1
|
Jiang L, Sun X, Wan Y, Qin Q, Xu M, Ma J, Zan L, Wang H. Transcriptome Reveals the Promoting Effect of Beta-Sitosterol on the Differentiation of Bovine Preadipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3400-3412. [PMID: 39874185 DOI: 10.1021/acs.jafc.4c10452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear. We identified potential associations of Beta-sitosterol with biological processes such as cholesterol regulation and lipid metabolism through the prediction of its targets. We utilized techniques such as Oil Red O staining, Western blotting, RNA-seq, and others to elucidate the promoting effect of Beta-sitosterol on the differentiation of bovine preadipocytes. Furthermore, reducing the expression of the most downregulated gene among differential expressed genes (DEGs), MGP, promotes the differentiation of bovine preadipocytes. After interfering with MGP, RNA-seq analysis on the sixth day of differentiation revealed that DEGs were most significantly enriched in the PPAR signaling pathway. In this pathway, the expression levels of genes related to adipocyte differentiation, including CD36, RXRα, RXRγ, FABP4, PLIN1, ADIPO, and CAP, were significantly upregulated (P < 0.01). Western blot and ELISA analysis on genes related to the PPAR signaling pathway showed that interfering with MGP increased the expression of proteins such as RXRα, indicating the possible activation of the PPAR signaling pathway. In summary, Beta-sitosterol may promote the differentiation of bovine preadipocytes by reducing the expression of MGP, thereby activating the PPAR signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qihua Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianqiang Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi 712100, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- National Beef Cattle Improvement Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Baudin J, Hernandez-Baixauli J, Romero-Giménez J, Yang H, Mulero F, Puiggròs F, Mardinoglu A, Arola L, Caimari A. A cocktail of histidine, carnosine, cysteine and serine reduces adiposity and improves metabolic health and adipose tissue immunometabolic function in ovariectomized rats. Biomed Pharmacother 2024; 179:117326. [PMID: 39208671 DOI: 10.1016/j.biopha.2024.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Many women have sought alternative therapies to address menopause. Recently, a multi-ingredient supplement (MIS) containing L-histidine, L-carnosine, L-serine, and L-cysteine has been shown to be effective at ameliorating hepatic steatosis (HS) in ovariectomized (OVX) rats, a postmenopausal oestrogen deficiency model. Considering that HS frequently accompanies obesity, which often occurs during menopause, we aimed to investigate the effects of this MIS for 8 weeks in OVX rats. Twenty OVX rats were orally supplemented with either MIS (OVX-MIS) or vehicle (OVX). Ten OVX rats received vehicle orally along with subcutaneous injections of 17β-oestradiol (OVX-E2), whereas 10 rats underwent a sham operation and received oral and injected vehicles (control group). MIS consumption partly counteracted the fat mass accretion observed in OVX animals, leading to decreased total fat mass, adiposity index and retroperitoneal white adipose tissue (RWAT) adipocyte hypertrophy. OVX-MIS rats also displayed increased lean mass and lean/fat ratio, suggesting a healthier body composition, similar to the results reported for OVX-E2 animals. MIS consumption decreased the circulating levels of the proinflammatory marker CRP, the total cholesterol-to-HDL-cholesterol ratio and the leptin-to-adiponectin ratio, a biomarker of diabetes risk and metabolic syndrome. RWAT transcriptomics indicated that MIS favourably regulated genes involved in adipocyte structure and morphology, cell fate determination and differentiation, glucose/insulin homeostasis, inflammation, response to stress and oxidative phosphorylation, which may be mechanisms underlying the beneficial effects described for OVX-MIS rats. Our results pave the way for using this MIS formulation to improve the body composition and immunometabolic health of menopausal women.
Collapse
Affiliation(s)
- Julio Baudin
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain; Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Jordi Romero-Giménez
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus 43204, Spain
| | - Hong Yang
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm SE-17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona 43007, Spain.
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus 43204, Spain.
| |
Collapse
|
3
|
Al-Ali MM, Khan AA, Fayyad AM, Abdallah SH, Khattak MNK. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom Data 2022; 23:17. [PMID: 35264099 PMCID: PMC8905835 DOI: 10.1186/s12863-022-01027-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. Results A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. Conclusions Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01027-z.
Collapse
Affiliation(s)
- Moza Mohamed Al-Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| | - Abeer Maher Fayyad
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE.,Department of Molecular and Genetic Diagnostics, Megalabs Group, Amman, 11953, Jordan
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
4
|
Effect of IGFBP2 Overexpression on the Expression of Fatty Acid Synthesis Genes in Primary Cultured Chicken Hepatocytes. J Poult Sci 2019; 56:177-185. [PMID: 32055212 PMCID: PMC7005387 DOI: 10.2141/jpsa.0180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effects of insulin-like growth factor binding protein 2 (IGFBP2) on the expression of fatty acid synthesis regulators and triglyceride production were investigated in primary cultured chicken hepatocytes. The full-length chicken IGFBP2 coding region was synthesized by overlap extension PCR and cloned into the pcDNA3.1 vector. An in situ digestion method was used to prepare the chicken hepatocytes. Primary chicken hepatocytes were maintained in monolayer culture. Real-time PCR was used to detect changes in the expression of IGFBP2, PPARG, IGF1, IGF1R, APOAI, and LFABP, after the overexpression of IGFBP2 in chicken hepatocytes. Triglyceride production and glucose content were also evaluated using triglyceride and glucose analysis methods. The expression level of IGFBP2 increased after transfection of the IGFBP2-containing vector. The expression levels of PPARG, IGF1, and IGF1R also increased in cultured chicken hepatocytes after the overexpression of IGFBP2, whereas the expression of LFABP and APOAI decreased. Triglyceride production in primary cultured chicken hepatocytes increased after the overexpression of IGFBP2. These results suggest that IGFBP2 is involved in lipogenesis, increasing both the expression of fatty acid synthesis regulators, and triglyceride production in primary cultured chicken hepatocytes.
Collapse
|
5
|
He H, Cai M, Zhu J, Xiao W, Liu B, Shi Y, Yang X, Liang X, Zheng T, Hu S, Jia X, Chen S, Wang J, Qin Y, Lai S. miR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN. In Vitro Cell Dev Biol Anim 2018; 54:241-249. [PMID: 29426973 DOI: 10.1007/s11626-018-0232-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/12/2018] [Indexed: 01/24/2023]
Abstract
Although emerging data support crucial roles for microRNAs (miRNAs) during adipogenesis, the detailed mechanisms remain largely unknown. In this study, it was shown that in rabbits, levels of miR-148a-3p not only increased in white adipose tissue during early stages of growth but also during in vitro cultured preadipocyte differentiation. Furthermore, overexpression of miR-148a-3p significantly upregulated the mRNA levels of PPARγ, C/EBPα, and FABP4, as well as the protein levels of PPARγ, as indicated by qPCR and western blotting analyses. Overexpression of miR-148a-3p also promoted intracellular triglyceride accumulation. In contrast, downregulation of miR-148a-3p inhibited the differentiation of rabbit preadipocytes. Next, based on target gene prediction and a luciferase reporter assay, we further demonstrated that miR-148a-3p directly targeted one of the 3' untranslated regions of PTEN. Finally, it was observed inhibition of PTEN by siRNA promoted rabbit preadipocyte differentiation. Taken together, our results suggested that miR-148a-3p could be involved in regulating rabbit preadipocyte differentiation through inhibiting expression of PTEN, which further highlighted the importance of miRNAs during adipogenesis.
Collapse
Affiliation(s)
- Hongbing He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Mingcheng Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jiaoyue Zhu
- College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, People's Republic of China
| | - Wudian Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Buwei Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xue Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.,Chendu Academy of Agriculture and Forestry Sciences, Sichuan, Chengdu, 611130, China
| | - Xiaohu Liang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Tianhao Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yinghe Qin
- College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road, Haidian District, 100193, Beijing, People's Republic of China.
