1
|
Bora P, Bhuyan C, Borah AR, Hazarika S. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun (Camb) 2023; 59:11320-11336. [PMID: 37671435 DOI: 10.1039/d3cc03490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carbon nanomaterials have enormous applications in various fields, such as adsorption, membrane separation, catalysis, electronics, capacitors, batteries, and medical sciences. Owing to their exceptional properties, such as large specific surface area, carrier mobility, flexibility, electrical conductivity, and optical pellucidity, the family of carbon nanomaterials is considered as one of the most studied group of materials to date. They are abundantly used in membrane science for multiple applications, such as the separation of organics, enantiomeric separation, gas separation, biomolecule separation, heavy metal separation, and wastewater treatment. This study provides an overview of the significant studies on carbon nanomaterial-based membranes and their emerging applications in our membrane research journey. The types of carbon nanomaterials, their utilization in membrane-based separations, and the mechanism involved are summarized in this study. Techniques for the fabrication of different nanocomposite membranes are also highlighted. Lastly, we have provided an overview of the existing issues and future scopes of carbon nanomaterial-based membranes for technological perspectives.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Diamonds for Life: Developments in Sensors for Biomolecules. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Diamond-based electrodes and biosensors are interesting in analytics because of their particular set of properties, namely: large potential window, chemical inertness, low baseline current, stability, and transparency. Diamond-based electrodes and biosensors were shown to detect biological molecules such as neurotransmitters and proteins, respectively. In this review, we summarise the different types of diamond electrodes and biosensors based on their type of detection (electrochemical or optical), functionalisation, and target analyte. The last section presents a discussion on the different analytical responses obtained with electrodes or biosensors, according to the type of analyte. Electrodes work quite well for detecting small molecules with redox properties, whereas biosensors are more suited for detecting molecules with a high molecular weight, such as DNA and proteins.
Collapse
|
3
|
Paxton WF, Rozsa JL, Brooks MM, Running MP, Schultz DJ, Jasinski JB, Jung HJ, Akram MZ. A scalable approach to topographically mediated antimicrobial surfaces based on diamond. J Nanobiotechnology 2021; 19:458. [PMID: 34963490 PMCID: PMC8713538 DOI: 10.1186/s12951-021-01218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Bio-inspired Topographically Mediated Surfaces (TMSs) based on high aspect ratio nanostructures have recently been attracting significant attention due to their pronounced antimicrobial properties by mechanically disrupting cellular processes. However, scalability of such surfaces is often greatly limited, as most of them rely on micro/nanoscale fabrication techniques. In this report, a cost-effective, scalable, and versatile approach of utilizing diamond nanotechnology for producing TMSs, and using them for limiting the spread of emerging infectious diseases, is introduced. Specifically, diamond-based nanostructured coatings are synthesized in a single-step fabrication process with a densely packed, needle- or spike-like morphology. The antimicrobial proprieties of the diamond nanospike surface are qualitatively and quantitatively analyzed and compared to other surfaces including copper, silicon, and even other diamond surfaces without the nanostructuring. This surface is found to have superior biocidal activity, which is confirmed via scanning electron microscopy images showing definite and widespread destruction of E. coli cells on the diamond nanospike surface. Consistent antimicrobial behavior is also observed on a sample prepared seven years prior to testing date. ![]()
Collapse
Affiliation(s)
- William F Paxton
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA.
| | - Jesse L Rozsa
- 219 Life Sciences Building, University of Louisville, Louisville, KY, 40292, USA
| | - Morgan M Brooks
- LSU School of Medicine, 1542 Tulane Ave, New Orleans, LA, 70112, USA
| | - Mark P Running
- 219 Life Sciences Building, University of Louisville, Louisville, KY, 40292, USA
| | - David J Schultz
- 219 Life Sciences Building, University of Louisville, Louisville, KY, 40292, USA
| | - Jacek B Jasinski
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Hyun Jin Jung
- 219 Life Sciences Building, University of Louisville, Louisville, KY, 40292, USA
| | | |
Collapse
|
4
|
Membrane patterning through horizontally aligned microchannels developed by sulfated chopped carbon fiber for facile permeability of blood plasma components in low-density lipoprotein apheresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Zheng Y, Hoffman A, Huang K. Atomistic Insight into Nitrogen-Terminated Diamond(001) Surfaces by the Adsorption of N, NH, and NH 2: A Density Functional Theory Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6248-6256. [PMID: 33974432 DOI: 10.1021/acs.langmuir.1c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer construction of diamond devices for spin-sensing calls for the atomistic understanding of the nitrogen species on diamond surfaces. Motivated by recent experiments, we used density functional theory simulations to examine the adsorption of nitrogen species (N, NH, and NH2) on bare and hydrogenated diamond(001) surfaces. On the bare substrate, we find that nitrogen species favor to attack the C═C dimers at low coverages, forming N(ad) and NH(ad) in a bridge configuration and NH2(ad) in a terminal configuration. At increasing coverages up to one full monolayer, the computed adsorption geometries and energetics suggest that the adsorbate-adsorbate interactions are attractive for N(ad), but repulsive for NH(ad) and NH2(ad). On the hydrogenated substrate, the adsorbed nitrogen species are subject to structural modification, as resulted from the weakened adsorbate-substrate interactions. Further, we calculated the vibration of nitrogen species and the 1s core-level shift of surface carbons, providing atomistic insights into the nature of surface bonding. Lastly, we simulated images of representative nitrogen species adsorbed on diamond(001), guiding future work using scanning tunneling microscopy.
Collapse
Affiliation(s)
- Yusen Zheng
- Chemistry Program, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong Province 515603, China
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Alon Hoffman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kai Huang
- Chemistry Program, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong Province 515603, China
| |
Collapse
|
6
|
Krátká M, Čermák J, Vachelová J, Davídková M, Romanyuk N, Kromka A, Rezek B. Gamma radiation effects on diamond field-effect biosensors with fibroblasts and extracellular matrix. Colloids Surf B Biointerfaces 2021; 204:111689. [PMID: 33932892 DOI: 10.1016/j.colsurfb.2021.111689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 03/06/2021] [Indexed: 01/05/2023]
Abstract
Due to high biocompatibility, miniaturization, optical transparency and low production cost together with high radiation hardness the diamond-based sensors are considered promising for radiation medicine and biomedicine in general. Here we present detection of fibroblast cell culture properties by nanocrystalline diamond solution-gated field-effect transistors (SG-FET), including effects of gamma irradiation. We show that blank nanocrystalline diamond field-effect biosensors are stable at least up to 300 Gy of γ irradiation. On the other hand, gate current of the diamond SG-FET biosensors with fibroblastic cells increases exponentially over an order of magnitude with increasing radiation dose. Extracellular matrix (ECM) formation is also detected and analyzed by correlation of electronic sensor data with optical, atomic force, fluorescence, and scanning electron microscopies.
