1
|
Jalali SAH, Sepehre Nia S, Beyraghdar Kashkooli O, Soleimanin-Zad S. Oral immunization with attenuated Salmonella Typhimurium as a carrier of DNA vaccine against infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110127. [PMID: 39828013 DOI: 10.1016/j.fsi.2025.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen in the salmonid aquaculture industry and leads to economic losses in the world. This study aimed to develop a new oral DNA vaccine designed to protect rainbow trout against infection by IHNV. Fish were administered via the oral route by the attenuated Salmonella enterica serovar Typhimurium as a carrier of pcDNA3.1-IHNG (glycoprotein (G)) plasmid for 7 days and finally, fish were challenged by 105 pfu ml-1 IHNV. The results revealed that the antigen gene was identified in different tissues of rainbow trout at 15-, 30-, and 45 days post-vaccination (dpv). Also, the recombinant vaccine elicited both an innate and specific immune response, resulting in a significant upregulation of the expression levels of ifn-1, mx-1, vig-1, igm, and igt. In addition, serum levels of neutralizing antibodies were observed to be elevated in the vaccinated fish, in contrast to the unvaccinated fish, following 30 dpv. Compared to trout that received empty S. Typhimurium, notable differences in cumulative percentage mortality were evident among the vaccinated fish. The relative percent survival (RPS) was recorded at 58.2 % for the group that received oral vaccine, while the group that received empty S. Typhimurium exhibited an RPS of 18.2 %. Therefore, our results showed that this bacterial vector can be a candidate carrier for pcDNA3.1-IHNG plasmid that may be employed to confer protection to rainbow trout against IHNV.
Collapse
Affiliation(s)
- Seyed Amir Hossein Jalali
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Saeed Sepehre Nia
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | | - Sabihe Soleimanin-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
2
|
Costa VA, Holmes EC. Diversity, evolution, and emergence of fish viruses. J Virol 2024; 98:e0011824. [PMID: 38785422 PMCID: PMC11237817 DOI: 10.1128/jvi.00118-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.
Collapse
Affiliation(s)
- Vincenzo A. Costa
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Rong F, Wang H, Tang X, Xing J, Sheng X, Chi H, Zhan W. The development of RT-RPA and CRISPR-Cas12a based assay for sensitive detection of infectious hematopoietic necrosis virus (IHNV). J Virol Methods 2024; 326:114892. [PMID: 38331220 DOI: 10.1016/j.jviromet.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an economically important virus causing significant mortalities among wild and cultured salmonid fish worldwide. Rapid and sensitive diagnostic methods of IHNV are crucial for timely controlling infections. For better detection of IHNV, we have established a detection technology based on the reverse transcription and recombinase polymerase amplification (RT-RPA) and CRISPR/Cas12a to detect the N gene of IHNV in two steps. Following the screening of primer pairs, the reaction temperature and time for RPA were optimized to be 41 °C and 35 min, respectively, and the CRISPR/Cas12a reaction was performed at 37 °C for 15 min. The whole detection procedure including can be accomplished within one hour, with a detection sensitivity of about 9.5 copies/µL. The detection method exhibited high specificity with no cross-reaction to the other Novirhabdoviruses HIRRV and VHSV, allowing naked-eye interpretation of the results through lateral flow or fluorescence under ultraviolet light. Overall, our results demonstrated that the developed RT-RPA-Cas12a-mediated assay is a rapid, specific and sensitive detection method for routine and on-site detection of IHNV, which shows a great application promise for the prevention of IHNV infections.
Collapse
Affiliation(s)
- Feixiang Rong
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Hongsheng Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
4
|
Vakharia VN, Ammayappan A, Yusuff S, Tesfaye TM, Kurath G. Heterologous Exchanges of Glycoprotein and Non-Virion Protein in Novirhabdoviruses: Assessment of Virulence in Yellow Perch ( Perca flavescens) and Rainbow Trout ( Oncorhynchus mykiss). Viruses 2024; 16:652. [PMID: 38675990 PMCID: PMC11054476 DOI: 10.3390/v16040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (Oncorhynchus mykiss). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (Perca flavescens), but not in rainbow trout. By using reverse-genetic systems of IHNV-M and VHSV-IVb strains, we generated six IHNV:VHSV chimeric viruses in which the glycoprotein (G), non-virion-protein (NV), or both G and NV genes of IHNV-M were replaced with the analogous genes from VHSV-IVb, and vice versa. These chimeric viruses were used to challenge groups of rainbow trout and yellow perch. The parental recombinants rIHNV-M and rVHSV-IVb were highly virulent in rainbow trout and yellow perch, respectively. Parental rIHNV-M was avirulent in yellow perch, and chimeric rIHNV carrying G, NV, or G and NV genes from VHSV-IVb remained low in virulence in yellow perch. Similarly, the parental rVHSV-IVb exhibited low virulence in rainbow trout, and chimeric rVHSV with substituted G, NV, or G and NV genes from IHNV-M remained avirulent in rainbow trout. Thus, the G and NV genes of either virus were not sufficient to confer high host-specific virulence when exchanged into a heterologous species genome. Some exchanges of G and/or NV genes caused a loss of host-specific virulence, providing insights into possible roles in viral virulence or fitness, and interactions between viral proteins.
Collapse
Affiliation(s)
- Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | - Arun Ammayappan
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | - Shamila Yusuff
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | | | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
5
|
Hai Q, Wang J, Kang W, Cheng S, Li J, Lyu N, Li Y, Luo Z, Liu Z. Metagenomic and metabolomic analysis of changes in intestinal contents of rainbow trout ( Oncorhynchus mykiss) infected with infectious hematopoietic necrosis virus at different culture water temperatures. Front Microbiol 2023; 14:1275649. [PMID: 37908544 PMCID: PMC10614001 DOI: 10.3389/fmicb.2023.1275649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Infectious hematopoietic necrosis (IHN) is a major disease that limits the culture of rainbow trout. In practical production, it has been found that the temperature of the culture water is a crucial factor affecting its mortality. Currently, little is known about how temperature affects the immune response of rainbow trout gut microbiota and metabolites to IHNV. In this study, our main objective is to analyze the changes in gut microorganisms of rainbow trout (juvenile fish with a consistent genetic background) after 14 days of infection with IHNV (5 × 105 pfu/fish) at 12-13°C (C: injected with saline, A: injected with IHNV) and 16-17°C (D: injected with saline, B: injected with IHNV) using metagenomic and metabolomic analyses, and to screen for probiotics that are effective against IHNV. The results showed that infection with IHNV at 12-13°C caused Eukaryote loss. Compared to Group C, Group A showed a significant increase in harmful pathogens, such as Yersiniaceae, and a significant alteration of 4,087 gut metabolites. Compared to group D, group B showed a significant increase in the abundance of Streptococcaceae and Lactococcus lactis, along with significant changes in 4,259 intestinal metabolites. Compared with their respective groups, the levels of two immune-related metabolites, 1-Octadecanoyl-glycero-3-phosphoethanolamine and L-Glutamate, were significantly upregulated in groups A and B. Compared to group B, Group A showed significantly higher pathogenic bacteria including Aeromonas, Pseudomonas, and Yersiniaceae, while group B showed a significant increase in Streptococcaceae and Lactococcus lactis. Additionally, there were 4,018 significantly different metabolites between the two groups. Interestingly, 1-Octadecanoyl-sn-glycero-3-phosphoethanolamine and L-Glutamate were significantly higher in group A than in group B. Some of the different metabolites in C vs. A are correlated with Fomitopsis pinicola, while in D vs. B they were correlated with Lactococcus raffinolactis, and in A vs. B they were correlated with Hypsizygus marmoreus. This study exposed how rainbow trout gut microbiota and metabolites respond to IHNV at different temperatures, and screens beneficial bacteria with potential resistance to IHN, providing new insights and scientific basis for the prevention and treatment of IHN.
Collapse
Affiliation(s)
| | - Jianfu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Gorgoglione B, Liu JT, Li J, Vakharia VN. The efficacy of new oral vaccine feeds against Salmonid novirhabdovirus in rainbow trout. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100082. [PMID: 36660300 PMCID: PMC9842750 DOI: 10.1016/j.fsirep.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonid novirhabdovirus (IHNV) causes infectious haematopoietic necrosis (IHN) in salmonid species. Despite an injectable plasmid-based DNA vaccine of the glycoprotein (G) gene is effective, there are no oral vaccines for mass vaccination of rainbow trout (Oncorhynchus mykiss) fry. Recombinant baculoviruses were generated, used in cabbage looper (Trichoplusia ni) insect larvae to produce IHNV G and IHNV G-C5a proteins. Western blotting and chemiluminescence assays confirmed the expression of recombinant proteins, which were added to the fish feeding and top-coated with unflavored gelatin binder. Commercial rainbow trout were fed with experimental diets containing either IHNV G or IHNV G-C5a proteins for 2 weeks, and boosted 4 weeks after. Four weeks post-booster, fish were challenged with IHNV by immersion. Survival upon the infection challenge was evaluated. Spleen were sampled at 7 and 14 days post infection (dpi). Non-vaccinated and IHNV G fed trout reached a mortality of 91.7 and 97.6%, and 70.9 and 88.4%, respectively at 8 and 15 dpi. The IHNV G-C5a fed group exhibited a reduced mortality of 51.2% at 8 dpi, reaching 81.7% at 15 dpi, suggesting some level of antiviral protection. The individual viral load was measured by RT-qPCR detection of IHNV N gene, showing no significant difference across experimental groups. The transcription modulation of selected immune response markers was evaluated across experimental groups, including Type I IFN-a, Mx-1, CD4, and IgM. Further study is needed to assess how new oral vaccines may become effective to mitigate IHNV pathogenesis in juvenile trout by modulating the host immune response to protect towards IHNV exposure.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Fish Pathobiology and Immunology Laboratory, Dept. Pathobiology and Diagnostic Investigation (CVM)/ Dept. Fisheries and Wildlife (CANR), Michigan State University, East Lansing, MI, United States,Corresponding authors.