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
6
|
|
7
|
Dong X, Tang S, Zhang W, Gao W, Chen Y. GPR39 activates proliferation and differentiation of porcine intramuscular preadipocytes through targeting the PI3K/AKT cell signaling pathway. J Recept Signal Transduct Res 2015; 36:130-8. [PMID: 26524639 DOI: 10.3109/10799893.2015.1056308] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The orphan G protein-coupled receptor (GPR) 39 was originally identified as the receptor of obestatin. In this study, the effects and mechanisms of GPR39 on cell proliferation and differentiation were investigated in cultured porcine intramuscular preadipocytes. METHODS Morphology of preadipocytes and accumulated lipid droplets within cells were identified by an inverted microscope. After transfected with constructed pCMV-GPR39 plasmid, cell proliferation was measured by using methyl thiazolyl tetrazolium method, mRNA expression of GPR39, CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), Caspase-9 and adipocyte determination and differentiation factor-1 (ADD1) was determined by RNA preparation and reverse transcription polymerase chain reaction, protein expression of phosphoinositide-3 kinase (PI3K), 3-phosphoinositide-dependent protein kinase 1, phosphorylated glycogen synthase kinase 3 (pGSK3), total Akt and phosphorylated Akt (pAkt) was analyzed by Western blot. RESULTS It found that GPR39 mRNA and protein were expressed in porcine intramuscular preadipocytes and its expression was significantly up-regulated after treatment with Zn(2+) whose function is found to be mediated by GPR39. Furthermore, over-expression of GPR39 further promoted the optical density value of cells, enhanced mRNA expression of PPARγ, C/EBPα and ADD1, and inhibited mRNA expression of Caspase-9. Protein expression of pGSK3 and pAkt was also increased by GPR39 stimulation. In addition, GPR39-induced proliferation and differentiation of porcine intramuscular preadipocytes was partially blocked by the Akt inhibitor (PDTC) and the PI3K inhibitor (LY294002). CONCLUSION It indicated that GPR39 was a transducer of Zn(2+), and enhanced proliferation and differentiation of porcine intramuscular preadipocytes through activation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoying Dong
- a College of Yingdong Agricultural Science and Engineering, Shaoguan University , Shaoguan , P.R. China
| | - Shengqiu Tang
- a College of Yingdong Agricultural Science and Engineering, Shaoguan University , Shaoguan , P.R. China
| | - Wei Zhang
- b Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Hubei Academy of Agricultural Science , Wuhan , P.R. China
| | - Weihua Gao
- c College of Animal Science, Yangtze Univeisity , Jingzhou , P.R. China , and
| | - Yanfei Chen
- d College of Yingdong Life Science, Shaoguan University , Shaoguan , P.R. China
| |
Collapse
|
8
|
Yang MH, Chin YW, Chae HS, Yoon KD, Kim J. Anti-adipogenic constituents from Dioscorea opposita in 3T3-L1 cells. Biol Pharm Bull 2015; 37:1683-8. [PMID: 25273391 DOI: 10.1248/bpb.b14-00216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported the lipase inhibitory activity of the n-BuOH fraction of Dioscorea opposita (DOB) and its isolates. This study sought to evaluate their anti-adipogenic activity in terms of their effects on the adipogenic transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) as well as phosphorylated AMP-activated protein kinase (p-AMPK) and carnitine palmitoyl transferase-1 (CPT-1). DOB apparently attenuated 3T3-L1 adipocyte differentiation (33.6% decrease at 20 µg/mL). In addition, a marked decrease (90.4%) in the expression of PPARγ was observed in the DOB-treated 3T3-L1 cells. Four isolates from DOB: (4E,6E)-1,7-bis(4-hydroxyphenyl)-4,6-heptadien-3-one (1), (3R,5R)-1,7-bis(4-hydroxy-3-methoxyphenyl)-3,5-heptanediol (2), batatasin I (3), and (1E,4E,6E)-1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (4), suppressed adipocyte differentiation by inhibiting PPARγ at 20 µM (85.9%, 68.6%, 76.2%, and 90.2% decrease, respectively) and C/EBPα (51.7%, 3.1%, 20.9%, and 59.8% decrease, respectively). Batatasin I was found to increase p-AMPK and CPT-1 at a concentration of 20 µM in 3T3-L1 adipocytes, resulting in inhibiting adipogenesis. Taken together, batatasin I might be responsible for the anti-adipogenic effect of DOB via inhibition of PPARγ and C/EBPα and activation of p-AMPK and CPT-1.
Collapse
Affiliation(s)
- Min Hye Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University
| | | | | | | | | |
Collapse
|
9
|
Indumathi S, Mishra R, Harikrishnan R, Dhanasekaran M. Subcutaneous Adipose Tissue-Derived Stem Cells: Advancement and Applications in Regenerative Medicine. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Kelmendi-Doko A, Marra KG, Vidic N, Tan H, Rubin JP. Adipogenic factor-loaded microspheres increase retention of transplanted adipose tissue. Tissue Eng Part A 2014; 20:2283-90. [PMID: 24593222 PMCID: PMC4161055 DOI: 10.1089/ten.tea.2012.0701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/10/2014] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to develop and test a controlled delivery system of two adipogenic factors (insulin and dexamethasone [Dex]), to generate stable adipose tissue when mixed with disaggregated human fat. Both drugs were encapsulated in poly(lactic-co-glycolic acid), (PLGA) microspheres (MS) and mixed with human lipoaspirate to induce adipogenesis in vivo. It was hypothesized that the slow release of insulin and Dex would enhance both adipogenesis and angiogenesis, thus retaining the fat graft volume in a nude mouse model. Insulin/Dex-loaded PLGA MS (Insulin/Dex MS) were prepared using both single and double emulsion/solvent extraction techniques. The bioactivity of the drugs was assessed by mixing the MS with human lipoaspirate and injecting subcutaneously into the dorsal aspect of an athymic mouse. Five doses of the drugs were examined and samples were analyzed grossly and histologically after 5 weeks in vivo. Mass and volume of the grafts were measured with the microsphere-containing samples, demonstrating increased mass and volume with increasing drug doses. Histological analysis, including H&E and CD31, indicated increased vascularization within the insulin/Dex MS-containing samples compared with the lipoaspirate-only samples. This study demonstrates that the controlled delivery of adipogenic factors such as insulin and Dex through polymer MS can significantly enhance tissue formation and vascularization, therefore presenting a potentially clinically relevant model of adipose retention.
Collapse
Affiliation(s)
- Arta Kelmendi-Doko
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kacey G. Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Natasa Vidic
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Huaping Tan
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - J. Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Flynn L, Woodhouse KA. Adipose tissue engineering with cells in engineered matrices. Organogenesis 2012; 4:228-35. [PMID: 19337402 DOI: 10.4161/org.4.4.7082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering has shown promise for the development of constructs to facilitate large volume soft tissue augmentation in reconstructive and cosmetic plastic surgery. This article reviews the key progress to date in the field of adipose tissue engineering. In order to effectively design a soft tissue substitute, it is critical to understand the native tissue environment and function. As such, the basic physiology of adipose tissue is described and the process of adipogenesis is discussed. In this article, we have focused on tissue engineering using a cell-seeded scaffold approach, where engineered extracellular matrix substitutes are seeded with exogenous cells that may contribute to the regenerative response. The strengths and limitations of each of the possible cell sources for adipose tissue engineering, including adipose-derived stem cells, are detailed. We briefly highlight some of the results from the major studies to date, involving a range of synthetic and naturally derived scaffolds. While these studies have shown that adipose tissue regeneration is possible, more research is required to develop optimized constructs that will facilitate safe, predictable and long-term augmentation in clinical applications.