Collapse
Affiliation(s)
- Marie Krátká
- Institute of Physics CAS, Cukrovarnická 10, 16200, Prague 6, Czech Republic.
| | - Jan Čermák
- Institute of Physics CAS, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| | - Jana Vachelová
- Nuclear Physics Institute CAS, Řež 130, 25068, Řež, Czech Republic
| | - Marie Davídková
- Nuclear Physics Institute CAS, Řež 130, 25068, Řež, Czech Republic
| | - Nataliya Romanyuk
- Deparment of Neuroregeneration, Institute of Experimental Medicine CAS, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Alexander Kromka
- Institute of Physics CAS, Cukrovarnická 10, 16200, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University, Technická 2, 16627, Prague, Czech Republic
| |
Collapse
|
7
|
Torres-Martinez N, Cretallaz C, Ratel D, Mailley P, Gaude C, Costecalde T, Hebert C, Bergonzo P, Scorsone E, Mazellier JP, Divoux JL, Sauter-Starace F. Evaluation of chronically implanted subdural boron doped diamond/CNT recording electrodes in miniature swine brain. Bioelectrochemistry 2019; 129:79-89. [DOI: 10.1016/j.bioelechem.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/29/2022]
|
8
|
Ligand-Modified Boron-Doped Diamond Surface: DFT Insights into the Electronic Properties of Biofunctionalization. MATERIALS 2019; 12:ma12182910. [PMID: 31505785 PMCID: PMC6766244 DOI: 10.3390/ma12182910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/02/2022]
Abstract
With the increasing power of computation systems, theoretical calculations provide a means for quick determination of material properties, laying out a research plan, and lowering material development costs. One of the most common is Density Functional Theory (DFT), which allows us to simulate the structure of chemical molecules or crystals and their interaction. In developing a new generation of biosensors, understanding the nature of functional linkers, antibodies, and ligands become essential. In this study, we used DFT to model a bulk boron-doped diamond slab, modified by a functional linker and a surrogate proteins ligand. DTF calculations enable the prediction of electronic transport properties in an electrochemical sensor setup, composed of a boron-doped diamond electrode functionalized by 4-amino benzoic acids and a target surrogated protein-ligand for influenza. Electron conduction pathways and other signatures associated with the detection and measurement of the target analyte are revealed.
Collapse
|
9
|
Abstract
![]()
Diamond is a highly
attractive coating material as it is characterized
by a wide optical transparency window, a high thermal conductivity,
and an extraordinary robustness due to its mechanical properties and
its chemical inertness. In particular, the latter has aroused a great
deal of interest for scanning probe microscopy applications in recent
years. In this study, we present a novel method for the fabrication
of atomic force microscopy (AFM) probes for force spectroscopy using
robust diamond-coated spheres, i.e., colloidal particles. The so-called
colloidal probe technique is commonly used to study interactions of
single colloidal particles, e.g., on biological samples like living
cells, or to measure mechanical properties like the Young’s
modulus. Under physiological measurement conditions, contamination
of the particle often strongly limits the measurement time and often
impedes reusability of the probe. Diamond as a chemically inert material
allows treatment with harsh chemicals without degradation to refurbish
the probe. Apart from that, the large surface area of spherical probes
makes sensitive studies on surface interactions possible. This provides
detailed insight into the interface of diamond with other materials
and/or solvents. To fabricate such probes, silica microspheres were
coated with a nanocrystalline diamond film and attached to tipless
cantilevers. Measurements on soft polydimethylsiloxane (PDMS) show
that the manufactured diamond spheres, even though possessing a rough
surface, can be used to determine the Young’s modulus from
a Derjaguin-Muller-Toporov (DMT) fit. By means of force spectroscopy,
they can readily probe force interactions of diamond with different
substrate materials under varying conditions. The influence of the
surface termination of the diamond was investigated concerning the
interaction with flat diamond substrates in air. Additionally, measurements
in solution, using varying salt concentrations, were carried out,
which provide information on double-layer and van-der-Waals forces
at the interface. The developed technique offers detailed insight
into surface chemistry and physics of diamond with other materials
concerning long and short-range force interactions and may provide
a valuable probe for investigations under harsh conditions but also
on biological samples, e.g., living cells, due to the robustness,
chemical inertness, and biocompatibility of diamond.
Collapse
Affiliation(s)
- Peter Knittel
- Fraunhofer IAF , Institute for Applied Solid State Physics , Tullastraße 72 , 79108 Freiburg , Germany
| | - Taro Yoshikawa
- Fraunhofer IAF , Institute for Applied Solid State Physics , Tullastraße 72 , 79108 Freiburg , Germany
| | - Christoph E Nebel
- Fraunhofer IAF , Institute for Applied Solid State Physics , Tullastraße 72 , 79108 Freiburg , Germany
| |
Collapse
|
10
|
Tomagra G, Picollo F, Battiato A, Picconi B, De Marchis S, Pasquarelli A, Olivero P, Marcantoni A, Calabresi P, Carbone E, Carabelli V. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Front Neurosci 2019; 13:288. [PMID: 31024230 PMCID: PMC6465646 DOI: 10.3389/fnins.2019.00288] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Micro-Graphitic Single Crystal Diamond Multi Electrode Arrays (μG-SCD-MEAs) have so far been used as amperometric sensors to detect catecholamines from chromaffin cells and adrenal gland slices. Besides having time resolution and sensitivity that are comparable with carbon fiber electrodes, that represent the gold standard for amperometry, μG-SCD-MEAs also have the advantages of simultaneous multisite detection, high biocompatibility and implementation of amperometric/potentiometric protocols, aimed at monitoring exocytotic events and neuronal excitability. In order to adapt diamond technology to record neuronal activity, the μG-SCD-MEAs in this work have been interfaced with cultured midbrain neurons to detect electrical activity as well as quantal release of dopamine (DA). μG-SCD-MEAs are based on graphitic sensing electrodes that are embedded into the diamond matrix and are fabricated using MeV ion beam lithography. Two geometries have been adopted, with 4 × 4 and 8 × 8 microelectrodes (20 μm × 3.5 μm exposed area, 200 μm spacing). In the amperometric configuration, the 4 × 4 μG-SCD-MEAs resolved quantal exocytosis from midbrain dopaminergic neurons. KCl-stimulated DA release occurred as amperometric spikes of 15 pA amplitude and 0.5 ms half-width, at a mean frequency of 0.4 Hz. When used as potentiometric multiarrays, the 8 × 8 μG-SCD-MEAs detected the spontaneous firing activity of midbrain neurons. Extracellularly recorded action potentials (APs) had mean amplitude of ∼-50 μV and occurred at a mean firing frequency of 0.7 Hz in 67% of neurons, while the remaining fired at 6.8 Hz. Comparable findings were observed using conventional MEAs (0.9 and 6.4 Hz, respectively). To test the reliability of potentiometric recordings with μG-SCD-MEAs, the D2-autoreceptor modulation of firing was investigated by applying levodopa (L-DOPA, 20 μM), and comparing μG-SCD-MEAs, conventional MEAs and current-clamp recordings. In all cases, L-DOPA reduced the spontaneous spiking activity in most neurons by 70%, while the D2-antagonist sulpiride reversed this effect. Cell firing inhibition was generally associated with increased APs amplitude. A minority of neurons was either insensitive to, or potentiated by L-DOPA, suggesting that AP recordings originate from different midbrain neuronal subpopulations and reveal different modulatory pathways. Our data demonstrate, for the first time, that μG-SCD-MEAs are multi-functional biosensors suitable to resolve real-time DA release and AP firing in in vitro neuronal networks.
