1
|
Cortes MA, Bartley AF, Li Q, Davis TR, Cunningham SE, Garner MA, Perez PJ, Harvey AC, Gross AK, Dobrunz LE. Modulation of temporoammonic-CA1 synapses by neuropeptide Y is through Y1 receptors in mice. Neuropeptides 2025; 110:102504. [PMID: 39951960 DOI: 10.1016/j.npep.2025.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Reduced levels of neuropeptide Y (NPY), an abundant neuromodulator in the brain, are linked to multiple neuropsychiatric disorders, including post-traumatic stress disorder (PTSD). The CA1 region of hippocampus is important for anxiety regulation and highly expresses NPY. Injecting NPY into CA1 is anxiolytic and alleviates behavioral symptoms in a model of traumatic stress; these anxiolytic effects are blocked by a Y1 receptor antagonist. However the location of Y1Rs that mediate NPY's anxiolytic effects in CA1 remains unclear. CA1 receives inputs from entorhinal cortex through the temporammonic pathway (TA), which is important for fear learning and sensitive to stress. Our lab previously showed that NPY reduces TA-evoked synaptic responses, however, the subtype of NPY receptor mediating this reduction is unknown. Here we demonstrate that in mice both exogenous (bath-applied) and endogenously-released NPY act through Y1 receptors in the TA pathway. This is the first demonstration of Y1 receptor-mediated effect on synaptic function in CA1. Interestingly, chronic overexpression of NPY (in NPY-expressing interneurons) impairs the sensitivity of the TA-evoked synaptic response to a Y1 receptor agonist. However, the long-known NPY Y2 receptor-mediated effect on the Schaffer collateral (SC) pathway is unaffected by NPY overexpression. Therefore, NPY can have a pathway-specific impact on synaptic transmission in CA1 based on the differential expression of NPY receptors and their response to overexpression of NPY. Our results demonstrating that NPY acts at Y1 receptors in the TA pathway are consistent with the idea that the TA pathway underlies the anxiolytic effects of NPY in CA1.
Collapse
Affiliation(s)
- Mariana A Cortes
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Aundrea F Bartley
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Qin Li
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Taylor R Davis
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Stephen E Cunningham
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Patric J Perez
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Adela C Harvey
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Alecia K Gross
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, United States of America
| | - Lynn E Dobrunz
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America.
| |
Collapse
|
2
|
Kutzsche J, Guzman GA, Willuweit A, Kletke O, Wollert E, Gering I, Jürgens D, Breitkreutz J, Stark H, Beck-Sickinger AG, Klöcker N, Hidalgo P, Willbold D. An orally available Ca v2.2 calcium channel inhibitor for the treatment of neuropathic pain. Br J Pharmacol 2024; 181:1734-1756. [PMID: 38157867 DOI: 10.1111/bph.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain affects up to 10% of the global population and is caused by an injury or a disease affecting the somatosensory, peripheral, or central nervous system. NP is characterized by chronic, severe and opioid-resistant properties. Therefore, its clinical management remains very challenging. The N-type voltage-gated calcium channel, Cav2.2, is a validated target for therapeutic intervention in chronic and neuropathic pain. The conotoxin ziconotide (Prialt®) is an FDA-approved drug that blocks Cav2.2 channel but needs to be administered intrathecally. Thus, although being principally efficient, the required application route is very much in disfavour. EXPERIMENTAL APPROACH AND KEY RESULTS Here, we describe an orally available drug candidate, RD2, which competes with ziconotide binding to Cav2.2 at nanomolar concentrations and inhibits Cav2.2 almost completely reversible. Other voltage-gated calcium channel subtypes, like Cav1.2 and Cav3.2, were affected by RD2 only at concentrations higher than 10 μM. Data from sciatic inflammatory neuritis rat model demonstrated the in vivo proof of concept, as low-dose RD2 (5 mg·kg-1) administered orally alleviated neuropathic pain compared with vehicle controls. High-dose RD2 (50 mg·kg-1) was necessary to reduce pain sensation in acute thermal response assessed by the tail flick test. CONCLUSIONS AND IMPLICATIONS Taken together, these results demonstrate that RD2 has antiallodynic properties. RD2 is orally available, which is the most convenient application form for patients and caregivers. The surprising and novel result from standard receptor screens opens the room for further optimization into new promising drug candidates, which address an unmet medical need.
Collapse
Affiliation(s)
- Janine Kutzsche
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gustavo A Guzman
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Olaf Kletke
- Institute of Neuro- und Sensory Physiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Esther Wollert
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian Gering
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dagmar Jürgens
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Stark
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Nikolaj Klöcker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Patricia Hidalgo
- Institute of Biological Information Processing 1, Molecular and Cellular Physiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing 7, Structural Biochemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
4
|
Bhat R, Thangavel H, Abdulkareem NM, Vasaikar S, De Angelis C, Bae L, Cataldo ML, Nanda S, Fu X, Zhang B, Schiff R, Trivedi MV. NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer. Sci Rep 2022; 12:1972. [PMID: 35121782 PMCID: PMC8817007 DOI: 10.1038/s41598-022-05949-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/13/2022] [Indexed: 12/25/2022] Open
Abstract
G Protein-Coupled Receptors (GPCRs) represent the largest superfamily of cell-surface proteins. However, the expression and function of majority of GPCRs remain unexplored in breast cancer (BC). We interrogated the expression and phosphorylation status of 398 non-sensory GPCRs using the landmark BC proteogenomics and phosphoproteomic dataset from The Cancer Genome Atlas. Neuropeptide Y Receptor Y1 (NPY1R) gene and protein expression were significantly higher in Luminal A tumors versus other BC subtypes. The trend of NPY1R gene, protein, and phosphosite (NPY1R-S368s) expression was decreasing in the order of Luminal A, Luminal B, Basal, and human epidermal growth factor receptor 2 (HER2) subtypes. NPY1R gene expression increased in response to estrogen and reduced with endocrine therapy in estrogen receptor-positive (ER+) BC cells and xenograft models. Conversely, NPY1R expression decreased in ER+ BC cells resistant to endocrine therapies (estrogen deprivation, tamoxifen, and fulvestrant) in vitro and in vivo. NPY treatment reduced estradiol-stimulated cell growth, which was reversed by NPY1R antagonist (BIBP-3226) in ER+ BC cells. Higher NPY1R gene expression predicted better relapse-free survival and overall survival in ER+ BC. Our study demonstrates that NPY1R mediates the inhibitory action of NPY on estradiol-stimulated growth of ER+ BC cells, and its expression serves as a biomarker to predict endocrine sensitivity and survival in ER+ BC patients.
Collapse
Affiliation(s)
- Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, 4849 Calhoun Rd, Houston, TX, 77204, USA
| | - Hariprasad Thangavel
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, 4849 Calhoun Rd, Houston, TX, 77204, USA
| | - Noor Mazin Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Suhas Vasaikar
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | - Leon Bae
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, 4849 Calhoun Rd, Houston, TX, 77204, USA
| | - Maria Letizia Cataldo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Meghana V Trivedi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, 4849 Calhoun Rd, Houston, TX, 77204, USA. .,Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA. .,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Chandrasekharan B, Boyer D, Owens JA, Wolfarth AA, Saeedi BJ, Dhere T, Iskandar H, Neish AS. Intracolonic Neuropeptide Y Y1 Receptor Inhibition Attenuates Intestinal Inflammation in Murine Colitis and Cytokine Release in IBD Biopsies. Inflamm Bowel Dis 2021; 28:502-513. [PMID: 34613372 PMCID: PMC8972328 DOI: 10.1093/ibd/izab243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 12/14/2022]
Abstract
We have demonstrated that neuropeptide Y (NPY) can regulate pro-inflammatory signaling in the gut via cross-talk with the pro-inflammatory cytokine tumor necrosis factor (TNF). Here, we investigated if selective blocking of NPY receptors, NPY1R or NPY2R, using small molecule non-peptide antagonists (BIBP-3222 for NPY1R and BIIE-0246 for NPY2R) in the colon could attenuate intestinal inflammation by lowering TNF levels (BIBP - N-[(1R)]-4-[(Aminoiminomethyl)amino-1-[[[(4-hydroxyphenyl)methyl]amino]carbonyl]butyl-α-phenylbenzeneacetamide; BIIE - N-[(1S)-4-[(Aminoiminomethyl)amino]-1-[[[2-(3,5-dioxo-1,2-diphenyl-1,2,4-triazolidin-4-yl)ethyl]amino]carbonyl]butyl]-1-[2-[4-(6,11-dihydro-6-oxo-5H-dibenz[b,e]azepin-11-yl)-1-piperazinyl]-2-oxoethyl]-cyclopentaneacetamide). Colitis was induced using dextran sodium sulfate in drinking water for 7 days, or by adoptive T-cell transfer in RAG-/- mice. Colonic biopsies from healthy subjects (n = 10) and IBD patients (n = 34, UC = 20, CD = 14) were cultured ex vivo in presence or absence of NPY antagonists (100 µM, 20 h), and cytokine release into culture supernatants was measured by ELISA. Intracolonic administration of BIBP (but not BIIE) significantly reduced clinical, endoscopic, and histological scores, and serum TNF, interleukin (IL)-6, and IL-12p70 in DSS colitis; it also significantly attenuated histological damage and serum IL-6 in T-cell colitis (P < .05). Intracolonic administration of BIBP significantly reduced TNF and interferon (IFN)-γ release from UC biopsies, whereas BIIE downregulated only IFN-γ (P < .05). BIBP significantly reduced TNF and interferon (IFN)-γ release from UC biopsies, whereas BIIE downregulated only IFN-γ (P < .05). Our data suggest a promising therapeutic value for NPY1R inhibition in alleviating intestinal inflammation in UC, possibly as enemas to IBD patients.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA,Address correspondence to: Bindu Chandrasekharan, PhD, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA ()
| | - Darra Boyer
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Joshua A Owens
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Alexandra A Wolfarth
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Bejan J Saeedi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| | - Tanvi Dhere
- Department of Medicine (Digestive Diseases), Emory University, Atlanta, Georgia, USA
| | - Heba Iskandar
- Department of Medicine (Digestive Diseases), Emory University, Atlanta, Georgia, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Determination of neuropeptide Y Y1 receptor antagonist BIBP 3226 and evaluation of receptor expression based on liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 2020; 412:6625-6632. [PMID: 32728863 DOI: 10.1007/s00216-020-02825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) is a peptide widely distributed throughout the body that is involved in various physiological processes, including the regulation of feeding behavior and energy homeostasis. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl]pentanamide (BIBP 3226) is a selective NPY Y1 receptor antagonist with recognized application in bone regeneration studies, requiring quantification at picogram levels. Hence, BIBP 3226 determination is proposed here by a validated HPLC-MS/MS method, based on a reversed-phase Kinetex® core-shell C8 column (2.6 μm, 150 × 2.1 mm) at 30 °C, elution in isocratic mode using a mixture of acetonitrile and water (30:70, v/v), containing 0.1% (v/v) formic acid, at 0.25 mL min-1, detection in positive ionization mode, and data acquisition in selected reaction monitoring mode. Calibration curves were linear for concentrations ranging from 0.25 to 30 ng mL-1 with LOD and LOQ values as low as 0.1 and 0.3 pg in cell extracts and 16 and 48 pg in supernatant culture media, respectively. BIBP 3226 was successfully determined in cell extracts and supernatants obtained from internalization assays. Using similar exposure conditions, the amount of BIBP 3226 found in breast cancer cells (MCF7) was 72 to 657 times higher than that found in bone marrow cells (Wt C57BL/6 mice), providing an indirect indicator of NPY Y1 receptor expression.