Collapse
Affiliation(s)
- Lauren Flynn
- Department of Chemical Engineering; Queen's University; Ontario Canada
| | | |
Collapse
|
12
|
Tissue Engineering Generation of adipose tissue: an overview of current standards and possibilities. Eur Surg 2010. [DOI: 10.1007/s10353-010-0548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Rattanatray L, MacLaughlin SM, Kleemann DO, Walker SK, Muhlhausler BS, McMillen IC. Impact of maternal periconceptional overnutrition on fat mass and expression of adipogenic and lipogenic genes in visceral and subcutaneous fat depots in the postnatal lamb. Endocrinology 2010; 151:5195-205. [PMID: 20861234 DOI: 10.1210/en.2010-0501] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Women entering pregnancy with a high body weight and fat mass have babies who are at increased risk of becoming overweight or obese in later life. We investigated whether maternal overnutrition in the periconceptional period results in an increased fat mass and expression of adipogenic and lipogenic genes in offspring and whether dietary restriction can reverse these changes. Nonpregnant donor ewes (n = 23) were assigned to one of four groups: control-control fed at 100% maintenance energy requirements (MER) for at least 5 months, control-restricted fed 100% MER for 4 months and 70% MER for 1 month, high-high (HH) fed ad libitum (170-190% MER) for 5 months, or high-restricted (HR) fed ad libitum for 4 months and 70% MER for 1 month. Single embryos were transferred to nonobese recipient ewes, and lamb fat depots were weighed at 4 months. Peroxisome proliferator-activated receptor-γ, glyceraldehyde-3-phosphate dehydrogenase, lipoprotein lipase, leptin, and adiponectin mRNA expression was measured in the lamb fat depots. Total fat mass was higher in female lambs in the HH but not HR group than controls. There was a relationship between donor ewe weight and total fat mass and G3PDH mRNA expression in perirenal fat in female lambs. There was no effect of periconceptional nutritional treatment on peroxisome proliferator-activated receptor-γ, glyceraldehyde-3-phosphate dehydrogenase, lipoprotein lipase, leptin, and adiponectin mRNA expression in any fat depot. Thus, exposure to maternal overnutrition in the periconceptional period alone results in an increased body fat mass in the offspring and that a short period of dietary restriction can reverse this effect.
Collapse
Affiliation(s)
- L Rattanatray
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Khater R, Atanassova P, Anastassov Y, Pellerin P, Martinot-Duquennoy V. Clinical and experimental study of autologous fat grafting after processing by centrifugation and serum lavage. Aesthetic Plast Surg 2009; 33:37-43. [PMID: 19020925 DOI: 10.1007/s00266-008-9269-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/21/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND This clinical and experimental study compared adipose tissue transplant behavior after two different techniques of purifying: centrifugation at 3400 rpm for 3 min and serum lavage without centrifugation. METHODS Clinical evaluation was performed under standardized conditions for lipofilling on a series of 51 female patients, intentionally selected to have similar characteristics and assigned to two groups based on the method of processing. Experimentally, a culture system in diffusion chambers with vitaline membranes was designed to mimic the behavior and to study the morphology of the adipose tissue used for autografting. Survival, structure, and proliferation of the adipose cells in vitro were examined by classical histologic H&E staining and immunohistochemistry for leptin and cyclin D1. RESULTS The main differences encountered experimentally were the presence of a greater amount of preadipocytes in the noncentrifuged adipose tissue cultures and more distinctly expressed cell proliferation. The postoperative clinical results favored of the serum lavage purifying technique. CONCLUSION Our data suggest that with transplantation of noncentrifuged adipose tissue more active preadipocytes are applied which could possibly lead to better potential chances of survival and even de novo development of fat.
Collapse
Affiliation(s)
- Regina Khater
- Unit of Plastic and Craniofacial Surgery, St. George University Hospital, 66 Peshtersko Sch., Plovdiv, 4000, Bulgaria.
| | | | | | | | | |
Collapse
|
15
|
Muhlhausler BS, Ritorto V, Schultz C, Chatterton BE, Duffield JA, McMillen IC. Birth weight and gender determine expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue in the young adult sheep. Domest Anim Endocrinol 2008; 35:46-57. [PMID: 18308504 DOI: 10.1016/j.domaniend.2008.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 01/25/2008] [Indexed: 01/21/2023]
Abstract
Epidemiological studies have demonstrated that low birth weight is associated with an increased incidence of visceral obesity and metabolic disorders in later life. In the present study, we have determined the impact of birth weight and gender on gene expression in visceral adipose tissue (VAT) in the young adult sheep. Lambs (n=19, birth weight range 2.6-7.55 kg) were born at term and growth monitored for 22.4+/-0.2 weeks, when body composition was determined by Dual X-ray Absorptiometry (DXA) and samples of VAT and subcutaneous (SCAT) adipose tissue collected. Plasma samples were collected at post-mortem for the determination of free fatty acids (FFA), glucose and insulin concentrations. Peroxisome-Proliferator Activated Receptor-gamma (PPARgamma), glycerol-3-phosphate dehydrogenase (G3PDH), lipoprotein lipase (LPL), adiponectin and leptin mRNA expression was determined by qRT-PCR. Fractional growth rate in postnatal weeks 1-3 was inversely related to birth weight in both males and females (R2=0.22, P<0.05, n=19). PPARgamma mRNA expression in VAT, but not SCAT, was inversely related to birth weight (R2=0.60, P<0.01, n=18). In males, but not females, PPARgamma mRNA in VAT was directly related to G3PDH mRNA expression (R2=0.69, P<0.01, n=9). Plasma FFA concentrations were inversely related to birth weight in both males and females (R2=0.22, P<0.05, n=19). These findings demonstrate that low birth weight is associated with an increased expression of a key adipogenic factor in visceral adipose tissue in young adulthood. In males, this is associated with an increased expression of lipogenic genes, and this may contribute to the increased propensity for visceral obesity in low birth weight males compared to females.
Collapse
Affiliation(s)
- B S Muhlhausler
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Muhlhausler BS, Duffield JA, McMillen IC. Increased maternal nutrition increases leptin expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology 2007; 148:6157-63. [PMID: 17884936 DOI: 10.1210/en.2007-0770] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study tested the hypothesis that exposure to an increased level of maternal nutrition before birth results in altered expression of adipogenic, lipogenic, and adipokine genes in adipose tissue in early postnatal life. Pregnant ewes were fed either at or approximately 50% above maintenance energy requirements during late pregnancy, and quantitative RT-PCR was used to measure peroxisome proliferator-activated receptor (PPAR)-gamma, lipoprotein lipase (LPL), glycerol-3-phosphate-dehydrogenase (G3PDH), adiponectin, and leptin mRNA expression in perirenal (PAT) and sc adipose tissue (SCAT) in the offspring on postnatal d 30. Relative SCAT mass was higher in lambs of well-fed ewes (40.0 +/- 4.0 vs. 22.8 +/- 3.3 g/kg, P < 0.05) and was directly related to plasma insulin in the first 24 h after birth and to G3PDH and LPL expression. The expression of leptin mRNA in both the SCAT and PAT depots was higher (P < 0.05) in lambs of well-fed ewes. PPARgamma adiponectin, LPL, and G3PDH mRNA expression were not, however, different between well-fed and control groups in either depot. Relative PPARgamma expression in SCAT was directly related to plasma insulin concentrations in the first 24 h after birth (r(2) = 0.23; P < 0.05), and G3PDH and LPL expressions were also positively correlated with PPARgamma expression (r(2) = 0.27; P < 0.05). We have demonstrated that exposure to increased prenatal nutrition increases leptin expression at 1 month of age in both PAT and SCAT. The results of this study provide evidence that the nutritional environment before and immediately after birth can influence the development of adipose tissue in early postnatal life.