| | - Juan-Ting Liu
- Fish Pathobiology and Immunology Laboratory, Dept. Pathobiology and Diagnostic Investigation (CVM)/ Dept. Fisheries and Wildlife (CANR), Michigan State University, East Lansing, MI, United States
| | - Jie Li
- Institute of Marine and Environmental Technology, Dept. of Marine Biotechnology, University of Maryland Baltimore Country, Baltimore, MD, United States
| | - Vikram N. Vakharia
- Institute of Marine and Environmental Technology, Dept. of Marine Biotechnology, University of Maryland Baltimore Country, Baltimore, MD, United States,Corresponding authors.
| |
Collapse
|
8
|
Li S, Li X, Yuan R, Chen X, Chen S, Qiu Y, Yang Q, Wang M, Shi J, Zhang S. Development of a recombinant adenovirus-vectored vaccine against both infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108457. [PMID: 36455780 DOI: 10.1016/j.fsi.2022.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are typical pathogens of rainbow trout Oncorhynchus mykiss, and the concurrent infection of the two viruses is very common among modern trout hatcheries, which has caused huge economic losses to the rainbow trout farming industry. To prevent and control the spread of IHNV and IPNV in juvenile trout simultaneously, in this study a bivalent recombinant adenovirus vaccine with IHNV Glycoprotein (G) and IPNV VP2 genes was developed. After immunizing juvenile trout with this bivalent vaccine via the immersion route, the expression levels of IHNV G and IPNV VP2 and the representative immune genes in vaccinated and control rainbow trout were tested to evaluate the correlation of immune responses with the expression of viral genes. The neutralizing antibody level induced by this bivalent vaccine as well as the protection efficacy of the vaccine against IHNV and IPNV was also evaluated. The results showed that IHNV G and IPNV VP2 were successfully expressed in juvenile trout, and all the innate and adaptive immune genes were up-regulated. This indicated that the level of the innate and adaptive immune responses were significantly increased, which might be induced by the high expression of the two viral proteins. Compared with the controls, high levels of neutralizing antibodies against IHNV and IPNV were induced in the vaccinated trout. Besides, the bivalent recombinant adenovirus vaccine showed high protection rate against IHNV, with the relative percent survival (RPS) of 81.25%, as well as against IPNV, with the RPS of 78.95%. Taken together, our findings clearly demonstrated that replication-defective adenovirus can be developed as a qualified vector for fish vaccines and IHNV G and IPNV VP2 were two suitable antigenic genes that could induce effective immune protection against these two pathogens. This study provided new insights into developing bivalent vectored vaccines and controlling the spread of IHNV and IPNV simultaneously in juvenile trout.
Collapse
Affiliation(s)
- Shouhu Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China; College of Marine Science, Shanghai Ocean University, 999 Huan Road, Shanghai, 200090, China.
| | - Xincang Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Rui Yuan
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Xiaoxue Chen
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Shouxu Chen
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Yu Qiu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China; College of Marine Science, Shanghai Ocean University, 999 Huan Road, Shanghai, 200090, China.
| | - Qingfeng Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Meng Wang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Jiangao Shi
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Shuo Zhang
- College of Marine Science, Shanghai Ocean University, 999 Huan Road, Shanghai, 200090, China.
| |
Collapse
|
9
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|
10
|
Walker PJ, Bigarré L, Kurath G, Dacheux L, Pallandre L. Revised Taxonomy of Rhabdoviruses Infecting Fish and Marine Mammals. Animals (Basel) 2022; 12:ani12111363. [PMID: 35681827 PMCID: PMC9179924 DOI: 10.3390/ani12111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Rhabdoviridae is a family of viruses that includes some important pathogens of fish and marine mammals. Aspects of the taxonomic classification of fish viruses assigned to this family have recently been reviewed by the International Committee on Taxonomy of Viruses (ICTV). This paper describes the newly approved taxonomy, including the assignment of new subfamilies and new virus species. The paper also considers a taxonomic conundrum presented by viruses assigned to one group of fish rhabdoviruses (genus Novirhabdovirus) for which assignment to the family Rhabdoviridae may not be appropriate. Abstract The Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhabdoviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera (Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or marine mammals. All rhabdovirus species have also now been named or renamed to comply with the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not cluster within the Rhabdoviridae, suggesting the need for a review of their current classification.
Collapse
Affiliation(s)
- Peter J. Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4067, Australia
- Correspondence:
| | - Laurent Bigarré
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| | - Gael Kurath
- Western Fisheries Research Center, US Geological Survey, 6505 NE 65th Street, Seattle, WA 98115, USA;
| | - Laurent Dacheux
- Unit Lyssavirus Epidemiology and Neuropathology, Université Paris Cité, Institut Pasteur, 28 Rue du Docteur Roux, CEDEX 15, 75724 Paris, France;
| | - Laurane Pallandre
- Laboratory of Ploufragan-Plouzané-Niort, Technopole Brest Iroise, ANSES, 29280 Plouzané, France; (L.B.); (L.P.)
| |
Collapse
|
11
|
Liu W, Fan Y, Zhou Y, Jiang N, Li Y, Meng Y, Xue M, Li Z, Zeng L. Susceptibility of a cell line derived from the kidney of Chinese rice-field eel, Monopterus albus to the infection of rhabdovirus, CrERV. JOURNAL OF FISH DISEASES 2022; 45:361-371. [PMID: 34843633 DOI: 10.1111/jfd.13563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Chinese rice-field eels rhabdovirus (CrERV), belonging to the genus Perhabdovirus in the family Rhabdoviridae, is the causative agent of the haemorrhagic disease of Chinese rice-field eels, Monopterus albus. The present study aims to establish a cell line derived from the kidney of Chinese rice-field eel (CrEK) for the further study of the pathogenic virus. CrEK cells were epithelioid-like and grew well in M199 medium supplemented with 10% foetal bovine serum at 28°C, and the cell line has been subcultured for more than 80 times. Karyotyping analysis of CrEK cells at 25th passage indicated a modal chromosome number of 24. Significant cytopathic effect (CPE) was observed in CrEK cells after infection with CrERV, and the virus titre reached 107.8 ± 0.45 TCID50 /mL. The transmission electron microscopy revealed that there were a large number of virus particles in the cytoplasm of cells. The virus infection in cells was also assayed by using indirect immunofluorescence assay (IFA), fluorescence in situ hybridization (FISH), reverse transcription PCR (RT-PCR) and quantitative real-time reverse transcription-PCR (qRT-PCR). In experimental infection, CrERV cultured by cells could cause over 90% mortality in fish. CrEK represents the first kidney cell line originated from Chinese rice-field eels and be a potential material for investigating the mechanism of virus infection in this fish and the control methods for the disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
12
|
Abbadi M, Gastaldelli M, Pascoli F, Zamperin G, Buratin A, Bedendo G, Toffan A, Panzarin V. Increased virulence of Italian infectious hematopoietic necrosis virus (IHNV) associated with the emergence of new strains. Virus Evol 2021; 7:veab056. [PMID: 34754510 PMCID: PMC8570149 DOI: 10.1093/ve/veab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is the causative agent of IHN triggering a systemic syndrome in salmonid fish. Although IHNV has always been associated with low levels of mortality in Italian trout farming industries, in the last years trout farmers have experienced severe disease outbreaks. However, the observed increasing virulence of IHNV is still based on empirical evidence due to the poor and often confounding information from the field. Virulence characterization of a selection of sixteen Italian isolates was performed through in vivo challenge of juvenile rainbow trout to confirm field evidence. The virulence of each strain was firstly described in terms of cumulative mortality and survival probability estimated by Kaplan-Meier curves. Furthermore, parametric survival models were applied to analyze the mortality rate profiles. Hence, it was possible to characterize the strain-specific mortality peaks and to relate their topology to virulence and mortality. Indeed, a positive correlation between maximum mortality probability and virulence was observed for all the strains. Results also indicate that more virulent is the strain, the earliest and narrowest is the mortality peak. Additionally, intra-host viral quantification determined in dead animals showed a significant correlation between viral replication and virulence. Whole-genome phylogeny conducted to determine whether there was a relation between virulence phenotype and IHNV genetics evidenced no clear clustering according to phenotype. Moreover, a root-to-tip analysis based on genetic distances and sampling date of Italian IHNV isolates highlighted a relevant temporal signal indicating an evolving nature of the virus, over time, with the more virulent strains being the more recent ones. This study provides the first systematic characterization of Italian IHNV's virulence. Overall results confirm field data and point out an abrupt increase in IHNV virulence, with strains from 2015-2019 showing moderate to high virulence in rainbow trout. Further investigations are needed in order to extensively clarify the relation between evolution and virulence of IHNV and investigate the genetic determinants of virulence of this viral species in rainbow trout.
Collapse
Affiliation(s)
- Miriam Abbadi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Michele Gastaldelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Francesco Pascoli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Gianpiero Zamperin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Alessandra Buratin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Giulia Bedendo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| | - Valentina Panzarin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, Padova, Italy
| |
Collapse
|
13
|
Niner MD, Stepien CA, Gorgoglione B, Leaman DW. Genomic and immunogenic changes of Piscine novirhabdovirus (Viral Hemorrhagic Septicemia Virus) over its evolutionary history in the Laurentian Great Lakes. PLoS One 2021; 16:e0232923. [PMID: 34048438 PMCID: PMC8162641 DOI: 10.1371/journal.pone.0232923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
A unique and highly virulent subgenogroup (-IVb) of Piscine novirhabdovirus, also known as Viral Hemorrhagic Septicemia Virus (VHSV), suddenly appeared in the Laurentian Great Lakes, causing large mortality outbreaks in 2005 and 2006, and affecting >32 freshwater fish species. Periods of apparent dormancy have punctuated smaller and more geographically-restricted outbreaks in 2007, 2008, and 2017. In this study, we conduct the largest whole genome sequencing analysis of VHSV-IVb to date, evaluating its evolutionary changes from 48 isolates in relation to immunogenicity in cell culture. Our investigation compares genomic and genetic variation, selection, and rates of sequence changes in VHSV-IVb, in relation to other VHSV genogroups (VHSV-I, VHSV-II, VHSV-III, and VHSV-IVa) and with other Novirhabdoviruses. Results show that the VHSV-IVb isolates we sequenced contain 253 SNPs (2.3% of the total 11,158 nucleotides) across their entire genomes, with 85 (33.6%) of them being non-synonymous. The most substitutions occurred in the non-coding region (NCDS; 4.3%), followed by the Nv- (3.8%), and M- (2.8%) genes. Proportionally more M-gene substitutions encoded amino acid changes (52.9%), followed by the Nv- (50.0%), G- (48.6%), N- (35.7%) and L- (23.1%) genes. Among VHSV genogroups and subgenogroups, VHSV-IVa from the northeastern Pacific Ocean has shown the fastest substitution rate (2.01x10-3), followed by VHSV-IVb (6.64x10-5) and by the VHSV-I, -II and-III genogroups from Europe (4.09x10-5). A 2016 gizzard shad (Dorosoma cepedianum) from Lake Erie possessed the most divergent VHSV-IVb sequence. The in vitro immunogenicity analysis of that sample displayed reduced virulence (as did the other samples from 2016), in comparison to the original VHSV-IVb isolate (which had been traced back to 2003, as an origin date). The 2016 isolates that we tested induced milder impacts on fish host cell innate antiviral responses, suggesting altered phenotypic effects. In conclusion, our overall findings indicate that VHSV-IVb has undergone continued sequence change and a trend to lower virulence over its evolutionary history (2003 through present-day), which may facilitate its long-term persistence in fish host populations.