Collapse
|
7
|
Richardson RR, Groenen M, Liu M, Mountford SJ, Briddon SJ, Holliday ND, Thompson PE. Heterodimeric Analogues of the Potent Y1R Antagonist 1229U91, Lacking One of the Pharmacophoric C-Terminal Structures, Retain Potent Y1R Affinity and Show Improved Selectivity over Y4R. J Med Chem 2020; 63:5274-5286. [PMID: 32364733 DOI: 10.1021/acs.jmedchem.0c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cyclic dimeric peptide 1229U91 (GR231118) has an unusual structure and displays potent, insurmountable antagonism of the Y1 receptor. To probe the structural basis for this activity, we have prepared ring size variants and heterodimeric compounds, identifying the specific residues underpinning the mechanism of 1229U91 binding. The homodimeric structure was shown to be dispensible, with analogues lacking key pharmacophoric residues in one dimer arm retaining high antagonist affinity. Compounds 11d-h also showed enhanced Y1R selectivity over Y4R compared to 1229U91.
Collapse
Affiliation(s)
- Rachel R Richardson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Marleen Groenen
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Mengjie Liu
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stephen J Briddon
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Nicholas D Holliday
- Institute of Cell Signalling, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
8
|
Bresso E, Fernandez D, Amora DX, Noel P, Petitot AS, de Sa MEL, Albuquerque EVS, Danchin EGJ, Maigret B, Martins NF. A Chemosensory GPCR as a Potential Target to Control the Root-Knot Nematode Meloidogyne incognita Parasitism in Plants. Molecules 2019; 24:E3798. [PMID: 31652525 PMCID: PMC6832152 DOI: 10.3390/molecules24203798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/10/2023] Open
Abstract
Root-knot nematodes (RKN), from the Meloidogyne genus, have a worldwide distribution and cause severe economic damage to many life-sustaining crops. Because of their lack of specificity and danger to the environment, most chemical nematicides have been banned from use. Thus, there is a great need for new and safe compounds to control RKN. Such research involves identifying beforehand the nematode proteins essential to the invasion. Since G protein-coupled receptors GPCRs are the target of a large number of drugs, we have focused our research on the identification of putative nematode GPCRs such as those capable of controlling the movement of the parasite towards (or within) its host. A datamining procedure applied to the genome of Meloidogyne incognita allowed us to identify a GPCR, belonging to the neuropeptide GPCR family that can serve as a target to carry out a virtual screening campaign. We reconstructed a 3D model of this receptor by homology modeling and validated it through extensive molecular dynamics simulations. This model was used for large scale molecular dockings which produced a filtered limited set of putative antagonists for this GPCR. Preliminary experiments using these selected molecules allowed the identification of an active compound, namely C260-2124, from the ChemDiv provider, which can serve as a starting point for further investigations.
Collapse
Affiliation(s)
- Emmanuel Bresso
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
| | - Diana Fernandez
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
- IRD, CIRAD, Université de Montpellier, IPME, F-34398 Montpellier, France.
| | - Deisy X Amora
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
| | - Philippe Noel
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
| | | | | | | | - Etienne G J Danchin
- INRA, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, F-06903 Sophia-Antipolis, France.
| | - Bernard Maigret
- Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
| | - Natália F Martins
- EMBRAPA Genetic Resources and Biotechnology, Brasilia 70770-917, DF, Brazil.
| |
Collapse
|
9
|
Søndergaard AM, Overgaard CB, Mazur A, Postnov DD, Matchkov VV, Aalkjaer C. Rat mesenteric small artery neurogenic dilatation is predominantly mediated by β 1 -adrenoceptors in vivo. J Physiol 2019; 597:1819-1831. [PMID: 30693527 DOI: 10.1113/jp277368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS The prevailing dogma about neurogenic regulation of vascular tone consists of major vasodilatation caused by CGRP (and possibly substance P) released from sensory-motor nerves and vasoconstriction caused by noradrenaline, ATP and neuropeptode Y release from sympathetic nerves. Most studies on perivascular nerve-mediated vasodilatation are made in vitro. In the present study, we provide evidence indicating that in vivo electrical perivascular nerve stimulation in rat mesenteric small arteries causes a large β1-adrenoceptor-mediated vasodilatation, which contrasts with a smaller vasodilatation caused by endogenous CGRP that is only visible after inhibition of Y1 NPY receptors. ABSTRACT Mesenteric arteries are densely innervated and the nerves are important regulators of vascular tone and hence blood pressure and blood flow. Perivascular sensory-motor nerves have been shown to cause vasodilatation in vitro. However, less is known about their function in vivo. Male Wistar rats (10-12 weeks old; n = 72) were anaesthetized with ketamine (3 mg kg-1 ) and xylazine (0.75 mg kg-1 ) or pentobarbital (60 mg kg-1 ). After a laparotomy, a section of second-order mesenteric artery was visualized in an organ bath after minimal removal of perivascular adipose tissue. The effects of electrical field stimulation (EFS) and drugs on artery diameter and blood flow were recorded with intravital microscopy and laser speckle imaging. EFS caused vasodilatation in arteries constricted with 1 μm U46619 in the presence of 140 μm suramin and 1 μm prazosin. The vasodilatation was inhibited by 1 μm tetrodotoxin and 5 μm guanethidine, although not by the 1 μm of the CGRP receptor antagonist BIBN4096bs. In the presence of 0.3 μm Y1 receptor antagonist BIBP3226, BIBN4096bs partly inhibited the vasodilatation. Atenolol at a concentration 1 μm inhibited the vasodilatation, whereas 0.1 μm of the β2 -adrenoceptor selective antagonist ICI-118,551 had no effect. Increasing the extracellular [K+ ] to 20 mm caused vasodilatation but was converted to vasoconstriction in the presence of 1 μm BIBN4096bs, and constriction to 30 mm potassium was potentiated by BIBN4096bs. Atenolol but not BIBN4096bs increased contraction to EFS in the absence of suramin and prazosin. In mesenteric small arteries of anaesthetized rats, EFS failed to stimulate major dilatation via sensory-motor nerves but induced sympathetic β1 -adrenoceptor-mediated dilatation.
Collapse
Affiliation(s)
| | | | - Aleksandra Mazur
- Department of Biomedicine, Membranes, University of Aarhus, Aarhus, Denmark
| | - Dmitry D Postnov
- Department of Biomedical Sciences, University of Copenhagen, Denmark.,Neurophotonics Center, Boston University, Boston, MA, USA
| | | | - Christian Aalkjaer
- Department of Biomedicine, Membranes, University of Aarhus, Aarhus, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Businaro R, Scaccia E, Bordin A, Pagano F, Corsi M, Siciliano C, Capoano R, Procaccini E, Salvati B, Petrozza V, Totta P, Vietri MT, Frati G, De Falco E. Platelet Lysate-Derived Neuropeptide y Influences Migration and Angiogenesis of Human Adipose Tissue-Derived Stromal Cells. Sci Rep 2018; 8:14365. [PMID: 30254326 PMCID: PMC6156505 DOI: 10.1038/s41598-018-32623-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Neuropeptide Y (NPY), a powerful neurotransmitter of the central nervous system, is a key regulator of angiogenesis and biology of adipose depots. Intriguingly, its peripheral vascular and angiogenic powerful activity is strictly associated to platelets, which are source of clinical hemoderivates, such as platelet lysate (PL), routinely employed in several clinical applications as wound healing, and to preserve ex vivo the progenitor properties of the adipose stromal cells pool. So far, the presence of NPY in PL and its biological effects on the adipose stromal cell fraction (ASCs) have never been investigated. Here, we aimed to identify endogenous sources of NPY such as PL-based preparations and to investigate which biological properties PL-derived NPY is able to exert on ASCs. The results show that PL contains a high amount of NPY, which is in part also excreted by ASCs when stimulated with PL. The protein levels of the three main NPY subtype receptors (Y1, Y2, Y5) are unaltered by stimulation of ASCs with PL, but their inhibition through selective pharmacological antagonists, considerably enhances migration, and a parallel reduction of angiogenic features of ASCs including decrease in VEGF mRNA and intracellular calcium levels, both downstream targets of NPY. The expression of VEGF and NPY is enhanced within the sites of neovascularisation of difficult wounds in patients after treatment with leuco-platelet concentrates. Our data highlight the presence of NPY in PL preparations and its peripheral effects on adipose progenitors.