Collapse
Affiliation(s)
- B S Muhlhausler
- Early Origins of Adult Health Research Group, Sansom Research Institute, University of South Australia, Adelaide 5000, Australia.
| | | | | |
Collapse
|
17
|
Grant AC, Ortiz-Colòn G, Doumit ME, Buskirk DD. Optimization of in vitro conditions for bovine subcutaneous and intramuscular preadipocyte differentiation. J Anim Sci 2007; 86:73-82. [PMID: 17911240 DOI: 10.2527/jas.2007-0379] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of these experiments was to develop an in vitro cell culture system for differentiation of bovine preadipocytes, which will permit examination of differences in differentiation between intramuscular (i.m.) and subcutaneous (s.c.) bovine preadipocytes. Stromal-vascular cells from bovine i.m. and s.c. adipose depots were isolated and cultured. Clonally derived s.c. preadipocytes were used to determine the ability of insulin, bovine serum lipids, octanoate, acetic acid, dexamethasone (DEX), and troglitazone (TRO) to elicit differentiation of these cells when added to serum-free medium. Addition of 10 and 20 microL/mL of a commercially available serum lipids supplement to low-glucose Dulbecco's modified Eagle's medium containing 280 nM insulin increased glycerol-3-phosphate dehydrogenase (GPDH) activity (P < 0.01). Inclusion of 1.25 to 10 microM TRO to medium containing 280 nM insulin and 20 microL/ mL serum lipids supplement also increased GPDH activity (P < 0.001) compared with 0 microM TRO. The combination of 280 nM insulin, 1 mM octanoate, and 10 mM acetic acid, with 48 h exposure to 0.25 microM DEX caused morphological differentiation in a small number of cells but did not stimulate GPDH activity (P = 0.99). When used together, 280 nM insulin, 20 microL/mL of serum lipids supplement, 40 microM TRO, and 0.25 microM DEX stimulated differentiation compared with the aforementioned treatment (P < 0.001). Omission of TRO or insulin from this medium reduced GPDH activity by 68% (P < 0.001), whereas removal of DEX tended to reduce GPDH activity (P = 0.06). Preadipocytes from s.c. (n = 3) and i.m. (n = 2) adipose tissues of 3 steers were used to determine the effects of TRO on differentiation using the established conditions. Forty to sixty microM TRO enhanced differentiation compared with 0 microM TRO (P < 0.02) in both depots. No depot differences in response to TRO were detected (P = 0.32). These data demonstrate that bovine preadipocytes are capable of differentiation in response to combinations of insulin, serum lipids, DEX, and TRO. Although TRO enhanced differentiation of bovine preadipocytes, no differential effects of TRO on the differentiation of s.c. and i.m. cells were detected.
Collapse
Affiliation(s)
- A C Grant
- Departments of Animal Science, Michigan State University, East Lansing 48824-1225, USA
| | | | | | | |
Collapse
|
18
|
Niemelä SM, Miettinen S, Konttinen Y, Waris T, Kellomäki M, Ashammakhi NA, Ylikomi T. Fat tissue: views on reconstruction and exploitation. J Craniofac Surg 2007; 18:325-35. [PMID: 17414282 DOI: 10.1097/scs.0b013e3180333b6a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transplantation of autologous fat as pedicle or transposition flaps has been a classical method in plastic surgery for tissue reconstruction. The injection of fat for soft tissue reconstruction is also an old innovation. This approach has some significant drawbacks such as resorption of the fat transplant. To regenerate additional and self-regenerating adipose tissue for reconstructive purposes, a thorough understanding of adipose tissue (mesodermal stem cells, adipoblasts, pre-adipocytes, mature, lipid-synthesizing, and lipid-storing white or brown adipocytes) on cellular and molecular levels is required. Several transcription factors that play a central role in the control of adipogenesis have been identified. Among these are the CCAAT/enhancer binding protein gene family and peroxisome proliferator-activated receptor-gamma. Hormones and growth factors, such as insulin and insulin-like growth factor (IGF), transfer external signals to differentiating adipocytes. In an attempt to improve the quality of tissue-engineered fat by culture-expanded adipocytes, various pre-adipocyte and stem cell culture conditions and expansion methods have been developed. In the presence of fetal calf serum, spontaneous differentiation of pre-adipocytes into fat cell clusters occurs to some degree. This in vitro differentiation can be enhanced by addition of inducing agents such as dexamethasone, isobutylmethylxantine, and insulin into the culture medium. Recent work has shown the multipotency of pre-adipocytes, which are fibroblast-like precursors of adipocytes. With use of specific culture conditions, human adipose tissue-derived stem cells can be induced to express markers of adipocyte, osteoblast, and myocyte cell lineages. The multipotent characteristics of adipose tissue-derived stem cells, as well as their abundance and accessibility in the human body, make them a potential cell source for tissue engineering applications.
Collapse
Affiliation(s)
- Sanna-Mari Niemelä
- Department of Cell Biology, Medical School, University of Tampere, Tampere, and Department of Surgery, Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
19
|
Soret B, Melrose SE, Finley E, Vernon RG. Differential control of lipogenesis and lipolysis during development of ovine preadipocytesin vitro. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/asc200657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractThe stromovascular fraction of adipose tissue from sheep, like that of other species, contains preadipocytes which can be induced to differentiate in culture, providing a potentially useful system for studying adipocyte development. Differentiation of ruminant preadipocytes has only been partly characterized previously so we have investigated the factors regulating the development of lipogenesis and lipolysis in sheep cells. Insulin, rosiglitazone (a peroxisome proliferation activated receptor-γ agonist) and either dexamethasone or a lipid suplement are required during differentiation for maximum rates of lipogenesis, whereas all four components are required to achieve maximum rates of catecholamine-stimulated lipolysis. Tri-iodothyronine had no effect on the development of lipogenesis but resulted in a reduced rate of catecholamine-stimulated lipolysis. Lipogenesis and lipolysis also differed in that the rate of lipogenesis increased to a maximum at about 10 days of differentiation and then fell, whereas the rate of lipolysis reached a plateau at about 10 days. By contrast to catecholamine-stimulated lipolysis, there is little or no evidence for development of the adenosine-based antilipolytic system; this may be because response to adenosine develops very late during preadipocyte differentiation or additional, unidentified factors are required to induce this antilipolytic system. Lipogenesis in differentiated preadipocytes responded to both insulin and growth hormone. These studies show that the development of lipogenesis and lipolysis are under distinct control systems. Furthermore, while preadipocytes differentiatedin vitroshow many of the characteristics of adipocytes differentiatedin vivo, there are still significant differences.
Collapse
|
20
|
Gomillion CT, Burg KJL. Stem cells and adipose tissue engineering. Biomaterials 2006; 27:6052-63. [PMID: 16973213 DOI: 10.1016/j.biomaterials.2006.07.033] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 07/18/2006] [Indexed: 12/25/2022]
Abstract
A large proportion of the plastic and reconstructive surgical procedures performed each year are to repair soft tissue defects that result from traumatic injury, tumor resection, and congenital defects. These defects typically result from the loss of a large volume of adipose tissue. To date, no ideal filler material which is successful in all cases has been developed. Additionally, the success of using autologous fat tissue grafts to repair soft tissue defects has been limited. Researchers are thus investigating strategies to engineer volumes of adipose tissue that may be used in these cases. A necessary component for engineering a viable tissue construct is an appropriate cell source. Attempts to engineer adipose tissue have involved the use of preadipocytes and adipocytes as the base cell source. Increased interest surrounding the research and development of stem cells as a source of cells for tissue engineering has, however, led to a new path of investigation for developing adipose tissue-engineering strategies. This manuscript serves as a review of the current state of adipose tissue-engineering methods and describes the shift toward tissue-engineering strategies using stem cells.