Collapse
Affiliation(s)
- Giulia Tomagra
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Alfio Battiato
- Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Barbara Picconi
- Experimental Neurophysiology Laboratory, IRCCS San Raffaele Pisana, University San Raffaele, Rome, Italy.,University San Raffaele, Rome, Italy
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology and "NICO" Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Turin, Italy
| | | | - Paolo Olivero
- Department of Physics and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Paolo Calabresi
- Neurological Clinic, Department of Medicine, Hospital Santa Maria della Misericordia, University of Perugia, Perugia, Italy
| | - Emilio Carbone
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology and "NIS" Inter-departmental Centre, University of Torino, Turin, Italy
| |
Collapse
|
11
|
Sasikumar Y, Indira K, Rajendran N. Surface Modification Methods for Titanium and Its Alloys and Their Corrosion Behavior in Biological Environment: A Review. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40735-019-0229-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Struk P. Design of an Integrated Optics Sensor Structure Based on Diamond Waveguide for Hemoglobin Property Detection. MATERIALS 2019; 12:ma12010175. [PMID: 30621063 PMCID: PMC6337220 DOI: 10.3390/ma12010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
This manuscript presents a theoretical analysis of a diamond-based integrated optics structure for applications in biosensors. The geometrical, optical, and sensitivity properties of an integrated optical structure were theoretically analyzed and optimized for biosensor applications. The analysis focused on determining the waveguide properties, including the effective refractive index Neff as a function of refractive index nw and thickness dw of waveguide layer, refractive index of the hemoglobin cover layer ncH and substrate layer ns, homogeneous sensitivity dNeff/dncH, and modal field distribution of guided waveguide modes. The analysis was completed for two types of waveguide layer materials: undoped or boron-doped diamond films with or without the hemoglobin cover layer. The presented experimental results form a base for developing biosensor structures based on integrated optics for determining the properties of hemoglobin.
Collapse
Affiliation(s)
- Przemysław Struk
- Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
13
|
Ginés L, Mandal S, Morgan DJ, Lewis R, Davies PR, Borri P, Morley GW, Williams OA. Production of Metal-Free Diamond Nanoparticles. ACS OMEGA 2018; 3:16099-16104. [PMID: 31458247 PMCID: PMC6643864 DOI: 10.1021/acsomega.8b02067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 06/01/2023]
Abstract
In this paper, the controlled production of high-quality metal-free diamond nanoparticles is demonstrated. Milling with tempered steel is shown to leave behind iron oxide contamination which is difficult to remove. Milling with SiN alleviates this issue but generates more nondiamond carbon. Thus, the choice of milling materials is critically determined by the acceptable contaminants in the ultimate application. The removal of metal impurities, present in all commercially available nanoparticles, will open new possibilities toward the production of customized diamond nanoparticles, covering the most demanding quantum applications.
Collapse
Affiliation(s)
- Laia Ginés
- School
of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24
3AA, U.K.
| | - Soumen Mandal
- School
of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24
3AA, U.K.
| | - David John Morgan
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Pl, Cardiff CF10 3AT, U.K.
| | - Ryan Lewis
- School
of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum
Avenue, Cardiff CF10 3AX, U.K.
| | - Philip R. Davies
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Pl, Cardiff CF10 3AT, U.K.
| | - Paola Borri
- School
of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum
Avenue, Cardiff CF10 3AX, U.K.
| | - Gavin W. Morley
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Oliver A. Williams
- School
of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24
3AA, U.K.
| |
Collapse
|
14
|
Zhao S, Arnold M, Ma S, Abel RL, Cobb JP, Hansen U, Boughton O. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018; 7:524-538. [PMID: 30258572 PMCID: PMC6138811 DOI: 10.1302/2046-3758.78.bjr-2018-0025.r1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Objectives The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1.
Collapse
Affiliation(s)
- S Zhao
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - M Arnold
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - S Ma
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - R L Abel
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - J P Cobb
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK
| | - U Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - O Boughton
- The MSk Lab, Imperial College London, Charing Cross Hospital, London, UK and Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
15
|
Rastogi SK, Kalmykov A, Johnson N, Cohen-Karni T. Bioelectronics with nanocarbons. J Mater Chem B 2018; 6:7159-7178. [PMID: 32254631 DOI: 10.1039/c8tb01600c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Characterizing the electrical activity of cardiomyocytes and neurons is crucial in understanding the complex processes in the heart and brain tissues, both in healthy and diseased states. Micro- and nanotechnologies have significantly improved the electrophysiological investigation of cellular networks. Carbon-based nanomaterials or nanocarbons, such as carbon nanotubes (CNTs), nanodiamonds (NDs) and graphene are promising building blocks for bioelectronics platforms owing to their outstanding chemical and physical properties. In this review, we discuss the various bioelectronics applications of nanocarbons and their derivatives. Furthermore, we touch upon the challenges that remain in the field and describe the emergence of carbon-based hybrid-nanomaterials that will potentially address those limitations, thus improving the capabilities to investigate the electrophysiology of excitable cells, both as a network and at the single cell level.
Collapse
Affiliation(s)
- Sahil Kumar Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
16
|
Giavaresi G, Giardino R, Ambrosio L, Battiston G, Gerbasi R, Fini M, Rimondini L, Torricelli P. In Vitro Biocompatibility of Titanium Oxide for Prosthetic Devices Nanostructured by Low Pressure Metal-Organic Chemical Vapor Deposition. Int J Artif Organs 2018; 26:774-80. [PMID: 14521176 DOI: 10.1177/039139880302600811] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal-Organic Chemical Vapor Deposition (MOCVD) has recently been proposed to coat orthopedic and dental prostheses with metal nanostructured oxide films through the decomposition of oxygenated compounds (single-source precursors) or the reaction of oxygen-free metal compounds with oxygenating agents. The present study was carried out to assess the in vitro biocompatibility in terms of cell proliferation and activation, of commercially pure Ti (control material: TI/MA) coated with nanostructured TiO2 film by MOCVD (Ti/MOCVD) using osteoblast-like cell cultures (MG-63). Evaluations were performed at 3, 7 and 14 days. Cell proliferation showed a similar trend for Ti/MA and Ti/MOCVD compared to polystyrene; cell number increased with time from seeding to day 7 (p < 0.005), and then decreased progressively until day 14 (ranging from −14% to −47%). The ALP level and OC production showed no significant differences between Ti/MOCVD and Ti/MA at each experimental time. Significantly higher ALP levels were found in Ti/MA at 3 days and in Ti/MOCVD at 7 and 14 days when compared to the polystyrene group. OC production decreased over time and the highest values were observed at 3 days, when it was significantly higher in the Ti/MA than in the polystyrene group (50%, p < 0.05). CICP synthesis was positively affected by the presence of Ti/MOCVD and was higher in Ti/MOCVD than in the polystyrene group. No significant differences were found between Ti/MOCVD and Ti/MA in terms of IL-6 and TGF-ß1 synthesis at any experimental time. In conclusion, the current findings demonstrate that the nanostructured TiO2 coating positively affects the osteoblast-like cell behavior in terms of cell proliferation and activity, thus confirming its high level of in vitro biocompatibility in accordance with expectations.