Collapse
Affiliation(s)
- Rita Businaro
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Eleonora Scaccia
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Antonella Bordin
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Francesca Pagano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Mariangela Corsi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Camilla Siciliano
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | - Raffaele Capoano
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Eugenio Procaccini
- Breast Unit, A.O. U. Università della Campania Luigi Vanvitelli, piazza Luigi Miraglia, 280138, Naples, Italy
| | - Bruno Salvati
- Department of Surgical Sciences, Sapienza University of Rome, V.le del Policlinico 155, 00161, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
| | | | - Maria Teresa Vietri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giacomo Frati
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077, Pozzilli, (IS), Italy
| | - Elena De Falco
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
11
|
Gas-phase structural characterization of neuropeptides Y Y1 receptor antagonists using mass spectrometry: Orbitrap vs triple quadrupole. J Pharm Biomed Anal 2018; 151:227-234. [PMID: 29367160 DOI: 10.1016/j.jpba.2018.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/05/2023]
Abstract
Collision induced dissociation of triple quadrupole mass spectrometer (CID-QqQ) and high-energy collision dissociation (HCD) of Orbitrap were compared for four neuropeptides Y Y1 (NPY Y1) receptor antagonists and showed similar qualitative fragmentation and structural information. Orbitrap high resolution and high mass accuracy HCD fragmentation spectra allowed unambiguous identification of product ions in the range 0.04-4.25 ppm. Orbitrap mass spectrometry showed abundant analyte-specific product ions also observed on CID-QqQ. These results show the suitability of these product ions for use in quantitative analysis by MRM mode. In addition, it was found that all compounds could be determined at levels >1 μg L-1 using the QqQ instrument and that the detection limits for this analyzer ranged from 0.02 to 0.6 μg L-1. Overall, the results obtained from experiments acquired in QqQ show a good agreement with those acquired from the Orbitrap instrument allowing the use of this relatively inexpensive technique (QqQ) for accurate quantification of these compounds in clinical and academic applications.
Collapse
|
12
|
Evidence for the involvement of neuropeptide Y in the antidepressant effect of imipramine in type 2 diabetes. Brain Res 2016; 1646:1-11. [PMID: 27208493 DOI: 10.1016/j.brainres.2016.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Depression is a major comorbidity factor of diabetes and the outcome of one disorder influences the other. Our aim is to scrutinize the link between the two, if any. Since neuropeptide Y (NPY) system plays an important role in regulating central glucose sensing mechanisms, and also depression-related behavior, we test the involvement of NPY in the modulation of depression in type 2 diabetic mice. The mice were fed on high-fat diet and administered with low dose of streptozotocin to induce type 2 diabetes. These animals showed augmented plasma glucose and increased immobility time in tail suspension test (TST) suggesting induction of diabetes and depression. Intracerebroventricular (icv) treatment with NPY or NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY and intraperitoneal treatment with imipramine decreased immobility time. However, opposite effect was produced by NPY Y1 receptor antagonist BIBP3226 (icv). Moreover, reduced immobility time by imipramine was potentiated by NPY and [Leu(31), Pro(34)]-NPY, but attenuated by BIBP3226. Immunohistochemical analysis of the different nuclei of the extended amygdala, the region primarily involved in affective disorders, was undertaken. A significant reduction in NPY immunoreactivity in the central nucleus of amygdala, nucleus accumbens shell and lateral division of bed nucleus of stria terminalis of the diabetic mice was noticed; the response was ameliorated in imipramine treated animals. The results suggest that decreased NPY expression in the extended amygdala might be causally linked with the depression induced following type 2 diabetes and that the antidepressant action of imipramine in diabetic mice might be mediated by NPY-NPY Y1 receptor system.
Collapse
|
13
|
Böhme D, Beck-Sickinger AG. Controlling Toxicity of Peptide-Drug Conjugates by Different Chemical Linker Structures. ChemMedChem 2015; 10:804-14. [DOI: 10.1002/cmdc.201402514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/02/2015] [Indexed: 01/17/2023]
|
14
|
Mountford SJ, Liu M, Zhang L, Groenen M, Herzog H, Holliday ND, Thompson PE. Synthetic routes to the Neuropeptide Y Y1 receptor antagonist 1229U91 and related analogues for SAR studies and cell-based imaging. Org Biomol Chem 2014; 12:3271-81. [PMID: 24733083 DOI: 10.1039/c4ob00176a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potent Y1 receptor antagonist, 1229U91 has an unusual cyclic dimer structure that makes syntheses of analogue series quite challenging. We have examined three new routes to the synthesis of such peptides that has given access to novel structural variants including heterodimeric compounds, ring size variants and labelled conjugates. These compounds, including a fluorescently labelled analogue VIII show potent antagonism that can be utilised in studying Y1 receptor pharmacology.
Collapse
Affiliation(s)
- Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Boukharta L, Gutiérrez-de-Terán H, Aqvist J. Computational prediction of alanine scanning and ligand binding energetics in G-protein coupled receptors. PLoS Comput Biol 2014; 10:e1003585. [PMID: 24743773 PMCID: PMC3990513 DOI: 10.1371/journal.pcbi.1003585] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/12/2014] [Indexed: 11/25/2022] Open
Abstract
Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones.
Collapse
Affiliation(s)
- Lars Boukharta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Aqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
16
|
Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system. J Neurosci 2013; 33:12705-17. [PMID: 23904607 DOI: 10.1523/jneurosci.3132-12.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.
Collapse
|
17
|
Kotagale NR, Paliwal NP, Aglawe MM, Umekar MJ, Taksande BG. Possible involvement of neuropeptide Y Y1 receptors in antidepressant like effect of agmatine in rats. Peptides 2013; 47:7-11. [PMID: 23816796 DOI: 10.1016/j.peptides.2013.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/21/2022]
Abstract
Agmatine and neuropeptide Y (NPY) are widely distributed in central nervous system and critically involved in modulation of depressive behavior in experimental animals. However their mutual interaction, if any, in regulation of depression remain largely unexplored. In the present study we explored the possible interaction between agmatine and neuropeptide Y in regulation of depression like behavior in forced swim test. We found that acute intracerebroventricular (i.c.v.) administration of agmatine (20-40μg/rat), NPY (5 and 10μg/rat) and NPY Y1 receptor agonist, [Leu(31), Pro(34)]-NPY (0.4 and 0.8ng/rat) dose dependently decreased immobility time in forced swim test indicating their antidepressant like effects. In combination studies, the antidepressant like effect of agmatine (10μg/rat) was significantly potentiated by NPY (1 and 5μg/rat, icv) or [Leu(31), Pro(34)]-NPY (0.2 and 0.4ng/rat, icv) pretreatment. Conversely, pretreatment of animals with NPY Y1 receptor antagonist, BIBP3226 (0.1ng/rat, i.c.v.) completely blocked the antidepressant like effect of agmatine (20-40μg/rat) and its synergistic effect with NPY (1μg/rat, icv) or [Leu(31), Pro(34)]-NPY (0.2ng/rat, icv). The results of the present study showed that, agmatine exerts antidepressant like effects via NPYergic system possibly mediated by the NPY Y1 receptor subtypes and suggest that interaction between agmatine and neuropeptide Y may be relevant to generate the therapeutic strategies for the treatment of depression.
Collapse
Affiliation(s)
- Nandkishor R Kotagale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441 002, MS, India
| | | | | | | | | |
Collapse
|
18
|
Wang Q, Whim MD. Stress-induced changes in adrenal neuropeptide Y expression are regulated by a negative feedback loop. J Neurochem 2013; 125:16-25. [PMID: 23311866 DOI: 10.1111/jnc.12150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y is a co-transmitter that is synthesized by chromaffin cells in the adrenal medulla. During the fight-or-flight response these cells release NPY in addition to epinephrine and norepinephrine. Following the stress-induced reflex, the levels of NPY are increased as part of a homeostatic response that modulates catecholaminergic signaling. Here, we examined the control of NPY expression in mice after brief exposure to the cold water forced swim test. This treatment led to a shift in NPY expression between two populations of chromaffin cells that reversed over the course of 1 week. When NPY(GFP) BAC transgenic animals were exposed to stress, there was an increase in cytoplasmic, non-secretable GFP, indicating that stress increased NPY promoter activity. In vivo blockage of Y2 (but not Y1 or Y5) receptors increased basal adrenal NPY expression and so modulated the effects of stress. We conclude that release of NPY mediates a negative feedback loop that inhibits its own expression. Thus, the levels of NPY are determined by a balance between the potentiating effects of stress and the tonic inhibitory actions of Y2 receptors. This may be an efficient way to ensure the levels of this modulator do not decline following intense sympathetic activity.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | | |
Collapse
|
19
|
Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, Rinker JA, Jijon AM, Peňa J, Navarro M, Kash TL, Thiele TE. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 2012; 37:1409-21. [PMID: 22218088 PMCID: PMC3327846 DOI: 10.1038/npp.2011.327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
Collapse
Affiliation(s)
- Angela M Sparrow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Chia Li
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin R Cox
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Ana M Jijon
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - José Peňa
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology, University of North Carolina Davie Hall, CB #3270 Chapel Hill, NC 27599-3270, USA, Tel: +1 919 966 1519, Fax: +1 919-962-2537, E-mail:
| |
Collapse
|
20
|
Mercer RE, Chee MJS, Colmers WF. The role of NPY in hypothalamic mediated food intake. Front Neuroendocrinol 2011; 32:398-415. [PMID: 21726573 DOI: 10.1016/j.yfrne.2011.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/17/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved neuropeptide with orexigenic actions in discrete hypothalamic nuclei that plays a role in regulating energy homeostasis. NPY signals via a family of high affinity receptors that mediate the widespread actions of NPY in all hypothalamic nuclei. These actions are also subject to tight, intricate regulation by numerous peripheral and central energy balance signals. The NPY system is embedded within a densely-redundant network designed to ensure stable energy homeostasis. This redundancy may underlie compensation for the loss of NPY or its receptors in germline knockouts, explaining why conventional knockouts of NPY or its receptors rarely yield a marked phenotypic change. We discuss insights into the hypothalamic role of NPY from studies of its physiological actions, responses to genetic manipulations and interactions with other energy balance signals. We conclude that numerous approaches must be employed to effectively study different aspects of NPY action.