Collapse
Affiliation(s)
- Megan D. Niner
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Carol A. Stepien
- School of Oceanography, University of Washington, Seattle, WA, United States of America
- Genetics and Genomics Group, NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, United States of America
- * E-mail: ,
| | - Bartolomeo Gorgoglione
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Douglas W. Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- Department of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| |
Collapse
|
14
|
Wargo AR, Kurath G, Scott RJ, Kerr B. Virus shedding kinetics and unconventional virulence tradeoffs. PLoS Pathog 2021; 17:e1009528. [PMID: 33970967 PMCID: PMC8109835 DOI: 10.1371/journal.ppat.1009528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/03/2021] [Indexed: 11/19/2022] Open
Abstract
Tradeoff theory, which postulates that virulence provides both transmission costs and benefits for pathogens, has become widely adopted by the scientific community. Although theoretical literature exploring virulence-tradeoffs is vast, empirical studies validating various assumptions still remain sparse. In particular, truncation of transmission duration as a cost of virulence has been difficult to quantify with robust controlled in vivo studies. We sought to fill this knowledge gap by investigating how transmission rate and duration were associated with virulence for infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Using host mortality to quantify virulence and viral shedding to quantify transmission, we found that IHNV did not conform to classical tradeoff theory. More virulent genotypes of the virus were found to have longer transmission durations due to lower recovery rates of infected hosts, but the relationship was not saturating as assumed by tradeoff theory. Furthermore, the impact of host mortality on limiting transmission duration was minimal and greatly outweighed by recovery. Transmission rate differences between high and low virulence genotypes were also small and inconsistent. Ultimately, more virulent genotypes were found to have the overall fitness advantage, and there was no apparent constraint on the evolution of increased virulence for IHNV. However, using a mathematical model parameterized with experimental data, it was found that host culling resurrected the virulence tradeoff and provided low virulence genotypes with the advantage. Human-induced or natural culling, as well as host population fragmentation, may be some of the mechanisms by which virulence diversity is maintained in nature. This work highlights the importance of considering non-classical virulence tradeoffs.
Collapse
Affiliation(s)
- Andrew R. Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, United States of America
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, United States of America
| | - Robert J. Scott
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Kerr
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Kim J, Cho M, Kim KI, Min EY, Lim J, Hong S. Transcriptome profiling in head kidney of rainbow trout (Oncorhynchus mykiss) after infection with the low-virulent Nagano genotype of infectious hematopoietic necrosis virus. Arch Virol 2021; 166:1057-1070. [PMID: 33532870 DOI: 10.1007/s00705-021-04980-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV) causes clinical diseases and mortality in a wide variety of salmonid species. Here, we studied transcriptional responses in rainbow trout infected by the IHNV-Nagano strain isolated in Korea. RNA-seq-based transcriptome analysis of head kidney tissues cataloged differentially expressed genes. Enrichment analysis of gene ontology annotations was performed, and a total of fifteen biological process terms were commonly identified at all time points. In the Kyoto Encyclopedia of Genes and Genomes pathway analysis, pathogen recognition receptor (PRR) signaling pathways such as the retinoic-acid-inducible gene-I-like receptor signaling pathway and the Toll-like receptor signaling pathway were identified at all time points. The nucleotide-binding oligomerization-domain-like receptor signaling pathway and cytosolic DNA-sensing pathway were identified at days 1 and 3. Protein-protein interaction network and centrality analyses revealed that the immune system, signaling molecules, and interaction pathways were upregulated at days 1 and 3, with the highest centrality of tumor necrosis factor. Cancer, cellular community, and endocrine system pathways were downregulated, with the highest centrality of fibronectin 1 at day 5. STAT1 was upregulated from days 1 to 5 with a high centrality. The reproducibility and repeatability of the transcriptome analysis were validated by RT-qPCR. IHNV-Nagano infection dynamically changed the transcriptome profiles in the head kidney of rainbow trout and induced a defense mechanism by regulating the immune and inflammatory pathways through PRR signaling at an early stage. Downregulated pathways involved in extracellular matrix formation and focal adhesion at day 5 indicated the possible failure of wound healing, which is important in the pathogenesis of IHNV infection.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Korea
| | - Miyoung Cho
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Kwang Il Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Eun Young Min
- Pathology Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Jongwon Lim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Korea
| | - Suhee Hong
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, 210-702, Korea.
| |
Collapse
|
16
|
Huo C, Ma Z, Li F, Xu F, Li T, Zhang Y, Jiang N, Xing W, Xu G, Luo L, Sun H. First isolation and pathogenicity analysis of a genogroup U strain of infectious hematopoietic necrosis virus from rainbow trout in China. Transbound Emerg Dis 2021; 69:337-348. [PMID: 33417745 DOI: 10.1111/tbed.13983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a major fish viral pathogen causing acute clinical disease and death in a variety of salmonids. IHNV isolates have been classified into five major genogroups according to the phylogenetic analysis of partial G gene fragments or the complete G gene sequence: U, M, E, L and J. Genogroup U strains have been reported in North America and Japan prior to 1982, and genogroup J is the only genogroup that has been reported in China. Here, one of IHNV strain (BjLL) was isolated from a local farm in China and were characterized in this study. The homogenate tissues of infected fry induced IHNV-positive cytopathic effects in epithelioma papulosum cyprinid (EPC) cells that were confirmed by RT-PCR and sequencing. The complete genome sequence of BjLL comprised 11,129 nucleotides, which had been submitted to GenBank (accession no. MF509592). By the sequence comparison and phylogenetic analysis for the G gene sequence of BjLL with 51 reference sequences in GenBank, we confirmed that this Chinese isolate belonged to genogroup U. Furthermore, virus exposure experiments with juvenile rainbow trout were conducted to assess the virulence and pathogenicity of BjLL. Compared with GS-2014 of genogroup J, BjLL was an obviously less virulent strain that could result in lower mortality. Besides, typical clinical symptoms and pathological damages could be seen in fish following infection of BjLL. The present study is the first report of genogroup U IHNV infection in China and will provide essential information for future studies on pathogenesis of IHNV BjLL and development of efficient control strategies.
Collapse
Affiliation(s)
- Caiyun Huo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhihong Ma
- Beijing Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangbing Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Tieliang Li
- Beijing Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Na Jiang
- Beijing Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Xing
- Beijing Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guanling Xu
- Beijing Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lin Luo
- Beijing Fisheries Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Huiling Sun
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
17
|
Louboutin L, Cabon J, Vigouroux E, Morin T, Danion M. Comparative analysis of the course of infection and the immune response in rainbow trout (Oncorhynchus mykiss) infected with the 5 genotypes of infectious hematopoietic necrosis virus. Virology 2021; 552:20-31. [DOI: 10.1016/j.virol.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022]
|
18
|
Gorgoglione B, Ringiesn JL, Pham LH, Shepherd BS, Leaman DW. Comparative effects of Novirhabdovirus genes on modulating constitutive transcription and innate antiviral responses, in different teleost host cell types. Virol J 2020; 17:110. [PMID: 32690033 PMCID: PMC7369537 DOI: 10.1186/s12985-020-01372-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are highly contagious, pathogenic Novirhabdoviruses affecting fish and are thusly notifiable diseases with the World Organization for Animal Health. This study assessed the relative capacities of IHNV and VHSV genes to modulate host general transcription and explores the abilities of specific IHNV genes to interfere with the interferon pathway in heterogenous teleost cell-lines. METHODS Optimized protocols allowed for efficient transient transfections in EPC, BF-2, RTG-2 and RTgill-W1 cell lines of plasmids encoding IHNV (M genogroup) and VHSV (-IVb genotype) genes, including N, P, M, G and NV. Their impact on general cellular transcription was measured 48 hours post transfection (hpt) with luciferase constructs driven by a modified β-Actin promoter (pCAG). Their modulation of the innate antiviral immune response was characterized 72 hpt, using luciferase constructs measuring rainbow trout Type I IFN or MX-1 promoter augmentation, upon MAVS co-transfection. RESULTS M was generally confirmed as the strongest constitutive transcriptional suppressor while IHNV P, but not VHSV P, augmented constitutive transcription in fibroblastic cell types. Cell-specific effects were observed for viral G gene, with VHSV G exhibiting suppression of basal transcription in EPC and BF-2 but not in trout cells; while IHNV G was stimulatory in RTG-2, but inhibitory in RTgill-W1. NV consistently stimulated constitutive transcription, with higher augmentation patterns seen in fibroblastic compared to epithelial cells, and for IHNV NV compared to VHSV NV. The innate antiviral immune response, focusing on the IFN pathway, was silenced by IHNV M in all cell lines tested. IHNV N showed a dose-dependent suppression of type I IFN, but with minor effects on MX-1. IHNV P and G played minor IFN-inhibitory roles, consistent and dose-dependent only for G in rainbow trout cells. IHNV NV mediated a consistent stimulatory effect on either Type I IFN or MX-1, but much less pronounced in RTgill-W1. CONCLUSIONS This study extends our understanding of Novirhabdoviruses-host interaction, showing differential innate immune responses in heterogenous cell types. Viral regulators of innate immune signaling are identified, either as dose-dependent suppressors (such as M and N) or stimulators (mainly NV), indicating novel targets for the design of more efficient vaccination strategies.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Aquatic Animal Health Laboratory, Department of Pathobiology and Diagnostic Investigation, CVM & Department of Fisheries and Wildlife, CANR - Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA.