Collapse
Affiliation(s)
- G Giavaresi
- Experimental Surgery Department, Research Institute Codivilla-Putti, Rizzoli Orthopedic Institute, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Takekawa SD. Reappraisal of Percutaneous Transluminal Laser Angioplasty. Laser Ther 2017; 26:261-273. [PMID: 29434426 DOI: 10.5978/islsm.17-re-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/23/2017] [Indexed: 11/06/2022]
Abstract
Background and aims We devised a technique to treat peripheral arterial disease (PAD) with laser, i.e. percutaneous transluminal laser angioplasty (PTLA). Considerable good results were obtained with PTLA, but it is apparently considered obsolete as a technique to treat occlusive arterial disease of peripheral arteries, perhaps because of the development and improvement of stents and the ease of their use compared to the somewhat intricate technique required for PTLA. Although the author admits the usefulness of stents, they are foreign to a human body. PTLA does not use a foreign body and contributes to the regeneration of the body's own artery.The aim of this article is to elucidate the beneficial effects of laser procedures in the treatment of PAD and to show the resulting good long-term patency, and to propose PTLA as an option to treat PAD.Some basic experiments and their results useful for PTLA will be introduced. Materials and Methods Ninety cases with occlusive peripheral arterial diseases were treated with PTLA during the period of March 1985 to March 1991.Our method of PTLA consists of occlusion of the proximal artery by a dilated balloon of a percutaneously introduced balloon catheter, and flushing with normal saline during irradiation by Nd:YAG laser.We used a ceramic tip attached to a laser catheter most of the time and a bare laser fiber under angioscopy or a bare laser fiber itself to treat smaller arteries in the legs. Results The initial success rate was 90%.The patency rates of PAD at 6 years are 91.4% (iliac artery) and 85.8% (femoropopliteal artery), and the patency rate of leg artery lesions is 100% at 5 years.Some clinical cases with long-term patency (6 and 30 years) will be introduced.Some fundamental experiments useful to the application of laser to atheroma or thrombi will be introduced. Conclusions PTLA could be a useful option to treat occlusive PAD, because it can produce longterm patency of natural arteries, provided a proper lesion was selected.
Collapse
Affiliation(s)
- Shoichi D Takekawa
- Research Institute of Diagnosis and Therapy of Vascular Diseases.,Southern TOHOKU Research Institute for Neuroscience, Fukushima, Japan
| |
Collapse
|
18
|
Guimarães ZAS, Damatta RA, Guimarães RS, Filgueira M. A Novel Porous Diamond - Titanium Biomaterial: Structure, Microstructure, Physico-Mechanical Properties and Biocompatibility. AN ACAD BRAS CIENC 2017; 89:3111-3121. [PMID: 29236854 DOI: 10.1590/0001-3765201720160750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 06/07/2017] [Indexed: 11/22/2022] Open
Abstract
With the aim of introducing permanent prostheses with main properties equivalent to cortical human bone, Ti-diamond composites were processed through powder metallurgy. Grade 1 titanium and mixtures of Ti powder with 2%, 5% and 10 wt% diamond were compacted at 100MPa, and then sintered at 1250°C/2hr/10-6mbar. Sintered samples were studied in the point of view of their microstructures, structures, yield strength and elastic modulus. The results showed that the best addition of diamonds was 2 wt%, which led to a uniform porosity, yield strength of 370MPa and elastic modulus of 13.9 GPa. Samples of Ti and Ti-2% diamond were subjected to in vitro cytotoxicity test, using cultures of VERO cells, and it resulted in a biocompatible and nontoxic composite material.
Collapse
Affiliation(s)
- Zulmira A S Guimarães
- Laboratório de Materiais Avançados, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, RJ, Brazil
| | - Renato A Damatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, RJ, Brazil
| | - Renan S Guimarães
- Laboratório de Materiais Avançados, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, RJ, Brazil
| | - Marcello Filgueira
- Laboratório de Materiais Avançados, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
19
|
Nistor PA, May PW. Diamond thin films: giving biomedical applications a new shine. J R Soc Interface 2017; 14:20170382. [PMID: 28931637 PMCID: PMC5636274 DOI: 10.1098/rsif.2017.0382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo, diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required.
Collapse
Affiliation(s)
- P A Nistor
- Regenerative Medicine Laboratory, University of Bristol, Bristol BS8 1TD, UK
| | - P W May
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
20
|
Brož A, Bačáková L, Štenclová P, Kromka A, Potocký Š. Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1649-1657. [PMID: 28875102 PMCID: PMC5564261 DOI: 10.3762/bjnano.8.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18-210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80-85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.
Collapse
Affiliation(s)
- Antonín Brož
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Lucie Bačáková
- Institute of Physiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 142 20, Praha 4, Czech Republic
| | - Pavla Štenclová
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Alexander Kromka
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | - Štěpán Potocký
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| |
Collapse
|
21
|
Taylor AC, González CH, Miller BS, Edgington RJ, Ferretti P, Jackman RB. Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation. Sci Rep 2017; 7:7307. [PMID: 28779095 PMCID: PMC5544760 DOI: 10.1038/s41598-017-07361-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/26/2017] [Indexed: 12/17/2022] Open
Abstract
Biological systems interact with nanostructured materials on a sub-cellular level. These interactions may govern cell behaviour and the precise control of a nanomaterial's structure and surface chemistry allow for a high degree of tunability to be achieved. Cells are surrounded by an extra-cellular matrix with nano-topographical properties. Diamond based materials, and specifically nanostructured diamond has attracted much attention due to its extreme electrical and mechanical properties, chemical inertness and biocompatibility. Here the interaction of nanodiamond monolayers with human Neural Stem Cells (hNSCs) has been investigated. The effect of altering surface functionalisation of nanodiamonds on hNSC adhesion and proliferation has shown that confluent cellular attachment occurs on oxygen terminated nanodiamonds (O-NDs), but not on hydrogen terminated nanodiamonds (H-NDs). Analysis of H and O-NDs by Atomic Force Microscopy, contact angle measurements and protein adsorption suggests that differences in topography, wettability, surface charge and protein adsorption of these surfaces may underlie the difference in cellular adhesion of hNSCs reported here.
Collapse
Affiliation(s)
- Alice C Taylor
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Benjamin S Miller
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Robert J Edgington
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Richard B Jackman
- London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK.
| |
Collapse
|
22
|
Broz A, Ukraintsev E, Kromka A, Rezek B, Hubalek Kalbacova M. Osteoblast adhesion, migration, and proliferation variations on chemically patterned nanocrystalline diamond films evaluated by live-cell imaging. J Biomed Mater Res A 2017; 105:1469-1478. [PMID: 27935192 DOI: 10.1002/jbm.a.35969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 11/11/2022]
Abstract
Cell fate modulation by adapting the surface of a biocompatible material is nowadays a challenge in implantology, tissue engineering as well as in construction of biosensors. Nanocrystalline diamond (NCD) thin films are considered promising in these fields due to their extraordinary physical and chemical properties and diverse ways in which they can be modified structurally and chemically. The initial cell distribution, the rate of cell adhesion, distance of cell migration and also the cell proliferation are influenced by the NCD surface termination. Here, we use real-time live-cell imaging to investigate the above-mentioned processes on oxidized NCD (NCD-O) and hydrogenated NCD (NCD-H) to elucidate cell preference to the NCD-O especially on surfaces with microscopic surface termination patterns. Cells adhere more slowly and migrate farther on NCD-H than on NCD-O. Cells seeded with a fetal bovine serum (FBS) supplement in the medium move across the surface prior to adhesion. In the absence of FBS, the cells adhere immediately, but still exhibit different migration and proliferation on NCD-O/H regions. We discuss the impact of these effects on the formation of cell arrays on micropatterned NCD. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1469-1478, 2017.