Collapse
Affiliation(s)
- Rebecca E Mercer
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|
21
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
22
|
Goyal SN, Upadhya MA, Kokare DM, Bhisikar SM, Subhedar NK. Neuropeptide Y modulates the antidepressant activity of imipramine in olfactory bulbectomized rats: involvement of NPY Y1 receptors. Brain Res 2009; 1266:45-53. [PMID: 19254701 DOI: 10.1016/j.brainres.2009.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/07/2009] [Accepted: 02/15/2009] [Indexed: 10/21/2022]
Abstract
Since long-term treatment with imipramine increases the neuropeptide Y (NPY) levels in the frontal cortex and hypothalamus, the possibility exists that the antidepressant action of imipramine may be mediated via the NPY Y1 receptors. Bilateral olfactory bulbectomy (OBX) resulted in hyperactivity (increased number of ambulation, rearing and grooming episodes) in open field test (OFT) suggesting a depression-like condition. Chronic (14 days) administration of NPY, NPY Y1/Y5 receptor agonist [Leu(31), Pro(34)]-NPY (intracerebroventricular, i.c.v.) or tricyclic antidepressant imipramine (intraperitoneal) to OBX rats dose-dependently resulted in decreased hyperactivity in OFT, while selective NPY Y1 receptor antagonist BIBP3226 (i.c.v.) produced opposite effects. The antidepressant actions of imipramine were enhanced by co-administration of NPY or [Leu(31), Pro(34)]-NPY, and antagonized by BIBP3226 given at sub-effective doses. The data suggest that NPY, acting via NPY Y1 receptors, may be involved in antidepressant action of imipramine in OBX rats.
Collapse
Affiliation(s)
- Sameer N Goyal
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110 029, India
| | | | | | | | | |
Collapse
|
23
|
Hodges GJ, Kosiba WA, Zhao K, Johnson JM. The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans. J Appl Physiol (1985) 2008; 105:233-40. [PMID: 18483164 DOI: 10.1152/japplphysiol.90412.2008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presynaptic blockade of cutaneous vasoconstrictor nerves (VCN) abolishes the axon reflex (AR) during slow local heating (SLH) and reduces the vasodilator response. In a two-part study, forearm sites were instrumented with microdialysis fibers, local heaters, and laser-Doppler flow probes. Sites were locally heated from 33 to 40 degrees C over 70 min. In part 1, we tested whether this effect of VCN acted via nitric oxide synthase (NOS). In five subjects, treatments were as follows: 1) untreated; 2) bretylium, preventing neurotransmitter release; 3) N(G)-nitro-L-arginine methyl ester (L-NAME) to inhibit NOS; and 4) combined bretylium + L-NAME. At treated sites, the AR was absent, and there was an attenuation of the ultimate vasodilation (P < 0.05), which was not different among those sites (P > 0.05). In part 2, we tested whether norepinephrine and/or neuropeptide Y is involved in the cutaneous vasodilator response to SLH. In seven subjects, treatments were as follows: 1) untreated; 2) propranolol and yohimbine to antagonize alpha- and beta-receptors; 3) BIBP-3226 to antagonize Y(1) receptors; and 4) combined propranolol + yohimbine + BIBP-3226. Treatment with propranolol + yohimbine or BIBP-3226 significantly increased the temperature at which AR occurred (n = 4) or abolished it (n = 3). The combination treatment consistently eliminated it. Importantly, ultimate vasodilation with SLH at the treated sites was significantly (P < 0.05) less than at the control. These data suggest that norepinephrine and neuropeptide Y are important in the initiation of the AR and for achieving a complete vasodilator response. Since VCN and NOS blockade in combination do not have an inhibition greater than either alone, these data suggest that VCN promote heat-induced vasodilation via a nitric oxide-dependent mechanism.
Collapse
Affiliation(s)
- Gary J Hodges
- Department of Physiology, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
24
|
Dozio E, Ruscica M, Feltrin D, Motta M, Magni P. Cholinergic regulation of neuropeptide Y synthesis and release in human neuroblastoma cells. Peptides 2008; 29:491-5. [PMID: 18155321 DOI: 10.1016/j.peptides.2007.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
Abstract
The biosynthesis and release of neuropeptide Y (NPY) is regulated by several factors. Here, the effect of the muscarinic agonist carbachol on NPY biosynthesis and release was analyzed utilizing the SH-SY5Y human neuroblastoma cell line. We observed that: (a) carbachol moderately increased the post-translational cleavage of proNPY to NPY; (b) carbachol treatment stimulated NPY accumulation into the medium in a time- and dose-related manner; (c) protein kinase C activation is involved in carbachol-mediated NPY synthesis/release (>6h). In conclusion, the present observations support the hypothesis that muscarinic receptor activation regulates the biosynthesis and secretion of NPY.
Collapse
Affiliation(s)
- Elena Dozio
- Istituto di Endocrinologia, Center of Excellence on Neurodegenerative Diseases and Center for Endocrinological Oncology, University of Milan, Milano, Italy
| | | | | | | | | |
Collapse
|
25
|
De Mey JGR, Megens R, Fazzi GE. Functional antagonism between endogenous neuropeptide Y and calcitonin gene-related peptide in mesenteric resistance arteries. J Pharmacol Exp Ther 2008; 324:930-7. [PMID: 18055875 DOI: 10.1124/jpet.107.133660] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
To test the hypothesis that endogenous neuropeptide Y (NPY) counteracts the vasodilator effects of calcitonin gene-related peptide (CGRP), we used isolated mesenteric resistance arteries of rats and mice. With immunohistochemistry, we observed CGRP-containing fibers along and in the vicinity of a subset of NPY- or tyrosine hydroxylase-immunoreactive fibers. The CGRP1 receptor component calcitonin-related-like receptor was expressed by periarterial nerves and smooth muscle cells, whereas receptor activity-modifying protein 1 was observed primarily on the smooth muscle. In organ chambers, exogenous CGRP caused relaxations that were reversed by exogenous NPY. The effects were inhibited by 1-piperidinecarboxamide, N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]-carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)-methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl) (BIBN4096BS, a CGRP1 receptor antagonist; pK(B) = 8.54 +/- 0.52) and (R)-NZ-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]argininamide (BIBP3226, a Y1 antagonist; pK(B) = 7.00 +/- 0.49), respectively. Pretreatment with capsaicin (1 muM; 20 min) and the presence of BIBN4096BS (20 nM) increased contractile responses to K(+) (20-40 mM) and electrical field stimulation (EFS; 1-32 Hz). NPY increased contractile responses to K(+) and BIBP3226 (400 nM) reduced contractile responses to EFS. These effects were inhibited by capsaicin and BIBN4096BS, respectively. Furthermore, the relaxing effect of exogenous CGRP (10 nM) during phenylephrine-induced contraction (30 muM) was reversed by EFS, and this effect was reduced in the presence of BIBP3226. We confirmed that bioactive concentrations of endogenous CGRP and NPY can be released from periarterial sensory-motor and sympathetic nerves, respectively, and we demonstrate for the first time functional antagonism between endogenous NPY and CGRP at the level of the smooth muscle.
Collapse
Affiliation(s)
- Jo G R De Mey
- Department of Pharmacology and Toxicology, Universiteit Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | | | | |
Collapse
|
26
|
Saurer TB, Ijames SG, Carrigan KA, Lysle DT. Neuroimmune mechanisms of opioid-mediated conditioned immunomodulation. Brain Behav Immun 2008; 22:89-97. [PMID: 17689049 PMCID: PMC4031923 DOI: 10.1016/j.bbi.2007.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/21/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022] Open
Abstract
Morphine administration elicits pronounced effects on the immune system, including decreases in natural killer (NK) cell activity and lymphocyte mitogenic responsiveness. These immune alterations can become conditioned to environmental stimuli that predict morphine as a result of Pavlovian conditioning processes. Prior work in our laboratory has shown that acute morphine exposure produces dopamine-dependent reductions of NK cell activity that are mediated peripherally by neuropeptide Y Y1 receptors. The present study examined the involvement of dopamine D1 and neuropeptide Y Y1 receptors in the conditioned immunomodulatory effects of morphine. Rats received two conditioning sessions during which an injection of morphine was paired with a distinctive environment which served as the conditioned stimulus (CS). The results show that systemic administration of the D1 antagonist SCH-23390 prior to CS re-exposure prevented the conditioned suppression of splenic NK activity but did not alter conditioned decreases in mitogen-induced lymphocyte proliferation. Furthermore, bilateral microinjections of SCH-23390 directly into the nucleus accumbens shell fully blocked conditioned changes in NK activity. In a subsequent manipulation, subcutaneous injection of the Y1 receptor antagonist BIBP3226 prior to CS re-exposure was also shown to prevent conditioned effects on NK activity. Collectively, these findings provide evidence that the nucleus accumbens shell plays an important role in conditioned immunomodulation and further suggest that the conditioned and unconditioned immunomodulatory effects of opioids involve similar receptor mechanisms.