| | - Jeffery L Ringiesn
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - Loc H Pham
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA
| | - Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI, 53204, USA
| | - Douglas W Leaman
- Department of Biological Sciences, Wright State University, 235 Diggs Laboratory / 134 Oelman Hall, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft St, Toledo, OH, 43606, USA.
| |
Collapse
|
19
|
Fazeli L, Golkar P, Mirakhorli N, Jalali SAH, Mohammadinezhad R. Transient expression of the full-length glycoprotein from infectious hematopoietic necrosis virus in bean (Phaseolus vulgaris) leaves via agroinfiltration. Biotechnol Appl Biochem 2020; 68:648-658. [PMID: 32578912 DOI: 10.1002/bab.1975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 11/07/2022]
Abstract
The glycoprotein of infectious hematopoietic necrosis virus (IHNV), the causative agent of acute disease in salmonids, is the only structural protein of the virus that can induce protective immunity in the fish host. Here, the reliability of bean (Phaseolus vulgaris) plant for the production of this viral protein was examined by the transient expression method. Using the syringe agroinfiltration method, leaves of bean plants were transformed with the expression construct encoding the full-length of IHNV glycoprotein (IHNV-G) gene. Furthermore, the transformation efficacy of two infiltration buffers including PBS-A (PBS+acetosyringone) and MMS-A (MES buffer + MgSO4 + sucrose + acetosyringone) was compared. The analysis of mRNA and dot-blot assay confirmed the transcription and translation of IHNV-G protein in bean leaves. Moreover, Western blotting verified the production of intact, full-length (∼57 kDa) IHNV-G protein in the agroinfiltrated plants. Of note, the production level of IHNV-G using MMS-A agroinfiltration buffer was approximately five times higher compared to PBS-A buffer (0.48 vs. 0.1% of total soluble protein), indicating the effect of infiltration buffer on the transient transformation efficiency. The recombinant protein was purified at the final yield of 0.35 μg/g of fresh leaf tissue, using nickel affinity chromatography. The present work is the first report describing the feasibility of the plant expression platform for the production of IHNV-G protein, which can be served as an oral vaccine against IHNV infection.
Collapse
Affiliation(s)
- Leila Fazeli
- Department of Plant Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Neda Mirakhorli
- Department of Plant Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Seyed Amir Hossein Jalali
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
20
|
Hua X, Feng Y, Guan X, Wang Y, Zhou Y, Ren X, Li D, Gao S, Huang J, Guan X, Shi W, Liu M. Infectious hematopoietic necrosis virus truncated G protein effect on survival, immune response, and disease resistance in rainbow trout. DISEASES OF AQUATIC ORGANISMS 2020; 139:25-33. [PMID: 32351234 DOI: 10.3354/dao03463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The major antigenic protein of infectious hematopoietic necrosis virus (IHNV) is the surface glycoprotein G, which contains neutralizing epitopes that induce the production of immune neutralizing antibodies. In this study, the IHNV G gene sequence was truncated according to bioinformatics principles and then recombinantly expressed via an E. coli expression system. We then assessed the specific antibody immunoglobin M (IgM) levels of rainbow trout immunized with recombinant truncated G protein (emulsified with Freund's incomplete adjuvant), and showed that antibody IgM levels of immunized fish were significantly higher than in the control group (p < 0.01). The mRNA expression levels of interferon 1 (IFN1) and interleukin-8 (IL-8) were also up-regulated significantly (p < 0.01) in head kidneys and spleens of rainbow trout immunized with recombinant truncated G protein. Also, after challenge with wild-type IHNV HLJ-09 virus on Day 28, rainbow trout immunized with recombinant truncated G protein showed cumulative survival rates of 60%. These results indicate that the truncated G protein of IHNV expressed by the E. coli prokaryotic expression system can be used as a candidate immunogen for an IHNV subunit vaccine, which lays a theoretical foundation for the study of further potential IHNV subunit vaccines.
Collapse
Affiliation(s)
- Xiaojing Hua
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang ZX, Zhou Y, Lu LF, Lu XB, Ni B, Liu MX, Guan HX, Li S, Zhang YA, Ouyang S. Infectious hematopoietic necrosis virus N protein suppresses fish IFN1 production by targeting the MITA. FISH & SHELLFISH IMMUNOLOGY 2020; 97:523-530. [PMID: 31881328 DOI: 10.1016/j.fsi.2019.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Interferon (IFN) is a vital antiviral factor in host in the early stages after the viral invasion. Meanwhile, viruses have to survive by taking advantage of the cellular machinery and complete their replication. As a result, viruses evolved several immune escape mechanisms to inhibit host IFN expression. However, the mechanisms used to escape the host's IFN system are still unclear for infectious hematopoietic necrosis virus (IHNV). In this study, we report that the N protein of IHNV inhibits IFN1 production in rainbow trout by degrading the MITA. Firstly, the upregulation of IFN1 promoter activity stimulated by poly I:C was suppressed by IHNV infection. Consistent with this result, the overexpression of the N protein of IHNV blocked the IFN1 transcription that was activated by poly I:C and MITA. Secondly, MITA was remarkably decreased by the overexpression of N protein at the protein level. Further analysis demonstrated that the N protein targeted MITA and promoted the ubiquitination of MITA. Taken together, these data suggested that the production of rainbow trout IFN1 could be suppressed by the N protein of IHNV via degrading MITA.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; University of Chinese Academy of Science, Beijing, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Science, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Ni
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Meng-Xi Liu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Hong-Xin Guan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; State Key Laboratory of Aquaculture Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| | - Songying Ouyang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
22
|
Chen Y, Li J, Li D, Guan X, Ren X, Zhou Y, Feng Y, Gao S, Wang N, Guan X, Shi W, Liu M. The L-domains in M and G proteins of infectious hematopoietic necrosis virus (IHNV) affect viral budding and pathogenicity. FISH & SHELLFISH IMMUNOLOGY 2019; 95:171-179. [PMID: 31610290 DOI: 10.1016/j.fsi.2019.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
RNA viruses including many retroviruses encode "late-domain" motifs that can interact with host proteins to mediate viral assembly and affect viral budding and pathogenicity. For IHNV, our previous studies demonstrated that the respective interactions of the L domains of IHNV with host proteins could mediate viral assembly and budding. To our knowledge, the role of L domains of the IHNV in the budding and pathogenicity has not investigated yet. In this study, we generated two recombinant IHNV strains rIHNV-M(PH>A4) and rIHNV-G(PS>A4) with mutations in the L domains (PPPH to AAAA or PSAP to AARA) of IHNV by reverse genetics and explored the effect of the mutations on budding and pathogenicity of the two recombinant viruses. The RT-qPCR results showed that the production levels of the extracellular particles of rIHNV-M(PH>A4) or rIHNV-G(PS>A4) declined significantly, compared with those of wild-type (wt) IHNV HLJ-09. Furthermore, the challenge test showed that the survival rates of juvenile rainbow trout challenged with rIHNV-M(PH>A4) or rIHNV-G(PS>A4) were 90% or 87%, respectively; however, the survivability was zero in groups challenged with wtIHNV HLJ-09 or rIHNV HLJ-09 (recombinant IHNV). Additionally, the RT-qPCR results showed that the recombinant viruses induced higher expression levels of IFN1, IL-1β, and IL-8 compared with those induced by wtIHNV HLJ-09 as well as the ELISA results showed that fish vaccinated with recombinant viruses produced high levels of specific IgM antibodies, demonstrating that the two recombinant viruses may induce immune responses to resist infection by IHNV. Also, these results demonstrated for the first time that the L domains of the M and G proteins of IHNV could affect the budding and pathogenicity of IHNV, which may be beneficial in the prevention and control of IHNV infections in fish. Taken together, our study as the first research provides the foundation for effect of rhabdovirus L domains on viral budding and pathogenicity.
Collapse
Affiliation(s)
- Yaping Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiahui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dechuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xin Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xuanyu Ren
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
23
|
Chen Y, Li J, Zhou Y, Feng Y, Guan X, Li D, Ren X, Gao S, Huang J, Guan X, Shi W, Liu M. The role of infectious hematopoietic necrosis virus (IHNV) proteins in recruiting the ESCRT pathway through three ways in the host cells of fish during IHNV budding. FISH & SHELLFISH IMMUNOLOGY 2019; 92:833-841. [PMID: 31299463 DOI: 10.1016/j.fsi.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
In cytokinetic abscission, phagophore formation, and enveloped virus budding are mediated by the endosomal sorting complex required for transport (ESCRT). Many retroviruses and RNA viruses encode "late-domain" motifs that can interact with the components of the ESCRT pathway to mediate the viral assembly and budding. However, the rhabdovirus in fish has been rarely investigated. In this study, inhibition the protein expression of the ESCRT components reduces the extracellular virion production, which preliminarily indicates that the ESCRT pathway is involved in IHNV release. The respective interactions of IHNV proteins including M, G, L protein with Nedd4, Tsg101, and Alix suggest the underlying molecular mechanism by which IHNV gets access to the ESCRT pathway. These results are the first observation that rhabdovirus in fish gains access to the ESCRT pathway through three ways of interactions between viral proteins and host proteins. In addition, the results show that IHNV is released from host cells through the ESCRT pathway. Taken together, our study provides a theoretical basis for studying the budding mechanism of IHNV.