Collapse
Affiliation(s)
- Antonin Broz
- Institute of Inherited Metabolic Disorders, Laboratory of Interaction of Cells with Nanomaterials, 1st Faculty of Medicine, Charles University in Prague, Ke Karlovu 2, 12853 Prague 2, Czech Republic.,Institute of Physiology, Department of Biomaterials and Tissue Engineering, Czech Academy of Sciences, v. v. i, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Egor Ukraintsev
- Institute of Physics, Department of Optical Materials, Czech Academy of Sciences, v. v. i, Cukrovarnicka 10, 162 53 Prague 6, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Department of Optical Materials, Czech Academy of Sciences, v. v. i, Cukrovarnicka 10, 162 53 Prague 6, Czech Republic
| | - Bohuslav Rezek
- Institute of Physics, Department of Optical Materials, Czech Academy of Sciences, v. v. i, Cukrovarnicka 10, 162 53 Prague 6, Czech Republic.,Faculty of Electrical Engineering, Department of Physics, Czech Technical University, Technicka 2, 166 27 Prague 6, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Inherited Metabolic Disorders, Laboratory of Interaction of Cells with Nanomaterials, 1st Faculty of Medicine, Charles University in Prague, Ke Karlovu 2, 12853 Prague 2, Czech Republic.,Biomedical Centre, Laboratory of Cell-Biomaterial Interactions, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
23
|
Carabelli V, Marcantoni A, Picollo F, Battiato A, Bernardi E, Pasquarelli A, Olivero P, Carbone E. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience. ACS Chem Neurosci 2017; 8:252-264. [PMID: 28027435 DOI: 10.1021/acschemneuro.6b00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.
Collapse
Affiliation(s)
- Valentina Carabelli
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Andrea Marcantoni
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| | - Federico Picollo
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alfio Battiato
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Ettore Bernardi
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Alberto Pasquarelli
- Institute
of Electron Devices and Circuits, Ulm University, 89081 Ulm, Germany
| | - Paolo Olivero
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), 10125 sez. Torino, Italy
| | - Emilio Carbone
- Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM), 10125 Torino Unit, Italy
| |
Collapse
|
24
|
Seyock S, Maybeck V, Scorsone E, Rousseau L, Hébert C, Lissorgues G, Bergonzo P, Offenhäusser A. Interfacing neurons on carbon nanotubes covered with diamond. RSC Adv 2017. [DOI: 10.1039/c6ra20207a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Investigation of the interface and needed adhesion surface for neuronal cells on carbon nanotubes covered with diamond.
Collapse
Affiliation(s)
- Silke Seyock
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| | - Vanessa Maybeck
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| | | | | | | | | | | | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8/PGI-8)
- Forschungszentrum Jülich
- 52428 Jülich
- Germany
| |
Collapse
|
25
|
Hébert C, Cottance M, Degardin J, Scorsone E, Rousseau L, Lissorgues G, Bergonzo P, Picaud S. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:77-84. [DOI: 10.1016/j.msec.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 01/17/2023]
|
26
|
Meijs S, Alcaide M, Sørensen C, McDonald M, Sørensen S, Rechendorff K, Gerhardt A, Nesladek M, Rijkhoff NJM, Pennisi CP. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodesin vivo. J Neural Eng 2016; 13:056011. [DOI: 10.1088/1741-2560/13/5/056011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Tong W, Fox K, Zamani A, Turnley AM, Ganesan K, Ahnood A, Cicione R, Meffin H, Prawer S, Stacey A, Garrett DJ. Optimizing growth and post treatment of diamond for high capacitance neural interfaces. Biomaterials 2016; 104:32-42. [PMID: 27424214 DOI: 10.1016/j.biomaterials.2016.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/23/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2023]
Abstract
Electrochemical and biological properties are two crucial criteria in the selection of the materials to be used as electrodes for neural interfaces. For neural stimulation, materials are required to exhibit high capacitance and to form intimate contact with neurons for eliciting effective neural responses at acceptably low voltages. Here we report on a new high capacitance material fabricated using nitrogen included ultrananocrystalline diamond (N-UNCD). After exposure to oxygen plasma for 3 h, the activated N-UNCD exhibited extremely high electrochemical capacitance greater than 1 mF/cm(2), which originates from the special hybrid sp(2)/sp(3) structure of N-UNCD. The in vitro biocompatibility of the activated N-UNCD was then assessed using rat cortical neurons and surface roughness was found to be critical for healthy neuron growth, with best results observed on surfaces with a roughness of approximately 20 nm. Therefore, by using oxygen plasma activated N-UNCD with appropriate surface roughness, and considering the chemical and mechanical stability of diamond, the fabricated neural interfaces are expected to exhibit high efficacy, long-term stability and a healthy neuron/electrode interface.
Collapse
Affiliation(s)
- Wei Tong
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Kate Fox
- Centre for Additive Manufacturing, School of Engineering, RMIT University, Victoria 3001, Australia
| | - Akram Zamani
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia
| | - Ann M Turnley
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia
| | | | - Arman Ahnood
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Rosemary Cicione
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Hamish Meffin
- National Vision Research Institute, Department of Optometry and Vision Science University of Melbourne, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Alastair Stacey
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - David J Garrett
- School of Physics, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
28
|
Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:278-285. [DOI: 10.1016/j.msec.2016.03.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/23/2022]
|
29
|
Verdanova M, Rezek B, Broz A, Ukraintsev E, Babchenko O, Artemenko A, Izak T, Kromka A, Kalbac M, Hubalek Kalbacova M. Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2499-2509. [PMID: 27000766 DOI: 10.1002/smll.201503749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions.
Collapse
Affiliation(s)
- Martina Verdanova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague, Czech Republic
| | - Bohuslav Rezek
- Institute of Physics of the ASCR, v. v. i, Cukrovarnicka 10/112, 162 00, Prague, Czech Republic
- Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 166 27, Prague, Czech Republic
| | - Antonin Broz
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
| | - Egor Ukraintsev
- Institute of Physics of the ASCR, v. v. i, Cukrovarnicka 10/112, 162 00, Prague, Czech Republic
| | - Oleg Babchenko
- Institute of Physics of the ASCR, v. v. i, Cukrovarnicka 10/112, 162 00, Prague, Czech Republic
| | - Anna Artemenko
- Institute of Physics of the ASCR, v. v. i, Cukrovarnicka 10/112, 162 00, Prague, Czech Republic
| | - Tibor Izak
- Institute of Physics of the ASCR, v. v. i, Cukrovarnicka 10/112, 162 00, Prague, Czech Republic
| | - Alexander Kromka
- Institute of Physics of the ASCR, v. v. i, Cukrovarnicka 10/112, 162 00, Prague, Czech Republic
| | - Martin Kalbac
- J. Heyrovsky Institute of Physical Chemistry of the ASCR, v. v. i, Dolejskova 2155/3, 182 23, Prague, Czech Republic
| | - Marie Hubalek Kalbacova
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague, Ke Karlovu 455/2, 128 08, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
30
|
Alcaide M, Taylor A, Fjorback M, Zachar V, Pennisi CP. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation. Front Neurosci 2016; 10:87. [PMID: 27013949 PMCID: PMC4781860 DOI: 10.3389/fnins.2016.00087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time.