Collapse
Affiliation(s)
| | | | | | - Donald T. Lysle
- Corresponding author. Tel.: +1-919-962-4149; Fax: +1-919-962-2537. (D. T. Lysle)
| |
Collapse
|
27
|
Abstract
Sensing of peripheral hormones and nutrients by the hypothalamus plays an important role in maintaining peripheral glucose homeostasis. The hormone resistin impairs the response to insulin in liver and other peripheral tissues. Here we demonstrate that in normal mice resistin delivered in the lateral cerebral ventricle increased endogenous glucose production during hyperinsulinemic-euglycemic clamp, consistent with induction of hepatic insulin resistance. In agreement, central resistin inhibited Akt phosphorylation and increased the expression of glucose-6-phosphatase, the enzyme regulating glucose output in the liver. Central resistin induced expression of proinflammatory cytokines as well as suppressor of cytokine signaling-3, a negative regulator of insulin action in liver. Central infusion of resistin was associated with neuronal activation in the arcuate, paraventricular and dorsomedial nuclei, and increased neuropeptide Y (NPY) expression in the hypothalamus. The effects of central resistin on glucose production as well as hepatic expression of proinflammatory cytokines were abrogated in mice lacking NPY. Pretreatment of wild-type mice with antagonists of the NPY Y1 receptor, but not the Y5 receptor, also prevented the effects of central resistin. Together, these results suggest that resistin action on NPY neurons is an important regulator of hepatic insulin sensitivity.
Collapse
|
28
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
29
|
Jacques D, Abdel-Samad D. Neuropeptide Y (NPY) and NPY receptors in the cardiovascular system: implication in the regulation of intracellular calcium. Can J Physiol Pharmacol 2007; 85:43-53. [PMID: 17487244 DOI: 10.1139/y06-106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3-dimensional confocal microscopy technique has allowed us to identify the presence of yet another cardioactive factor and its receptor, namely neuropeptide Y (NPY) and its Y1 receptor, at the level of vascular smooth muscle cells and heart cells including endocardial endothelial cells (EECs). Using this technique, we also demonstrated that NPY is able to induce an increase in both cytosolic and nuclear calcium in all these cell types. Furthermore, besides being expressed at the level of EECs, NPY is also released from these cells following a sustained increase of intracellular Ca2+. This suggests the ability of NPY to contribute to the regulation of the excitation-secretion coupling of EECs and the excitation-contraction coupling of cardiomyocytes and vascular smooth muscle cells.
Collapse
MESH Headings
- Aniline Compounds
- Aorta/cytology
- Aorta/metabolism
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Dose-Response Relationship, Drug
- Endocardium/cytology
- Endocardium/drug effects
- Endocardium/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Fluorescent Dyes
- Humans
- Microscopy, Confocal/methods
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocardial Contraction
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/metabolism
- Neuropeptide Y/metabolism
- Neuropeptide Y/pharmacology
- Receptors, Neuropeptide Y/agonists
- Receptors, Neuropeptide Y/metabolism
- Time Factors
- Xanthenes
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Anatomy and Cell Biology, University of Sherbrooke, Sherbrooke, Canada.
| | | |
Collapse
|
30
|
Allen AR, Kelso EJ, Bell D, Zhao Y, Dickson P, McDermott BJ. Modulation of contractile function through neuropeptide Y receptors during development of cardiomyocyte hypertrophy. J Pharmacol Exp Ther 2006; 319:1286-96. [PMID: 16973886 DOI: 10.1124/jpet.106.110445] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.
Collapse
MESH Headings
- Animals
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Calcium/pharmacology
- Cardiotonic Agents/pharmacology
- Cell Differentiation/drug effects
- Cell Separation
- Cell Size/drug effects
- Electric Stimulation
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/pathology
- Isoproterenol/pharmacology
- Male
- Membrane Proteins/metabolism
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Peptide Fragments
- Peptide YY/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Neuropeptide Y/agonists
- Receptors, Neuropeptide Y/antagonists & inhibitors
- Receptors, Neuropeptide Y/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Adrian R Allen
- Cardiovascular Research Group, School of Medicine and Dentistry, Queen's University Belfast, Belfast, United Kingdom
| | | | | | | | | | | |
Collapse
|
31
|
Saurer TB, Ijames SG, Lysle DT. Neuropeptide Y Y1 receptors mediate morphine-induced reductions of natural killer cell activity. J Neuroimmunol 2006; 177:18-26. [PMID: 16766046 DOI: 10.1016/j.jneuroim.2006.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Morphine suppresses a number of immune parameters, such as natural killer (NK) cell activity and lymphocyte proliferation, by acting through mu-opioid receptors in the central nervous system. Prior studies have implicated the sympathetic nervous system in mediating the immunomodulatory effects of acute morphine treatment. However, the peripheral mechanism whereby morphine inhibits NK cell activity is not fully understood. The aim of the present study was to investigate the role of the sympathetic transmitter neuropeptide Y (NPY) in mediating morphine-induced immune alterations. The results showed that administration of the selective NPY Y1 receptor antagonist BIBP3226 blocked morphine's effect on splenic NK activity but did not attenuate the suppression splenocyte proliferative responses to Con-A or LPS. Furthermore, intravenous NPY administration produced a dose-dependent inhibition of splenic NK activity but did not suppress lymphocyte proliferation. Recent studies from our laboratory have demonstrated that morphine modulates NK activity through a central mechanism that requires the activation of dopamine D1 receptors in the nucleus accumbens. Results from the present study showed that microinjection of the D1 receptor agonist SKF-38393 into the nucleus accumbens shell induced a suppression of NK activity that was reversed by BIBP3226. Collectively, these findings demonstrate that NPY Y1 receptors mediate morphine's suppressive effect on NK activity and further suggest that opioid-induced increases in nucleus accumbens D1 receptor activation inhibit splenic NK activity via NPY released from the sympathetic nervous system.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Anti-Anxiety Agents/pharmacology
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Disease Models, Animal
- Dopamine Agonists/pharmacology
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Drug Interactions/physiology
- Immune Tolerance/drug effects
- Immune Tolerance/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Male
- Morphine/pharmacology
- Morphine Dependence/complications
- Morphine Dependence/immunology
- Morphine Dependence/physiopathology
- Narcotics/pharmacology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/immunology
- Neuropeptide Y/immunology
- Neuropeptide Y/metabolism
- Neuropeptide Y/pharmacology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/immunology
- Nucleus Accumbens/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/immunology
- Receptors, Dopamine D1/metabolism
- Receptors, Neuropeptide Y/drug effects
- Receptors, Neuropeptide Y/immunology
- Receptors, Neuropeptide Y/metabolism
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/immunology
- Sympathetic Nervous System/physiopathology
Collapse
Affiliation(s)
- Timothy B Saurer
- Department of Psychology, Davie Hall, CB#3270, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.
| | | | | |
Collapse
|
32
|
Fang Q, Guo J, He F, Peng YL, Chang M, Wang R. In vivo inhibition of neuropeptide FF agonism by BIBP3226, an NPY Y1 receptor antagonist. Peptides 2006; 27:2207-13. [PMID: 16762456 DOI: 10.1016/j.peptides.2006.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
BIBP3226 {(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-argininamide} was recently shown to display relatively high affinities for neuropeptide FF (NPFF) receptors and exhibit antagonist activities towards NPFF receptors in vitro. The present study was undertaken to investigate the antagonistic effects of BIBP3226 on several in vivo pharmacologic profiles induced by exogenous NPFF and NPVF. (1) BIBP3226 (5 nmol) injected into the third ventricle completely antagonized the hypothermic effects of NPFF (30 nmol) and NPVF (30 nmol) after cerebral administration in mice; (2) BIBP3226 (5 nmol, i.c.v.) prevented the anti-morphine actions of NPFF (10 nmol, i.c.v.) in the mouse tail-flick assay; (3) in urethane-anaesthetized rats, both NPFF (200 nmol/kg, i.v.) and NPVF (200 nmol/kg, i.v.) increased the mean arterial blood pressure, which were significantly reduced by pretreatment with BIBP3226 (500 nmol/kg, i.v.). Collectively, these data suggest that BIBP3226, a mixed antagonist of NPY Y1 and NPFF receptors, shows in vivo antagonistic effects on NPFF receptors. In addition, it seems to be clear that the in vivo pharmacological profiles of NPFF are mediated directly by NPFF receptors.
Collapse
Affiliation(s)
- Quan Fang
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Salio C, Lossi L, Ferrini F, Merighi A. Neuropeptides as synaptic transmitters. Cell Tissue Res 2006; 326:583-98. [PMID: 16847638 DOI: 10.1007/s00441-006-0268-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/31/2006] [Indexed: 12/20/2022]
Abstract
Neuropeptides are small protein molecules (composed of 3-100 amino-acid residues) that have been localized to discrete cell populations of central and peripheral neurons. In most instances, they coexist with low-molecular-weight neurotransmitters within the same neurons. At the subcellular level, neuropeptides are selectively stored, singularly or more frequently in combinations, within large granular vesicles. Release occurs through mechanisms different from classical calcium-dependent exocytosis at the synaptic cleft, and thus they account for slow synaptic and/or non-synaptic communication in neurons. Neuropeptide co-storage and coexistence can be observed throughout the central nervous system and are responsible for a series of functional interactions that occur at both pre- and post-synaptic levels. Thus, the subcellular site(s) of storage and sorting mechanisms into different neuronal compartments are crucial to the mode of release and the function of neuropeptides as neuronal messengers.
