemangioblast). This transient fetal vasculature expands around 12 WG by angiogenesis (budding from primordial vessels) and remains until a retinal vasculature begins to form. The fetal vasculature then regresses by apoptosis with the assistance of macrophages/hyalocytes. The human choroidal vasculature also forms by a similar process and will supply nutrients and oxygen to outer retina. This lobular vasculature develops in a dense collagenous tissue juxtaposed with a cell constitutively producing vascular endothelial growth factor (VEGF), the retinal pigment epithelium. This epithelial/endothelial relationship is critical in maintaining the function of this vasculature throughout life and maintaining it's fenestrated state. The lobular capillary system (choriocapillaris) develops first by hemo-vasculogenesis and then the intermediate choroidal blood vessels form by angiogenesis, budding from the choriocapillaris. The human retinal vasculature is the last to develop. It develops by vasculogenesis, assembly of CXCR4+/CD39+ angioblasts or vascular progenitors perhaps using Muller cell Notch1 or axonal neuropilinin-1 for guidance of semaphorin 3A-expressing angioblasts. The fovea never develops a retinal vasculature, which is probably due to the foveal avascular zone area of retina expressing high levels of antiangiogenic factors. From these studies, it is apparent that development of the mouse ocular vasculatures is not representative of the development of the human fetal, choroidal and retinal vasculatures.
Collapse
Affiliation(s)
- Gerard A Lutty
- Wilmer Ophthalmological Institute, Baltimore, MD 21287, United States.
| | - D Scott McLeod
- Wilmer Ophthalmological Institute, Baltimore, MD 21287, United States
| |
Collapse
|
48
|
Heimsath EG, Yim YI, Mustapha M, Hammer JA, Cheney RE. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep 2017; 7:17354. [PMID: 29229982 PMCID: PMC5725431 DOI: 10.1038/s41598-017-17638-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Myosin-X (Myo10) is an unconventional myosin best known for its striking localization to the tips of filopodia. Despite the broad expression of Myo10 in vertebrate tissues, its functions at the organismal level remain largely unknown. We report here the generation of KO-first (Myo10tm1a/tm1a), floxed (Myo10tm1c/tm1c), and KO mice (Myo10tm1d/tm1d). Complete knockout of Myo10 is semi-lethal, with over half of homozygous KO embryos exhibiting exencephaly, a severe defect in neural tube closure. All Myo10 KO mice that survive birth exhibit a white belly spot, all have persistent fetal vasculature in the eye, and ~50% have webbed digits. Myo10 KO mice that survive birth can breed and produce litters of KO embryos, demonstrating that Myo10 is not absolutely essential for mitosis, meiosis, adult survival, or fertility. KO-first mice and an independent spontaneous deletion (Myo10m1J/m1J) exhibit the same core phenotypes. During retinal angiogenesis, KO mice exhibit a ~50% decrease in endothelial filopodia, demonstrating that Myo10 is required to form normal numbers of filopodia in vivo. The Myo10 mice generated here demonstrate that Myo10 has important functions in mammalian development and provide key tools for defining the functions of Myo10 in vivo.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang-In Yim
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirna Mustapha
- Department of Otolaryngology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard E Cheney
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Brockmann C, Dege S, Crespo-Garcia S, Kociok N, Brockmann T, Strauß O, Joussen AM. Spatial distribution of CD115 + and CD11b + cells and their temporal activation during oxygen-induced retinopathy in mice. Graefes Arch Clin Exp Ophthalmol 2017; 256:313-323. [PMID: 29185100 DOI: 10.1007/s00417-017-3845-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/11/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The model of oxygen-induced retinopathy (OIR) is widely used to analyze pathomechanisms in retinal neovascularization. Previous studies have shown that macrophages (MP) play a key role in vessel formation in OIR, the influence of microglia (MG) having been discussed. The aim of our study was to analyze the spatial and temporal distribution and activation of MP/MG expressing CD115 and CD11b during the process of neovascularization in OIR. METHODS We used MacGreen mice expressing the green fluorescence protein (GFP) under the promoter for CD115. CD115+ cells