Collapse
Affiliation(s)
- María Alcaide
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University Aalborg, Denmark
| | - Andrew Taylor
- Institute of Physics, Academy of Sciences of the Czech Republic v.v.iPrague, Czech Republic; Nano6 s.r.o.Kladno, Czech Republic
| | | | - Vladimir Zachar
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University Aalborg, Denmark
| | - Cristian P Pennisi
- Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University Aalborg, Denmark
| |
Collapse
|
31
|
Cai Y, Edin F, Jin Z, Alexsson A, Gudjonsson O, Liu W, Rask-Andersen H, Karlsson M, Li H. Strategy towards independent electrical stimulation from cochlear implants: Guided auditory neuron growth on topographically modified nanocrystalline diamond. Acta Biomater 2016; 31:211-220. [PMID: 26593784 DOI: 10.1016/j.actbio.2015.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 12/14/2022]
Abstract
Cochlear implants (CI) have been used for several decades to treat patients with profound hearing loss. Nevertheless, results vary between individuals, and fine hearing is generally poor due to the lack of discrete neural stimulation from the individual receptor hair cells. A major problem is the deliverance of independent stimulation signals to individual auditory neurons. Fine hearing requires significantly more stimulation contacts with intimate neuron/electrode interphases from ordered axonal re-growth, something current CI technology cannot provide. Here, we demonstrate the potential application of micro-textured nanocrystalline diamond (NCD) surfaces on CI electrode arrays. Such textured NCD surfaces consist of micrometer-sized nail-head-shaped pillars (size 5×5μm(2)) made with sequences of micro/nano-fabrication processes, including sputtering, photolithography and plasma etching. The results show that human and murine inner-ear ganglion neurites and, potentially, neural progenitor cells can attach to patterned NCD surfaces without an extracellular matrix coating. Microscopic methods revealed adhesion and neural growth, specifically along the nail-head-shaped NCD pillars in an ordered manner, rather than in non-textured areas. This pattern was established when the inter-NCD pillar distance varied between 4 and 9μm. The findings demonstrate that regenerating auditory neurons show a strong affinity to the NCD pillars, and the technique could be used for neural guidance and the creation of new neural networks. Together with the NCD's unique anti-bacterial and electrical properties, patterned NCD surfaces could provide designed neural/electrode interfaces to create independent electrical stimulation signals in CI electrode arrays for the neural population. STATEMENT OF SIGNIFICANCE Cochlear implant is currently a successful way to treat sensorineural hearing loss and deafness especially in children. Although clinically successful, patients' fine hearing cannot be completely restored. One problem is the amount of the electrodes; 12-20 electrodes are used to replace the function of 3400 inner hair cells. Intense research is ongoing aiming to increase the number of electrodes. This study demonstrates the use of nanocrystalline diamond as a potential nerve-electrode interface. Micrometer-sized nanocrystalline diamond pillars showed high affinity to regenerated human neurons, which grew into a pre-defined network based on the pillar design. Our findings are of particular interest since they can be applied on any silicon-based implant to increase electrode count and to achieve individual neuron stimulation patterns.
Collapse
Affiliation(s)
- Yixiao Cai
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Edin
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Zhe Jin
- Physiology; Molecular Physiology and Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Andrei Alexsson
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olafur Gudjonsson
- Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Wei Liu
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helge Rask-Andersen
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael Karlsson
- Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| | - Hao Li
- Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Abstract
Preparation of superhydrophilic cubic boron nitride (cBN) films with contact angles of polar and apolar liquids of almost zero degree.
Collapse
Affiliation(s)
- Kungen Teii
- Department of Applied Science for Electronics and Materials
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Kasuga
- Japan
| | - Shinji Kawakami
- Department of Applied Science for Electronics and Materials
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Kasuga
- Japan
| | - Seiichiro Matsumoto
- Department of Applied Science for Electronics and Materials
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Kasuga
- Japan
| |
Collapse
|
33
|
Park S, Kang YJ, Majd S. A Review of Patterned Organic Bioelectronic Materials and their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7583-7619. [PMID: 26397962 DOI: 10.1002/adma.201501809] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/17/2015] [Indexed: 06/05/2023]
Abstract
Organic electronic materials are rapidly emerging as superior replacements for a number of conventional electronic materials, such as metals and semiconductors. Conducting polymers, carbon nanotubes, graphenes, organic light-emitting diodes, and diamond films fabricated via chemical vapor deposition are the most popular organic bioelectronic materials that are currently under active research and development. Besides the capability to translate biological signals to electrical signals or vice versa, organic bioelectronic materials entail greater biocompatibility and biodegradability compared to conventional electronic materials, which makes them more suitable for biomedical applications. When patterned, these materials bring about numerous capabilities to perform various tasks in a more-sophisticated and high-throughput manner. Here, we provide an overview of the unique properties of organic bioelectronic materials, different strategies applied to pattern these materials, and finally their applications in the field of biomedical engineering, particularly biosensing, cell and tissue engineering, actuators, and drug delivery.
Collapse
Affiliation(s)
- SooHyun Park
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - You Jung Kang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sheereen Majd
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
34
|
Bacchi A, Regalin A, Bhering CLB, Alessandretti R, Spazzin AO. Loosening torque of Universal Abutment screws after cyclic loading: influence of tightening technique and screw coating. J Adv Prosthodont 2015; 7:375-9. [PMID: 26576253 PMCID: PMC4644778 DOI: 10.4047/jap.2015.7.5.375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the influence of tightening technique and the screw coating on the loosening torque of screws used for Universal Abutment fixation after cyclic loading. MATERIALS AND METHODS Forty implants (Titamax Ti Cortical, HE, Neodent) (n=10) were submerged in acrylic resin and four tightening techniques for Universal Abutment fixation were evaluated: A - torque with 32 Ncm (control); B - torque with 32 Ncm holding the torque meter for 20 seconds; C - torque with 32 Ncm and retorque after 10 minutes; D - torque (32 Ncm) holding the torque meter for 20 seconds and retorque after 10 minutes as initially. Samples were divided into subgroups according to the screw used: conventional titanium screw or diamond like carbon-coated (DLC) screw. Metallic crowns were fabricated for each abutment. Samples were submitted to cyclic loading at 10(6) cycles and 130 N of force. Data were analyzed by two-way ANOVA and Tukey's test (5%). RESULTS The tightening technique did not show significant influence on the loosening torque of screws (P=.509). Conventional titanium screws showed significant higher loosening torque values than DLC (P=.000). CONCLUSION The use of conventional titanium screw is more important than the tightening techniques employed in this study to provide long-term stability to Universal Abutment screws.