Collapse
Affiliation(s)
- Cheryl T Gomillion
- Department of Bioengineering, 501 Rhodes Engineering Research Center, Clemson University, Clemson, SC 29634, USA
| | | |
Collapse
|
21
|
Willeke F, Assad A, Findeisen P, Schromm E, Grobholz R, von Gerstenbergk B, Mantovani A, Peri S, Friess HH, Post S, von Knebel Doeberitz M, Schwarzbach MHM. Overexpression of a member of the pentraxin family (PTX3) in human soft tissue liposarcoma. Eur J Cancer 2006; 42:2639-46. [PMID: 16959485 DOI: 10.1016/j.ejca.2006.05.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/05/2006] [Accepted: 05/10/2006] [Indexed: 11/21/2022]
Abstract
A unique feature of human soft tissue liposarcoma is a stable (12;16)(q13;p11) translocation observed mainly in myxoid and roundcell liposarcomas. This translocation results in FUS/CHOP fusion transcripts with a corresponding oncogenic protein. We hypothesised that genes downstream of FUS/CHOP might serve as attractive candidates for novel tumour associated antigens. Among a panel of analysed genes, only pentraxin related gene (PTX3) demonstrated high expression in liposarcomas as compared to normal tissues. The analysis of RNA and protein expression demonstrated concordant results. However, the level of RNA and protein overexpression did not correlate in all cases. Finally, PTX3 expression was not related to presence of a FUS/CHOP fusion transcript within the liposarcoma tissues. PTX3 has been associated with adipocyte differentiation and now, additionally, is characterised by a markedly increased expression in human soft tissue liposarcoma. This finding mandates further research efforts to clarify the exact role of PTX3 in liposarcoma oncogenesis.
Collapse
Affiliation(s)
- F Willeke
- Department of Surgery, Mannheim University Clinic, University of Heidelberg, Theodor Kutzer Ufer 1-3, 68135 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. ACTA ACUST UNITED AC 2004; 155:1-24. [PMID: 15527898 DOI: 10.1016/j.cancergencyto.2004.08.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 07/09/2004] [Accepted: 07/12/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
23
|
Schwarzbach MHM, Koesters R, Germann A, Mechtersheimer G, Geisbill J, Winkler S, Niedergethmann M, Ridder R, Buechler MW, von Knebel Doeberitz M, Willeke F. Comparable transforming capacities and differential gene expression patterns of variant FUS/CHOP fusion transcripts derived from soft tissue liposarcomas. Oncogene 2004; 23:6798-805. [PMID: 15286712 DOI: 10.1038/sj.onc.1207840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chromosomal translocation t(12;16)(q13;p11) is a common genetic alteration in myxoid and round-cell liposarcomas. It results in transcription of various chimeric FUS/CHOP fusion transcripts that encode different oncogenic proteins. Recent reports suggest that these may have different neoplastic transformation activities. To audit this hypothesis, we transfected expression plasmids for the two major variant FUS/CHOP transcripts I and II in NIH 3T3 cells and determined the number of outgrowing foci as well as their growth potential in soft agar. In addition, we compared tumour growth in nude mice upon subcutaneous injection of the respective transfectants. No significant differences in transformation assays in vitro and in vivo were observed, suggesting that both variant transcripts confer comparable transforming activities. The histopathological picture of tumours derived from both cell populations resembles high-grade spindle cell sarcomas. This suggests that both FUS/CHOP variants cause similar patterns of differential gene expression. This hypothesis was confirmed by mRNA-expression profiles of the respective cell clones. Strong overexpression of the pentaxin-related gene (PTX), the osteoblast-specific factor 2 (osf-2), the basic Kruppel-like factor (bklf), the leucoprotease inhibitor, and the cyclophilin B were observed in both types of FUS/CHOP-transfected cell clones. Taken together, our data suggest that different FUS/CHOP variants cause transformation of mesenchymal cells via the same pathways with comparable efficacy.
Collapse
MESH Headings
- Animals
- Base Sequence
- CCAAT-Enhancer-Binding Proteins/genetics
- Cell Transformation, Neoplastic/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 16/genetics
- DNA Primers
- Exons/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Genetic Variation
- Humans
- Liposarcoma/genetics
- Liposarcoma/pathology
- Mice
- Mice, Nude
- Oncogene Proteins, Fusion/genetics
- RNA-Binding Protein FUS/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/pathology
- Transcription Factor CHOP
- Transcription, Genetic/genetics
- Translocation, Genetic/genetics
- Transplantation, Heterologous
Collapse
|
24
|
Ramsay TG, Rosebrough RW. Hormonal regulation of postnatal chicken preadipocyte differentiation in vitro. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:245-53. [PMID: 14529750 DOI: 10.1016/s1096-4959(02)00261-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study was designed to develop a culture system from the stromal-vascular fraction of chicken adipose tissue that can be used to characterize hormones that promote preadipocyte differentiation. Abdominal adipose tissue was excised from 2 to 4-week-old male broilers (Gallus domesticus) by sterile dissection. The stromal-vascular cell fraction from the adipose tissue was isolated by collagenase digestion, filtration, and subsequent centrifugation. These preadipocytes were seeded in six well culture plates and proliferated to confluency in 10% fetal bovine serum in DMEM/F12 (50:50) medium. At confluency, experiments were initiated to determine hormonal requirements for differentiation. Insulin (100 nM) stimulated expression of citrate lyase and sn-glycerol-3-phosphate dehydrogenase relative to lactate dehydrogenase in the presence of 2.5% chicken serum (P<0.05), but not with 10% chicken serum (P>0.05). Triiodothyronine (T(3), 1 nM) and insulin-like growth factor 1 (100 ng/ml) had no effect on differentiation. Dexamethasone (Dex, 1 microM) stimulated differentiation in 2.5 or 10% chicken serum (P<0.05). Insulin, Dex and 2.5% chicken serum stimulated enzymatic differentiation to the extent of 10% chicken serum, but heparin (10 U/ml) addition, in combination with insulin and Dex was necessary to stimulate lipid filling of adipocytes.
Collapse
Affiliation(s)
- T G Ramsay
- Growth Biology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
25
|
Qiao D, Im E, Qi W, Martinez JD. Activator protein-1 and CCAAT/enhancer-binding protein mediated GADD153 expression is involved in deoxycholic acid-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:108-16. [PMID: 12069855 DOI: 10.1016/s1388-1981(02)00190-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies have demonstrated bile acids, principally deoxycholic acid (DCA), to be colon tumor promoters. DCA is cytotoxic and increasing evidence suggests a role for DCA-induced apoptosis in colon tumorigenesis. Although the precise mechanism by which DCA induces apoptosis remains unclear, DCA may affect cell growth and cell death via altering intracellular signaling and gene expression. In this study, we examined the effect of DCA on the GADD153 (growth arrest- and DNA damage-inducible gene 153) proapoptotic gene and its role in DCA-induced apoptosis in a human colon cancer cell line, HCT116. Our results showed that GADD153 expression was strongly stimulated by DCA and disruption of this with an antisense GADD153 transcript could significantly suppress DCA-induced apoptosis, suggesting GADD153 is essential for DCA induction of apoptosis. Further studies were conducted to investigate the upstream regulatory factors that participated in DCA mediated GADD153 expression. Activator protein-1 (AP-1) was activated by DCA and an AP-1 regulatory element was identified in the human GADD153 promoter in our previous studies. However, inhibition of the AP-1 activation by the dominant negative mutant c-Jun, Tam67, caused only a partial suppression of both DCA-induced GADD153 expression and apoptosis, indicating AP-1 plays an important but not exclusive role in DCA mediated GADD153 pathway. By further promoter analyses, a novel DCA response element, which is located downstream of the AP-1 binding site in the human GADD153 promoter, was determined and identified as C/EBP regulatory element. These results suggest that GADD153 expression is critical for DCA-induced apoptosis and that multiple signaling pathways that include AP-1 and C/EBP transcription factors are involved in DCA-induced GADD153 expression.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 53792-8550, USA
| | | | | | | |
Collapse
|
26
|
Patrick CW, Zheng B, Johnston C, Reece GP. Long-term implantation of preadipocyte-seeded PLGA scaffolds. TISSUE ENGINEERING 2002; 8:283-93. [PMID: 12031117 DOI: 10.1089/107632702753725049] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Studies were performed in a long-term effort to develop clinically translatable, tissue engineered adipose constructs for reconstructive, correctional, and cosmetic indications. Rat preadipocytes were harvested, isolated, expanded ex vivo, and seeded within PLGA scaffolds. Preadipocyte-seeded and acellular (control) scaffolds were implanted for 1-12 months. Explanted scaffolds were stained with osmium tetroxide, processed, and counterstained using H&E. Quantitative histomorphometric analysis was performed on all tissue sections to determine the amount of adipose tissue formed. Analyses revealed maximum adipose formation at 2 months, followed by a decrease at 3 months, and complete absence of adipose and PLGA at 5-12 months. These results extend a previous short-term study (Tissue Engineering 1999;5:134) and demonstrate that adipose tissue can be formed in vivo using tissue engineering strategies. However, the long-term maintenance of adipose tissue remains elusive.