Collapse
Affiliation(s)
- Yaping Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiahui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xin Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dechuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuanyu Ren
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jinshan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Identification of the optimal insertion site for expression of a foreign gene in an infectious hematopoietic necrosis virus vector. Arch Virol 2019; 164:2505-2513. [PMID: 31377888 DOI: 10.1007/s00705-019-04366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) was developed as a vector to aid the construction of vaccines against viral diseases such as viral hemorrhagic septicemia virus, spring viremia of carp virus, and influenza virus H1N1. However, the optimal site for foreign gene expression in the IHNV vector has not been determined. In the present study, five recombinant viruses with the green fluorescence protein (GFP) gene inserted into different genomic junction regions of the IHNV genomic sequence were generated using reverse genetics technology. Viral growth was severely delayed when the GFP gene was inserted into the intergenic region between the N and P genes. Real-time fluorescence quantitative PCR assays showed that the closer the GFP gene was inserted towards the 3' end, the higher the GFP mRNA levels. Measurement of the GFP fluorescence intensity, which is the most direct method to determine the GFP protein expression level, showed that the highest GFP protein level was obtained when the gene was inserted into the intergenic region between the P and M genes. The results of this study suggest that the P and M gene junction region is the optimal site within the IHNV vector to express foreign genes, providing valuable information for the future development of live vector vaccines.
Collapse
|
25
|
Jalali SAH, Mohammadinezhad R, Mohammadi A, Latifian MH, Talebi M, Soleimanin-Zad S, Golkar P, Hemmatzadeh F. Molecular evolution and selection pressure analysis of infectious hematopoietic necrosis virus (IHNV) revealed the origin and phylogenetic relationship of Iranian isolates in recent epidemics in Iran. Virology 2019; 535:45-58. [PMID: 31272011 DOI: 10.1016/j.virol.2019.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is the causative agent for a lethal salmonid disease. In this study, we surveyed the IHNV's epidemiology, diversity and the origin of infection in Iran. Phylogenetic analysis revealed that Iranian isolates belonged to one of the two lineages of E genogroup. Subsequently, a combination of phylogenetic, antigenic and structural analysis was performed to investigate the evolution of E genogroup lineages. Site-specific analysis of the viral glycoprotein showed different co-evolving and positively selected sites in each lineage. Most of these sites were mapped to the predicted antigenic patches of the glycoprotein. Further characterization revealed E lineages can be differentiated, in part, by specific mutations at positions 91 and 130, which are located in the structurally flexible regions of the glycoprotein, suggesting a key adaptative role for these sites. These data may assist in better monitoring the emerging isolates in regions infected to IHNV from E genogroup.
Collapse
Affiliation(s)
- Seyed Amir Hossein Jalali
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ashraf Mohammadi
- Human Viral vaccine Department, Razi Vaccine and Serum Research Institute (RVSRI), Hessark Karadj Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mohamad Hassan Latifian
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Majid Talebi
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran
| | - Sabihe Soleimanin-Zad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Pouran Golkar
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
26
|
Li S, Xie H, Yan Z, Li B, Wu P, Qian X, Zhang X, Wu J, Liu J, Zhao X. Development of a live vector vaccine against infectious hematopoietic necrosis virus in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2019; 89:516-524. [PMID: 30986537 DOI: 10.1016/j.fsi.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) leads to serious disease and economic losses in the salmonid aquaculture industry. The present study aimed to develop an effective and efficient vaccine to protect rainbow trout (Oncorhynchus mykiss) against IHNV infection. Administered via the immersion route, a live vector vaccine containing the regions of the IHNV glycoprotein (G) induced immune responses in rainbow trout. Use of the immersion route induced more-efficient mucosal immunity than intramuscular injection vaccination. IHNV G gene expression was detected in the spleens of rainbow trout at 3, 7 and 15 days post-vaccination (dpv). The G gene expression continuously decreased between 3 and 15 dpv. In addition, the expression of TLR-3, TLR-7 and TLR-8 was upregulated after vaccination, and the highest expression levels of IFN-1, Mx-1, Mx-3, Vig-1 and Vig-2 were observed at 3 dpv. Four markers of the adaptive immune response (CD4, CD8, IgM and IgT) gradually increased. When experimental fish were challenged with IHNV by immersion, significant differences in cumulative percentage mortality were observed in the vaccinated fish and the unvaccinated (empty-plasmid-vaccinated) fish. The relative survival rate was 92% and 6% in the vaccinated group and empty-plasmid group, respectively. Serum antibody levels gradually increased in the vaccinated fish, unlike in the unvaccinated fish, after 7 dpv. Our results suggest there was a significant increase in fish immune responses and resistance to infection with IHNV following administration of the live vector vaccine. Therefore, this live vector vaccine is a promising vaccine that may be utilized to protect rainbow trout against IHNV.
Collapse
Affiliation(s)
- Shouhu Li
- College of Veterinary Medicine, Gansu Agricultural University, 1# Yingmencun Road, Lanzhou, 730070, China.
| | - Hongxia Xie
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Zunqiang Yan
- College of Veterinary Medicine, Gansu Agricultural University, 1# Yingmencun Road, Lanzhou, 730070, China.
| | - Baoyu Li
- Lanzhou Weiteseng Biological Technology Co., Ltd, 102# Yandong Road, Lanzhou, 730050, China.
| | - Pengcheng Wu
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Xu Qian
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Xueliang Zhang
- Center for Fisheries Technology Promotion, 533# Duanjiatan Road, Lanzhou, 730020, China.
| | - Jintang Wu
- Lanzhou Weiteseng Biological Technology Co., Ltd, 102# Yandong Road, Lanzhou, 730050, China.
| | - Jixing Liu
- Lanzhou Weiteseng Biological Technology Co., Ltd, 102# Yandong Road, Lanzhou, 730050, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, 1# Yingmencun Road, Lanzhou, 730070, China.
| |
Collapse
|
27
|
Chen Y, Guo M, Wang Y, Hua X, Gao S, Wang Y, Li D, Shi W, Tang L, Li Y, Liu M. Immunity induced by recombinant attenuated IHNV (infectious hematopoietic necrosis virus)-G N438A expresses VP2 gene-encoded IPNV (infectious pancreatic necrosis virus) against both pathogens in rainbow trout. JOURNAL OF FISH DISEASES 2019; 42:631-642. [PMID: 30874325 DOI: 10.1111/jfd.12966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are important pathogens in rainbow trout farming worldwide. Their co-infection is also common, which causes great economic loss in juvenile salmon species. Development of a universal virus vaccine providing broadly cross-protective immunity will be of great importance. In this study, we generated two recombinant (r) virus (rIHNV-N438A-ΔNV-EGFP and rIHNV-N438A-ΔNV-VP2) replacing the NV gene of the backbone of rIHNV at the single point mutation at residue 438 with an efficient green fluorescent protein (EGFP) reporter gene and antigenic VP2 gene of IPNV. Meanwhile, we tested their efficacy against the wild-type (wt) IHNV HLJ-09 virus and IPNV serotype Sp virus challenge. The relative per cent survival rates of two recombinant viruses against (wt) IHNV HLJ-09 virus challenge were 84.6% and 81.5%, respectively. Simultaneously, the relative per cent survival rate of rIHNV-N438A-ΔNV-VP2 against IPNV serotype Sp virus challenge was 88.9%. It showed the two recombinant viruses had high protection rates and induced a high level of antibodies against IHNV or IPNV. Taken together, these results suggest the VP2 gene of IPNV can act as candidate gene for vaccine and attenuated multivalent live vaccines and molecular marker vaccines have potential application for viral vaccine.
Collapse
Affiliation(s)
- Yaping Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mengting Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yanxue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaojing Hua
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuting Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Dechuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
28
|
Mulei IR, Nyaga PN, Mbuthia PG, Waruiru RM, Xu C, Evensen Ø, Mutoloki S. First detection and isolation of infectious haematopoietic necrosis virus from farmed rainbow trout in Nyeri County, Kenya. JOURNAL OF FISH DISEASES 2019; 42:751-758. [PMID: 30805926 DOI: 10.1111/jfd.12979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Infectious haematopoietic necrosis virus (IHNV) is the causative agent of infectious haematopoietic necrosis, a disease of salmonid responsible for great economic losses. The disease occurs in most parts of the world where rainbow trout is reared but has not been previously reported in Kenya. In this study, rainbow trout fry and growers from two farms in Nyeri County were screened for IHNV. Whole fry (n = 4 from each farm) and kidney samples from growers (n = 15 and n = 6 from the two farms, respectively) were collected and preserved for cell culture examination or PCR analysis. Screening of samples was done by PCR followed by sequencing of the glycoprotein gene of the virus. Demonstration of the virus was done by propagation in EPC cells followed by the indirect fluorescence antibody test (IFAT). The results revealed the presence of IHNV at low prevalence of 0.1 and 0.4 for the two farms. The virus was confirmed both by IFAT and by partial sequencing of the G gene. Phylogenetic analysis revealed that the Kenyan isolates were identical to those of the J genogroup found mostly in Asia. The findings have implications for biosecurity measures and import regulations for the Kenyan rainbow trout industry.