Collapse
Affiliation(s)
- Atais Bacchi
- Meridional Faculty - IMED, School of Dentistry, Prosthodontics and Dental Materials, Brazil
| | - Alexandre Regalin
- Meridional Faculty - IMED, School of Dentistry, Prosthodontics and Dental Materials, Brazil
| | | | - Rodrigo Alessandretti
- University of Passo Fundo, Post-graduate Program in Dentistry, Dental School, Brazil
| | - Aloisio Oro Spazzin
- Meridional Faculty - IMED, School of Dentistry, Prosthodontics and Dental Materials, Brazil
| |
Collapse
|
35
|
Strąkowska P, Beutner R, Gnyba M, Zielinski A, Scharnweber D. Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films - Coating characterization and first cell biological results. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:624-635. [PMID: 26652416 DOI: 10.1016/j.msec.2015.10.063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023]
Abstract
Although titanium and its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone. This coating system is expected to improve both the long-term corrosion behavior and the biocompatibility and bioactivity of respective surfaces. The diamond base films were obtained by Microwave Plasma Assisted Chemical Vapor Deposition (MW-PACVD); the HAp coatings were formed in aqueous solutions by electrochemically assisted deposition (ECAD) at varying polarization parameters. Scanning electron microscopy (SEM), Raman microscopy, and electrical conductivity measurements were applied to characterize the generated surface states; the calcium phosphate coatings were additionally chemically analyzed for their composition. The biological properties of the coating system were assessed using hMSC cells analyzing for cell adhesion, proliferation, and osteogenic differentiation. Varying MW-PACVD process conditions resulted in composite coatings containing microcrystalline diamond (MCD/Ti-C), nanocrystalline diamond (NCD), and boron-doped nanocrystalline diamond (B-NCD) with the NCD coatings being dense and homogeneous and the B-NCD coatings showing increased electrical conductivity. The ECAD process resulted in calcium phosphate coatings from stoichiometric and non-stoichiometric HAp. The deposition of HAp on the B-NCD films run at lower cathodic potentials and resulted both in the highest coating mass and the most homogenous appearance. Initial cell biological investigations showed an improved cell adhesion in the order B-NCD>HAp/B-NCD>uncoated substrate. Cell proliferation was improved for both investigated coatings whereas ALP expression was highest for the uncoated substrate.
Collapse
Affiliation(s)
- Paulina Strąkowska
- Gdańsk University of Technology, Mechanical Engineering Faculty, Poland; Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Poland
| | - René Beutner
- Max Bergmann Center, Technische Universität Dresden, Germany
| | - Marcin Gnyba
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications, and Informatics, Poland
| | - Andrzej Zielinski
- Gdańsk University of Technology, Mechanical Engineering Faculty, Poland
| | | |
Collapse
|
36
|
Mahapatro A. Bio-functional nano-coatings on metallic biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:227-51. [DOI: 10.1016/j.msec.2015.05.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 03/20/2015] [Accepted: 05/07/2015] [Indexed: 11/28/2022]
|
37
|
Aramesh M, Tong W, Fox K, Turnley A, Seo DH, Prawer S, Ostrikov KK. Nanocarbon-Coated Porous Anodic Alumina for Bionic Devices. MATERIALS (BASEL, SWITZERLAND) 2015; 8:4992-5006. [PMID: 28793486 PMCID: PMC5455473 DOI: 10.3390/ma8084992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 02/03/2023]
Abstract
A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell-electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.
Collapse
Affiliation(s)
- Morteza Aramesh
- School of Physics, the University of Melbourne, Melbourne, VIC 3010, Australia.
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Plasma Nanoscience Laboratories, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 218, Lindfield, NSW 2070, Australia.
| | - Wei Tong
- School of Physics, the University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Kate Fox
- Center for Additive Manufacturing, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Carlton, VIC 3053, Australia.
| | - Ann Turnley
- Department of Anatomy and Neuroscience, the University of Melbourne, Parkville, VIC 3010, Australia.
| | - Dong Han Seo
- Plasma Nanoscience Laboratories, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 218, Lindfield, NSW 2070, Australia.
| | - Steven Prawer
- School of Physics, the University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Plasma Nanoscience Laboratories, Commonwealth Scientific and Industrial Research Organisation (CSIRO), PO Box 218, Lindfield, NSW 2070, Australia.
| |
Collapse
|
38
|
Glenn DR, Lee K, Park H, Weissleder R, Yacoby A, Lukin MD, Lee H, Walsworth RL, Connolly CB. Single-cell magnetic imaging using a quantum diamond microscope. Nat Methods 2015; 12:736-738. [PMID: 26098019 PMCID: PMC4521973 DOI: 10.1038/nmeth.3449] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022]
Abstract
We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.
Collapse
Affiliation(s)
- D R Glenn
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - K Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H Park
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - R Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - A Yacoby
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - M D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - H Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - R L Walsworth
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - C B Connolly
- Quantum Diamond Technologies, Inc., Somerville, MA, USA
| |
Collapse
|
39
|
Nistor PA, May PW, Tamagnini F, Randall AD, Caldwell MA. Long-term culture of pluripotent stem-cell-derived human neurons on diamond – A substrate for neurodegeneration research and therapy. Biomaterials 2015; 61:139-49. [PMID: 26002787 DOI: 10.1016/j.biomaterials.2015.04.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
|
40
|
3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 2015; 53:173-83. [DOI: 10.1016/j.biomaterials.2015.02.021] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 01/10/2023]
|
41
|
Hu J, Wisetsuwannaphum S, Foord JS. Glutamate biosensors based on diamond and graphene platforms. Faraday Discuss 2015; 172:457-72. [PMID: 25427169 DOI: 10.1039/c4fd00032c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Glutamate is one of the most important neurotransmitters in the mammalian central nervous system, playing a vital role in many physiological processes and implicated in several neurological disorders, for which monitoring of dynamic levels of extracellular glutamate in the living brain tissues may contribute to medical understanding and treatments. Electrochemical sensing of glutamate has been developed recently mainly using platinum, carbon fibre and carbon nanotube electrodes. In the present work, we explore the fabrication and properties of electrochemical glutamate sensors fabricated on doped chemical vapour deposition diamond electrodes and graphene nanoplatelet structures. The sensors incorporate platinum nanoparticles to catalyse the electrooxidation of hydrogen peroxide, glutamate oxidase to oxidise glutamate, and a layer of poly-phenylenediamine to impart selectivity. The performance of the devices was compared to a similar sensor fabricated on glassy carbon. Both the diamond and the graphene sensor showed very competitive performance compared to the majority of existing electrochemical sensors. The graphene based sensor showed the best performance of the three investigated in terms of sensitivity, linear dynamic range and long term stability, whereas it was found that the diamond device showed the best limit of detection.
Collapse
Affiliation(s)
- Jingping Hu
- Huazhong University of Science and Technology, School of Environmental Science and Engineering, Wuhan, P.R. China 430074.
| | | | | |
Collapse
|
42
|
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. NANOSCALE 2015; 7:4598-810. [PMID: 25707682 DOI: 10.1039/c4nr01600a] [Citation(s) in RCA: 1018] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
Collapse
Affiliation(s)
- Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lichter SG, Escudié MC, Stacey AD, Ganesan K, Fox K, Ahnood A, Apollo NV, Kua DC, Lee AZ, McGowan C, Saunders AL, Burns O, Nayagam DAX, Williams RA, Garrett DJ, Meffin H, Prawer S. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys. Biomaterials 2015; 53:464-74. [PMID: 25890743 DOI: 10.1016/j.biomaterials.2015.02.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/19/2022]
Abstract
As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.