Collapse
Affiliation(s)
- C W Patrick
- University of Texas Center for Biomedical Engineering and Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery, University of Texas, Houston 77030, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
Expanded adipose tissue mass increases the risk for many clinical conditions including diabetes, hypertension, coronary atherosclerotic heart disease, and some forms of cancer. Therefore, it is imperative that we understand the mechanisms by which fat pads expand. The enlargement of fat cells during the development of obesity has been previously hypothesized to be a triggering factor for the proliferation of new fat cells. There is now a preponderance of evidence that adipose tissue is a source of growth factors such as IGF-I, IGF binding proteins, TNF alpha, angiotensin II, and MCSF that are capable of stimulating proliferation. The relative importance of these autocrine/paracrine factors in the normal control of preadipocyte proliferation is unknown. In addition, the proliferative response of preadipocytes to the paracrine milieu is undoubtedly modulated by neural inputs to fat tissue and/or serum factors. Together, these multiple regulatory controls orchestrate overall and region-specific adipose tissue cellularity responses associated with the development of hyperplastic obesity. Both in vivo and in vitro studies are needed to understand the complex, interacting physiological mechanisms by which growth of this important organ is regulated.
Collapse
Affiliation(s)
- D B Hausman
- Department of Foods and Nutrition, 263 Dawson Hall, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
28
|
Antonescu CR, Elahi A, Humphrey M, Lui MY, Healey JH, Brennan MF, Woodruff JM, Jhanwar SC, Ladanyi M. Specificity of TLS-CHOP rearrangement for classic myxoid/round cell liposarcoma: absence in predominantly myxoid well-differentiated liposarcomas. J Mol Diagn 2000; 2:132-8. [PMID: 11229517 PMCID: PMC1906905 DOI: 10.1016/s1525-1578(10)60628-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2000] [Indexed: 10/18/2022] Open
Abstract
Myxoid liposarcoma (LS), the most common subtype of LS, is known to be characterized by the specific t(12;16) resulting in a TLS-CHOP fusion in almost all cases. We wished to address the following questions: (i) Is this genetic hallmark also present in other types of LS with predominant myxoid change? (ii) What is the proportion of cases with the variant EWS-CHOP fusion? (iii) What is the optimal approach for Southern blot detection of TLS breakpoints? We identified 59 LS characterized histologically by >90% myxoid component, in which frozen tissue tumor was available for DNA extraction. These 59 LS with myxoid features were divided into 2 groups: 42 LS with classic myxoid/round cell appearance (myxoid LS) and 17 well-differentiated LS (WDLS) with a predominant (>90%) myxoid component. Within the myxoid LS group, 29 tumors were low grade and 13 high grade (>20% round cell component). Among the 17 predominantly myxoid WDLS, there were 15 low grade and 2 focally high grade tumors. In addition, we selected as control group, 20 LS of other histological types with minimal or no myxoid change (17 WDLS and 3 pleomorphic LS) and 13 myxofibrosarcomas. Southern blot analysis was performed in all cases using a CHOP cDNA probe, and in all CHOP rearranged cases using a TLS cDNA probe. Probe/enzyme combinations for Southern blot analysis were CHOP exon 3-4 cDNA probe with BamHI or SacI, TLS exon 3-6 cDNA probe with BclI. All 42 cases of myxoid LS showed a CHOP rearrangement and 38 of them also had a TLS rearrangement. Among the 4 myxoid LS without Southern blot evidence of TLS rearrangement, 1 showed an EWS-CHOP fusion by Southern blotting and reverse transcriptase-polymerase chain reaction and in another case, reverse transcriptase-polymerase chain reaction detected a TLS-CHOP fusion transcript. None of the predominantly myxoid WDLS and none of the tumors included in the control group showed rearranegements with CHOP probe. In addition, 12 predominantly myxoid WDLS, 10 other LS, and 5 myxofibrosarcoma from the control group were also tested for TLS rearrangement; all were negative. The TLS-CHOP fusion is highly sensitive and specific for the entity of classic myxoid/round cell LS. Other types of LS, even with a predominant myxoid component, lack the TLS-CHOP rearrangement, confirming that they represent a genetically distinct group of LS. The prevalence of the EWS-CHOP variant fusion was approximately 2% in this series. The optimal enzyme for TLS genomic breakpoint detection is BclI.
Collapse
Affiliation(s)
- C R Antonescu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology 2000; 141:649-56. [PMID: 10650946 DOI: 10.1210/endo.141.2.7293] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the role of sex steroid hormones in adipose tissue development and distribution, we have studied the effect of various sex steroids (testosterone, dihydrotestosterone (DHT), and 17beta-estradiol) in vitro, on the proliferation and differentiation processes in rat preadipocytes from deep (epididymal and parametrial) and superficial (femoral sc) fat deposits. All added steroids failed to affect the growth rate of preadipocytes from male rats when determined from day 1 to day 4 after plating, whether FCS was present or not in the culture medium. In contrast, in preadipocytes from female rats, we observed a positive effect (x2) of 17beta-estradiol (0.01 microM) on the proliferative capacities of sc but not parametrial preadipocytes. When preadipocytes were exposed to testosterone or DHT (0.1 microM) during the differentiation process, the glycerol 3-phosphate dehydrogenase activity was significantly decreased in epididymal preadipocytes only. When preadipocytes from male rats were exposed to 17beta-estradiol (0.01 microM), the differentiation capacities of preadipocytes were not modified. However, in parametrial preadipocytes from ovariectomized female rats, 17beta-estradiol significantly increased (x1.34) the glycerol 3-phosphate dehydrogenase activity. In differentiated preadipocytes that had been exposed to sex steroids, expression of peroxisome proliferator-activated receptor gamma2 was up-regulated by 17beta-estradiol but not by androgens. As described in other cell types, sex steroids modulate insulin growth factor 1 receptor (IGF1R) expression in preadipocytes. Indeed, IGF1R levels were either enhanced by 17 beta-estradiol (0.01 microM) in sc preadipocytes from female ovariectomized rats or decreased by DHT (0.01 microM) in epididymal preadipocytes. These effects were reversed by simultaneous exposure to androgen or estrogen receptor antagonists. In conclusion, this study demonstrates that, in rat preadipocytes kept in primary culture and chronically exposed to sex hormones, androgens elicit an antiadipogenic effect, whereas estrogens behave as proadipogenic hormones. Moreover, our results suggest that these opposite effects could be related to changes in IGF1R (androgens and estrogens) and peroxisome proliferator-activated receptor gamma2 expression (estrogens).
Collapse
Affiliation(s)
- M N Dieudonne
- Service de Biochimie, INSERM CJF 94-02, Faculté de Médecine Paris-Ouest, Université René Descartes (Paris V) Centre Hospitalier de POISSY, France
| | | | | | | |
Collapse
|
30
|
Kim J, Pelletier J. Molecular genetics of chromosome translocations involving EWS and related family members. Physiol Genomics 1999; 1:127-38. [PMID: 11015571 DOI: 10.1152/physiolgenomics.1999.1.3.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many types of sarcomas are characterized by specific chromosomal translocations that appear to result in the production of novel, tumor-specific chimeric transcription factors. Many of these show striking similarities: the emerging picture is that the amino-terminal domain of the fusion product is donated by the Ewing's sarcoma gene (EWS) or a related member from the same gene family, whereas the carboxy-terminal domain often consists of a DNA-binding domain derived from one of a number of transcription factors. Given the observation that the different translocation partners of the EWS protooncogene are associated with distinct types of sarcomas, the functional consequence of fusing EWS (or a related family member) to a different DNA-binding domain can only be understood in the context of functional studies that define the specificity of action of the different fusion products. An understanding of the molecular structure and function of these translocations provides new methods for diagnosis and novel targets for therapeutics.