Collapse
Affiliation(s)
- Chiara Salio
- Dipartimento di Morfofisiologia Veterinaria and Rita Levi Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095, Grugliasco (TO), Italy
| | | | | | | |
Collapse
|
34
|
Gradin KA, Buus CL, Li JY, Frøbert O, Simonsen U. Neuropeptide Y2 receptors are involved in enhanced neurogenic vasoconstriction in spontaneously hypertensive rats. Br J Pharmacol 2006; 148:703-13. [PMID: 16715120 PMCID: PMC1751866 DOI: 10.1038/sj.bjp.0706774] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/24/2006] [Accepted: 04/03/2006] [Indexed: 11/09/2022] Open
Abstract
1. The present study addressed the role of neuropeptide (NPY) Y2 receptors in neurogenic contraction of mesenteric resistance arteries from female spontaneously hypertensive rats (SHR). Arteries were suspended in microvascular myographs, electrical field stimulation (EFS) was performed, and protein evaluated by Western blotting and immunohistochemistry. 2. In vasopressin-activated endothelium-intact arteries, NPY and fragments with selectivity for Y1 receptors, [Leu31,Pro34]NPY, Y2 receptors, NPY(13-36), and rat pancreatic polypeptide evoked more pronounced contractions in segments from SHR than in Wistar Kyoto (WKY) arteries, even in the presence of the Y1 receptor antagonist, BIBP3226 (0.3 microM, (R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide). 3. In the presence of prazosin and during vasopressin activation, EFS-evoked contractions were larger in arteries from SHR compared to WKY. EFS contractions were enhanced by the Y2 receptor selective antagonist BIIE0246TF (0.5 microM, (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide), reduced by BIBP3226, and abolished by the combination of BIBP3226 and BIIE0246TF. 4. Immunoblotting showed NPY Y1 and Y2 receptor expression to be similar in arteries from WKY and SHR, although a specific Y2 receptor band at 80 kDa was detected only in arteries from WKY. 5. Immunoreaction for NPY was enhanced in arteries from SHR. In contrast to arteries from WKY, BIIE0246TF increased NPY immunoreactivity in EFS-stimulated arteries from SHR. 6. The present results suggest that postjunctional neuropeptide Y1 and Y2 receptors contribute to neurogenic contraction of mesenteric small arteries. Moreover, both enhanced NPY content and altered neuropeptide Y1 and Y2 receptor activation apparently contribute to the enhanced neurogenic contraction of arteries from SHR.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Institute for Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Carsten L Buus
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Jia-Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, University of Lund, Lund, Sweden
| | - Ole Frøbert
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Sjödin P, Holmberg SKS, Akerberg H, Berglund MM, Mohell N, Larhammar D. Re-evaluation of receptor-ligand interactions of the human neuropeptide Y receptor Y1: a site-directed mutagenesis study. Biochem J 2006; 393:161-9. [PMID: 16097949 PMCID: PMC1383674 DOI: 10.1042/bj20050708] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interactions of the human NPY (neuropeptide Y) receptor Y1 with the two endogenous agonists NPY and peptide YY and two non-peptide antagonists were investigated using site-directed mutagenesis at 17 positions. The present study was triggered by contradictions among previously published reports and conclusions that seemed inconsistent with sequence comparisons across species and receptor subtypes. Our results show that Asp287, at the border between TM (transmembrane) region 6 and EL3 (extracellular loop 3) influences peptide binding, while two aspartic residues in EL2 do not, in agreement with some previous studies but in disagreement with others. A hydrophobic pocket of the Y1 receptor consisting of Tyr100 (TM2), Phe286 (TM6) and His298 (EL3) has been proposed to interact with the amidated C-terminus of NPY, a theory that is unsupported by sequence comparisons between Y1, Y2 and Y5. Nevertheless, our results confirm that these amino acid residues are critical for peptide binding, but probably interact with NPY differently than proposed previously. Studies with the Y1-selective antagonist SR120819A identified a new site of interaction at Asn116 in TM3. Position Phe173 in TM4 is also important for binding of this antagonist. In contrast with previous reports, we found that Phe173 is not crucial for the binding of BIBP3226, another selective Y1 receptor antagonist. Also, we found that position Thr212 (TM5) is important for binding of both antagonists. Our mutagenesis results and our three-dimensional model of the receptor based on the high-resolution structure of bovine rhodopsin suggest new interactions for agonist as well as antagonist binding to the Y1 receptor.
Collapse
Affiliation(s)
- Paula Sjödin
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN. Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci 2006; 25:7406-19. [PMID: 16093392 PMCID: PMC6725307 DOI: 10.1523/jneurosci.1008-05.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fast inhibitory transmitter GABA is robustly expressed in the arcuate nucleus (ARC) and appears to play a major role in hypothalamic regulation of endocrine function and energy homeostasis. Previously, it has not been possible to record selectively from GABA cells, because they have no defining morphological or physiological characteristics. Using transgenic mice that selectively express GFP (green fluorescent protein) in GAD67 (glutamic acid decarboxylase 67)-synthesizing cells, we identified ARC GABA neurons (n > 300) and used whole-cell recording to study their physiological response to neuropeptide Y (NPY), the related peptide YY(3-36) (PYY(3-36)), and pancreatic polypeptide (PP), important modulators of ARC function. In contrast to other identified ARC cells in which NPY receptor agonists were reported to generate excitatory actions, we found that NPY consistently reduced the firing rate and hyperpolarized GABA neurons including neuroendocrine GABA neurons identified by antidromic median eminence stimulation. The inhibitory NPY actions were mediated by postsynaptic activation of G-protein-linked inwardly rectifying potassium (GIRK) and depression of voltage-gated calcium currents via Y1 and Y2 receptor subtypes. Additionally, NPY reduced spontaneous and evoked synaptic glutamate release onto GABA neurons by activation of Y1 and Y5 receptors. The peptide PYY(3-36), a peripheral endocrine signal that can act in the brain, also inhibited GABA neurons, including identified neuroendocrine cells, by activating GIRK conductances and depressing calcium currents. The endogenous Y4 agonist PP depressed the activity of GABA-expressing neurons mainly by presynaptic attenuation of glutamate release. Together, these results show that the family of neuropeptide Y modulators reduces the activity of inhibitory GABA neurons in the ARC by multiple presynaptic and postsynaptic mechanisms.
Collapse
|
37
|
Dumont Y, Quirion R. An overview of neuropeptide Y: pharmacology to molecular biology and receptor localization. EXS 2006:7-33. [PMID: 16382995 DOI: 10.1007/3-7643-7417-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 Boul. LaSalle, Montreal, QC H4H 1R3, Canada.
| | | |
Collapse
|
38
|
Donoso MV, Delpiano AM, Huidobro-Toro JP. Modulator role of neuropeptide Y in human vascular sympathetic neuroeffector junctions. EXS 2005:65-76. [PMID: 16382997 DOI: 10.1007/3-7643-7417-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) studies identified the mRNA coding for the Y1 and Y2 receptors in human mammary artery/vein and saphenous vein biopsies. Y1 receptors are expressed in vascular smooth muscles and potentiate the contractile action of sympathetic co-transmitters, adenosine triphosphate (ATP) and noradrenaline (NA); BIBP 3226, a competitive Y1 receptor antagonist, blocked the neuropeptide Y (NPY)-induced modulation. The Y2 receptor is expressed in sympathetic nerves terminals and modulates the pool of sympathetic co-transmitters released at the neuroeffector junction. NPY plays a dual role as a modulator of sympathetic co-transmission; it facilitates vascular smooth muscle reactivity and modulates the presynaptic release of ATP and NA. Sympathetic reflexes regulate human vascular resistance, where NPY plays a modulator role of paramount importance following increased sympathetic discharges, such as stress and vascular disease.
Collapse
|
39
|
Tu B, Timofeeva O, Jiao Y, Nadler JV. Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci 2005; 25:1718-29. [PMID: 15716408 PMCID: PMC6725947 DOI: 10.1523/jneurosci.4835-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly inhibited synaptic transmission at recurrent mossy fiber synapses on dentate granule cells but not at perforant path or associational-commissural synapses. It also reduced the frequency of miniature EPSCs (mEPSCs) in granule cells from epileptic, but not control, rats and depressed granule cell epileptiform activity dependent on the recurrent mossy fiber pathway. These actions of NPY were mediated by activation of presynaptic Y2 receptors. The Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]argininamide (BIIE0246) not only blocked the effects of NPY but also enhanced recurrent mossy fiber synaptic transmission, the frequency of mEPSCs, and the magnitude of mossy fiber-evoked granule cell epileptiform activity when applied by itself. Several observations supported the selectivity of BIIE0246. These results suggest that even the spontaneous release of NPY (or an active metabolite) from recurrent mossy fibers is sufficient to depress glutamate release from this pathway. Tonic release of NPY accounts at least partially for the low probability of glutamate release from recurrent mossy fiber terminals, impedes the ability of these fibers to synchronize granule cell discharge, and may protect the hippocampus from seizures that involve the entorhinal cortex. This pathway may synchronize granule cell discharge more effectively in human brain than in rat because of its lower expression of NPY.