Collapse
Affiliation(s)
- Samantha G Lichter
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Mathilde C Escudié
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Alastair D Stacey
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Kumaravelu Ganesan
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Kate Fox
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria 3001, Australia
| | - Arman Ahnood
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Nicholas V Apollo
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Dunstan C Kua
- School of Physics, The University of Melbourne, Victoria 3010, Australia; Department of Materials Engineering, Faculty of Engineering, Monash University, Victoria 3800, Australia
| | - Aaron Z Lee
- School of Physics, The University of Melbourne, Victoria 3010, Australia; Department of Materials Engineering, Faculty of Engineering, Monash University, Victoria 3800, Australia
| | - Ceara McGowan
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Alexia L Saunders
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Owen Burns
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - David A X Nayagam
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia; Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Richard A Williams
- National Vision Research Institute, Department of Optometry and Vision Sciences, University of Melbourne, Victoria 3010, Australia; Department of Anatomical Pathology, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - David J Garrett
- School of Physics, The University of Melbourne, Victoria 3010, Australia; The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia.
| | - Hamish Meffin
- National Vision Research Institute, Department of Optometry and Vision Sciences, University of Melbourne, Victoria 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
44
|
Baptista FR, Belhout SA, Giordani S, Quinn SJ. Recent developments in carbon nanomaterial sensors. Chem Soc Rev 2015; 44:4433-53. [DOI: 10.1039/c4cs00379a] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structural diversity of carbon nanomaterials provides an array of unique electronic, magnetic and optical properties, which when combined with their robust chemistry and ease of manipulation, makes them attractive candidates for sensor applications. In this review recent developments in the use of carbon nanoparticles and nanostructures as sensors and biosensors are explored.
Collapse
Affiliation(s)
| | - S. A. Belhout
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - S. Giordani
- Istituto Italiano di Tecnologia (IIT)
- Nano Carbon Materials
- Nanophysics Department
- 16163 Genova
- Italy
| | - S. J. Quinn
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
45
|
Lee SK, Song MJ, Kim JH, Lim YK, Chun YS, Lim DS. Selective growth of carbon nanotubes on boron-doped diamond for electrochemical biosensor application. RSC Adv 2015. [DOI: 10.1039/c4ra15554h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selective growth of MWCNTs on boron-doped diamond electrode was introduced and their electrochemical properties and glucose biosensing performances were reported.
Collapse
Affiliation(s)
- Seung-Koo Lee
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| | - Min-Jung Song
- Dept. of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Jong-Hoon Kim
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
- Dept. of Technology and Society
| | - Young-Kyun Lim
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| | - Yoon-Soo Chun
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| | - Dae-Soon Lim
- Dept. of Materials Science and Engineering
- Korea University
- Seoul 136-713
- Republic of Korea
| |
Collapse
|
46
|
Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. SENSORS 2014; 15:515-28. [PMID: 25558992 PMCID: PMC4327033 DOI: 10.3390/s150100515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022]
Abstract
The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ∼mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16-channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.
Collapse
|
47
|
Epithelial cell morphology and adhesion on diamond films deposited and chemically modified by plasma processes. Biointerphases 2014; 9:031012. [DOI: 10.1116/1.4890471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Wang X, Karlsson M, Forsberg P, Sieger M, Nikolajeff F, Österlund L, Mizaikoff B. Diamonds Are a Spectroscopist’s Best Friend: Thin-Film Diamond Mid-Infrared Waveguides for Advanced Chemical Sensors/Biosensors. Anal Chem 2014; 86:8136-41. [DOI: 10.1021/ac5011475] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofeng Wang
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89075 Ulm, Germany
| | - Mikael Karlsson
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Pontus Forsberg
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Markus Sieger
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89075 Ulm, Germany
| | - Fredrik Nikolajeff
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
| | - Lars Österlund
- Department
of Engineering Sciences, Uppsala University, Box 534, SE-75121 Uppsala, Sweden
- Molecular Fingerprint
Sweden AB, Eksätravägen
130, SE-756 55 Uppsala, Sweden
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee
11, 89075 Ulm, Germany
| |
Collapse
|
49
|
Ganesan K, Garrett DJ, Ahnood A, Shivdasani MN, Tong W, Turnley AM, Fox K, Meffin H, Prawer S. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials 2014; 35:908-15. [PMID: 24383127 DOI: 10.1016/j.biomaterials.2013.10.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interface between medical implants and the human nervous system is rapidly becoming more and more complex. This rise in complexity is driving the need for increasing numbers of densely packed electrical feedthrough to carry signals to and from implanted devices. This is particularly crucial in the field of neural prosthesis where high resolution stimulating or recording arrays near peripheral nerves or in the brain could dramatically improve the performance of these devices. Here we describe a flexible strategy for implementing high density, high count arrays of hermetic electrical feedthroughs by forming conducting nitrogen doped nanocrystalline diamond channels within an insulating polycrystalline diamond substrate. A unique feature of these arrays is that the feedthroughs can themselves be used as stimulating electrodes for neural tissue. Our particular application is such a feedthrough, designed as a component of a retinal implant to restore vision to the blind. The hermeticity of the feedthroughs means that the array can also form part of an implantable capsule which can interface directly with internal electronic chips. The hermeticity of the array is demonstrated by helium leak tests and electrical and electrochemical characterisation of the feedthroughs is described. The nitrogen doped nanocrystalline diamond forming the electrical feedthroughs is shown to be non-cyctotoxic. New fabrication strategies, such as the one described here, combined with the exceptional biostability of diamond can be exploited to generate a range of biomedical implants that last for the lifetime of the user without fear of degradation.
Collapse
|
50
|
Kozak H, Babchenko O, Artemenko A, Ukraintsev E, Remes Z, Rezek B, Kromka A. Nanostructured diamond layers enhance the infrared spectroscopy of biomolecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2054-2060. [PMID: 24524343 DOI: 10.1021/la404814c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on the fabrication and practical use of high-quality optical elements based on Au mirrors coated with diamond layers with flat, nanocolumnar, and nanoporous morphologies. Diamond layers (100 nm thickness) are grown at low temperatures (about 300 °C) from a methane, carbon dioxide, and hydrogen gas mixture by a pulsed microwave plasma system with linear antennas. Using grazing angle reflectance (GAR) Fourier transform infrared spectroscopy with p-polarized light, we compare the IR spectra of fetal bovine serum proteins adsorbed on diamond layers with oxidized (hydrophilic) surfaces. We show that the nanoporous diamond layers provide IR spectra with a signal gain of about 600% and a significantly improved sensitivity limit. This is attributed to its enhanced internal surface area. The improved sensitivity enabled us to distinguish weak infrared absorption peaks of <10-nm-thick protein layers and thereby to analyze the intimate diamond-molecule interface.
Collapse
Affiliation(s)
- Halyna Kozak
- Institute of Physics of the ASCR, v.v.i. , Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|