Collapse
Affiliation(s)
- J Kim
- Department of Biochemistry, Department of Oncology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
31
|
Katz AJ, Llull R, Hedrick MH, Futrell J. Emerging Approaches To The Tissue Engineering Of Fat. Clin Plast Surg 1999. [DOI: 10.1016/s0094-1298(20)32659-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Patrick CW, Chauvin PB, Hobley J, Reece GP. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. TISSUE ENGINEERING 1999; 5:139-51. [PMID: 10358221 DOI: 10.1089/ten.1999.5.139] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adipose tissue equivalents have not been addressed as yet despite the clinical need in congenital deformities, posttraumatic repair, cancer rehabilitation, and other soft tissue defects. Preadipocytes were successfully harvested from rat epididymal fat pads of Sprague-Dawley and Lewis rats and expanded ex vivo. In vitro cultures demonstrated full differentiation of preadipocytes into mature adipocytes with normal lipogenic activity. The onset of differentiation was well-controlled by regulating preadipocyte confluency. Poly(lactic-co-glycolic) acid (PLGA) polymer disks with 90% porosity, 2.5 mm thick, 12 mm diameter, pore size range of 135-633 microm were fabricated and seeded with preadipocytes at 10(5) cells/mL. Disks in vitro demonstrated fully differentiated mature adipocytes within the pores of the disks. Short-term in vivo experiments were conducted by implanting preseeded disks subcutaneously on the flanks of rats for 2 and 5 weeks. Histologic staining of harvested disks with osmium tetroxide (OsO4) revealed the formation of adipose tissue throughout the disks. Fluorescence labeling of preadipocytes confirmed that formed adipose tissue originated from seeded preadipocytes rather than from possible infiltrating perivascular tissue. This study demonstrates the potential of using primary preadipocytes as a cell source in cell-seeded polymer scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- C W Patrick
- Laboratory of Reparative Biology and Bioengineering, Department of Plastic Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
Lack of JunB, an immediate early gene product and member of the AP-1 transcription factor family causes embryonic lethality between E8.5 and E10.0. Although mutant embryos are severely retarded in growth and development, cellular proliferation is apparently not impaired. Retardation and embryonic death are caused by the inability of JunB-deficient embryos to establish proper vascular interactions with the maternal circulation due to multiple defects in extra-embryonic tissues. The onset of the phenotypic defects correlates well with high expression of junB in wild-type extra-embryonic tissues. In trophoblasts, the lack of JunB causes a deregulation of proliferin, matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (uPA) gene expression, resulting in a defective neovascularization of the decidua. As a result of downregulation of the VEGF-receptor 1 (flt-1), blood vessels in the yolk sac mesoderm appeared dilated. Mutant embryos which escape these initial defects finally die from a non-vascularized placental labyrinth. Injection of junB-/- embryonic stem (ES) cells into tetraploid wild-type blastocysts resulted in a partial rescue, in which the ES cell-derived fetuses were no longer growth retarded and displayed a normal placental labyrinth. Therefore, JunB appears to be involved in multiple signaling pathways regulating genes involved in the establishment of a proper feto-maternal circulatory system.
Collapse
Affiliation(s)
- M Schorpp-Kistner
- Deutsches Krebsforschungszentrum Heidelberg, Abteilung für Signaltransduktion und Wachstumskontrolle, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Boney CM, Smith RM, Gruppuso PA. Modulation of insulin-like growth factor I mitogenic signaling in 3T3-L1 preadipocyte differentiation. Endocrinology 1998; 139:1638-44. [PMID: 9528944 DOI: 10.1210/endo.139.4.5920] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insulin-like growth factor I (IGF-I) stimulates mitogenesis in proliferating 3T3-L1 preadipocytes. However, IGF-I functions to stimulate differentiation once growth arrest occurs at confluence. Epidermal growth factor (EGF) is also a potent mitogen in these cells, but inhibits differentiation of preadipocytes. We compared mitogenic signaling via the mitogen-activated protein kinase (MAPK) pathway in response to IGF-I or EGF in proliferating, growth-arrested, and differentiating 3T3-L1 cells. IGF-I stimulation of MAPK was rapid and maximal in proliferating 3T3-L1 preadipocytes, but decreased greatly in differentiating cells. EGF was more potent than IGF-I in stimulating MAPK activity in 3T3-L1 cells, and activation of MAPK was maintained in differentiating cells. These results suggest an uncoupling of MAPK activation specific to IGF-I-mediated 3T3-L1 preadipocyte differentiation. Studies of proximal signaling revealed Shc phosphorylation and Shc/Grb2 complex formation in IGF-I-treated proliferating, but not differentiating, cells. Insulin receptor substrate-1 phosphorylation after IGF-I treatment was present in proliferating, quiescent, and differentiating preadipocytes. Shc phosphorylation and Grb2 association after EGF treatment were present throughout all phases of growth. The change in IGF-I signaling via Shc phosphorylation and MAPK activity during 3T3-L1 differentiation indicates that loss of IGF-I mitogenic signaling via the MAPK pathway is part of the differentiation process.
Collapse
Affiliation(s)
- C M Boney
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence 02903, USA.
| | | | | |
Collapse
|
35
|
Okuno M, Kajiwara K, Imai S, Kobayashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H. Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J Nutr 1997; 127:1752-7. [PMID: 9278555 DOI: 10.1093/jn/127.9.1752] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined the effect of dietary oils with different fatty acid compositions on the growth of visceral adipose tissue in rats. Rats were fed for 4 mo starting at weaning a basal diet containing (12 g/100 g diet) perilla oil rich in (n-3) polyunsaturated fatty acids (PUFA), safflower oil rich in (n-6) PUFA, olive oil rich in monounsaturated fatty acid, or beef tallow rich in saturated fatty acids. The amount of food consumed and body weight gain did not differ among the four dietary groups. The weight of the epididymal fat pad and the serum triglyceride concentration in perilla oil-fed rats were significantly lower (P < 0.05) than those of olive oil- and beef tallow-fed groups. The product of [(volume of individual adipocytes) x (number of adipocytes in epididymal fat pad)], which presumably represents total adipocyte volume in the fat pad, was significantly lower (P < 0.05) in perilla oil-fed rats than in beef tallow- and olive oil-fed groups. Expression of the late genes of adipocyte differentiation, peroxisome proliferator-activated receptor alpha, adipocyte P2 and adipsin, was significantly (P < 0. 05) down-regulated in epididymal fat tissue of rats that had been fed perilla oil rather than beef tallow or olive oil, whereas expression of the early gene, lipoprotein lipase, was not significantly affected. Greater levels (P < 0.05) of (n-3) PUFA in the membrane phospholipid fraction of the fat tissue were observed in perilla oil-fed rats than in the other dietary groups. These results suggest that perilla oil or (n-3) PUFA prevents excessive growth of adipose tissue in rats at least in part by suppressing the late phase of adipocyte differentiation.
Collapse
Affiliation(s)
- M Okuno
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu 500, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lacasa D, Garcia E, Agli B, Giudicelli Y. Control of rat preadipocyte adipose conversion by ovarian status: regional specificity and possible involvement of the mitogen-activated protein kinase-dependent and c-fos signaling pathways. Endocrinology 1997; 138:2729-34. [PMID: 9202210 DOI: 10.1210/endo.138.7.5246] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As ovariectomy induces obesity in rats, we have investigated the influence of ovariectomy and hormone replacement on the proliferation and differentiation capacities of rat cultured preadipocytes removed from different fat depots (femoral sc, parametrial, and perirenal). Ovariectomy induced increased proliferation and differentiation as well as high mitogen-activated protein (MAP) kinase activity and c-fos protein induction in both confluent and differentiated preadipocytes from perirenal fat depots. In parametrial preadipocytes, ovariectomy also increased proliferation and c-fos protein induction, but failed to alter the capacities of these cells to differentiate. Treatment of ovariectomized rats with estradiol and progesterone reversed the promoting effect of ovariectomy on proliferation, differentiation, and c-fos induction in perirenal preadipocytes, but not the MAP kinase activation observed during the proliferative phase. This treatment also reversed the promoting effect of ovariectomy on proliferation and c-fos induction seen in confluent parametrial preadipocytes. In contrast, sc preadipocytes were totally insensitive to ovarian status in terms of proliferation and differentiation capacities, MAP kinase activity, and c-fos induction. This study demonstrates that adipogenesis is site-specifically controlled by the ovarian status in the rat. It also suggests that ovariectomy-induced obesity (mainly abdominal) could be related to changes in some of the signaling pathways controlling adipogenesis in intraabdominal preadipocytes.