Collapse
Affiliation(s)
- Bin Tu
- Department of Pharmacology and Cancer Biolog, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
40
|
Dautzenberg FM, Neysari S. Irreversible binding kinetics of neuropeptide Y ligands to Y2 but not to Y1 and Y5 receptors. Pharmacology 2005; 75:21-9. [PMID: 15908753 DOI: 10.1159/000085897] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 03/29/2005] [Indexed: 01/10/2023]
Abstract
Neuropeptide Y (NPY) receptors type 1 (Y1), type 2 Y2) and type 5 (Y5) were tested for their kinetic properties to bind radiolabeled NPY or PYY. Rapid association and dissociation was observed with recombinant (HEK293 cells) and endogenous (SK-N-MC cells) human Y1 and recombinant mouse Y5 receptors. Recombinant (HEK293) and endogenous (SMS-KAN) human Y2 receptors bound both radiolabels comparable to the Y1 receptors, but only minimal ( approximately 20%) dissociation of both radiolabels was observed after long incubation time (>8 h). Furthermore, neither peptide nor small molecule Y2 ligands efficiently competed for binding to Y2 receptors once association binding had been initiated. The Y2-selective antagonist BIIE0246 behaved as an insurmountable antagonist in functional assays when pre-incubated for 30 min before agonist addition, but was a competitive antagonist when co-applied with the agonist. These data show that Y2 receptors in contrast to Y1 and Y5 receptors bind their ligands in an irreversible manner.
Collapse
|
41
|
Fu LY, Acuna-Goycolea C, van den Pol AN. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J Neurosci 2005; 24:8741-51. [PMID: 15470140 PMCID: PMC6729969 DOI: 10.1523/jneurosci.2268-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurons that release neuropeptide Y (NPY) have important effects on hypothalamic homeostatic regulation, including energy homeostasis, and innervate hypocretin neurons. Using whole-cell patch-clamp recording, we explored NPY actions on hypocretin cells identified by selective green fluorescent protein expression in mouse hypothalamic slices. NPY reduced spike frequency and hyperpolarized the membrane potential of hypocretin neurons. The NPY hyperpolarizing action persisted in tetrodotoxin (TTX), was mimicked by Y1 receptor-selective agonists [Pro34]-NPY and [D-Arg25]-NPY, and was abolished by the Y1-specific antagonist BIBP3226 [(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-arginine-amide], consistent with a direct activation of postsynaptic Y1 receptors. NPY induced a current that was dependent on extracellular potassium, reversed near the potassium equilibrium potential, showed inward rectification, was blocked by extracellular barium, and was abolished by GDP-betaS in the recording pipette, consistent with a G-protein-activated inwardly rectifying K+ (GIRK) current. [Pro34]-NPY evoked, and BIBP3226 blocked, the activation of the GIRK-type current, indicating mediation by a Y1 receptor. NPY attenuated voltage-dependent calcium currents mainly via a Y1 receptor subtype. BIBP3226 increased spontaneous spike frequency, suggesting an ongoing Y1 receptor-mediated NPY inhibition. In TTX, miniature EPSCs were reduced in frequency but not amplitude by NPY, NPY13-36, and [D-Trp32]-NPY, but not by [Pro34]-NPY, suggesting the presynaptic inhibition was mediated by a Y2/Y5 receptor. NPY had little effect on GABA-mediated miniature IPSCs but depressed spontaneous IPSCs. Together, these data support the view that NPY reduces the activity of hypocretin neurons by multiple presynaptic and postsynaptic mechanisms and suggest NPY axons innervating hypocretin neurons may tonically attenuate hypocretin-regulated arousal.
Collapse
Affiliation(s)
- Li-Ying Fu
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
42
|
Abstract
Neuropeptide Y (NPY) is a 36 amino acid amidated peptide with high sequence homology to the endocrine peptides, peptide YY (PYY) and pancreatic polypeptide (PP). They appear to interact with a family of receptors that possess high affinity for one or more of these peptides. Five members of the receptor family have been cloned, with several additional members postulated through pharmacological evidence. All are members of the seven transmembrane domain-G-protein coupled receptor family. The Y1 receptor is the best characterised, with several nonpeptide antagonists available. This receptor appears to mediate a constriction of the peripheral vasculature and the 'anxiolytic' effects of centrally administered NPY. Less is known about the other receptors in the family. The Y2 receptor is believed to be presynaptic and mediates a reduction in neurotransmitter release. The Y4 receptor appears to be the receptor for pancreatic polypeptide, with high amounts of mRNA for this receptor found in the periphery, but lower levels in the brain. The Y5 receptor is expressed in the hypothalamus and has been postulated to be the receptor which mediates the increased food consumption seen following centrally administered NPY. Finally, the Y6 receptor has been cloned in the mouse and other species, but does not appear to encode a functional gene product in humans. Several types of nonpeptide Y1 and a series of Y5 antagonists have been described in the patent literature, though these compounds have limitations that will confine their use to preclinical studies. Nevertheless, considerable progress has been made in understanding the role of NPY and its receptors in experimental obesity. The next step will be the discovery of potent and selective nonpeptide antagonists, to add further credence to the therapeutic potential.
Collapse
Affiliation(s)
- D R Gehlert
- Mail Code 0510, Lilly Neuroscience, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
43
|
Johnson JM, Yen TC, Zhao K, Kosiba WA. Sympathetic, sensory, and nonneuronal contributions to the cutaneous vasoconstrictor response to local cooling. Am J Physiol Heart Circ Physiol 2004; 288:H1573-9. [PMID: 15576441 DOI: 10.1152/ajpheart.00849.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work indicates that sympathetic nerves participate in the vascular responses to direct cooling of the skin in humans. We evaluated this hypothesis further in a four-part series by measuring changes in cutaneous vascular conductance (CVC) from forearm skin locally cooled from 34 to 29 degrees C for 30 min. In part 1, bretylium tosylate reversed the initial vasoconstriction (-14 +/- 6.6% control CVC, first 5 min) to one of vasodilation (+19.7 +/- 7.7%) but did not affect the response at 30 min (-30.6 +/- 9% control, -38.9 +/- 6.9% bretylium; both P < 0.05, P > 0.05 between treatments). In part 2, yohimbine and propranolol (YP) also reversed the initial vasoconstriction (-14.3 +/- 4.2% control) to vasodilation (+26.3 +/- 12.1% YP), without a significant effect on the 30-min response (-26.7 +/- 6.1% YP, -43.2 +/- 6.5% control; both P < 0.05, P > 0.05 between sites). In part 3, the NPY Y1 receptor antagonist BIBP 3226 had no significant effect on either phase of vasoconstriction (P > 0.05 between sites both times). In part 4, sensory nerve blockade by anesthetic cream (Emla) also reversed the initial vasoconstriction (-20.1 +/- 6.4% control) to one of vasodilation (+213.4 +/- 87.0% Emla), whereas the final levels did not differ significantly (-37.7 +/- 10.1% control, -37.2 +/- 8.7% Emla; both P < 0.05, P > 0.05 between treatments). These results indicate that local cooling causes cold-sensitive afferents to activate sympathetic nerves to release norepinephrine, leading to a local cutaneous vasoconstriction that masks a nonneurogenic vasodilation. Later, a vasoconstriction develops with or without functional sensory or sympathetic nerves.
Collapse
Affiliation(s)
- John M Johnson
- Dept. of Physiology-MSC 7756, University of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA. )
| | | | | | | |
Collapse
|
44
|
Poindexter GS, Bruce MA, Breitenbucher JG, Higgins MA, Sit SY, Romine JL, Martin SW, Ward SA, McGovern RT, Clarke W, Russell J, Antal-Zimanyi I. Dihydropyridine neuropeptide Y Y1 receptor antagonists 2. bioisosteric urea replacements. Bioorg Med Chem 2004; 12:507-21. [PMID: 14723969 DOI: 10.1016/j.bmc.2003.10.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Structure-activity studies around the urea linkage in BMS-193885 (4a) identified the cyanoguanidine moiety as an effective urea replacement in a series of dihydropyridine NPY Y(1) receptor antagonists. In comparison to urea 4a (K(i)=3.3 nM), cyanoguanidine 20 (BMS-205749) displayed similar binding potency at the Y(1) receptor (K(i)=5.1 nM) and full functional antagonism (K(b)=2.6 nM) in SK-N-MC cells. Cyanoguanidine 20 also demonstrated improved permeability properties in Caco-2 cells in comparison to urea 4a (43 vs 19 nm/s).
Collapse
Affiliation(s)
- Graham S Poindexter
- Pharmaceutical Research Institute, Bristol-Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492-7660, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
NPY antagonizes behavioral consequences of stress through actions within the brain. Behavioral anti-stress actions of NPY are noteworthy in that (1) their magnitude surpasses that of other endogenous compounds; (2) they are produced across a wide range of animal models, normally thought to reflect different aspects of emotionality. This suggests that NPY acts with a high potency on a common core mechanism of emotionality and behavioral stress responses. Behavioral studies in genetically modified animals support this hypothesis. Increased emotionality is seen upon inactivation of NPY transmission, while the opposite is found when NPY signalling is made overactive. Several brain structures are involved in mediating anti-stress actions of NPY, with the most extensive evidence available for amygdala and hippocampus, and some evidence for regions within the septum, and locus coeruleus. Antistress actions of NPY are mimicked by Y1-receptor agonists, and blocked by Y1 antagonists, although Y5 receptors may substitute for Y1 actions in some cases. Blockade of Y2 receptors produces anti-stress effects indistinguishable from those produced by Y1 agonism, presumably through potentiation of presynaptic release of endogenous NPY. Together, available data point to the potential of the NPY system as a target for novel pharmacological treatments of stress-related disorders, including anxiety and depression. Development of Y2 antagonists presently appears to offer the most promising strategy for developing these clinical treatments.