were investigated in vivo by scanning laser ophthalmoscopy at postnatal days (P) 17 and 21 in MacGreen mice with OIR (75% oxygen from P7 to P12), and were compared to MacGreen room-air controls. In addition MP/MG were examined ex vivo using immunohistochemistry for CD11b+ detection on retinal flatmounts at P14, P17, and P21 of wild type mice with OIR. RESULTS In-vivo imaging revealed the highest density of activated MP/MG in tuft areas at P17 of MacGreen mice with OIR. Tufts and regions with a high density of CD115+ cells were detected close to veins, rather to arteries. In peripheral, fully vascularized areas, the distribution of CD115+ cells in MacGreen mice with OIR was similar to MacGreen room-air controls. Correspondingly, immunohistochemical analyses of retinal flatmounts from wild type mice with OIR induction revealed that the number of CD11b+ cells significantly varies between vascular, avascular, and tuft areas as well as between the retinal layers. Activated CD11b+ cells were almost exclusively found in avascular areas and tufts of wild type mice with OIR induction; here, the proportion of activated cells related to the total number of CD11b+ cells remained stable over the course of time. CONCLUSIONS Using two different approaches to monitor MP/MG cells, our findings demonstrated that MP/MG concentrate within pathologically vascularized areas during OIR. We were able to clarify that reactive changes of CD11b+ cell distribution to OIR primarily occur in the deep retinal layers. Furthermore, we found the highest proportion of activated CD11b+ cells in regions with pathologic neovascularization processes. Our findings support previous reports about activated MP/MG guiding revascularization in avascular areas and playing a key role in the formation and regression of neovascular tufts.
Collapse
Affiliation(s)
- Claudia Brockmann
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Sabrina Dege
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sergio Crespo-Garcia
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias Brockmann
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Olaf Strauß
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
50
|
Vrolyk V, Haruna J, Benoit-Biancamano MO. Neonatal and Juvenile Ocular Development in Sprague-Dawley Rats: A Histomorphological and Immunohistochemical Study. Vet Pathol 2017; 55:310-330. [DOI: 10.1177/0300985817738098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As in many altricial species, rats are born with fused eyelids and markedly underdeveloped eyes. While the normal histology of the eyes of mature rats is known, the histomorphological changes occurring during postnatal eye development in this species remain incompletely characterized. This study was conducted to describe the postnatal development of ocular structures in Sprague-Dawley (SD) rats during the first month of age using histology and immunohistochemistry (IHC). Both eyes were collected from 51 SD rats at 13 time points between postnatal day (PND)1 and PND30. Histologic examination of hematoxylin and eosin-stained sections was performed, as well as IHC for cleaved-caspase-3 and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) to evaluate apoptosis, and IHC for Ki-67 and phospho-histone-H3 to evaluate cell proliferation. Extensive ocular tissue remodeling occurred prior to the eyelid opening around PND14 and reflected the interplay between apoptosis and cell proliferation. Apoptosis was particularly remarkable in the maturing subcapsular anterior epithelium of the lens, the inner nuclear and ganglion cell layers of the developing retina, and the Harderian gland, and was involved in the regression of the hyaloid vasculature. Nuclear degradation in the newly formed secondary lens fibers was noteworthy after birth and was associated with TUNEL-positive nuclear remnants lining the lens organelle-free zone. Cell proliferation was marked in the developing retina, cornea, iris, ciliary body and Harderian gland. The rat eye reached histomorphological maturity at PND21 after a rapid phase of morphological changes characterized by the coexistence of cell death and proliferation.
Collapse
Affiliation(s)
- Vanessa Vrolyk
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | | | - Marie-Odile Benoit-Biancamano
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
- Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Faculty of Veterinary Medicne University of Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|