Collapse
Affiliation(s)
- D Lacasa
- INSERM CJF 94-02, Faculté de Médecine Paris-Ouest, Université René Descartes (Paris V), Centre Hospitalier, Poissy, France
| | | | | | | |
Collapse
|
37
|
Abstract
Adipose tissue plays an important role in mammalian energy equilibrium not only as a lipid-dissipating, i.e. energy-storing, tissue (white adipose tissue), but also as an energy-dissipating one (brown adipose tissue). Brown adipocytes have the ability of facultative heat production due to a unique mitochondrial protein, the uncoupling protein (UCP). Differentiation of white and (to a lesser extent) brown adipocytes has been studied in different cell culture systems, which has led to the identification of external inducers, second messenger pathways and transcription factors involved in adipocyte differentiation. Functional differentiation of white adipocytes implies adipose conversion, whereas in brown adipocytes it insinuates additionally the development of a thermogenic function. This review discusses recent advances in the elucidation of the pathways responsible for, and the molecular bases of, adipose conversion on the one hand and development of the thermogenic properties of brown adipocytes on the other.
Collapse
Affiliation(s)
- S Klaus
- Deutsches Institut für Ernährungsforschung (DIfE), Bergholz Rehbrücke, Germany
| |
Collapse
|
38
|
McGowan SE, Torday JS. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu Rev Physiol 1997; 59:43-62. [PMID: 9074756 DOI: 10.1146/annurev.physiol.59.1.43] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pulmonary lipofibroblast is located in the alveolar interstitium and is recognizable by its characteristic lipid droplets. During alveolar development it participates in the synthesis of extracellular matrix structural proteins, such as collagen and elastin, and as an accessory cell to the type II pneumocyte, in the synthesis of surfactant. The lipofibroblast contains cortical contractile filaments and is thereby related to the contractile interstitial cells that are normally found at the alveolar septal tips and after lung injury. The morphologic, immunologic, and biochemical characteristics of the lipofibroblast and its probable physiologic functions are reviewed. The retinoid and lipid metabolism of the lipofibroblast is compared with that of the hepatic lipocyte and the adipocyte. Although the functions of the lipofibroblast remain incompletely characterized, this cell type is emerging as an important contributor to pulmonary alveolar septal development.
Collapse
Affiliation(s)
- S E McGowan
- Department of Veterans Affairs Research Service
| | | |
Collapse
|
39
|
Abstract
The adipose tissue of mammals represents a dynamic organ disseminated throughout the body. It fluctuates in abundance according to the availability of metabolic energy supplies. Mature adipose tissue communicates with the central nervous system via a hormonal circuit that controls satiety. Adipogenesis can be recapitulated in cell culture, thus facilitating molecular biological studies of the regulatory proteins that control this process. Such studies have led to the identification of two families of transcription factors that regulate adipogenesis and mammalian energy homeostasis.
Collapse
Affiliation(s)
- W C Yeh
- Tularik Inc., South San Francisco, USA
| | | |
Collapse
|
40
|
Lacasa D, Agli B, Moynard D, Giudicelli Y. Evidence for a regional-specific control of rat preadipocyte proliferation and differentiation by the androgenic status. Endocrine 1995; 3:789-93. [PMID: 21153122 DOI: 10.1007/bf02935682] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/1995] [Accepted: 08/15/1995] [Indexed: 10/21/2022]
Abstract
In the rat, castration induces a decreased weight of fat depots. One possible explanation for these alterations could be that the capacities of preadipocytes to proliferate and differentiate are reduced by castration. Considering the regional specification of adipose tissue metabolism, these capacities and their eventual modulation by the androgenic status were presently compared in cultured preadipocytes from rat subcutaneous (SC) and epididymal fat depots.In epididymal preadipocytes, castration induced an increase in their proliferative capacity and conversely, a decrease in their adipogenesis.In vivo treatment by testosterone reversed the proliferative alteration but not the defective adipogenesis caused by castration.In vitro, no direct effect of testosterone on the proliferative capacities of epididymal preadipocytes could be observed suggesting that testosterone acts indirectly or needs the presence of other cofactors, such as insulin, dexamethasone and growth hormone. Surprisingly, testosterone partly counteracted the inhibitory effect of growth hormone on preadipocyte differentiation.In contrast to these observations, SC preadipocytes were completely insensitive to the androgenic status in terms of proliferation and differentiation.This study showing site-specific effects of castration on preadipocyte proliferation and differentiation suggests that part of the decreased fatness induced by castration in the rat is related to the modulatory effect of androgenic status on adipogenesis in some deep fat depots.
Collapse
Affiliation(s)
- D Lacasa
- Department of Biochemistry, Faculté de Médecine Paris-Ouest, Université René Descartes (Paris V), 78303, Poissy Cedex, France
| | | | | | | |
Collapse
|
41
|
Klaus S, Ely M, Encke D, Heldmaier G. Functional assessment of white and brown adipocyte development and energy metabolism in cell culture. Dissociation of terminal differentiation and thermogenesis in brown adipocytes. J Cell Sci 1995; 108 ( Pt 10):3171-80. [PMID: 7593278 DOI: 10.1242/jcs.108.10.3171] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the effect of insulin, triiodothyronine (T3) and dexamethasone (a synthetic glucocorticoid) on differentiation, lipid metabolism and thermogenesis of preadipocytes isolated from white fat (WAT) and brown fat (BAT) from the Siberian dwarf hamster (Phodopus sungorus). Cell cultures from WAT and BAT were chronically treated with the above hormones alone or in any combination. After differentiation (day 8 or 9 of culture) we measured the following parameters: adipogenic index (number × size of adipocytes), protein content, lipolysis, cell respiration, and expression of the uncoupling protein UCP, which is unique to mitochondria of brown adipocytes. Insulin was the most important adipogenic factor for brown and white adipocytes and necessary for terminal differentiation, whereas dexamethasone alone completely inhibited differentiation. T3 had no effect on adipogenesis in WAT cultures, but further increased insulin stimulated adipogenesis in BAT cultures. Basal lipolysis was higher in WAT than in BAT cultures except when dexamethasone was present, which stimulated lipolysis in both culture types to the same extent. T3 had a pronounced dose dependent lipolytic effect on WAT cultures but very little effect on BAT cultures. Respiration rates were generally higher in differentiated adipocytes than in fibroblast like cells. T3 had no effect on thermogenesis in WAT cultures but increased thermogenesis in BAT cultures, and this was further elevated by insulin. UCP expression in BAT cultures could be detected by western blot in insulin treated, T3 treated and insulin+T3 treated cultures with highest expression in the latter. These results imply a possible dissociation of terminal differentiation and thermogenic function of brown adipocytes. In WAT cultures there was also a low level of UCP detectable in the insulin+T3 treated cultures. Immuno-fluorescence microscopy analysis revealed the presence of UCP in 10–15% of adipocytes from WAT cultures (in BAT cultures: 90%), indicating the presence of some brown preadipocytes in typical WAT deposits.
Collapse
Affiliation(s)
- S Klaus
- Fachbereich Biologie/Zoologie, Philipps Universität Marburg, Germany
| | | | | | | |
Collapse
|