Collapse
Affiliation(s)
- Isaac R Mulei
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- Department of Veterinary Pathology, Microbiology & Parasitology, University of Nairobi, Faculty of Veterinary Medicine, Nairobi, Kenya
| | - Phillip N Nyaga
- Department of Veterinary Pathology, Microbiology & Parasitology, University of Nairobi, Faculty of Veterinary Medicine, Nairobi, Kenya
| | - Paul G Mbuthia
- Department of Veterinary Pathology, Microbiology & Parasitology, University of Nairobi, Faculty of Veterinary Medicine, Nairobi, Kenya
| | - Robert M Waruiru
- Department of Veterinary Pathology, Microbiology & Parasitology, University of Nairobi, Faculty of Veterinary Medicine, Nairobi, Kenya
| | - Cheng Xu
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Evensen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Stephen Mutoloki
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
29
|
Liu W, Fan Y, Li Z, Zhao J, Zhou Y, Jiang N, Zeng J, Cain K, Zeng L. Isolation, identification, and classification of a novel rhabdovirus from diseased Chinese rice-field eels (Monopterus albus). Arch Virol 2018; 164:105-116. [PMID: 30284632 DOI: 10.1007/s00705-018-4054-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022]
Abstract
In 2017, a clinical disease outbreak resulted in substantial mortality of adults and larvae of cultured Chinese rice-field eels (Monopterus albus) on a farm in Hubei, Central China. A rhabdovirus was isolated from moribund specimens, and typical clinical symptoms associated with an outbreak included an enlarged and swollen head. This differed from previous observations. Histological changes included necrosis and cavities of various sizes within the brain and kidney. Homogenized tissues of diseased Chinese rice-field eels were screened for viral isolation using six different fish cell lines. A rhabdovirus was isolated following observation of cytopathic effect (CPE) in a gibel carp brain (GiCB) cell line and confirmed by RT-PCR. Electron microscopy showed large numbers of rhabdovirus-shaped particles in the cytoplasm of the brain cells of the diseased Chinese rice-field eels and in the infected GiCB cell line. This virus has been named "Chinese rice-field eel rhabdovirus" (CrERV), and the complete nucleotide sequence of CrERV was cloned. This rhabdovirus is composed of 11,545 nucleotides with the following genomic organization: 3'-N-P-M-G-L-5'. The genes are separated by conserved gene junctions, and phylogenetic analysis of the L sequence revealed that CrERV forms a separate branch with Siniperca chuatsi rhabdovirus (SCRV) and hybrid snakehead rhabdovirus C1207 (HSHRV-C1207). This is the first report of the complete sequence of CrERV from the Chinese rice-field eel in China.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jianqing Zhao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Jia Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kenneth Cain
- Department of Fish and Wildlife Sciences and the Aquaculture Research Institute, University of Idaho, Moscow, ID, 83843-1136, USA
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
30
|
Efficient osmolyte-based procedure to increase expression level and solubility of infectious hematopoietic necrosis virus (IHNV) nucleoprotein in E. coli. Appl Microbiol Biotechnol 2018; 102:4087-4100. [DOI: 10.1007/s00253-018-8907-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
|
31
|
Bellec L, Louboutin L, Cabon J, Castric J, Cozien J, Thiéry R, Morin T. Molecular evolution and phylogeography of infectious hematopoietic necrosis virus with a focus on its presence in France over the last 30 years. J Gen Virol 2017; 98:2438-2446. [PMID: 28874229 DOI: 10.1099/jgv.0.000894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is among the most important pathogens affecting the salmonid industry. Here, we investigated the molecular evolution and circulation of isolates from 11 countries or regions all over the world, with a special focus on the epidemiological situation in France. The phylogeography, time to the most recent common ancestor (TMRCA) and nucleotide substitution rate were studied using 118 full-length glycoprotein gene sequences isolated from 9 countries (5 genogroups) over a period of 47 years. The TMRCA dates back to 1943, with the L genogroup identified as the likely root (67 %), which is consistent with the first report of this pathogen in the USA. A Bayesian inference approach was applied to the partial glycoprotein gene sequences of 88 representative strains isolated in France over the period 1987-2015. The genetic diversity of these 88 sequences showed mean nucleotide and amino-acid identities of 97.1 and 97.8 %, respectively, and a d N/d S ratio (non-synonymous to synonymous mutations) of 0.25, indicating purifying selection. The French viral populations are divided into eight sub-clades and four individual isolates, with a clear spatial differentiation, suggesting the predominant role of local reservoirs in contamination. The atypical 'signatures' of some isolates underlined the usefulness of molecular phylogeny for epidemiological investigations that track the spread of IHNV.
Collapse
Affiliation(s)
- Laure Bellec
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France.,IFREMER, Centre Brest, REM/EEP/LMEE, UMR6197, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Jeanne Castric
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Joëlle Cozien
- IFREMER, Laboratoire Santé Environnement et Microbiologie (PDG-RBE-SG2M-LSEM), Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Richard Thiéry
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Sophia Antipolis Laboratory, 06902 Sophia-Antipolis, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| |
Collapse
|
32
|
Phylogeny of the infectious hematopoietic necrosis virus in European aquaculture. PLoS One 2017; 12:e0184490. [PMID: 28886189 PMCID: PMC5590938 DOI: 10.1371/journal.pone.0184490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022] Open
Abstract
Infectious hematopoietic necrosis (IHN)-a highly lethal infectious salmonid disease-has caused substantial economic losses in the European production of rainbow trout (Oncorhynchus mykiss) since the late 1980s. The causal agent of IHN is the IHN virus (IHNV) introduced from overseas. However, until today, its phylogeographic spread in Europe remains poorly understood. We therefore sought to elucidate this unresolved topic by using the largest ever compiled dataset of European IHNV isolates (E isolates) (193 GenBank E isolates and 100 isolates from this study) for the complete glycoprotein (G) gene sequence. Our results clearly revealed that the active trout trade has left its traces in the E phylogeny. For example, the spread by trade of IHNV-infected trout was apparently the cause for the exposure of the E lineage to different local scenarios of selection and genetic drift, and therefore has led to the split of this lineage into various subordinated lineages. Accordingly, we also found evidence for E isolates being mixed Europe-wide by cross-border introduction events. Moreover, there were indications that this propagation of the E lineage within Europe corresponded with an extensive and rapid spread event, already during or shortly after its formation. Finally, in accordance with the high substitution rate of IHNV determined by previous studies, our dataset indicates that the mean period of occurrence of a single E haplotype is typically not longer than one calendar year.
Collapse
|
33
|
Biacchesi S, Mérour E, Chevret D, Lamoureux A, Bernard J, Brémont M. NV Proteins of Fish Novirhabdovirus Recruit Cellular PPM1Bb Protein Phosphatase and Antagonize RIG-I-Mediated IFN Induction. Sci Rep 2017; 7:44025. [PMID: 28276468 PMCID: PMC5343655 DOI: 10.1038/srep44025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Non virion (NV) protein expression is critical for fish Novirhabdovirus, viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV), in vivo pathogenesis. However, the mechanism by which NV promotes the viral replication is still unclear. We developed an approach based on reverse genetics and interactomic and identified several NV-associated cellular partners underlying cellular pathways as potential viral targets. Among these cell partners, we showed that NV proteins specifically interact with a protein phosphatase, Mg2+/Mn2+-dependent, 1Bb (PPM1Bb) and recruit it in the close vicinity of mitochondria, a subcellular compartment important for retinoic acid-inducible gene-I- (RIG-I)-mediated interferon induction pathway. PPM1B proteins belong to the PP2C family of serine/threonine (Ser/Thr) protein phosphatase and have recently been shown to negatively regulate the host antiviral response via dephosphorylating Traf family member-associated NF-κB activator (TANK)-binding kinase 1 (TBK1). We demonstrated that NV proteins and PPM1Bb counteract RIG-I- and TBK1-dependent interferon (IFN) and IFN-stimulated gene promoter induction in fish cells and, hence, the establishment of an antiviral state. Furthermore, the expression of VHSV NV strongly reduced TBK1 phosphorylation and thus its activation. Our findings provide evidence for a previously undescribed mechanism by which a viral protein recruits PPM1Bb protein phosphatase to subvert innate immune recognition.
Collapse
Affiliation(s)
| | - Emilie Mérour
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Didier Chevret
- PAPPSO, Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Annie Lamoureux
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Julie Bernard
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Michel Brémont
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
34
|
Kim KI, Cha SJ, Lee C, Baek H, Hwang SD, Cho MY, Jee BY, Park MA. Genetic relatedness of infectious hematopoietic necrosis virus (IHNV) from cultured salmonids in Korea. Arch Virol 2016; 161:2305-10. [PMID: 27255747 DOI: 10.1007/s00705-016-2913-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV; n = 18) was identified in the Korean national surveillance program between February 2013 and April 2015, suggesting that IHNV is a major viral pathogen in cultured salmonids. By phylogeny analysis, we found that the JRt-Nagano and JRt-Shizuoka groups could each be further subdivided into three distinct subtypes. The Korean strains were genetically similar to Japanese isolates, suggesting introduction from Japan. Interestingly, the amino acid sequences of the middle glycoprotein gene show that distinct Korean subtypes have circulated, indicating that the settled IHNVs might be evolved stably in cultured salmonid farm environments.
Collapse
Affiliation(s)
- Kwang Il Kim
- Aquaculture Industry Division, East Sea Fisheries Research Institute, Gangneung, Gangwon-do, 25435, Republic of Korea.
| | - Seung Joo Cha
- Inland Aquaculture Research Center, Jinhae, Gyeongsangnam-do, 51688, Republic of Korea
| | - Chu Lee
- Aquaculture Industry Division, East Sea Fisheries Research Institute, Gangneung, Gangwon-do, 25435, Republic of Korea
| | - Harim Baek
- Aquaculture Industry Division, East Sea Fisheries Research Institute, Gangneung, Gangwon-do, 25435, Republic of Korea
| | - Seong Don Hwang
- Aquatic Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Myoung-Ae Park
- Aquatic Disease Control Division, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| |
Collapse
|
35
|
Wang C, Zhao LL, Li YJ, Tang LJ, Qiao XY, Jiang YP, Liu M. Analysis of the genome sequence of infectious hematopoietic necrosis virus HLJ-09 in China. Virus Genes 2016; 52:29-37. [PMID: 26801781 DOI: 10.1007/s11262-015-1263-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/11/2015] [Indexed: 12/01/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a highly contagious disease of juvenile salmonid fish. Six genome target fragments of the complete genome sequence of IHNV HLJ-09 were amplified by RT-PCR, and the 3'-terminal and 5'-terminal region of the genomic RNA were amplified using the RACE method. The complete genome sequence of HLJ-09 comprises 11,132 nucleotides (nt) (Accession number JX649101) and is different from that of other IHNV strains published in GenBank. Homology comparison and phylogenetic analysis of six ORF sequences were carried out using HLJ-09 and other IHNV strains published in GenBank. From phylogenetic tree analysis, the N gene, M gene, and P gene had the closest genetic relationship to IHNV-PRT from Korea. Phylogenetic analysis for the full length of the G gene showed that the HLJ-09 strain exhibited very close homology to the ChYa07, RtNag96, RtUi02, and RtGu01 strains from Korea and Japan, indicating that the HLJ-09 strain belonged to the genotype JRt. Ultimately, the Chinese IHNV HLJ-09 strain may have originated in Korea and Japan.