Collapse
Affiliation(s)
- Markus Heilig
- Division of Psychiatry, Neurotec Department, Karolinska Institute, Huddinge University Hospital M57, Stockholm 141 86, Sweden; Laboratory of Clinical Science, NIAAA/NIH, Bethesda, MD, USA.
| |
Collapse
|
46
|
Dumont Y, Thakur M, Beck-Sickinger A, Fournier A, Quirion R. Characterization of a new neuropeptide Y Y5 agonist radioligand: [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP. Neuropeptides 2004; 38:163-74. [PMID: 15337369 DOI: 10.1016/j.npep.2004.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 04/24/2004] [Indexed: 11/21/2022]
Abstract
In order to optimally characterize a class of neuropeptide Y (NPY) receptors expressed in a tissue enriched with multiple subtypes (Y1, Y2, Y4 and Y5) and to establish its detailed distribution, it is critical to use highly selective and specific probes that possess very low non-specific binding. In that context, we recently reported on the development of [125I][hPP(1-17), Ala31, Aib32]NPY as Y5 receptor radioligand. However, the non-specific binding obtained with this radioligand was too high to allow for detailed receptor autoradiography studies [Br. J. Pharmacol. 139 (2003) 1360]. Iodinated [cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP may represent a better Y5 radioligand in that regard. Accordingly, [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP binding was investigated in rat brain membrane homogenates and its specificity and selectivity established in rat Y1, Y2, Y4 and Y5 transfected HEK293 cells. No specific binding was detected in HEK293 cells transfected with the rat Y1, Y2 or Y4 receptors, while saturable binding was observed in cells transfected with the rat Y5 receptor cDNA and in rat brain membrane homogenates (KD of 0.5-0.7 nM). Competition binding experiments performed in rat brain membrane homogenates demonstrated that specific [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP binding was competed with nanomolar affinities by Y5 agonists and antagonists such as [Leu31,Pro34]PYY, PYY(3-36), [cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP, [Ala31, Aib32]NPY, [hPP(1-17), Ala31, Aib32]NPY, CGP71683A and JCF109, but not by Y1 (BIBP3226 and BIBO3304), Y2 (BIIE0246) and Y4 (GR231118) ligands. Non-specific binding was also lower than that reported for [125I][hPP(1-17), Ala31, Aib32]NPY. Interestingly, detailed analysis of competition binding curves obtained with [Leu31, Pro34]PYY, hPP, PYY(3-36) and [cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP against specific [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP sites were best fitted to a two-site model. Additionally, receptor autoradiography studies revealed the presence of specific [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP binding sites in the lateral septum and area postrema while other brain regions contained much lower levels of specific binding. Taken together, these data suggest that [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP represents a useful tool to study the unique feature of the Y5 receptor subtype.
Collapse
Affiliation(s)
- Yvan Dumont
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, 6875 Boul. LaSalle, Montréal Verdun, Que., Canada H4H 1R3
| | | | | | | | | |
Collapse
|
47
|
Stephens DP, Saad AR, Bennett LAT, Kosiba WA, Johnson JM. Neuropeptide Y antagonism reduces reflex cutaneous vasoconstriction in humans. Am J Physiol Heart Circ Physiol 2004; 287:H1404-9. [PMID: 15165988 DOI: 10.1152/ajpheart.00061.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have provided evidence of a non-noradrenergic contributor to reflex cutaneous vasoconstriction in humans but did not identify the transmitter responsible. To test whether neuropeptide Y (NPY) has a role, in two series of experiments we slowly reduced whole body skin temperature (TSK) from 34.5 to 31.7 degrees C. In protocol 1, Ringer solution and the NPY receptor antagonist BIBP-3226 alone were delivered intradermally via microdialysis. In protocol 2, yohimbine plus propranolol (Yoh + Pro), Yoh + Pro in combination with BIBP-3226, and Ringer solution were delivered to antagonize locally the vasomotor effects of NPY and norepinephrine. Blood flow was measured by laser Doppler flowmetry (LDF). Mean arterial blood pressure (MAP) was monitored at the finger (Finapres). In protocol 1, cutaneous vascular conductance (CVC) fell by 45%, to 55.1 +/- 5.6% of baseline at control sites (P < 0.05). At BIBP-3226-treated sites, CVC fell by 34.1% to 65.9 +/- 5.0% (P < 0.05; P < 0.05 between sites). In protocol 2, during body cooling, CVC at control sites fell by 32.6%, to 67.4 +/- 4.3% of baseline; at sites treated with Yoh + Pro, CVC fell by 18.7%, to 81.3 +/- 4.4% of baseline (P < 0.05 vs. baseline; P < 0.05 vs. control) and did not fall significantly at sites treated with BIBP-3226 + Yoh + Pro (P > 0.05; P < 0.05 vs. other sites). After cooling, exogenous norepinephrine induced vasoconstriction at control sites (P < 0.05) but not at sites treated with Yoh + Pro + BIBP-3226 (P > 0.05). These results indicate that NPY participates in sympathetically mediated cutaneous vasoconstriction in humans during whole body cooling.
Collapse
Affiliation(s)
- Dan P Stephens
- Department of Physiology, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
48
|
Aquino CJ, Ramanjulu JM, Heyer D, Daniels AJ, Palazzo F, Dezube M. Synthesis and structure activity relationship of guanidines as NPY Y5 antagonists. Bioorg Med Chem 2004; 12:2691-708. [PMID: 15110851 DOI: 10.1016/j.bmc.2004.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 02/19/2004] [Accepted: 03/08/2004] [Indexed: 10/26/2022]
Abstract
A series of bis-aryl substituted guanidines have been discovered as potent NPY Y5 antagonists. The SAR and in vitro metabolic stability of these compounds are discussed.
Collapse
|
49
|
Schwertfeger E, Klein T, Vonend O, Oberhauser V, Stegbauer J, Rump LC. Neuropeptide Y inhibits acetylcholine release in human heart atrium by activation of Y2-receptors. Naunyn Schmiedebergs Arch Pharmacol 2004; 369:455-61. [PMID: 15103451 DOI: 10.1007/s00210-004-0930-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 03/25/2004] [Indexed: 11/30/2022]
Abstract
Congestive heart failure and other cardiac diseases are characterized by increased activity of the sympathetic nervous system, whereas at the same time parasympathetic activity is often suppressed. Such imbalance may be a result of or at least enhanced by presynaptic inhibitory effects of sympathetic neurotransmitters on acetylcholine release. We investigated whether the sympathetic cotransmitters neuropeptide Y (NPY), norepinephrine (NE), and ATP are capable of modulating acetylcholine release in human heart atrium. Human atrial appendages were incubated with [(3)H]-choline to label cholinergic transmitter stores and placed in superfusion chambers. Electrical field stimulations (S1, S2) induced a tetrodotoxin-dependent [(3)H]-release, which was taken as an index of endogenous acetylcholine release. NE, NPY, ATP, and a P2-receptor analogue were added before S2. NPY (0.05-1.0 micromol/l) concentration dependently inhibited acetylcholine release. This effect was prevented by the NPY-Y(2)-receptor antagonist BIIE 0246 (0.1 micromol/l) but not by the NPY-Y(1)-receptor antagonist BIBP 3226 (10 micromol/l). ATP (10 micromol/l), a stable analogue ADP-beta S (3 micromol/l), and NE (1 micromol/l) had no effect on acetylcholine release. m-RNA for the NPY-receptor subtypes Y(1), Y(2), Y(4), Y(5), and y(6) was demonstrated by reverse transcription-polymerase chain reaction (RT-PCR). The results suggest that the sympathetic neurotransmitter NPY inhibits parasympathetic neurotransmission in the human heart through activation of presynaptic Y(2)-receptors. NE and ATP seem not to play a role. Since NPY plasma levels are high in chronic heart failure patients, NPY may be one component leading to impaired parasympathetic neurotransmission in those patients.
Collapse
Affiliation(s)
- Eckhard Schwertfeger
- Department of Internal Medicine IV, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Shaw JL, Gackenheimer SL, Gehlert DR. Functional autoradiography of neuropeptide Y Y1 and Y2 receptor subtypes in rat brain using agonist stimulated [35S]GTPgammaS binding. J Chem Neuroanat 2004; 26:179-93. [PMID: 14615027 DOI: 10.1016/j.jchemneu.2003.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y, one of the most abundant brain peptides, has been found to modulate several important biological functions via a family of G-protein coupled receptors. To investigate the localization of functional NPY receptor subtypes in the rat brain, we performed agonist-induced [35S]GTPgammaS autoradiography. The Y1/Y4/Y5 agonist Leu(31), Pro(34)-NPY increased [35S]GTPgammaS binding in several brain areas with a regional distribution consistent with that produced when labeling adjacent sections with [125I]-Leu(31), Pro(34)-PYY. The Y1 selective antagonist BIBP3226 antagonized the Leu(31), Pro(34)-NPY stimulated increase in [35S]GTPgammaS binding in all areas examined. The Y2 agonist C2-NPY stimulated [35S]GTPgamma binding in numerous brain areas with a regional distribution similar to the binding observed with [125I]-PYY 3-36. No increase in [35S]GTPgammaS binding above basal was observed in any brain area evaluated using Y4 and Y5 selective agonists. This study demonstrates abundant Y1 and Y2 receptor activation in the rat brain, while evidence for functional Y4 and Y5 receptors was not observed.
Collapse
Affiliation(s)
- Janice L Shaw
- Neuroscience Research, Lilly Research Laboratories, Eli Lilly and Company, Mail Code 0510, Indianapolis, IN 46285, USA
| | | | | |
Collapse
|