Collapse
Affiliation(s)
- C Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - L L Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Y J Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - L J Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - X Y Qiao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Y P Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - M Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.
| |
Collapse
|
36
|
Phylogenetic relationships of Iranian infectious hematopoietic necrosis virus of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene. Arch Virol 2015; 161:657-63. [PMID: 26602428 DOI: 10.1007/s00705-015-2684-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
Infectious hematopoietic necrosis virus (IHNV), a member of family Rhabdoviridae and genus Novirhabdoviridae, causes a highly lethal disease of salmon and trout. In Iran IHNV was first detected in 2001 on farms rearing rainbow trout (Oncorhynchus mykiss). To evaluate the genetic relationships of IHNV from northern and western Iran, the sequences of a 651-nt region of the glycoprotein gene were determined for two Iranian isolates. These sequences were analyzed to evaluate their genetic relatedness to worldwide isolates representing the five known genogroups of IHNV. Iranian isolates were most closely related to European isolates within the genogroup E rather than those of North American genogroups U, M and L, or the Asian genogroup J. It appears that Iranian IHNV was most likely introduced to Iran from a source in Europe by the movement of contaminated fish eggs.
Collapse
|
37
|
Ballesteros NA, Alonso M, Saint-Jean SR, Perez-Prieto SI. An oral DNA vaccine against infectious haematopoietic necrosis virus (IHNV) encapsulated in alginate microspheres induces dose-dependent immune responses and significant protection in rainbow trout (Oncorrhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2015; 45:877-888. [PMID: 26054788 DOI: 10.1016/j.fsi.2015.05.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
Administered by intramuscular injection, a DNA vaccine (pIRF1A-G) containing the promoter regions upstream of the rainbow trout interferon regulatory factor 1A gene (IRF1A) driven the expression of the infectious hematopoietic necrosis virus (IHNV) glycoprotein (G) elicited protective immune responses in rainbow trout (Oncorhynchus mykiss). However, less laborious and cost-effective routes of DNA vaccine delivery are required to vaccinate large numbers of susceptible farmed fish. In this study, the pIRF1A-G vaccine was encapsulated into alginate microspheres and orally administered to rainbow trout. At 1, 3, 5, and 7 d post-vaccination, IHNV G transcripts were detected by quantitative real-time PCR in gills, spleen, kidney and intestinal tissues of vaccinated fish. This result suggested that the encapsulation of pIRF1A-G in alginate microparticles protected the DNA vaccine from degradation in the fish stomach and ensured vaccine early delivery to the hindgut, vaccine passage through the intestinal mucosa and its distribution thought internal and external organs of vaccinated fish. We also observed that the oral route required approximately 20-fold more plasmid DNA than the injection route to induce the expression of significant levels of IHNV G transcripts in kidney and spleen of vaccinated fish. Despite this limitation, increased IFN-1, TLR-7 and IgM gene expression was detected by qRT-PCR in kidney of vaccinated fish when a 10 μg dose of the oral pIRF1A-G vaccine was administered. In contrast, significant Mx-1, Vig-1, Vig-2, TLR-3 and TLR-8 gene expression was only detected when higher doses of pIRF1A-G (50 and 100 μg) were orally administered. The pIRF1A-G vaccine also induced the expression of several markers of the adaptive immune response (CD4, CD8, IgM and IgT) in kidney and spleen of immunized fish in a dose-dependent manner. When vaccinated fish were challenged by immersion with live IHNV, evidence of a dose-response effect of the oral vaccine could also be observed. Although the protective effects of the oral pIRF1A-G vaccine after a challenge with IHNV were partial, significant differences in cumulative percent mortalities among the orally vaccinated fish and the unvaccinated or empty-plasmid vaccinated fish were observed. Similar levels of protection were obtained after the intramuscular administration of 5 μg of pIRF1A-G or after the oral administration of a high dose of pIRF1A-G vaccine (100 μg); with 70 and 56 relative percent survival values, respectively. When fish were vaccinated with alginate microspheres containing high doses of the pIRF1A-G vaccine (50 or 100 μg), a significant increase in the production of anti-IHNV antibodies was detected in serum samples of the vaccinated fish compared with that in unvaccinated fish. At 10 days post-challenge, IHNV N gene expression was nearly undetectable in kidney and spleen of orally vaccinated fish which suggested that the vaccine effectively reduced the amount of virus in tissues of vaccinated fish that survived the challenge. In conclusion, our results demonstrated a significant increase in fish immune responses and resistance to an IHNV infection after the oral administration of increasing concentrations of a DNA vaccine against IHNV encapsulated into alginate microspheres.
Collapse
Affiliation(s)
- Natalia A Ballesteros
- Centro de Investigaciones Biológicas-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Marta Alonso
- Basque Institute for Agricultural Research and Development, Neiker-Tecnalia, C/Berreaga 1, 48160 Derio, Bizkaia, Spain
| | | | - Sara I Perez-Prieto
- Centro de Investigaciones Biológicas-CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
38
|
Liu H, Zheng X, Shi X, Yu L, Jia P, Wang J, He J, Lan W, Liu H, Wu Z. Selection and characterization of single-chain recombinant antibodies against infectious haematopoietic necrosis virus from mouse phage display library. J Virol Methods 2014; 205:61-7. [DOI: 10.1016/j.jviromet.2014.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/11/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
39
|
Determination of the complete genome sequence of infectious hematopoietic necrosis virus (IHNV) Ch20101008 and viral molecular evolution in China. INFECTION GENETICS AND EVOLUTION 2014; 27:418-31. [PMID: 25172153 DOI: 10.1016/j.meegid.2014.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 11/21/2022]
Abstract
This study determined the complete genomic sequence of the infectious hematopoietic necrosis virus (IHNV) strain Ch20101008 isolated from farmed brook trout (Salvelinus fontinalis) that died from a disease caused by the virus in northeast China. The sequence was determined from 10 overlapping clones obtained through RT-PCR amplification. The whole genome length of Ch20101008 comprised 11,129 nucleotides (nt), and the overall organization was typical of that observed for all other IHNV strains. The phylogenetic analysis results of the 65 IHNV glycoprotein genes and 47 IHNV partial nucleoprotein genes presented five major genogroups (J, U, L, E and M). The J genogroup included the J Nagano and J Shizuoka subgroups. The IHNV Ch20101008 strain belonged to the J Nagano subgroup of the J genogroup and was significantly related to other Chinese IHNV strains. All Chinese IHNV isolates are monophyletic, with a recent common ancestor, except for the BjLL strain. The N, P, M, G, NV and L genes of Ch20101008 were compared with the available IHNV sequences in GenBank. The results indicated that 198 nt were substituted, 53 of which exhibited amino acid change in the Ch20101008 genome. An adenine nucleotide deletion was found at position 4959 of the 5' UTR of the L gene. In the G gene, specific nucleotides and amino acid variations of the Chinese IHNV strains were observed when compared with 23 isolates from other countries. Of the 15 nucleotide sites that changed, seven resulted in amino acid substitution. The data further demonstrated that the J genogroup IHNV was introduced to and evolved in salmon farm environments in China.
Collapse
|
40
|
Zeng W, Wang Q, Wang Y, Liu C, Liang H, Fang X, Wu S. Genomic characterization and taxonomic position of a rhabdovirus from a hybrid snakehead. Arch Virol 2014; 159:2469-73. [DOI: 10.1007/s00705-014-2061-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/18/2014] [Indexed: 11/24/2022]
|
41
|
Purcell MK, Thompson RL, Garver KA, Hawley LM, Batts WN, Sprague L, Sampson C, Winton JR. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV). DISEASES OF AQUATIC ORGANISMS 2013; 106:103-15. [PMID: 24113244 DOI: 10.3354/dao02644] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.
Collapse
Affiliation(s)
- Maureen K Purcell
- Western Fisheries Research Center, US Geological Survey, 6505 NE 65th St., Seattle, Washington 98115, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Dating the divergence of the infectious hematopoietic necrosis virus. INFECTION GENETICS AND EVOLUTION 2013; 18:145-50. [DOI: 10.1016/j.meegid.2013.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/11/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
|
43
|
Rodríguez Saint-Jean S, De las Heras A, Carrillo W, Recio I, Ortiz-Delgado JB, Ramos M, Gomez-Ruiz JA, Sarasquete C, Pérez-Prieto SI. Antiviral activity of casein and αs2 casein hydrolysates against the infectious haematopoietic necrosis virus, a rhabdovirus from salmonid fish. JOURNAL OF FISH DISEASES 2013; 36:467-481. [PMID: 23167612 DOI: 10.1111/j.1365-2761.2012.01448.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 06/01/2023]
Abstract
Salmonid fish viruses, such as infectious haematopoietic necrosis virus (IHNV), are responsible for serious losses in the rainbow trout and salmon-farming industries, and they have been the subject of intense research in the field of aquaculture. Thus, the aim of this work is to study the antiviral effect of milk-derived proteins as bovine caseins or casein-derived peptides at different stages during the course of IHNV infection. The results indicate that the 3-h fraction of casein and α(S2) -casein hydrolysates reduced the yield of infectious IHNV in a dose-dependent manner and impaired the production of IHNV-specific antigens. Hydrolysates of total casein and α(S2) -casein target the initial and later stages of viral infection, as demonstrated by the reduction in the infective titre observed throughout multiple stages and cycles. In vivo, more than 50% protection was observed in the casein-treated fish, and the kidney sections exhibited none of the histopathological characteristics of IHNV infection. The active fractions from casein were identified, as well as one of the individual IHNV-inhibiting peptides. Further studies will be required to determine which other peptides possess this activity. These findings provide a basis for future investigations on the efficacy of these compounds in treating other viral diseases in farmed fish and to elucidate the underlying molecular mechanisms of action. However, the present results provide convincing evidence in support of a role for several milk casein fractions as suitable candidates to prevent and treat some fish viral infections.
Collapse
Affiliation(s)
- S Rodríguez Saint-Jean
- Departamento de Microbiologia Molecular y Biología de la Infección, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sahoo PK, Goodwin AE. Viruses of freshwater finfish in the asian-pacific region. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:99-105. [PMID: 23997433 DOI: 10.1007/s13337-012-0102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
Abstract
There has been a tremendous increase in global demand for marine and freshwater fish to meet the protein needs of our expanding human population. However, due to the limited capacity of the wild-capture sector and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry. Aquaculture, particularly freshwater aquaculture is now integral to the economies of many countries. A large number of aquatic animal species are farmed in high density in freshwater, brackish and marine systems, where they are exposed to new environments and potentially new diseases. Further, environmental stress factors, the use of manufactured feeds, and prolific global trade has led to the emergence and spread of new diseases. Viral pathogens, established for decades or newly emerging as disease threats, are particularly challenging since there are few efficacious treatments. Vaccines have been developed for some viral fish pathogens in salmonids, but vaccines are not available for many of the viral pathogens important in Asia. Control and eradication programs are difficult because many viral infections remain latent until adverse environmental conditions, such as overcrowding or poor water quality, trigger the onset of disease. Here, we review the more significant viral pathogens of finfish in the Asia-Pacific including both those with a long history in Asian aquaculture and emerging pathogens including betanodaviruses and koi herpes virus that have caused massive losses in the freshwater aquaculture and ornamental fish industries.
Collapse
Affiliation(s)
- P K Sahoo
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhuabaneswar, 751 002 India
| | | |
Collapse
|
45
|
Galinier R, van Beurden S, Amilhat E, Castric J, Schoehn G, Verneau O, Fazio G, Allienne JF, Engelsma M, Sasal P, Faliex E. Complete genomic sequence and taxonomic position of eel virus European X (EVEX), a rhabdovirus of European eel. Virus Res 2012; 166:1-12. [PMID: 22401847 DOI: 10.1016/j.virusres.2012.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/07/2012] [Accepted: 02/16/2012] [Indexed: 11/27/2022]
Abstract
Eel virus European X (EVEX) was first isolated from diseased European eel Anguilla anguilla in Japan at the end of seventies. The virus was tentatively classified into the Rhabdoviridae family on the basis of morphology and serological cross reactivity. This family of viruses is organized into six genera and currently comprises approximately 200 members, many of which are still unassigned because of the lack of molecular data. This work presents the morphological, biochemical and genetic characterizations of EVEX, and proposes a taxonomic classification for this virus. We provide its complete genome sequence, plus a comprehensive sequence comparison between isolates from different geographical origins. The genome encodes the five classical structural proteins plus an overlapping open reading frame in the phosphoprotein gene, coding for a putative C protein. Phylogenic relationship with other rhabdoviruses indicates that EVEX is most closely related to the Vesiculovirus genus and shares the highest identity with trout rhabdovirus 903/87.
Collapse
Affiliation(s)
- Richard Galinier
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, F-66860 Perpignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jiao W, Yin X, Li Z, Lan X, Li X, Tian X, Li B, Yang B, Zhang Y, Liu J. Molecular characterization of China rabies virus vaccine strain. Virol J 2011; 8:521. [PMID: 22093774 PMCID: PMC3226571 DOI: 10.1186/1743-422x-8-521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/17/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Rabies virus (RV), the agent of rabies, can cause a severe encephalomyelitis in several species of mammals, including humans. As a human rabies vaccine strain employed in China, the genetic knowledge of the aG strain has not been fully studied. The main goal of the present study is to amplify the whole genome of aG strain, and genetic relationships between other vaccine strains and wild strains were analyzed. RESULTS The entire genome of human rabies virus vaccine strain aG employed in China was sequenced; this is the second rabies virus vaccine strain from China to be fully characterized. The overall organization and the length of the genome were similar to that of other lyssaviruses. The length of aG strain was 11925nt, comprising a leader sequence of 58nt, nucleoprotein (N) gene of 1353nt, phosphoprotein (P) gene of 894 nt, matrix protein (M) gene of 609nt, glycoprotein (G) gene of 1575nt, RNA-dependent RNA polymerase (RdRp,L) gene of 6384nt, and a trailer region of 70 nt. There was TGAAAAAAA (TGA7) consensus sequence in the end of each gene, except AGA7 at the end of G gene. There was AACAYYYCT consensus start signal at the beginning of each gene. CONCLUSIONS In this report, we analyzed the full genome of China human rabies vaccine strain aG. Our studies indicated that the genome of aG retained the basic characteristics of RV. At gene level, N was the most conserved among the five coding genes, indicating this gene is the most appropriate for quantitative genotype definition. The phylogenetic analysis of the N indicated the aG strain clustered most closely with Japanese and Russian rabies vaccine strains, suggesting that they may share the same ancestor; also, the aG strain did not share high homology with wild strains isolated from China, making it may not be the best vaccine strain, more research is needed to elucidate the genetic relationship among the RV circulating in China.
Collapse
Affiliation(s)
- Wenqiang Jiao
- State Key Laboratory of Veterinary Etiological biology, Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujia ping 1, Yanchang bu, Lanzhou, Gansu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Crane M, Hyatt A. Viruses of fish: an overview of significant pathogens. Viruses 2011; 3:2025-46. [PMID: 22163333 PMCID: PMC3230840 DOI: 10.3390/v3112025] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 11/16/2022] Open
Abstract
The growing global demand for seafood together with the limited capacity of the wild-capture sector to meet this demand has seen the aquaculture industry continue to grow around the world. A vast array of aquatic animal species is farmed in high density in freshwater, brackish and marine systems where they are exposed to new environments and potentially new diseases. On-farm stresses may compromise their ability to combat infection, and farming practices facilitate rapid transmission of disease. Viral pathogens, whether they have been established for decades or whether they are newly emerging as disease threats, are particularly challenging since there are few, if any, efficacious treatments, and the development of effective viral vaccines for delivery in aquatic systems remains elusive. Here, we review a few of the more significant viral pathogens of finfish, including aquabirnaviruses and infectious hematopoietic necrosis virus which have been known since the first half of the 20th century, and more recent viral pathogens, for example betanodaviruses, that have emerged as aquaculture has undergone a dramatic expansion in the past few decades.
Collapse
Affiliation(s)
- Mark Crane
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong Victoria 3220, Australia; E-Mail:
| | - Alex Hyatt
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong Victoria 3220, Australia; E-Mail:
| |
Collapse
|
48
|
Choi MK, Moon CH, Ko MS, Lee UH, Cho WJ, Cha SJ, Do JW, Heo GJ, Jeong SG, Hahm YS, Harmache A, Bremont M, Kurath G, Park JW. A nuclear localization of the infectious haematopoietic necrosis virus NV protein is necessary for optimal viral growth. PLoS One 2011; 6:e22362. [PMID: 21814578 PMCID: PMC3141031 DOI: 10.1371/journal.pone.0022362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/22/2011] [Indexed: 12/14/2022] Open
Abstract
The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the (32)EGDL(35) residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the (32)EGDL(35) was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of (32)EGDL(35) responsible for nuclear localization are important for the inhibitory activity of NV.
Collapse
Affiliation(s)
- Myeong Kyu Choi
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Peñaranda MMD, Lapatra SE, Kurath G. Specificity of DNA vaccines against the U and M genogroups of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2011; 31:43-51. [PMID: 21385613 DOI: 10.1016/j.fsi.2011.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 05/12/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) is a fish rhabdovirus that causes significant mortality in salmonid species. In North America IHNV has three major genogroups designated U, M, and L. Host-specificity of the M and U genogroups of IHNV has been established both in the field and in experimental challenges, with M isolates being more prevalent and more virulent in rainbow trout (Oncorhynchus mykiss), and U isolates being more prevalent and highly virulent in sockeye salmon (Oncorhynchus nerka). In this study, efficacy of DNA vaccines containing either M (pM) or U (pU) virus glycoprotein genes was investigated during intra- and cross-genogroup challenges in rainbow trout. In virus challenges at 7 days post-vaccination (early antiviral response), both pM and pU were highly protective against either M or U IHNV. In challenges at 28 days post-vaccination (specific antiviral response), both pM and pU were protective against M IHNV but the homologous pM vaccine was significantly more protective than pU in one of two experiments. At this stage both pM and pU induced comparably high protection against U IHNV challenge. Correlates of protection were also investigated by assessing the expression of the interferon-stimulated gene Mx-1 and the production of neutralizing antibodies (NAbs) following pM or pU DNA vaccination. Mx-1 gene expression, measured at 4 and 7 days post-vaccination as an indicator of the host innate immune response, was found to be significantly higher after pM than pU vaccination in some cases. Neutralizing antibody was produced in response to the two vaccines, but antibody titers did not show consistent correlation with protection. The results show that the rainbow trout innate and adaptive immune responses have some ability to distinguish between the U and M genogroup IHNV, but overall the pM and pU vaccines were protective against both homologous and cross-genogroup challenges.
Collapse
Affiliation(s)
- Ma Michelle D Peñaranda
- Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
50
|
Quan PL, Williams DT, Johansen CA, Jain K, Petrosov A, Diviney SM, Tashmukhamedova A, Hutchison SK, Tesh RB, Mackenzie JS, Briese T, Lipkin WI. Genetic characterization of K13965, a strain of Oak Vale virus from Western Australia. Virus Res 2011; 160:206-13. [PMID: 21740935 DOI: 10.1016/j.virusres.2011.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
K13965, an uncharacterized virus, was isolated in 1993 from Anopheles annulipes mosquitoes collected in the Kimberley region of northern Western Australia. Here, we report its genomic sequence, identify it as a rhabdovirus, and characterize its phylogenetic relationships. The genome comprises a P' (C) and SH protein similar to the recently characterized Tupaia and Durham viruses, and shows overlap between G and L genes. Comparison of K13965 genome sequence to other rhabdoviruses identified K13965 as a strain of the unclassified Australian Oak Vale rhabdovirus, whose complete genome sequence we also determined. Phylogenetic analysis of N and L sequences indicated genetic relationship to a recently proposed Sandjima virus clade, although the Oak Vale virus sequences form a branch separate from the African members of that group.
Collapse
Affiliation(s)
- Phenix-Lan Quan
- Center for Infection and Immunity, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|